地下室抗浮设计相关问题

地下室抗浮设计相关问题
地下室抗浮设计相关问题

地下室抗浮设计相关问题

————————————————————————————————作者: ————————————————————————————————日期:

地下室抗浮设计中的几个问题讨论摘要:许多地下室因水浮力而导致结构整体上浮或地下室底板局部隆起,造成工程事故和经济损失。本文对这些工程事故产生的技术因素进行归纳总结,与同行共同探讨。

主题词:地下室,整体抗浮,局部抗浮,传力途径,锚杆

近几年来,有不少地下室因地下水的作用而造成工程事故,如某医院两层独立地下车库,在施工过程中出现整体上浮,最大上浮高度达到1.42m;又如,某体育中心游泳馆,地下室上浮造成上部结构梁、板、柱产生大量裂缝,有些构件丧失承载能力;再如,某高层建筑地下室底板局部隆起高达350mm,柱间板出现45°破坏性裂缝……诸如此类问题时有发生,造成了不良的社会影响和财产的损失。本文对这些事故的产生原因归纳总结成以下四个方面,与同行们共同讨论:

一、抗浮设计基本概念

在多个地下室因水浮力作用而引发的工程亊故中,发现有些设计人员对地下水的作用认识不足,抗浮设计的基本概念不够清晰,常见的有下列几种情况:

1)重视地下室的梁、板、柱、墙的结构构件设计,忽视整体结构的抗浮验算分析,忽视施工中的抗浮措施,认为具有上万吨自重的地下室怎么会浮起来呢?

2)地下室底板裂缝、漏水,甚至成为地下游泳池,把某些实质上是由于地下水的作用力远大于手里构件的设计荷载而造的工程事故,归咎于温度应力作用或砼施工质量。

3)对于基底为不透水土层的地基(基岩、坚硬粘土),深基坑支护又采用了止水帷幕或桩、锚、喷射混凝土联合支护,忽视地表水可能引起的水浮力作用。

试想万吨级以上大船能在江、河、海中航行,可见水的作用力之大。地下室底板和侧墙形成了一个密闭的空间,就像一条“船”,它的水浮力是它浸泡在水中的体积乘以水容重。例如,一个50×100m的地下室,水位浸泡高度为5m,它的浮力为25000吨,而一般独立的两层混凝土地下室的结构自重约为15000吨,若不采用相应措施,必然上浮。地下室的抗浮设计就是要使这个船既不上浮,船

身又不被破坏。因此,地下室的抗浮设计必须进行整体抗浮和局部抗浮验算。为防止地下室整体上浮,我们通常采用三类做法,“压”、“拉”和“压拉并举”。

“压”就是利用建筑的自重(包括结构自重、建筑装修、上部或四周覆土等,不含楼面活荷载)平衡地下室水的总浮力;“拉”就是设置抗拉桩、锚杆等,强制拉住建筑防止上浮;“压拉并举”就是利用建筑自重不能满足抗浮要求时增加“拉”的做法,即采用桩或锚杆等来抵抗地下水的浮力。无论是“压”还是“拉”的做法,除了对梁、板、墙、柱结构构件的强度、变形和裂缝验算外,还必须进

行抗浮验算,保证压力或拉力大于水的上浮力,即满足静力平衡条件。抗浮验算中,应分别进行整体和局部抗浮验算。特别是对于大面积地下室,其上部建有多栋高层和低层建筑,建筑自重不均匀,当上部为高层或恒荷载较大时,该范围的压重较大,而上部没有建筑或建筑层数不多的范围,压重可能不能平衡水浮力的作用,因此应进行分区、分块的局部抗浮验算。

然而,有些设计人员只对地下室底板的梁、板、墙在地下水浮力荷载作用下的进行强度、变形和裂缝计算,而缺失地下室的抗浮设计意识。虽然在一些无地下水的工程中未发生工程事故,但当有地下水作用的工程,地下水会给地下室结构带来严重破坏,且难以进行复原处理。又如,有些设计人员利用上部结构自重抗浮,只计算上部结构总自重标准值大于总的水浮力设计值,就认为抗浮设计满足要求,未分析其上部自重荷载的分布和抗浮力的传递途径,造成局部范围因抗浮压力或拉力小于水浮力,导致底板隆起,甚至造成地下室及上部结构构件大面积破坏。再如,在地下室底板计算中只验算强度不进行变形的裂缝宽度的计算,造成底板产生裂缝,漏水严重,形成“地下游泳池”。更值得一提的是,有些设计人员和施工人员对地表水作用认识不足,当地下室地基为不透水的岩层且支护严密的基坑,认为不存在水浮力,造成施工期间或使用期间地下室上浮破坏的盲点。此类基坑一旦暴雨来临,地面的地表水可能流入基坑,低洼场区或城区地下下水管道复杂的地段,极易形成“脚盆”效应,基坑成为“大脚盆”,地下室就是“小脚盆”。在施工过程中,若未及时,水的破坏力较之四周松散的土层的基坑更严重,因为水易进难出;另一方面,若对四周回填土的施工没有进行认真处理,不能形成止水带,在使用期间同样会产生“脚盆”效应。有些设计人员和施工人员对“脚盆”效应认识不足,设计图纸对施工时抗浮措施的要求只字不提,

施工人员在施工过程中不关注降水或在抗浮结构未达到设计预定目标时就停止降水,该类地下室上浮事件在南方地区时有发生。产生上述现象的主要原因,除缺乏经验外,主要是对我国现行的技术规范,规定还不熟悉。例如《地下室防水技术规范》在第10章中明确规定了,“明挖法地下室防水施工时,地下水位应降至工程底部最低高程500mm以下,降水作用应持续至回填完毕”。建设部《建筑工程设计文件编制深度规定》的第4.4.3条第8款中,规定了“地下室抗浮(防水)设计水位及抗浮措施,施工期间的降水要求及终止降水的条件等;”应在结构设计说明中明示,这些规定是经验的总结,我们应该按照相关规定做好地下室的抗浮设计和施工的抗浮措施。

二、地下室抗浮水位的确定

有些勘察单位提供的勘察报告对地下室的抗浮水位阐述不严谨,设计人员又缺乏对勘察报告的认真研读和分析,表现出如下四种情况的随意性:

1、勘察报告未明确抗浮水位,只描述钻孔的可见水位,设计人员凭需要定抗浮水位。

2、临近江河且建筑场地土层具有透水性,按一般场地提出抗浮水位,未考虑设计基准期内江河最高洪水位的影响。

3、根据业主节约投资的需要或改变原设计意图新增地下室,既不进行补充勘察,又不分析场地地下水文地质条件,随意确定抗浮水位,严重缺乏设计依据。

4、建筑场地为坡地时,勘测报告只提供了整个场区的抗浮水位,对场区内的某些单体建筑地下室抗浮水位的取值出现远高于建筑设计的地坪标高现象,设计人员也不进行分析,照搬整个场区的抗浮水位进行地下室抗浮设计,造成极大浪费。

以上四种情况中,前三种,在一些实际工程中因抗浮能力不够而导致地下结构及上部结构的破坏,影响结构安全,最后一种因选择抗浮水位不合理,导致了工程投资增大和资源浪费。地下室抗浮水位是一个复杂的问题,场地土层差异性,场地地下水复杂多变性,给地下室抗浮水位的确定带来了较大困难,但抗浮水位又是地下室抗浮设计中一个重要的参数。究竟如何做到既安全又合理的确定?勘察、设计人员应遵照《岩土工程勘察规范》(GB 50021)及《高层建筑岩土工程勘察规程》(JGJ 72——2004)的相关规定进行勘察和分析。《高层建

筑岩土工程勘察规程》第8.6.2条对场地地下水抗浮设防水位的综合确定明确规定如下:

1、当有长期水位观测资料时,场地抗浮设防水位可用实测最高水位,无长期水位观察资料时,应按勘察期间实测最高水位并结合场地地形地貌、地下水补给、排泄条件等因素综合确定。

