电力机车的简介概述

电力机车主电路发展概述(I)

电力机车主电路的发展概述 电力机车(electric locomotive)本身不带原动机、靠接受沿线接触网送来的电流作为能源、由牵引电动机驱动车轮的机车。所需的电能,可以由多种形式(火力、水力、风力、核能等)转换而来。电力机车具有功率大、热效率高、速度快、过载能力强和运行可靠边等主要优点,而且不污染环境,特别适用于运输繁忙的铁路干线和隧道多、坡度大的山区铁路。 发展概况【top】最早造出第一台标准轨距电力机车的是苏格兰人R·戴维森,时间是1842年,由40组蓄电池供电,但没有实用价值。1879年5月,德国人W·VON西门子设计制造了一台能拉乘坐18人的三辆敞开式“客车”的电力机车,它由外部150V直流发电机通过第三轨供电,这是电力机车首次成功的试验。1881年,法国在巴黎展出了第一条由架空导线供电的电车线路,这就为提高电压,采用大功率牵引电动机创造条件。1895年,美国在巴尔的摩—俄亥俄间5. 6 km长的遂道区段修建了直流电气化铁路,在该区段上运行的干线电力机车自重97 t,采用675 V直流电,功率为1 070 kW。1903年德国的三相交流电力机车创造了每小时210km 的高速记录。 中国最早使用电力机车在1914年,是抚顺煤矿使用的1 500 V直流电力机车。1958年中国成功地生产出第一台电力机车,从采用引燃管整流器到硅整流器,机车性能不断改进和提高,到1976年制成韶山型(SS1型)131号时已基本定型。截止到1989年停止生产,SS1型电力机车总共制造出厂926台,成为中国电气铁路干线的首批主型机车。1966年SS2型机车制成。1978年研制成功的SS3型机车,不仅改善了牵引性能,还把机车的小时功率从4 200kW提高到4 800kW,载止到1997年底,共生产了987台,成为中国第二种主型电力机车。1985年又研制成功了SS4型8轴货运电力机车,它是国产电力机车中功率最大的一种(6 400kW),已成为中国重载货运的主型机车。以后又陆续研制成功了SS5、SS6和SS7 型电力机车。1994研制成功了时速为160 km的准高速四轴电力机车等。至此,中国干线电力机车已基本形成了4、6、8 轴和3 200、4 800和6 400kW功率系列。1999年5月26日,中国株洲电力机车厂生产出第一台时速超过200km的DDJ1001号“子弹头”电力机车,标志着中国铁路电力牵引已跻身于国际高速列车的行列。为追踪世界新型“交—直—交”电力机车新技术,从20世纪70年代末开始,中国铁路一直在进行中小功率变流机组的地面试验研究和大功率的交—直—交电力机车的研制,也已取得了阶段性成果。 类型【top】电力机车是从接触网上获取电能的,接触网供给电力机车的电流有直流和交流两种。由于电流制不同,所用的电力机车也不一样,基本上可以分为三类: 直—直流电力机车采用直流制供电时,牵引变电所内设有整流装置,它将三相交流电变成直流电后,再送到接触网上。因此,电力机车可直接从接触网上取得直流电供给直流串励牵引电动机使用,简化了机车上的设备。直流制的缺点是接触网的电压低,一般为1 500V或3 000V,接触导线要求很粗,要消耗大量的有色金属,加大了建设投资。 交—直流电力机车在交流制中,目前世界上大多数国家都采用工频(50Hz)交流制,或25Hz低频交流制。在这种供电制下,牵引变电所将三相交流电改变成25 kV工业频率单相交流串励电动机,把交流电变成直流电的任务在机车上完成。由于接触网电压比直流制时提高了很多,接触导线的直径可以相对减小,减少了有色金属的消耗和建设投资。因此,工频交流制得到了广泛采用,世界上绝大多数电力机车也是交—直流电力机车。 交—直—交电力机车采用直流串励电动机的最大优点是调速简单,只要改变电动机的端电压,就能很方便地在较大范围内实现对机车的调速。但是这种电机由于带有整流子,使制造和维修很复杂,体积也较大。而交流无整流子牵引电动机(即三相异步电动机)在制造、性能、功能、体积、重量、成本、及可靠性等方面远比整流子电机优越得多。它之所以迟迟不能在电力机车上应用,主要原因是调速比较困难。改变端电压不能使这种电机在较大范围内改变速度,而只有改变电流的频率才能达到目的。因此,只有当电子技术和大功率晶闸管变流装置得到迅速发展的今天,才能生产出采用三相交流电机的先进电力机车。交—直

中国电力机车

1.SS1 SS1 即韶山1型电力机车。1968年,株洲机车厂对6Y1型电力机车进行了研究和改进后研制成功了韶山1型电力机车代号SS1。车长19.4米。最大速度80KM/H,持续功率3780千瓦,电流制为单相工频交流,轴式CO—CO,于1988年停产,共制造826台。 用途:客货两用 轴式:Co-Co 传动方式:交—直传动 持续功率:3780kW 持续速度:43km/h 持续牵引力:301.1kN 最大牵引力:343.2kN 整备重量:138t 韶山1型电力干线客货运机车被火车迷们称之为"芍药" ;缘由是因为"韶1"的谐音 目前东北地区锦州机务段09年从北京局接过一批SS1型机车 2.SS3 SS3型电力机车是我国第二代(级间相控调压、交直传动)客货用电力机车。该型机车是在吸收了SS1、SS2型电力机车成熟经验,由株机厂和株洲所共同研制,并于 1978年底试

制出厂。俗称“白菜”。 3.SS4G SS4G(韶山4改)型电力机车用途:干线货运 轴式:2(Bo-Bo) 传动方式:交—直传动 持续功率:2×3200kW 持续速度:51.5km/h 持续牵引力:450kN 最高速度:100km/h 最大牵引力:628kN 整备重量:2×92t