2、场地有承压水且与潜水有水力联系时,应实测承压水位并考虑其对抗浮设防水位的影响。

3、只考虑施工期间的抗浮设防时,抗浮设防水位可按一个水文年的最高水位确定。

除参照相关规定外,对于下列一些特殊情况还应进行必要的分析和论证:一是地下水赋存条件复杂、变化幅度大、区域性补给和排泄条件可能有较大改变或工程需要时,应进行专门论证;二是对于斜坡地段的地下室或可能产生明显水头差的场地上的地下室进行抗浮设计时,应考虑地下水渗流在地下室底板产生的非均布荷载对地下室结构的影响,不要笼统的采用勘察报告所提供的远高于室外地坪的地下室抗浮水位来进行设计。水往低处流,若建筑物一侧或多侧是敞开的,可以通过建筑排水构造措施将地下水引出采用直接排放,水浮力是不可能高出室外地坪的;三是在有水头压差的江、河岸边,且存在透水层,应按设计基准期的最高洪水位来确定其抗浮水位,以确保设计使用年限内可能出现的最不利情况时的建筑结构安全;四是对于雨水丰富的南方地区,尤其应注意因地面标高发生变化后,对原勘察报告抗浮水位的修正,考虑地表水聚集效应引起的地下室抗浮水位的提高,合理进行抗浮设计。

三、抗浮验算的几个参数讨论?水浮力的分项系数、抵抗力的分项系、抗浮锚杆钢筋抗拉工作条件系数、抗拉设计强度等相关参数如何取值,是目前在建筑地下室抗浮设计中值得探讨的问题。

1.我国不同规范对水浮力和抵抗力的分项系数有不同的取值,造成设计人员分项系数取值时的依据不足。

《荷载规范》中第3.2.5条规定,永久荷载的分项系数γG作为抵抗水浮力的结构自重,该值在《建筑结构荷载规范》2001版中明确取0.9,但在2006版中取消0.9的提法。作为可变荷载的水浮力,其分项系数γQ应如何取值呢?在《荷载规范》中第3.2.5条中,“对结构倾覆、滑移和漂浮验算,荷载的分

项系数应按有关结构设计规范的规定采用”。在查阅相关的结构设计规范中,民用建筑地下室及人民防空地下室均未涉及到此项内容,只有《给排水工程构筑物结构设计规范》GB50069提到了对有关的荷载分项系数问题。?《给排水工程构筑物结构设计规范》GB50069-2002第5.2.2条和5.2.3条中比较清楚的表述了,对于抗浮结构的设计,地表水或地下水作用应是第一可变荷载,在进行结构构件的强度计算时,它的分项系数取为 1.27;即,在结构构件的强度计算时,结构有利组合时抗力的分项系数取 1.0,水浮力的基本组合设计值为标准值乘上1.27。当计算整体抗浮的稳定性时,抵抗力只计入永久荷载,水浮力采用标准值乘以抗力系数Ks(取1.05)。但其水浮力的作用和结构的受力性能应是相似的。在相关规范还没有做出明确规定之前,此规范的相关参数值得借鉴。但对地下水丰富且水文地质条件复杂的地下室,笔者基于民用建筑地下室和给排水构筑物在使用功能上毕竟存在着差异,前者是涉及到人们的生命财产安全,后者涉及到生产工艺和使用,故建议按荷载规范中的永久荷载和可变荷载的方法来确定分项系数。根据《建筑结构荷载规范》第3.1.1条的条文说明,“按《工程结构可靠度统一标准》GB50153的规定,水位不变的水压力按永久荷载考虑,水位变化的水压力按可变荷载考虑”,是否可以理解为当抗浮水位平室外地坪时,水压力是不可能再增加了,视为不变的水压力。加之,在验算抗浮时,水浮力为主要可变荷载效应来控制的组合,它的分项系数宜取1.20;当抗浮水位低于室外地坪,水压力有可能再增加,视为可变荷载,它的分项系数宜取为1.4,抗力的荷载系数为1.0。

2.锚杆钢筋截面计算

抗浮锚杆设计时,锚杆钢筋截面面积计算现行的相关规范计算方法不尽统一,因此,设计中经常出现两种不同的设计计算公式。

第一种,采用《钢筋混凝土结构设计规范》正截面受拉承载力计算公式:

第二种,采用《建筑边坡工程技术规范》中,锚杆钢筋截面面积的计算公式:

从两个公式中,我们可以看出:钢筋强度是一致的;但《建筑边坡工程技术规范》公式中多了两个系数,一是边坡工程重要性系数γ0,一般均取 1.0,在本文中不作讨论,二是锚杆钢筋的抗拉工作条件系数ζ2,规范规定:永久性锚杆取0.69。上述两个不同公式计算得出的锚杆钢筋截面面积相差1.45倍。更值得一提的是,抗浮锚杆属轴心受拉构件且锚杆断面不宜太大,故希望锚杆钢筋的直径大、抗拉强度高,按规范4.2.3-1表注中明确的取值要求,“在钢筋混凝土结构中,轴心受拉和小偏心受拉构件的钢筋抗拉强度设计值大于300N/mm2时,仍应按300N/m m2取用”。

设计人员采用不同的计算公式,再加之对规范理解的不同,计算出的锚杆钢筋截面面积可相差1.74倍,例如:有些设计人员采用《钢筋混凝土结构设计规范》

正截面受拉承载力计算公式,计算HRB 400级钢筋时,又不按规范中要求钢筋强度仍取f y=360N/m m2。而有些设计人员采用《建筑边坡技术规范》锚杆钢筋截面计算公式,工作条件系数ζ2取0.69,HR B400钢筋的抗拉强度又取300 N/mm 2,锚杆钢筋的计算面积相差1.74倍,这是值得我们探讨和研究的。从抗浮锚杆的工作条件,参照《建筑边坡工程技术规范》的计算公式,并无道理,但抗浮锚杆的成孔、构造及受力特点较之边坡锚杆要稳定得多,如清孔形式固定,锚杆砼强度必须为C30、构件受力主要为受拉等,笔者认为采用《钢筋混凝土结构设计规范》较为接近构件的受力特征。在锚杆钢筋截面的计算中,建议按《钢筋混凝土结构设计规范》的正截面受拉承载力计算的公式,但钢筋的取值应该按轴心受拉和小偏心受拉构件的钢筋抗拉强度设计值计算,这样显得较为合理。

四、锚杆抗浮验算传力途径

在目前的地下室采用锚杆抗浮设计中,有下列2种混乱的方法:

1)上部建筑结构荷重不满足整体抗浮要求,采用锚杆抗浮。其计算方法为:总的水浮力设计值/单根锚杆设计值=所需锚杆根数。具体做法:底板下(连柱底或砼墙下)满铺锚杆,水浮力全部由锚杆承担,既不考虑上部建筑自重,也不考虑地下室底板自重可抵抗水浮力的作用。

2)利用上部结构自重加锚杆共同抗浮,其计算方法为:(总的水浮力设计值-底板及上部结构自重标准值)/单根锚杆设计值=所需锚杆根数。具体做法:将

锚杆均匀分布在底板下(连柱底或砼墙下),锚杆间距用底部面积除所需锚杆根数确定。

从理论上说,不管采用“压”还是“拉”的方法抵抗水浮力,水的浮力是均匀作用在底板上,而结构抗浮力作用(除底板自重外)都具有不均匀性,并不是在整个地下室底板区域均匀分布的,可能是集中在一个点上(即柱、桩和锚杆)或一条线上(即墙、梁),因此,分析其传力途径尤为重要。柱间板底的水浮力先传至板,板再传至梁,梁再传至柱,形成抗浮力的结构体系。如上述第一种做法,上部结构自重未充分利用,特别是底板上的自重是可以直接抵抗水浮力的,上部的恒荷载若设计得当,梁和柱间一定范围内,可以不设置锚杆,通过梁、柱传递的建筑自重来平衡水浮力;第二种做法,忽略了结构自重抗浮力作用(除底板自重外)是集中在一个点(即柱、桩和锚杆)或一条线(即墙、梁)上的,要达到该方法的假定,底板、底板梁必须满足一定刚度和强度,才有可能将点线作用力传递到底板上,与均匀分布的水浮力平衡,但一般设计中我们的设计人员很少对其进行传

力途径的分析。

如图所示,由于与柱、

墙相连的梁板一定范围内具

有一定的刚度,水浮力可直

接与上部结构自重平衡,而

远离梁、柱、桩、墙的板自

重很难用自重平衡,因此自

重与水浮力平衡可分成两种

区域计算:柱、墙影响区域

和纯底板抵抗区域。若按上述第二种方法计算,减去自重后,水浮力由所有锚杆平均承担,必然导致靠柱、桩、梁、墙附近的锚杆未发挥其作用,而中间区域的锚杆又超过其原设计的承载力,造成梁柱间中部底板下锚杆破坏和失效,然后慢慢延伸至柱、墙、梁边,最后局部范围底板隆起,梁板开裂破坏。

合理做法是:抗浮锚杆数的计算应分两种区格进行,即柱、墙、梁影响区格和纯底板区格,在柱、墙、梁影响区格中应充分利用上部建筑自重进行抗浮,其计算方法是每平方米的水浮力除以梁、墙可以传递的建筑自重线荷载,得到影

响区域的宽度。

纯底板区域的计算方法应是抗浮锚杆设计承载力除以每平方米水浮力,得到抗浮锚杆的受力面积。例如,水浮力设计值为每平方米50kN ,单根抗浮锚杆的设计承载力为250kN ,它能承受的抗浮力的受力面积为5平方米,若采用点式布置,锚杆的间距为2.3*2.3米。靠近梁、墙的第一排锚杆的间距应是梁、墙传递建筑自重影响区域的宽度与纯板区格锚杆的间距的和除以二。无论是柱、墙、梁和纯底板区格的结构构件(锚杆、梁、板、墙)计算时应注意两个问题,一是水浮力设计值都不应该直接采用抗浮的水浮力值,应减去底板本身的自重。二是梁、板、柱、墙构件计算时应根据其实际受力情况确定相应计算模型,进行强度、裂缝宽度计算。例如,梁传递建筑自重的影响区域的宽度为2米,水浮力设计值为50kN,作用在梁上的线荷载为100kN/m 。梁要将该荷载传递到柱、桩上,该梁必须根据其跨度计算其强度、裂缝宽度。以确保梁能将实际的受力荷载传递给柱、桩、墙形成平衡。

施工期间地下室抗浮施工组织设计

天水家园以北地段Ⅰ-2a地块 地 下 室 抗 浮 降 排 水 专 项 方 案 宁波建工股份有限公司 二零一四年三月

1、工程概况 1.1、总体概况 本工程位于宁波市江北区,西至康庄南路,南至规划路,北临北环北路。天水家园以北1-2a地块总建筑面积136588平米,包括10幢14~18层高层、1幢3层幼儿园,2层商业用房,地下室32944平米。 1.2、结构概况 1#~10#楼各设单层地下室,桩筏基础,地下室底板厚1000㎜,墙板厚300㎜,层高2.9米,框剪结构;地下车库为桩筏基础,未设计抗拔桩,筏板厚400㎜,墙板厚300㎜,顶板厚400㎜,层高3.7米,框剪结构-无梁楼盖体系,采用C35P6抗渗混凝土。 1.3、基坑概况 1#~10#高层建筑地下室底标高为-5.1m,基坑挖深为 6.65m~7.65m。 地下车库基础底板面标高为-5.1m,筏板底(包括垫层厚度0.25m,下同)标高为-5.75m,基坑开挖深度为4.65m。 1#~10#楼及地下车库基坑支护由浙江华展工程研究设计院有限公司提供,基坑最长约207m,最宽约201m,地下室面积约32944㎡,周长约为816m,为不规则形状。 2、编制目的及依据 2.1、编制目的 本工程1#~10#楼及地下室,针对工程特点,编制施工期间抗浮

降排水专项方案。 2.2、编制依据 (1)、天水家园以北地段1-2a项目地下室、地下车库基坑围护工程施工图纸、图纸会审、设计交底记录、技术核定单、工程联系单、基坑支护及降水专项施工方案、专家论证意见。 (2)、天水家园以北地段1-2a项目施工图纸、图纸会审及设计交底记录 (3)、各项国家及地方规范、标准 (4)、天水家园以北地段1-2a项目工程施工组织设计 3、抗浮措施 根据《基坑支护总说明》中地三条:本项目场地地下水较浅,赋存于人工填土和土层中。人工填土结构松散,性质不均,易形成地下水流入基坑的通道,因此地下室基坑只需设置排水体系、做好防渗措施及地下室顶板标高-0.7处排水措施。 3.1、基坑支护设计抗浮措施(基坑排水体系,防渗措施) 3.1.1、排水体系 1.坑外排水地表及边坡采用70~100mm厚C15素混凝土硬化封闭。在边坡顶四周做好300×300 mm的方形砖砌排水沟(沟侧边用M5水泥砂浆砌砖120mm厚,内侧与顶面批1:3水泥砂浆,纵向坡度0.15%);每隔20m-25m设400×400×600mm的砖砌集水井(240厚灰砂砖墙,M5水泥砂浆砌砖,内侧批25mm厚1: 2.5水泥砂浆),拦截基坑外地表水,沉淀后用水泵抽入市政排水管网。

地下室抗浮设计及计算

地下室抗浮设计及计算 Post time: 2010年5月20日 前一段时间做了几个项目,都涉及到地下室抗浮设计的问题,整理了一个大个地下室的计算思路。 先说一下规范的一些要求,规范对抗浮设计一直没有特别明确的计算建议,很多的设计建议都是编者自己的理解,所以大家的计算结果就会有很大差异。 1)《建筑结构荷载规范》GB 50009-2001(2006年版)第3.2.5条第3款规定:“对结构的倾覆、滑移或漂浮验算,荷载的分项系数应按有关的结构设计规范的规定采用”。 2)《砌体结构设计规范》GB 50003-2001第4.1.6条当砌体结构作为一个刚体,需验算整体稳定性时,例如倾覆、滑移、漂浮等,应按下式验算:γ0(1.2SG2k+1.4SQ1k+SQik) ≤ 0.8SG1k 式中SG1k----起有利作用的永久荷载标准值的效应; SG2k----起不利作用的永久荷载标准值的效应; 3)北京市标准《北京地区建筑地基基础勘察设计规范》DBJ 11-501-2009第8.8.2条,抗浮公式为: Nwk ≤γGk 式中Nwk——地下水浮力标准值; Gk——建筑物自重及压重之和; γ——永久荷载的影响系数,取0.9~1.0; 结合上述原则,计算目前在做的南方某大剧院舞台下台仓的抗浮情况,由于整个台仓位于城市河道边,且上部恒荷载的不确定性,因此永久荷载的影响系数取的是0.8,比北京规范还要低一些:

台仓深度较大,台仓底板顶标高为-14.8米,存在抗浮设计要求,根据 地质勘察报告数据,设计最高抗浮水位绝对标高为2.36米相对标高-1.54米, 经计算,上部结构传至台仓底板顶面处0.8倍恒荷载值为65200kN,台仓底板面积约为663平米,考虑台仓底板厚度为1.6米重力效应,尚有水浮力约为((14.8+1.6-1.54)×10-0.8×1.6×25)×663-65200=12106 kN。根据地质勘察报告提供的勘探点平面布置图,台仓位于18、19、25、26号孔附近,抗拔桩长为9.5米,直径0.4米,计算抗拔承载力特征值为220 kN,考虑结构重要性系数1.1,需要不少于60根抗拔桩。 考虑台仓底板承担水压情况,设置11X20=220根抗拔桩,抗拔桩间距为1.45X1.45米,则相应面积底板承担水压标准值为((14.8+1.6-1.54)×10-0.8×1.6×25)×1.45×1.45=245.2kN,减去抗拔桩抗拔值=245.2-220=25.2 kN,对应台仓底板承担水压标准值为1.1×60.6/(1.3×1.9)=27.5 kN/m2,其中1.1为结构重要性系数。 考虑群桩效应,群桩平面尺寸为16.8×28.5米,整个周边抗拔极限承载力为0.5Tgk =0.5×(0.70×55×1.2+0.75×50×7.1+0.65×85×0.7)× (16.8+28.5)×2=15900 kN,整个桩土浮容重为11×16.8×28.5×9=47400 kN,合计抗浮力为63300 kN,满足抗浮要求。 基础底板配筋计算:其中结构重要性系数为1.1,水浮力分项系数为1.20,抗拔桩安全系数取0.80,则台仓底板抗浮力设计值为1.1×(1.2× (14.8+1.6-1.54)×10-0.8×1.6×25-0.8×220/1.45/1.45)=68.88kN/m2,台仓底板按四边简支弹性楼板配筋设计结果如下: 1.1 基本资料 1.1.1 工程名称:台仓底板配筋 1.1.2 边界条件(左端/下端/右端/上端):铰支 / 铰支 / 铰支 / 铰支 1.1.3 荷载标准值 1.1.3.1 永久荷载标准值: gk = 0 1.1.3.2 可变荷载标准值 均布荷载: qk1 = 68.88kN/m ,γQ = 1,ψc = 0.7,ψq = 0.7 1.1.4 荷载的基本组合值 1.1.4.1 板面 Q = Max{Q(L), Q(D)} = Max{68.88, 48.22} = 68.88kN/m 1.1.5 计算跨度 Lx = 19950mm,计算跨度 Ly = 31900mm, 板的厚度 h = 1600mm (h = Lx / 12) 1.1.6 混凝土强度等级为 C35, fc = 16.72N/mm , ft = 1.575N/mm , ftk = 2.204N/mm 1.1.7 钢筋抗拉强度设计值 fy = 360N/mm , Es = 200000N/mm 1.1.8 纵筋合力点至截面近边的距离:板底 as = 25mm、板面 as' = 25mm 1.2 配筋计算 1.2.1 平行于 Lx 方向的跨中弯矩 Mx Mxk = 2291.29kN?m,Mxq = 1603.90kN?m; Mx = Max{Mx(L), Mx(D)} = Max{2291.29, 1603.9} = 2291.29kN?m Asx = 4159mm ,as = 25mm,ξ= 0.057,ρ= 0.26%; 实配纵筋: 32@100 (As = 8042);ωmax = 0.265mm 1.2.2 平行于 Ly 方向的跨中弯矩 My