首台投产年代:1993.9 4.SS5 韶山5型准高速电力机车,代号SS5。为准高速铁路试制的样车。产量2台。早都已报废,一台则在郑州机务段段内等待处理。另一台现在在北京的中国铁道博物馆展出。 韶山5型客运电力机车是国家“七五”重点科技攻关项目。“七五”期间,我国采用技贸结合的原则,在购买欧洲50Hz集团8K型机车的同时引进国外先进技术。在要求消化吸收的基础上,结合我国电力机车设计、制造、运用的经验,进行设计韶山5型电力机车。1 988年~1989年6月完成施工设计,两台样车分别于1990年9月和10月落成。1990年12月出厂,后讲行了西安一宝鸡间进行30万公里的运行考核。韶山5型机车的主要技术特点如下:①电机空心轴弹性传动,电机采用架悬式悬挂。②两段桥相控,即一段全控桥加一段半控桥。③再生制动。④功率因数补偿装置。⑤机车采用标准电子控制柜,具有特性控制、电气补偿、功补控制、防空转等功能。⑥设有空电联合制动。⑦机车设有列车供电绕组,供

电力机车事故概况案例

2012年“”列车停于无电区一般D15事故概况 事故概况: 2012年10月14日,我段XX运用车间XXX机班HXD3-8123机车,值乘DH41087次列车,兖北四场开车经一场走白兖联络线方向,由于司机精力旁顾,在兖北一场出站前错过支线号输入时机后,未及时采取补救措施盲目运行,导致出站后装置默认外包线自动闭塞数据,机车信号双黄转白限速递减装置常用动作,机车停于分相无电区,被迫请求救援,构成铁路交通一般D15事故。 事故原因: 1、非正常情况下司机操纵不科学、不合理,在未判明列车前方进路时盲目加速。下行兖北一场出站后有三个进路方向,司机在无法车机联控确认列车运行方向时,没有适时降低列车速度,而是盲目提手柄加载运行,未给采取补救措施留出操作时间,为事故的发生埋下隐患。 2.关键地点、重点作业环节主次不分,精力不集中,错过输入时机。在距出站信号机约70米处,司机已确认进路表示器显示方向,但却将精力旁顾,在仅有的十几秒操作时间内没有完成输入步骤,耽误了操作时机。 3.发生错漏输后没有正确处理,分相前未采取补救措施。司机发现错误后没有执行“乘务员在出现错漏输时,必须在发现后

及时进行监控装置参数修正”要求,未及时采取停车措施对LKJ 降级重新输入站号操作;而是错误考虑前方有电分相,想提高速度先闯过电分相,期间盲目多次进行无效的支线号输入操作,导致在机车信号停车模式下继续运行,装置触发常用动作列车停在无电区,从而导致错误加大,问题升级,是造成本次事故的重要原因。 2013年“”事故因素概况 基本概况: 2013年2月24日,我段XX运用车间XXX机班,使用HXD2C-0127机车,DH38215次,由于机班对弓网异常信息不敏感,没有及时向车站反馈信息;对弓网故障后的应急处置能力差,应急处置措施不正确,造成接触网故障持续存在,导致接触网故障信息不能及时反馈,为后续列车运行带来了较大隐患,构成段定事故因素。 原因分析 1、对弓网异常信息不敏感。接到车站注意观察接触网运行的通知后,未降低运行速度,以75km/h的速度常速运行通过观察地点,对接触网状态确认不彻底,接触网吊悬故障未发现。 2、对弓网故障后的应急处置能力差,应急处置措施不正确。在机车出现只有感应网压、自动降弓动作后未果断采取停车措施。 3、对自动降弓故障不能做出正确判断。对接触网故障导致的机车受

交流传动机车系统分析

毕业设计任务书 一、课题名称: 电力机车交流传动系统分析 二、指导老师: 三、设计内容与要求: 1、课题概述: 早期电力机车常采用直流电机来实现牵引系统,随着电力电子技术的进步,VVVF逆变器控制的异步电机牵引系统得到了广泛的应用,替代了直流电机牵引系统。采用交流传动技术的电力机车具有性能好、可靠性高、驱动功率大、维护工作量小等直流传动无法比拟的优越性。因此,电力牵引交流传动已经取代了直流电机牵引系统,成为轨道交通实现高速和重载的唯一选择和发展方向。 本课题主要分析电力机车交流传动系统的组成结构和常见的主电路拓扑结构,交流传动系统各主要部件的功能和原理,以及各种交流传动控制技术的对比分析。 2、设计内容与要求: 1)设计内容 a)电力机车交流传动系统的发展现状分析 b)电力机车交流传动系统组成和各种主电路拓扑结构分析 c)电力机车交流传动系统各主要部件功能和原理分析 d)各种交流传动控制技术的对比和分析 e)结论 2)要求 a)通过检索文献或其他方式,深入了解设计内容所需要的各种信息; b)能够灵活运用《电力电子技术》、《交流调速技术》、《电力机车总体》 等基础和专业课程的知识来分析电力机车交流传动系统。 c)要求学生有一定的电力电子,轨道交通专业基础。 四、设计参考书 1、《现代变流技术与电气传动》 2、《HXD1型电力机车》