地下室抗浮计算

建筑结构设计地下室抗浮怎么计算 首先要知道抗浮水位是多少,算出水浮力然后乘以1.05的系数。 算出地下室总得恒荷载(包括基础重和基础上的填土)如果恒荷载大于水浮力的1.05倍,可视为抗浮满足要求。如不能满足要求,可以降低基础底板,然后填土或素混凝土以增加基础的恒荷载。或者将筏板外挑,然后压上土以增加恒荷载。关于地下建筑抗浮设计的几点意见= ^NTH c^* 湖北省勘察设计协会袁内镇A3su !I2S 内容摘要 y'{*B( 本文根据作者的工作经验结合湖北省地方标准《建筑地基基础技术规范》DB42/242-2003以及相关标准的有关规定,对地下建筑物抗浮设计原则及一些具体问题进行了探讨,可供抗浮设计中参考。j o + - 关键词:抗浮设计、抗浮水位、抗浮稳定、水的浮力、抗拔构件] .( l^ W ①地下建筑物抗浮设计是一个复杂的技术问题,由于对抗浮设计的一些重要问题有不同看法,因此相关规范未对抗浮设计作出明确的具体规定,导致设计工作的困难。②抗浮水位不易确定。③抗浮现状——施工阶段浮起,使用阶段浮起,特殊情况浮起。④浮起底板未见开裂,柱上下端横向裂缝浮起时常发生倾斜,水位下到四周,等高,受力不均匀,形成与重心不重合。M t w7aK 为解决抗浮设计的操作问题,湖北省地方标准《建筑地基基础技术规范》DB42/242-2003[1]对抗浮设计作了原则的规定,但具体问题尚有一些歧意,地下建筑浮起破坏的现象仍时有发生。作者认为有必要对以下问题进行探讨,以求抗浮设计的合理完善。t0 H($ 至于地下建筑物基底及周边水在土中的渗流影响是深层次的抗浮机理问题。可以肯定,只要建筑物周边与土介质之间的水位达到一定高度,且水的补充速度大于水在土的渗流速度时建筑物即可能被浮起。 B3'; Tcs 2、抗浮设计应进行哪些验算?c

既有地下室抗浮事故方案探讨

既有地下室抗浮事故方案探讨 摘要:通过2个地下室抗浮事故的工程案例,对事故原因及事故处理进行详细分析,经计算选择合理的加固方案,经过实践验证处理效果,对防止及处理类似事故提供借鉴。 关键词:地下室水压底板抗浮加固 引言 现阶段,建筑规模越来越大,建筑面积上万平方米的地下室已经非常普遍,甚至十几万平方米地下室也遍布各个一、二线城市,伴随建筑面积、数量的增多,带来的相关工程质量事故也出现的比较频繁,其中尤其以结构构件开裂、渗漏、建筑物整体上浮等情况较多。地下室抗浮方法很多,有增加自重法、抗拔桩法、抗浮锚杆、降水减压法等,根据施工阶段、地质情况、造价、结构类型等诸多因素,工程中最常用的临时性措施有隔水、降水措施,永久性措施主要采用增加自重、抗浮锚杆等方法。 引起建筑物浮起的因素很多,主要有:对地下室水浮力作用机理认识不足,未进行抗浮计算;抗浮计算参取值不当,盲目选用地质勘查资料中的场地地下水位,忽略了可能出现的最高值;抗浮计算失误或抗浮措施不当;施工不当;回填土质量(厚度、密度);基础形式等。 本文通过2个工程实例,对事故原因进行总结,并对水压力和承载力进行分析,提供合理的处理方案,为以后类似事故防止及处理提供参考。 1 事故案例一 1.1 工程概况 青岛某工程位于市北区老虎山西侧,其地下室设计为公共停车场,顶板厚度180mm,基础采用独立基础,防水板厚度250mm,净高3.62m,2013年7月,由于连日暴雨,位于9#和10#之间的顶板中间部位抬高300mm左右,两楼之间框架柱根部及梁底位置均出现环向裂缝裂缝,裂缝最宽为5mm左右,裂缝呈现中间宽、靠近主楼附近细的情况,同时,基础底板中间范围出现隆起与裂缝,且地下室水已从多处裂缝溢出。经专家会审认为该地下室产生破坏的原因,主要是地下室局部抗浮不足,从而在大量降水导致地下水位升高的情况下,部分结构所受浮力超出了其承受范围,从而导致底板、顶板及柱的变形与破坏,此时车库顶1.3m回填土还未施工; 根据建筑整体抗浮、局部抗浮计算分析,发现原设计未考局部虑抗浮计算,而原设计未考虑局部抗浮计算的的原因是地质勘查报告中未体现地下室抗浮水位,从而导致在回填土未施工的情况下,盲沟堵塞,排水不畅,建筑物整体抗浮不够,从而车库顶板抬升,而从基础防水板又承载不不足,导致防水底板开裂,

浅谈地下室结构抗浮设计问题分析

浅谈地下室结构抗浮设计问题分析 发表时间:2019-08-28T14:01:27.280Z 来源:《基层建设》2019年第16期作者:李坚 [导读] 摘要:近几年来,有不少地下室由于各种原因而造成工程事故,如某医院两层独立地下车库,在施工过程中,出现整体上浮;又如,某体育中心游泳馆,地下室上浮造成上部结构梁、板、柱产生大量裂缝;再如,某高层建筑地下室底板局部隆起高达350mm,柱间板出现45°破坏性裂缝等等问题经常性的发生,造成了严重的财产损失和经济损失。 广东建筑艺术设计院有限公司 510655 摘要:近几年来,有不少地下室由于各种原因而造成工程事故,如某医院两层独立地下车库,在施工过程中,出现整体上浮;又如,某体育中心游泳馆,地下室上浮造成上部结构梁、板、柱产生大量裂缝;再如,某高层建筑地下室底板局部隆起高达350mm,柱间板出现45°破坏性裂缝等等问题经常性的发生,造成了严重的财产损失和经济损失。本文就是针对这些事故的原因进行归纳和分析。 关键词:地下室;抗浮设计;抗水板 一、概述 随着国民经济的发展,城市建设的也得到迅速的发展。而城市土地资源的日益紧缺,建筑及城市交通逐步向地下发展。大商业建筑、高层及超高层建筑由于其功能和结构本身的需要,大多设置了地下室。随着建筑层数的日益增高,地下结构已向多层发展,其基坑支护、地下结构设计、地下室的施工及防水等日益成为建筑工程界关注的热点。由于地下室工程的施工环境特殊、隐蔽性大、涉及的工种多、施工复杂,也容易出现质量问题,因而对设计有一定的特殊要求。 二、地下室抗浮水位的合理选取 设防水位的确定对建筑物的安全和业主的投资有较大的影响。较多文献已指出岩土地基中的地下水浮力的确定,不能简单按静水压力公式计算,即地下水的水压力在垂直方向上并非随深度增加而线性增加。从《铁路桥涵设计规范》和《岩土工程手册》的规定中可以看出建筑物基础位于不同持力层时,浮力计算有差别。当位于粉土、粘土、砂土、碎石土和节理裂缝发育的岩石地基时,由于地层的透水性好,水浮力不应折减,而位于节理裂隙不发育的岩石地基时,甚至工程底板与岩石密贴时,可考虑水浮力的折减,甚至不考虑水浮力的作用。当建筑物位于黏土地基时,其浮力较难准确确定,应结合地区的实际经验考虑。 根据勘察单位提供的岩土工程勘察报告,确定地下室抗浮设防水位时,应根据设计规范中确定的原则:防水要求严格的地下室,其设防水位可按历年最高地下水位;对防水要求不严格的地下室其设防水位可参照近3~5年最高水位及勘查时的实测静止地下水位。 由此,如何合理确定抗浮水位的取值,应根据工程的特点、地理环境、地质情况及场地条件等因素,还有工程勘察报告中提供场区历年最高水位和近年的最高地下水位,并结合当地的工程经验综合考虑,确定建筑物的设防水位和抗浮设计水位,使设计做到经济、安全。 在建筑允许的情况下,尽可能提高基坑坑底的设计标高,间接降低抗浮设防水位。具体措施可采用平板式筏板,一般而言,平板式筏板基础的重量与“低板位”梁板式筏板基础上填覆土的重量基本相当,但后者的基础高度一般要比前者高。地下室楼盖提倡使用宽扁梁或无梁楼盖。宽扁梁的截面高度一般为跨度的1/16~1/22,宽扁梁的使用将有效地降低地下结构的层高,从而相对降低了抗浮设防水位。 三、地下室抗浮方案 目前针对地下室抗浮问题主要有增加自重法和设置抗拔桩这两种方案。 1、增加自重法方案 增加自重法包括地下室顶板压载、地下室底板加载及边墙加载等方法,增加地下结构物自身重量(即恒载),使其自身的重力始终大于地下水对结构物所产生的托浮力,确保结构物不上浮。这种方法的优点是:施工及设计较简单;缺点是:当结构物需要抵抗浮力较大时,由于需大量增加混凝土或相关配重材料用量,故费用增加较多。还可能影响对地下结构物室内使用净高。 1)顶部压载措施 顶部压载措施是将地下结构物顶板的混凝土加厚或增加其他压载材料,使自身重量(即恒载)增加以抵抗地下水的上浮力,但增加的混凝土却占去原有覆土的位置,所以增加的重量仅为混凝土与覆土重量之差。因为混凝土与覆土重量的差距不大,所以此法的效益不大,并且使地下结构与地表的距离拉近,由此减少了地下结构上方覆土厚度。此法一般用于埋深较浅、不需增加太厚压载物且其顶部有条件压载的地下结构物的抗浮,否则,其顶部有条件压载也会增加结构自身造价和基础造价,对规模较大、埋深较深的地下结构物的抗浮不宜采用此法作抗浮措施。 另外,当采用此法作抗浮措施时,施工时应避开雨季;因为刚封顶后地下室,还来不及做其他项目时,雨季使地下室处于其最不安全的时期。 2)底板加载措施 基板加载措施是将地下结构物底板的混凝土加厚,使自身重量增加以抵抗地下水的上浮力,但在增加混凝土的同时也增加了水的上浮力,所以它增加的重量是混凝土与水的重量之差。因为混凝土与水的重量差距远比混凝土与覆土的重量差距大,所以每增加单位体积的基底板混凝土,其抗浮效益比顶板压载法要大,但会提高工程造价,采用基板加载抗浮措施,不仅在地下室底板需浇筑大量的压载混凝土,在材料上造成极大的浪费,厚板给施工也带来非常大的困难和不便。因压载增加了地下室底板的厚度,造成地下室净空变小,给以后的使用带来不便。此方案造价很高既费钱又费工,此法一般用于埋深较浅、不需增加太厚混凝土的地下结构物的抗浮。 3)侧墙加载措施 侧墙加载措施是将地下结构物侧墙的混凝土加厚,这种做法虽然增加了水的上浮力,但也由此加宽了地下结构物上方覆土的范围。这种做法虽然也可得到较大的抗浮力,并且不需要加深基坑开挖,但开挖的范围却因此增宽,在地价昂贵的地区,经济效益也将因此折减。此法一般适用于不受场地限制、地价不贵地区的规模较小地下结构物的抗浮。 2、设置抗浮桩 目前,设置抗拔桩是在地下室抗浮设计中使用较为广泛的一种方法。但仔细分析,这种方法也有一定的局限性。因为地下室的抗浮设防水位是根据拟建场地历年最高水位,并结合近几年的水位变化情况提出来的,即使经过重新评估后确定的抗浮设防水位,也是按一定的统计规律得出的结论。显然,该方法确定的地下水位在一般的情况下是很难达到的;加之设计计算的不精确性,也使得抗拔桩都具有一定的安全储备,因此,“抗拔桩”实际上长期起着“抗压桩”的作用,这种“反作用”将阻碍有抗浮要求的地下室的合理沉降,而这种变化将会使不

地下室底板抗浮观测方案

地下室抗浮观测方案 一、工程概况 本工程设计±0.000相当于黄海高程4.450m,场地相对标高约为-1.75m。A标地下室建筑面积为32000平方,B标地下室建筑面积约18000平方,主楼均为11层小高层。B标装饰工程已经完成,地下室后浇带已经封闭,A标结构已经封顶,二结构正砌筑中,地下室后浇带正在清理,准备封闭施工。 本工程人防区和主楼底标设计厚度为400mm,其余部位底板厚度为350mm,设计底板面标高为-4.95m。垫层采用150厚C15砼垫层+150厚碎石垫层。 基础形式为预应力管桩基础,桩径为500mm,桩顶标高为-5.3m~-7.30m,有效桩长为45m(具体详见桩位图),桩顶锚入承台高度为50mm。 二、编制目的 因地下室底板后浇带即将全部封闭,外围的土方回填已经结束,且梅雨季节即将到来,地下水位将达到一年中的最高水位,而顶板覆土还未完成,为防止因地下水位的上涨而造成的地下室上浮从而破话地下室结构,防患于未来,在地下室底板上设置沉降观测点,当发现地下室明显上浮时可及时采取措施防止对地下室底板的进一步的破坏。 三、观测点设置

在地下室非主楼部分的底板及框架柱上设置观测点,设置的原则为间距不大于35米的柱、底板上各设置一个观测点,设置在后浇带之间的板中间位置(见附图) 四、观测方法 沉降点设置好后采用水准仪平均每周观测一次,特殊情况没二天观测一次(连续3天日降雨量超过100mm或观测到底板有数据不均匀上浮现象),观测到连续3天平均每天有超过2mm的上浮即为进入预警状态,应每天观测一次,并通报建设单位采取抗浮措施。 五、抗浮措施 1、压载: 发现底板上浮后,经设计确认需要压载,采用沙袋到地下室底板压载。