3、《HXD2型电力机车》 4、《HXD3型电力机车》 5、《电力牵引交流传动与控制》 五、设计说明书内容 1、封面 2、目录 3、内容摘要(200-400字左右,中英文) 4、引言 5、正文(设计方案比较与选择,设计方案原理、分析、论证,设计结果的说 明及特点) 6、结束语 7、附录(参考文献、图纸、材料清单等) 六、设计进程安排 第1周:资料准备与借阅,了解课题思路。 第2-3周: 设计要求说明及课题内容辅导。 第4-7周:进行毕业设计,完成初稿。 第7-10周:第一次检查,了解设计完成情况。 第11周:第二次检查设计完成情况,并作好毕业答辩准备。 第12周:毕业答辩与综合成绩评定。 七、毕业设计答辩及论文要求 1、毕业设计答辩要求 1)答辩前三天,每个学生应按时将毕业设计说明书或毕业论文、专题报 告等必要资料交指导教师审阅,由指导教师写出审阅意见。 2)学生答辩时,自述部分内容包括课题的任务、目的和意义,所采用的 原始资料或参考文献、设计的基本内容和主要方法、成果结论和评价。 3)答辩小组质询课题的关键问题,质询与课题密切相关的基本理论、知 识、设计方法、实验方法、测试方法,鉴别学生独立工作能力、创新 能力。 2、毕业设计论文要求 文字要求:说明书要求打印(除图纸外),不能手写。文字通顺,语言流畅,排版合理,无错别字,不允许抄袭。 3、图纸要求: 按工程制图标准制图,图面整洁,布局合理,线条粗细均匀,圆弧连接

HXD3型电力机车介绍

HXD3型电力机车介绍 第一篇机车总体 一、HXD3型电力机车主要特点 轴式为C0-C0,电传动系统为交直交传动,采用IGBT水冷变流机组,1250kW大转矩异步牵引电动机,具有起动(持续)牵引力大、恒功率速度范围宽、粘着性能好、功率因数高等特点。 辅助电气系统采用2组辅助变流器,能分别提供VVVF和CVCF三相辅助电源,对辅助机组进行分类供电。该系统冗余性强,一组辅助变流器故障后可以由另一组辅助变流器对全部辅助机组供电。 采用微机网络控制系统,实现了逻辑控制、自诊断功能,而且实现了机车的网络重联功能。总体设计采用高度集成化、模块化的设计思路,电气屏柜和各种辅助机组分功能斜对称布置在中间走廊的两侧;采用了规范化司机室,有利于机车的安全运行。 车体的主要作用是承受上部载荷和传递机车牵引力;同时车体又是机车各动力机组和设备的安装基础;并要为乘务人员提供工作场所,因此,要求为乘务员提供良好的工作环境的同时,更为重要的是要求车体钢结构具有足够的强度和刚度。采用带有中梁的、整体承载的框架式车体结构,有利于提高车体的强度和刚度。 转向架采用滚动抱轴承半悬挂结构,二系采用高圆螺旋弹簧;采用整体轴箱、推挽式低位牵引杆等技术。 采用下悬式安装方式的一体化多绕组(全去耦)变压器,具有高阻抗、重量轻等特点,并采用强迫导向油循环风冷技术。 采用独立通风冷却技术。牵引电机采用由顶盖百叶窗进风的独立通风冷却方式;主变流器水冷和主变压器油冷采用水、油复合式铝板冷却器,由车顶直接进风冷却;辅助变流器也采用车外进风冷却的方式;另外还考虑了司机室的换气和机械间的微正压。 采用了集成化气路的空气制动系统,具有空电制动功能。机械制动采用轮盘制动。 采用了新型的模式空气干燥器,有利于压缩空气的干燥,减少制动系统阀件的故障率。

电力机车发展史

电力机车-概况 由牵引电动机驱动车轮的机车。电力机车因为所需电能由电气化铁路供电系统的接触网或第三轨供运行中的电力机车 给,所以是一种非自带能源的机车。电力机车具有功率大、过载能力强、牵引力大、速度快、整备作业时间短、维修量少、运营费用低、便于实现多机牵引、能采用再生制动以及节约能量等优点。使用电力机车牵引车列,可以提高列车运行速度和承载重量,从而大幅度地提高铁路的运输能力和通过能力。电力机车起动加速快,爬坡能力强,工作不受严寒的影响,运行时没有煤烟,所以在运输繁忙的铁路干线和隧道多、坡度陡的山区线路上更能发挥优越性。此外,电力旅客列车,可为客车空气调节和电热取暖提供便利条件。电力机车由于电气化铁路基本建设投资大,所以应用不如内燃机车和蒸汽机车广泛。电力机车没有空气污染,且善于保养,牵引列车速度可达几百千米,所以高速列车都是电力机车牵引的。电力机车另一个优点就是能够在短时间内完成启动和制动,这个性能比蒸汽机车和内燃机车要优秀很多。所以在世界范围内,正大力发展电气化铁路。在绿色环保的今天,电力机车的发展更加受到重视。由于我国的电气化铁路较少,所以会选择把原本无电气化的铁路经电气化改造。电气化改造后的铁路速度将从100-120km/h提高到160-200km/h,这样不仅能缩短列车的运输时间,还能达到5000t以上的货运列车运输。如今,走向“高铁时代”的中国,正大力发展电气化铁路。 电力机车-历史沿革 历史简述

1835年荷兰的斯特拉廷和贝克尔两人就试着制以电池供电的二轴小型铁路车辆。1842年苏格兰人R.戴维森首先造出一台用40组电池供电的重 5吨的标准轨距电力机车。由于电动机很原始,机车只能勉强工作。1879年德国人 W.von西门子驾驶一辆他设计的小型电力机车,拖着乘坐18人的三辆车,在柏林夏季展览会上表演。机车电源由外部150伏直流发电机供应,通过两轨道中间绝缘的第三轨向机车输电。这是电力机车首次成功的实验。电力机车用于营业是从地下铁道开始的。1890年英国伦敦首先用电力机车在 5.6公里长的一段地下铁道上牵引车辆。干线电力机车在1895年应用于美国的巴尔的摩铁路隧道区段,采用675伏直流电,自重97吨,功率1070千瓦。19世纪末,德国对交流电力机车进行了试验,1903年德国三相交流电力机车创造了每小时210.2公里的高速纪录。 来到中国 中国于1914年在抚顺煤矿使用1500伏直流电力机车。干线铁路电力机车采用单相交流 25000伏50赫电流制。1958年制成第一台以引燃管整流的“韶山”型电力机车。1968年改用硅整流器成功,称“韶山1”型,持续功率为3780千瓦。近年来干线电力机车向大功率、高速、耐用方面发展,客运电力机车速度已从每小时160公里增加到200公里,并向250公里迈进。各国制造的电力机车电压制较复杂,不便于国际间铁路联运过轨。近年来国际上已定出几种电力机车用标准电压。直流电压为600伏(非优先选用)、750伏、1500伏和3000伏。单相交流电压6250伏(非优先选用)、工频50或60赫,电压15000伏、工频赫,电压25000伏、工频50或60赫等几种。 各种类型的电力机车(19张) 电力机车-构造

韶山型电力机车介绍

韶山1型电力机车 一、简介: SS1型电力机车是我国第一代(有级调压、交 直传动)电力机车。 它是由我国1958年试制成功的第一台引燃 管6Y1型电力机车(仿苏联20世纪50年代H60 机车)逐步演变而来,但其三大件(引燃管、调压 开关、牵引电动机)可靠性较差,而经历了三次 重大技术改造。 第一次技术改造从8号车开始:首先是采用200A、600V螺栓型二极管取代引燃管组成中抽式全波整流桥;牵引电动机改为4极、有补偿绕组的高压牵引电动机;由于低压侧调压开关的级位转换电路中过渡电抗器的跨接会产生环流,使开关触头分断极为困难,调压开关经常“放炮”。 第二次技术改造从61号车开始:采用 300A、1200V平板型二极管组成中抽式全波整流电路,利用二极管的反向截止特性组成过渡硅机组,取代过渡电抗器以消除级位转换电路中的环流,大大提高了调压开关可靠性,也使33个运行级全部成为经济运行级。 第三次技术改造从131号车开始:将主电路中抽式电路改为单拍式双开口桥式整流调压电路。该电路取消了过渡硅机组,而与主整流机组合并。整个机组采用500A、2400V的整流二极管。这种改造于1980年从SS1-221号车定型,这也就是这里介绍的SS1型电力机车。 二、机车性能参数 电流制单相工频交流 工作电压/kV 额定值 25 最高值 29 最低值 19 轴式 Co-Co 轴重/t 23 机车整备质量/t 138(+3/-1)% 轨距/mm 1435 动轮直径(新/半磨耗)/mm 1250/1200 机车功率/kW 小时制 4200 持续制 3780 机车牵引力/kN 小时制 343.2 持续制 301.1 粘着值 362.8 起动值 487.4

中国电力机车发展史图文稿

中国电力机车发展史集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

电力机车的发展史 学生:XX 指导老师:XXX 摘要:今交通发达、经济快速发展的今天,电力机车在交通生活等领域发挥着在当重要的作用。电力机车由牵引电动机驱动车轮的机车。电力机车因为所需电能由电气化铁路供电系统的接触网中的电力机车给,所以是一种非自带能源的机车。电力机车具有功率大、过载能力强、牵引力大、速度快、整备作业时间短、维修量少、运营费用低、便于实现多机牵引、能采用再生制动以及节约能量等优点。使用电力机车牵引车列,可以提高列车运行速度和承载重量,从而大幅度地提高铁路的运输能力和通过能力。 关键词;韶山系列电车中国电车发展 一·电力机车相关历史背景 1835年荷兰的斯特拉廷和贝克尔两人就试着制以电池供电的二轴小型铁路车辆。1842年苏格兰人R.戴维森首先造出一台用40组电池供电的重5吨的标准轨距电力机车。由于电动机很原始,机车只能勉强工作。1879年德国人W.VON 西门子驾驶一辆他设计的小型电力机车,拖着乘坐18人的三辆车,在柏林夏季展览会上表演。机车电源由外部150伏直流发电机供应,通过两轨道中间绝缘的第三轨向机车输电。这是电力机车首次成功的实验。电力机车用于营业是从地下铁道开始的。1890年英国伦敦首先用电力机车在 5.6公里长的一段地下铁道上牵引车辆。干线电力机车在1895年应用于美国的巴尔的摩铁路隧道区段,采用675伏直流电,自重97吨,功率1070千瓦。19世纪末,德国对交流电力机车进行了试验,1903年德国三相交流电力机车创造了每小时210.2公里的高速纪录。

电力机车简介--中英文翻译

电力机车简介 机车是为列车提供驱动力,而自身并没有效装载能力的车辆;他的唯一目标是沿着轨道牵引列车。通常自带动力的车辆不被视为机车,在客运方面自带动力的车辆用得越来越普遍,但是很少用在货运。自带驱动力的车辆以驱动列车的车辆,通常它们不视为机车,因为它们具有有效装载能力,并且很少从列车上摘挂,它们称之为动车。 一般来说,机车牵引列车。现今在客运业务上拖拉式运营方式越来越常见,采用这种运营方式的特点是:机车在一端牵引列车,然而却由在另一端的司机室控制。 机车的优点: 在一般情况下,为什么将为列车提供驱动力的机车和车辆是分开的,而不是车辆自带动力的原因包括以下几点: 1.易于维修—维修一台机车和维修自带动力的车辆相比要容易。 2.安全—通常将列车牵引动力装置安装在远离乘客的地方比较安全,这一点对于蒸汽机车来说显得相当重要,但是有时会仍然会出现一些不如意 的情况。 3.易于更换动力—如果动力装置损坏,用一个新的来更换它即可,这样地来显得比较容易,从而一个动力装置产生故障时不至于整台机车无法工 作。 4.效率—当列车空载运行时可以将机车从列车上摘卸下来。机车再去执行其它牵引业务,这意味着不但可以降低列车运营成本,还可以提高机车 的使用效率。 5.将机车和车辆分离开来意味着当机车出现故障时,只需更换机车就可以这样就可以不影响列车的运营。在有些情况下车辆比机车先报废,如果机车和车辆不可摘挂,那么即使机车完好也得跟着报废,这样就意味着浪费和成本高,然而机车可以从列车上摘下来,只需更换车辆即可,这样五来大大的降低了成本提高了经济效益。 电力机车 电力机车是通过接触网或第三轨由外部提供电能。尽管电气化铁道的造价相当高,然而运营成本却比内燃机车低,良好的加速性能和可再生制动,使得它们在繁忙干线地区成为客运业务的理想选择。几乎所有的高速铁路都采用电力牵引(例如ICE,TGV),由于具有如此高的性能,机车所需要的电能是不容易得到提