浅析地下室抗浮设计原理

一、地下室整体抗浮设计的基本原理 1.地下室最主要破坏形态即为抗浮破坏,因此抗浮设计显得尤为重要。 2.水对地下建筑物的浮力大小遵循阿基米德原理,水对物体的浮力等于物体排开同体积水 的重量{即基底单位面积所受的水浮力为γh的(γ为水的重度,h为建筑物基底以上的水深)}。当水浮力强度大于地下建筑物单位面积的重量时,建筑物即可浮起,当水不断补充时,建筑物将不断上浮,所以,建筑物浮起是一个渐进过程。水量的大小只是控制着建筑物上浮速度和上浮量,而水位高低则是控制建筑物上浮的基本要素。 3.地下室与潜水艇的根本区别: 地下室底板除受水浮力外还受土反力,而潜水艇底板只有水浮力。(注意此时的地下室基础形式,若为独基+防水板,防水板是不允许受土反力的,而只受水浮力作用;基础范围均受土反力与水浮力。) 潜水艇完全沉没在海里面时,其所受总的浮力是个定值,因为此时排开水的体积不再变化,即为:顶板向下水的压力+自重=潜水艇底板向上水的压力。 地下室抗浮设计中,力的平衡公式: F顶板表面(定值)+G地下室自重(定值)=P基底土反力(不允许为0)+水浮力。从中得出:即随着地下水位的上升,水浮力逐渐增大,土反力逐渐减小,若基底土反力小于或等于0时,地下室出现整体抗浮破坏。当水位在地下室顶板或者超过顶板面时,地下室整体所受的水浮力是个定值。注意:地下室顶板所受的荷载大小是个定值,跟有没有水不相干;而地下室底板所受的水浮力(γh)大小只与水头高度相干,随着水头高度变化而变化。

4.在抗浮中起有利作用的及一些自身安全储备有: a. 地下室的自重和覆土重对抗浮有利; b. 地下室底板与土(存在水的情况)存在张力作用;侧壁的回填土(质量要有保证), 对侧壁有个摩擦力。 5.地下室抗浮验算: 《建筑结构荷载规范》GB 50009-2012的3.2.4条的第1.2款规定:“当永久荷载效应对结构有利时,组合分项系数不应大于1.0”。 在地下室整体抗浮验算中,永久荷载对结构有利,荷载分项系数一般应取1.0。 广东省标准《建筑地基基础设计规范》DBJ 15-31-2003第5.2.1条规定,地下室抗浮稳定性验算应满足式6.1.6的要求: W/F≥1.05 (6.1.6)(我院要求最少1.1倍) 式中 W——地下室自重及其上作用的永久荷载标准值的总和; F——地下水浮力。 【注意】:此处F应为地下水浮力的标准值。 二、抗浮水位的确定 《高层建筑岩土工程勘察规程》第8.6.2 场地地下水抗浮设防水位的综合确定宜符合下列规定: 1. 当有长期水位观测资料时,场地抗浮设防水位可采用实测最高水位;无长期水位观测资料或资料缺乏时,按勘察期间实测最高稳定水位并结合场地地形地貌、地下水补给、排泄条件等因素综合确定; 2. 场地有承压水且与潜水有水力联系时,应实测承压水水位并考虑其对抗浮设防水位的影响; 3. 只考虑施工期间的抗浮设防时,抗浮设防水位可按一个水文年的最高水位确定。 注:目前地质勘查单位提供的岩土工程勘查报告中一般会提出建议抗浮水位标高。 三、抗浮设计的措施 1.压重抗浮 抗浮失效(建筑物倾斜或出现裂缝)是由于建筑物自重小于地下水浮力造成的,因此解决此问题最简便的办法就是增加建筑物自重,比如在地下室顶板部位覆盖一定厚度的土层。对于土体的选择,不同地区可结合当地地质条件,就近选择可利用覆土材料。 2.工程桩抗浮 工程桩,就是在工程中使用的,最终在建构筑物中受力起作用的桩。按承载性状可分为摩擦型桩和端承型桩,工程桩基础大多是现浇大直径柱,整体性好,工程桩周围与土层间摩擦力大。但同时也应当注意工程桩在使用过程中经常会出现的裂缝及耐久性较差的问题,因此在地下室结构抗浮设计中使用工程桩抗浮应当对于使用过程中可能涉及到的桩体变形问题进行有效预估。 3.锚杆抗浮 锚杆抗浮是建筑工程地下结构抗浮措施的一种,在建筑物采用天然地基且基岩情况下,锚杆抗浮是地下室抗浮设计很好的选择,锚杆抗浮为抗拔桩体承受拉力,普通抗浮桩受力也是自桩顶向桩底传递,桩体受力大小随着地下水位的变化而变化,因此当地下水压力较大,松散砂层太厚,锚杆受到的拉力也随之发生变化,不宜采用锚杆抗浮,这种情况下如果采用锚杆,就会产生较大的变形,不利于结构稳定,造成抗浮失效此外,当软

地下室抗浮计算书

地下室抗浮验算 一、整体抗浮 裙房部分的整体抗浮(图一所示)图示标高均为绝对标高。底板板底标高为-6.400,地坪标高为:3.600,抗浮设防水位标高为2.5m,即抗浮设计水位高度为:8.9m。 裙房部分抗浮荷载: ①地上五层裙房板自重: 25×0.60=15.0kN/m2 ②地上五层梁柱折算自重: 25×0.60=15.0kN/m2 ③地下一顶板自重: 25×0.18=4.5 kN/m2 ④地下二顶板自重: 25×0.12=3.0 kN/m2 ⑤地下室梁柱折算自重: 25×0.3 =7.5 kN/m2 ⑥底板覆土自重: 20×0.4 =8.0 kN/m2 ⑦底板自重: 25×0.6 =15.0kN/m2 合计: 68.0kN/m2水浮荷载:8.9×10=89 kN/m2 68/89=0.764<1.05不满足抗浮要求。 需采取抗浮措施,因本工程为桩基础,固采用桩抗浮。 需要桩提供的抗拉承载力:89×1.05-68=25.45 kN/m2 单桩抗拔承载力特征值:450kN 取8.4m×8.4m的柱网,柱下4根桩验算: (4×450)/(8.4×8.4)=25.5 kN/m2>25.45 kN/m2 满足抗浮要求。

二、局部抗浮 无裙房处地下室的局部抗浮(图二所示)图示标高均为绝对标高。覆土厚度为:0.6m。 底板板底标高为-6.400,地坪标高为:3.600,抗浮设防水位标高为2.5m,即抗浮设计水位高度为:8.9m。 地下室部分抗浮荷载: ①顶板覆土自重 : 20×0.60=12.0kN/m2 ②地下一顶板自重: 25×0.25=6.25kN/m2 ③地下二顶板自重: 25×0.12=3.0kN/m2 ④梁柱折算自重: 25×0.3 =7.5kN/m2 ⑤底板覆土自重: 20×0.4 =8.0kN/m2 ⑥底板自重: 25×0.6 =15.0kN/m2 合计: 51.8kN/m2 水浮荷载:8.9×10=89kN/m2 51.8/89=0.58<1.05 不满足抗浮要求。 需采取抗浮措施,因本工程为桩基础,固采用桩抗浮。 需要桩提供的抗拉承载力:89×1.05-51.8=41.65 kN/m2 单桩抗拔承载力特征值:450kN ①内柱验算:取8.4m×6m的柱网,柱下5根桩验算 (5×450)/(8.4×6)=52.5 kN/m2>41.65 kN/m2 满足抗浮要求。 ②外墙验算:取墙下1根桩的负载面积验算 墙体自重 : 4.2×25×0.30×8.8=277.2kN 墙趾覆土自重: 4.2×18×0.40×9.4=284.3kN 水浮力: 4.2× 4 × 41.65 =700.0kN 700-(277.2+284.3)=138.5kN<450kN 满足抗浮要求。

抗浮计算

地下室抗浮计算 整体抗浮计算: 抗浮设计水头:7.4m,底板厚0.5m,底板上覆土1.9m,地下室顶板厚0.16m(梁板柱折算厚度0.4m),地下室顶板覆土1.5m。 单位面积水浮力:6.5x10=65KN 单位面积抗力:0.4x25+0.9x18+0.2x25+1.6x18+0.4x25=70KN>67 整体抗浮满足要求, 底板局部抗浮计算: 抗浮设计水头:6.5m,底板厚0.4m,底板上覆土1.1m。 单位面积水浮力:6.5x10=65KN 单位面积抗力:[0.4x25+0.9x18+0.2x25]x0.9=31.2KN 局部抗浮不满足。防水底板需计算配筋。 单位面积净浮力q为:65x1.2-31.2x1.2=40.56KN 按经验系数法计算:Mx=q*Ly*(Lx-2b/3)*(Lx-2b/3)/8 =40.56*8.4*(8.1-2*5/3)*(8.1-2*5/3)/8 =967.6KNm 柱下板带支座最大负弯矩M1为:M1=0.5*Mx=483.8KNm(跨中板带最大为0.17)柱下板带跨中最大正弯矩M2为:M2=0.22*Mx=212.9KNm(跨中板带最大为0.22)配筋为:下部为:As1=M1/(0.9*fy*h1*3.9) =483.8/(0.9*360*1150*3.9) =332.9mm <Ф16@200 As1’=M1/(0.9*fy*h1’*3.9) =483.8/(0.9*360*350* 3.9) =1039mm 基本等于Ф16@200 上部为:As2=M2/(0.9*fy*h2* 3.9) =212.9/(0.9*360*350* 3.9) =481.4mm <Ф16@200 上式配筋计算中分母3.9为柱下板带宽度。 原设计防水底板配筋满足要求。 独立基础计算 阶梯基础计算 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、设计依据 《建筑地基基础设计规范》 (GB50007-2002)① 《混凝土结构设计规范》 (GB50010-2002)② 二、示意图

抗浮锚杆施工方案10.16

核工业四一六医院住院综合楼(脑瘫儿童医疗救助中心)建设项目 地下室抗浮锚杆施工方案 1、工程概况 1.1项目概况 拟建“核工业四一六医院住院综合楼(脑瘫儿童医疗救助中心)建设项目”位于成都市二环路北四段四一六医院院区内,由核工业四一六医院兴建。拟建建筑物为地下2层、地上14层,框架-剪力墙结构,拟建筑建筑物概况详见表1-1。 项目由西北综合勘察设计研究院进行抗浮锚杆工程技术方案设计。 拟建物概况表表1-1 1.2工程地质及水文地质条件 1.2.1地形地貌 拟建场地位于位于成都市二环路北四段,四一六医院院区内,北面临近二环路,西侧靠近沙河,东面临近三友路,交通方便。 1.2.2地层结构 根据《核工业四一六医院住院综合楼(脑瘫儿童医疗救助中心)建设项目岩土工程勘察报告》,场地地基土主要由以下土层构成: ○1人工填土层(Q4ml) a.杂填土:松散,均匀性差,主要由砼和砖块等建筑垃圾组成,含少

量粉土,局部含少量植物根系,系近期堆积,该层在场地均有分布, 层厚0.90~4.80m。 ○2第四系全新统冲洪积层(Q3al+pl) a.粉质黏土:可塑,以粘粒为主,含少量粉粒。干强度中等,韧性中等。该层在场地内局部地段有分布。层厚1.60~3.50m。 b.粉土: 中密,湿,韧性低。场地内大部分地段有分布,层厚约0.70~3.80m。 c.粉砂:松散,该层主要以透镜体状分布于卵石顶面以上,场地内局部地段有分布,层厚0.90~4.10m。 d.中砂:松散~稍密,该层主要以透镜体状分布于卵石层中,场地局部地段有分布,层厚0.50~2.60m。 e.卵石:主要粒径20~80mm,少量80~200mm,充填物主要为砾石和中砂,场地内分布。根据卵石的含量和密实度可分为如下四个亚层: e-1松散卵石:卵石排列混乱,含量50~55%,该层在场地内均有分布,层厚0.60~2.30m; e-2稍密卵石:卵石排列混乱,含量55~60%,该层在场地内均有分布,层厚1.00~5.80m; e-3中密卵石:卵石呈交错排列,含量60~70%,该层在场地内均有分布,层厚0.90~9.20m; e-4密实卵石:卵石呈交错排列,含量大于70%,该层在场地内均有分布,层厚1.90~5.80m。 ○3中生界白垩系上统灌口组(K2g) 泥岩:由黏土质矿物组成,泥质结构,薄~中厚层状构造,根据风化程度差异可分为强风化泥岩和中风化泥岩。顶部为强风化带,裂隙很发育,岩体破碎,该层厚0.80~1.90m;其下为中风化层,裂隙发育,岩体较破碎,天然单轴极限抗压强度f r标准值4.36MPa,属极软岩,岩体基本质量等级为Ⅴ级。

地下室抗浮加固工程施工方案

东莞市常平正成步行街F、H、G商铺地下室抗浮加固工程 施工组织设计 一、工程概况 东莞市常平正成步行街F、G、H商铺地下室为一层钢筋混凝土框架结构,面积约为6264平方米。基础采用砼片筏基础,由于结构自重小于浮力,故本地下室底板局部抗浮严重不足,现地下室工程○5~○24、○A~○L轴底板出现上浮现象,地下室底板、顶板均出现大量裂缝,需进行处理,以防裂缝的进一步发展。受建设方委托,我公司承担该加固处理工程的设计及施工。 我公司技术人员对工程事故进行了现场勘察,收集了相关资料,提出采用预应力抗浮锚杆加固处理的设计方案。并依据设计方案,结合工程实际状况,为使本工程能按期、保质顺利完成,特制定本抗浮加固工程施工组织方案。 二、地质概况。 根据核工业部广州工程勘察院提供的《正成步行街二期工程》工程地质勘察报告,场地下伏土层厚度14.0~23.7米,平均17.75米。按土性特征和工程性质的不同,可划分为5个土体单元层,基底岩石为下古生界片麻岩,兹评述如下: ①素填土:全场成层连续分布,厚度为1.7~2.0米(底部0.2~0.3米的灰色耕表土包括在内),平均1.83米。 ②粘土层:薄层全场连续分布,厚度0.9~1.9米,平均1.45米。 ③淤泥层:中厚~薄层连续分布,层顶埋深2.9~3.7米,层厚0.3~2.0米,平均0.91米。 ④砂层:巨厚层全场连续分布,层顶埋深3.7~5.0米,层厚9.1~12.7米,平均厚达11.39米。 ⑤砂质粘性土:不连续分布,系基底片麻岩的风化残积土,层顶埋深14.1~16.4米,层厚变化很大,1.2~7.3米不等,平均2.97米。 2、基底岩石条件 基岩为黑云母片麻岩,根据现场观察和标贯试验值,可划分为全风化、强风化和中风化岩三个岩带,兹评述如下: ⑥全风化片麻岩:层顶埋深14.0~22.3米,层厚变化大,0.5~4.0米不等,平均2.14米。 ⑦强风化片麻岩:连续分布,所有钻孔均有见及,层顶埋深14.5~23.7米,层厚1.3~ 6.1米,平均2.82米。

浅谈地下室抗浮设计

浅议地下室抗浮设计 【摘要】随着我国经济的发展,建筑行业得到了急速发展,地下室与地下建筑也随之也越来越多。而各地水位不同,每栋建筑的埋置深度不同,水对建筑物的浮力也不同。地下室的抗浮设计往往被忽略,而导致的不良后果便是地下室底板拱起,底板裂缝渗水甚至地下室上浮及结构破坏等,处理起来非常棘手且效果不好。2004年大庆一地下商场才建成就上浮了,直至2009年哈工大耿永常教授对其进行了研究,给出了解决方案,才使该商场得以正常使用。所以,地下建筑抗浮问题必须引起我们的关注。 【关键词】地下;设防水位;抗浮措施 一,建筑物为什么会浮起来? 根据阿基米德原理:浸在静止流体中的物体受到流体作用的合力等于该物体排开的流体重力,方向竖直向上。这个合力称为浮力。所以,当建筑物底面处于地下水中时会受到地下水给它向上的水浮力。当水浮力大于建筑物底面以上包含堆土在内的重量时,建筑物就会浮起来;当水浮力小于建筑物底面以上包含堆土在内的重量时,建筑物就不会浮起来。所以只要地下水位达到一定高度就能使建筑物浮起来。抗浮水位是指基础砌置深度内起主导作用的地下水层在建筑物运营期间的最高水位。当有长期水位观测资料时,抗浮水位可根据该层地下水实测最高水位和建筑物运营期间地下水的变化来确定;无长期观测资料或资料缺乏时,按勘察期间实测最高稳定水位并结合地形地貌、地下水补给、排泄条件等因素综合确定;在南方滨海和滨江地区,抗浮设防水位可取室外地坪标高。场地有承压水且与潜水有水力联系时,应实测承压水水位并考虑其对抗浮水位的影响。只考虑施工期间的抗浮时,抗浮水位可按一个水文年的最高水位确定。 二,怎么进行抗浮设计? 对地下室进行抗浮设计时需分下面两种情况: (1):当地下室外轮廓与地上建筑外边线基本重合时。当结构重量大于水浮力时,我们就不必考虑抗浮,但是我们应在设计说明中提出施工时的降水措施;当结构重量小于水浮力时,那么地下室就需要采取必要的措施平衡水浮力。另外,无论水浮力是否大于结构重量,都需要验算水浮力对地下室底板的作用,使底板满足必要的强度与刚度,还需满足抗裂要求。如果底板配筋过多或者截面过大,就会形成浪费。 (2):当地下室外轮廓大于地上建筑外边线时。此种情况下,除了需要满足结构总体重量大于水浮力外,还需要对地下室外伸部分进行浮力作用下的抗弯及抗剪强度的验算,否则就有可能使地下室底板及梁墙的开裂。如果与高层相连的裙房部分的重量小于水浮力时,我们应考虑此部分结构承受水浮力作用而引起的损坏。 三,建筑物的抗浮措施 地下室抗浮措施基本上分为“一压二拉”。 压即为配重法,增加永久荷载的自重,比如地下室顶板覆土、地下室底板的配重等来平衡地下水浮力。我们知道,抗浮安全度不够是由于结构自重小于地下水对结构上浮力而造成,所以最直接的方法是增加结构自重或增加其上恒载,利用底板外伸部分增加回填土重量。比如地下室顶板上覆土,既能增加重量,又能解决建筑绿化问题,另外也可以在地板上增加配重,这样既能增加重量也可以减少底板与梁的高度。但是配重法必然会使基础埋置深度增加,