电气化铁路的发展史

电气化铁路的发展史 最早造出第一台标准轨距电力机车的是苏格兰人R·戴维森,时间是1842年。1879年5月,德国人W·V·西门子设计制造了一台能拉乘坐18人的三辆敞开式“客车”的电力机车,这是电力机车首次成功的试验。1881年,法国巴黎展出了第一条由架空导线供电的电车线路,这就为提高电压,采用大功率牵引电动机创造了条件:1895年,美国在巴尔的摩—俄亥俄间5.6 km长的隧道区段修建了直流电气化铁路。1903年德国的三相交流电力机车创造了每小时210 km的高速记录。 电力机车的发展取决于电气化铁道的发展。建设具有真正意义的电气化铁路首先要解决如何提供高压电,改变供电制式的问题。 接触网供给机车的电流制,分为直流制和交流制两种(交流制中又分单相交流、三相交流),这就叫供电制式。工频单相交流制推动了电气化铁道的发展。20世纪70年代初,欧洲大陆以及亚洲的日本基本上实现了运输繁忙的主要铁路干线电气化。1973年~1974年爆发石油危机之后,各国对铁路电力和内燃牵引重新进行了经济评价,电力牵引更加受到青睐。英国原先主要是发展内燃牵引,也开始重视发展电力牵引。连已经完全内燃化的美国,铁路电气化的呼声也很高。到20世纪80年代初期,全世界已有50多个国家和地区修建了电气化铁道,其中,苏联的电气化铁道总长度达到4万多公里,日本、法国、西德都拥有1万公里以上的电气化铁道。目前,世界电气化铁道已达到20多万公里,中国也加入了拥有1万公里以上电气化铁道的“高级俱乐部”。 电气化铁道的供电问题解决之后,发展大功率、高速度的电力机车就成为各国追求的目标。这时候,半导体技术和微机控制技术的突破和发展推动了新型电力机车的问世。1979年,第一台E120型大功率交流传动电力机车在德国诞生,开创了电力机车发展的新纪元。 随着既有电力机车的更新换代和高速铁路的蓬勃发展,干线电力机车的研制已从直流传动转向交流传动。20世纪90年代,欧洲、日本等主要机车制造厂商几乎已停止了直流传动电力机车的生产,交流传动电力机车已成为世界电力机车发展的主流。

铁路机车基本知识概述

铁路机车基本知识概述 机车是铁路运输的基本动力。客货列车的牵引和车站上的调车作业,都由机车来承担。机车对铁路运输的安全正点、多拉快跑、优质低耗起着重要的作用,也是发展铁路运输业的关键设备。因此,车站与行车有关的计划与指挥人员,对各种类型机车的基本性能和运用常识应有一定的了解。 一、机车的种类 机车按原动力的不同可分为蒸汽机车、内燃机车(内燃动车组)和电力机车(电力动车组)三种。 机车按用途的不同可分为运行速度较高的客运机车、牵引力较大的货运机车和机动灵活的调车机车。 1.蒸汽机车 蒸汽机车的应用,已有170多年的历史。它是通过蒸汽机,把燃料(煤、油、木材)的热能转变成机械能,用来牵引列车运行的一种机车。蒸汽机车主要由锅炉、汽机、走行部、车架、煤水车、车钩及缓冲装置和制动装置等部分组成。 蒸汽机车热效率低、能源消耗大、输送能力小,所以,目前在我国已逐步被淘汰。 2.内燃机车 内燃机车是以柴油机为原动力的机车。它的特点是热效率高,持续工作时间长,适合长交路运行。

目前,我国运用的内燃机车,按其传动方式的不同,可分为电传动和液力传动两种类型。 电传动内燃机车是由柴油机带动发电机,把柴油机的机械能转变成电能,将电能供给牵引电动机,再经齿轮传递给机车轮对使机车运行。 液力传动内燃机车是在柴油机与机车动轮之间装有一套液力传动装置,柴油机输出的扭矩通过传动装置传递到机车的轮对上,使机车产生牵引力。 目前,我国生产的几种内燃机车的概况如表1-4所示。 表1-4几种国产内燃机车概况表

3.电力机车 电力机车本身不带能源,是依靠从沿途接触网导线上获取电能,通过牵引电动机而驱动的机车。 发电厂将110~220kV的三相工频交流电经输电线送往铁路牵引变电所,由牵引变电所分别向与其两边相邻区间的接触网上供给25~27.5kV的单相工频交流电,供电力机车使用。 电力机车主要由车体、走行装置、车底架、车钩及缓冲装置、制动装置和一整套电气设备组成。 电力机车具有功率大、起动速度快、善于爬坡、便于实施高速重载等优点。目前国产主要型号电力机车的技术性能如表1-5所示。 表1-5几种韶山系列电力机车概况表

02 HXD1B型大功率交流传动电力机车总体说明书

中国南车集团株洲电力机车有限公司 设计文件 HXD1B型大功率交流传动电力机车 总体说明书 更改单编号 版本0.1 编 制 日 期 审 核 日 期 批 准 日 期

大功率交流传动9600kW六轴货运电力机车总体说明书 1 概述 大功率交流传动HX D1B型六轴9600kW交流传动电力机车在引进、消化、吸收HX D1型机车基础上进行自主再创新的成果,该型机车研制时紧紧围绕机车九大关键技术和十项主要配套技术,遵循先进、成熟、经济、适用、可靠的技术原则,按照模块化、标准化、系列化的要求,优化设计和制造,研制的适应铁路运输需要的六轴交流传动7200kW干线电力机车。机车设计、制造和试验等采用的技术标准是IEC、UIC、EN、DIN、GB及TB等相关标准。该型机车设计使用寿命30年。机车主要特点是: 采用模块化、标准化、通用化设计,并充分考虑噪音、防火、安全及维护等设计要素。 主电路:机车设有2个水冷牵引变流器,每个变流器包含2个四象限整流器以及3个为相应3台牵引电动机供电的主逆变器和1个为辅助设备供电的辅助逆 变器。整流器和逆变器均采用 6.5kV/600A IGBT。逆变器电机控制上采用单轴 控制技术,粘着利用率高;轴牵引功率1600kW,电制动采用再生制动。 辅助电路:机车辅助采用主辅一体化设计,辅助逆变器供电(集成在主逆变器中),可实现在过分相时不间断供电。辅助变流器分别由恒频恒压变流器(CVCF)与变频变压变流器(VVVF)两个模块构成,实现100%故障冗余。辅机采用无级 闭环控制,效率高,节能降噪。 控制网络:机车采用SIBAS 32微机控制系统,实现网络化、模块化,使机车控制系统具有控制、诊断、监测、传输、显示和存储功能,控制网络应符合IEC 61375 的标准要求。机车内部的通讯通过MVB总线实现,机车间的通讯通过WTB总线 实现,通过WTB总线进行多机(最多三台)重联控制及显示功能,CCU采用双套 热备冗余,具有当代机车微机网络控制的先进性; 设备布置:机车总体结构为双司机室、机械间设备按斜对称原则布置、中间走廊、采用预布线和预布管设计。 通风方式:机车采用独立通风方式,具有先进的冬夏季转换功能,保证机车内部清洁的环境和良好的通风效果。 车体:车体采用整体承载结构型式,全部由钢板及钢板压型件组焊而成的全钢焊接结构,车体纵向压缩载荷取3000kN,纵向拉伸载荷取2500kN。以中央纵梁 作为主要传递牵引力的构件,具有高强度低重量的优点,适合重载牵引。

试谈世界电力机车的发展(doc 8页)

试谈世界电力机车的发展(doc 8页)

世界电力机车的发展 电力机车本身的原始动机接受触网发出的电流作为能源,由机车牵引电机驱动车轮。随着电力机车功率,热效率,速度的提高,以及有力和可靠的操作过载能力成为其主要优势,但不污染环境,所以特别适用于繁忙的铁路运输和隧道,以及斜坡的山区铁路。 电力机车从接触线获得电力,接触网供电电流机车都是直流和交流。根据目前的供电电流形式的不同,而不涉及电力机车本身,电力机车系统可分为基本直-直流电力机车,交-直流电力机车,交-直-交电力机车三种。 直-直流电力机车采用直流电源系统,牵引变电所装有整流装置,它将成为一个三相交流-直流装置,然后访问互联网。因此,电力机车可直接从网上联络供应DC系列直流牵引电动机使用,简化了机车设备。直流系统的缺点是接触网电压低,通常l500伏或3000伏,接触线要求较粗,因此要消耗大量的有色金属,并增加建设投资。 对于交-直流电力机车交流电源系统,世界上大多数国家使用的是频率(50赫兹)交换系统,或25赫兹的低频通信系统。在此电力供应系统中,牵引变电所将改为三相交流电频率的25千伏单相交流电源,然后传送到网络。但是,在电力机车上使用的字符串仍然是直流电动机(这是最大的优势:调速简单,只需改变电机端电压,因此就可以很容易地实现在较大范围内的机车速度,但这种电机由于需要使用换向器,制造和维护是非常复杂的,体积更大),这样,交流到直流机车的转变任务完成。接触网系统的直流电压没有提高很多。但接触导线的直径可以相对减少,从而减少了消费的非铁金属,但建设投资并没有减少。因此,高频通信系统已被广泛采用,世界上大多数的电力机车也开始采用交-直流方式。 交-直-交流,交流非电力机车牵引电机换向器(即三相异步电动机),其在汽车制造,性能,功能,大小,重量,成本以及维护性和可靠性等方面比换向器容易得多。这是失败的电力机车,其主要的原因是提高速度相当困难。但这种机车具有优良的牵引能力。因此还是大有希望。德国制造的电力机车E120就是这

HXD3型大功率交流传动电力机车培训教材

第一章 机车总体 1. 概述 以在中国国内的主干线上进行大型货运为目的,设计并制造了HX D3型交流大功率电力机车。 此机车采用PWM矢量控制技术等最新技术的同时,尽量考虑对环境保护,减少维修工作量。另外,考虑能够在中国全境范围内运行为前提,在满足环境温度在-40℃ ~ +40℃,海拔高度在2500m以下的条件的同时,最大考虑到4组机车重联控制运行。 2. 机车主要特点 2.1 轴式为C 0-C ,电传动系统为交直交传动,采用IGBT水冷变流机组,1250kW大转矩 异步牵引电动机,具有起动(持续)牵引力大、恒功率速度范围宽、粘着性能好、功率因数高等特点。 2.2 辅助电气系统采用2组辅助变流器,能分别提供VVVF和CVCF三相辅助电源,对辅助机组进行分类供电。该系统冗余性强,一组辅助变流器故障后可以由另一组辅助变流器对全部辅助机组供电。 2.3 采用微机网络控制系统,实现了逻辑控制、自诊断功能,而且实现了机车的网络重联功能。 2.4 总体设计采用高度集成化、模块化的设计思路,电气屏柜和各种辅助机组分功能斜对称布置在中间走廊的两侧;采用了规范化司机室,有利于机车的安全运行。 2.5 采用带有中梁的、整体承载的框架式车体结构,有利于提高车体的强度和刚度。 2.6 转向架采用滚动抱轴承半悬挂结构,二系采用高圆螺旋弹簧;采用整体轴箱、推挽式低位牵引杆等技术。 2.7 采用下悬式安装方式的一体化多绕组(全去耦)变压器,具有高阻抗、重量轻等特点,并采用强迫导向油循环风冷技术。 2.8 采用独立通风冷却技术。牵引电机采用由顶盖百叶窗进风的独立通风冷却方式;主变流器水冷和主变压器油冷采用水、油复合式铝板冷却器,由车顶直接进风冷却;辅助变流器也采用车外进风冷却的方式;另外还考虑了司机室的换气和机械间的微正压。 2.9 采用了集成化气路的空气制动系统,具有空电制动功能。机械制动采用轮盘制动。 2.10 采用了新型的模式空气干燥器,有利于压缩空气的干燥,减少制动系统阀件的故障率。

交流传动电力机车司机室设计规范-20110624

交流传动电力机车司机室设计规范 1范围 1.1本规范规定了交流传动电力机车司机室布置的简统化模式和原则,该设计规范以运装技验[2004]177号文批准的《机车、动车组司机室设计规范》为基础,根据交流传动机车的技术特点和近年来铁道部的各项新规定,结合近几年铁路牵引设备行业技术的发展,进行了相应的调整和更新。 1.2本规范仅适用于交流传动电力机车。 2规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版适用于本规范。 UIC651 OR-2002机车、有轨电车、动车组、驱动拖车的司机室布置 GB/T 3317 电力机车通用技术条件 GB 5914.1 机车司机室了望条件 GB 5914.2 机车司机室前窗、侧窗和其他窗的配置 GB/T 6769 机车司机室布置规则 GB 6770 机车司机室特殊安全规则 GB 6771 电力机车防火和消防措施的规程 GB 10000 中国成年人人体尺寸 GJB 2873-1997 军事装备和设施的人机工程设计准则 TB/T 1736 内燃、电力机车车型及车号编制规则 TB/T 2868 机车、动车司机室布置规则 TB/T 2961 机车司机室座椅 3司机室 3.1概述 司机室的设计必须给司乘人员提供良好的人机界面、便利的操作空间、充分的瞭望条件。同时也应设置基本的辅助设施,为司乘人员提供安全、可靠、舒适的工作环境。室内设备的布置应符合人机工程原理且必须满足单司机操作的要求。每台机车具有两个相同操作功能的司机室,分别设在机车两端。 3.2司机室总体要求 a) 司机室设计必须符合该设计规范; b) 司机室布置必须保证当司机坐着和驾驶时应面向前方线路,且司机可以站立操作, 符合GB/T 6769中相关的要求; c) 司机室内实际有效空气容量不小于10m3,如果司机室有充足的通风或空气调节, 则此值可以适当降低。司机室空间的其他控制尺寸应符合GB/T 6769中第3.2.1

中国铁路机车发展史(电力机车)

中国电力机车发展过程简介 中国电力机车的研制开始于1958年。当时的铁道部田心机车车辆工厂在协助湘潭电机产制造工矿电力机车的同时,设计并研制电力机车。1958年12月28日,中国第一台电力机车研制成功,命名为6Y1型。 1968年,经过对6Y1型近10年的研究改进,将引燃管整流改为大功率半导体整流,试制出韶山1型,代号SS1。1969年开始批量生产,到1988年止,共生产826台。机车持续功率3780KW,最高速度90KM/H,车长19400mm。 1969年,株洲电力机车厂和株洲电力机车研究所联合研制出SS2。 株洲电力机车工厂1978年研制出SS3型客货两用干线电力机车,1989年批量生产至今。

株洲电力机车厂于2002年制造的SS3B型12轴重载货运电力机车。 株洲电力机车厂1984年研制的SS4型8轴货运电力机车。 SS4改是在SS4、SS5和SS6电力机车的基础上,吸收8K机车技术改进的。 SS5型电力机车生产了2台,为准高速试制的样车。

SS6型机车持续功率4800KW,最大速度100KM/H,长20200mm,是国际招标的中标机车。 SS7型电力机车由大同电力机车厂生产,填补了国内小曲线区段客货运电力机车的空白。 大同生产的SS7B型重载货运电力机车 大同机车厂、株洲电力机车研究所和成都机车车辆厂联合研制的SS7D型客运电力机车。

SS7E型电力机车,用于客运。 曾创造中国机车第一速的SS8行客运电力机车,由株洲电力机车厂生产。 SS9型干线客运电力机车,持续功率4800KW,最大速度170KM/H。 1971年引进的罗马尼亚的6G型电力机车。

关于我国电力机车发展过程的研究报告

关于我国电力机车发展过程的研究报告 专业:电气工程及其自动化 班级:电气 姓名:无名 学号: 10009300 指导教师:莫

电力机车 电力机车是指由电动机驱动车轮的机车。电力机车因为所需电能由电气化铁路供电系统的接触网或第三轨供运行中的电力机车给,所以是一种非自带能源的机车。电力机车具有功率大、过载能力强、牵引力大、速度快、整备作业时间短、维修量少、运营费用低、便于实现多机牵引、能采用再生制动以及节约能量等优点。使用电力机车牵引车列,可以提高列车运行速度和承载重量,从而大幅度地提高铁路的运输能力和通过能力。 我国电力机车发展概述 中国最早使用电力机车在1914年,是抚顺煤矿使用的1500V直流电力机车。1958年中国成功地生产出第一台电力机车,从采用引燃管整流器到硅整流器, 机车性能不断改进和提高,到1976年制成 韶山l型(SS1型)131号时已基本定型。 截止到1989年停止生产,SS l型电力机车总 共制造了926台,成为中国电气化铁路干线 的首批主型机车。1966年SS2型机车制成, 1978年研制成功的SS3型机车,不仅改善 了牵引性能,还把机车的小时功率从4 200kW提高到4800kW,截止到1997年底,共生产了987台,成为中国第二种主型电力机车。1985年又研制成功了SS4型8轴货运电力机车,它是国产电力机车中功率最大的一种达到(6400kW),已成为中国重载货运的主型机车。以后又陆续研制成功了SS5、SS6和SS7型电力机车。1994年研制成功了时速为160 km 的准高速四轴电力机车等。至此,中国干线电力机车已基本形成了4,6,8轴和3200kW、4800kW和6400kW功率系列。1999年5月26日,中国株洲电力机车厂生产出第一台时速超过200km的DDJ1型“子弹头”电力机车,标志着中国铁路电力牵引已跻身于国际高速列车的行列。为追踪世界新型“交-直-交”电力机车新技术,从20世纪70年代末开始,中国铁路一直在进行中小功率变流机组的地面试验研究和大功率的交-直-交电力机车的研制,也已取得了阶段性成果。 中国电力机车的研制开始于1958年。当时的铁道部田心机车车辆工厂,也就是现在的株洲电力机车工厂在协助湘潭电机厂制造工矿电力机车的同时,设计并试制铁路干线电力机车。1958年初,铁道部、第一机械工业部组织考察团赴苏联考察学习。当时,苏联基本定型的是使用20千伏工频单相交流制的Н60型电力机车,与中国决定采用的25千伏工频单相交流制不尽相同,于是对Н60型电力机车进行了大胆地技术改造,其中重大修改达78处。1958年12月28日,

中国电力机车发展史

电力机车的发展史 学生:XX 指导老师:XXX 摘要:今交通发达、经济快速发展的今天,电力机车在交通生活等领域发挥着在当重要的作用。电力机车由牵引电动机驱动车轮的机车。电力机车因为所需电能由电气化铁路供电系统的接触网中的电力机车给,所以是一种非自带能源的机车。电力机车具有功率大、过载能力强、牵引力大、速度快、整备作业时间短、维修量少、运营费用低、便于实现多机牵引、能采用再生制动以及节约能量等优点。使用电力机车牵引车列,可以提高列车运行速度和承载重量,从而大幅度地提高铁路的运输能力和通过能力。 关键词;韶山系列电车中国电车发展 一·电力机车相关历史背景 1835年荷兰的斯特拉廷和贝克尔两人就试着制以电池供电的二轴小型铁路车辆。1842年苏格兰人R.戴维森首先造出一台用40组电池供电的重5吨的标准轨距电力机车。由于电动机很原始,机车只能勉强工作。1879年德国人W.VON 西门子驾驶一辆他设计的小型电力机车,拖着乘坐18人的三辆车,在柏林夏季展览会上表演。机车电源由外部150伏直流发电机供应,通过两轨道中间绝缘的第三轨向机车输电。这是电力机车首次成功的实验。电力机车用于营业是从地下铁道开始的。1890年英国伦敦首先用电力机车在5.6公里长的一段地下铁道上牵引车辆。干线电力机车在1895年应用于美国的巴尔的摩铁路隧道区段,采用675伏直流电,自重97吨,功率1070千瓦。19世纪末,德国对交流电力机车进行了试验,1903年德国三相交流电力机车创造了每小时210.2公里的高速纪录。 二·电力机车在中国发展历史 中国于1914年在抚顺煤矿使用1500伏直流电力机车。干线铁路电力机车采用单相交流25000伏50HZ电流制。1958年制成第一台以引燃管整流的“韶山”型电力机车。1968年改用硅整流器成功,称“韶山1”型,持续功率为3780千瓦。 1957年中国组织了电力机车考察团,于1958年到苏联考察。在大家的共同帮助下,在H60型铁路干线交直流传动电力机车样机为基础,1958年试制了中国第一台电力机车,即6Y1型干线电力机车。 近年来干线电力机车向大功率、高速、耐用方面发展。 DJ3天梭号电力机车有北车集团大同机车厂与2002年自主研发200KM/h交流传动客运电力机车。机车采用先进的交流传动技术,具有恒功率,轴功率大,粘着特性好,效率高和功率因数高等特点,为我国铁路跨入高速运输行列提供了保证。 各国制造的电力机车电压制较复杂,不便于国际间铁路联运过轨。近年来国际上已定出几种电力机车用标准电压。直流电压为600伏(非优先选用)、750伏、1500伏和3000伏。单相交流电压6250伏(非优先选用)、工频50或60HZ,电压15000伏、工频赫,电压25000伏、 中国从本世纪30年代开始引进电力机车。1958年,中国研制出第一台电力机车。1961年,中国第一条电气化铁路宝凤线(宝成铁路宝鸡至凤州段,93km)建成通车。到1978年,中国铁路电气化里程达到1033km,电力机车保有量210台左右。经过20多年的初创阶段,到1980年初,中国铁路电气化和电力机车技术得到了迅速发展,到1988年中国铁路电气化里程达5737正线km,电力机车保有量1224台,完成运量的13.4%。据统计,到1997年末,中国电气化铁路已经达到11637.7正线km(不含香港34km和台湾498km)[1],电力机车保有量2870台,完成运量的27%左右。

相关文档
最新文档