施工期间地下室抗浮施工方案

施工期间地下室抗浮方案 一、抗浮原则 1、筏板抗浮措施 根据基坑支护设计进行基坑降水,对本基坑开挖有影响的地下水主要为潜水及微承压水,经过计算基坑需要进行降水。选择管井降水方案,1、在基坑内设置82套降水井。土方开挖前,井点降水,基础筏板施工时 2、地下车库顶板 车库顶板施工完后,地库周边基坑清理,凉干验收做完防水后回填,基坑做好降水和坑上排水,待地下车库后浇带做完后,立即做好顶板基层施工、防水及保护层,覆土回填地下车库顶板至设计标高,确保地库加载不上浮。 3、主体工程封顶后,浇筑沉降后浇带,验收防水及保护层,做好覆土回填地下车库顶板至设计标高,确保主楼加载不上浮。 二、基坑支护设计抗浮措施(基坑降、排水体系) 1.降水体系 基坑内设置的降水井,严格按照设计及规范要求施工,确保降水井施工质量。降水在土方开挖前7天进行,施工期间不得停止降水,要确保水位在作业面0.5m 以下。降水期间加强坑内外地下水位及周边环境的监测。本基坑设置了多个集水坑,设置水位变化监测点。监测采用仪器和巡视相结合的方式进行。雨季和台风期间,根据水位变化情况,加大或按设计要求次数进行监测。比如,若持续降雨,则要在基坑紧急降排水期间加大对水位的监测,采取增加排水泵和人工疏导排水等措施加快排水,尽快降低地下水水位(水压力)。 基坑降水要严格执行基坑支护及降水专项方案中的条文要求。 降水井停止降水、封井条件:在底板达到设计强度及二层楼面封顶后,可停止降水;地下车库在地上施工完成后浇带浇筑,且覆土回填至建筑标高时,可停止降水。 2.排水体系 坡顶:沿施工区四周挖300×300的集水沟,坡度不小于1%。每隔20米,挖一个500×500×500的集水坑,集水坑和排水沟都要用砖砌筑,并用砂浆抹面,防止水回渗。 坡底:沿基坑破底线挖设300×300的集水沟,坡度不小于1%。每隔20米,挖一个500×500×500的集水坑。 不具备挖设集水沟和集水坑的部位:在坡顶砖砌挡水墙,砂浆抹面,利用场地条件,设置地表水流向,并每隔20米(视地表水累积情况增加)用Φ100塑料

抗浮桩计算

抗浮桩计算 +有实列----难得啊! 一般抗浮计算: (局部抗浮) 1."05F浮力- 0."9G自重<0即可 (整体抗浮) 1."2F浮力- 0."9G自重<0即可 如果抗浮计算不满足的话,地下室底板外挑比较经济 同意以上朋友的观点,一般增大底版自重及底板外挑比抗拔桩要经济很多 【】抗浮锚杆设计总结 抗浮锚杆设计总结 1适用的规范 抗浮锚杆的设计并无相应的规范条文,《建筑地基基础设计规范GB50007---2002》中“岩石锚杆基础”部分以及《建筑边坡工程技术规范GB50330-2002》有关锚杆的部分可以参考使用,不过最好只用于估算,锚杆抗拔承载力特征值应通过现场试验确定,有一些锚杆构造做法可以参考。对于锚杆估算,推荐使用《建筑边坡工程技术规范GB50330-2002》,对于岩土的分类较细,能查到一些必要的参数。 2锚杆需要验算的内容 1)锚杆钢筋截面面积;

2)锚杆锚固体与土层的锚固长度; 3)锚杆钢筋与锚固砂浆间的锚固长度; 4)土体或者岩体的强度验算; 3锚杆的布置方式与优缺点 1)集中点状布置,一般布置在柱下;优点: 可以充分利用上部结构传来的竖向力来平衡掉一部分水浮力;由于锚杆布置集中,对于地下室底板下的外防水施工也比较方便;对于个别锚杆承载力不足的情况,由于有较多的锚杆分担,有很强的抵抗力。缺点: 要求锚固于坚硬岩体中,不适用于软岩与土体,破坏往往是锚固岩体的破坏;由于局部锚杆较密,锚杆施工不方便;地下室底板梁板配筋较大。 2)集中线状布置,一般布置于地下室底板梁下;优点: 由于锚杆布置相对集中,对于地下室底板下的外防水施工也比较方便;对于个别锚杆承载力不足的情况,由于有较多的锚杆分担,有较强的抵抗力。缺点: 不能充分利用上部结构传来的竖向力来平衡掉一部分水浮力(个人认为考虑的话偏于不安全,对于跨高比小于6的底板梁,可以适当考虑上部结构传来的竖向力来平衡掉一部分水浮力),要求锚固于较硬岩体中,不适用于软岩与土体;地下室底板板配筋较大。 3)面状均匀布置,在地下室底板下均匀布置;优点: 适用于所有土体和岩体;地下室底板梁板配筋较小。缺点: 不能充分利用上部结构传来的竖向力来平衡掉一部分水浮力(个人认为考虑的话偏于不安全);对于个别锚杆承载力不足的情况,由于能分担的锚杆较少,此情况抵抗力差;由于锚杆布置相对分散,对于地下室底板下的外防水施工比较麻烦。

地下室抗浮方案

地下室抗浮施工方案 一、工程概括 本工程名称为碧桂园·新城之光花园。本拟建工程为1栋29层、1栋30层洋房、4栋32层洋房、一栋4层幼儿园与2层商业楼及沿街商铺,型号分别有Y017、T3 、王字型等,总建筑面积为184503、97㎡。 建设单位为佛山市顺德区乐从碧桂园房地产开发有限公司,设计单位为广东博意建筑设计院有限公司,监理单位为广东国晟建设监理有限公司,施工单位为广东腾越建筑工程有限公司.拟建场地四周已进行平整,场地内已通水通电,场内主干道在地下室顶板,地下室顶板上行车重量不能超过30吨。 适用范围 本方案仅适用碧桂园·新城之光花园项目地下室得抗浮施工. 三、施工方案 (一)、原因得分析 地下室抗浮就是一个复杂得问题,场地土层差异性,场地地下水复杂多变性,给地下室抗浮水位得确定带来了较大困难,但抗浮又就是地下室抗浮设计中一个重要得参数。究竟如何做到既安全又合理得确定?勘察、设计人员应遵照《岩土工程勘察规范》(GB 50021)及《高层建筑岩土工程勘察规程》(JGJ72——2004)得相关规定进行勘察与分析,保证地下室得抗浮: (二)、抗浮验算得几个参数 《给排水工程构筑物结构设计规范》GB50069—2002第5、2、

2条与5、2、3条中比较清楚得表述了,对于抗浮结构得设计,地表水或地下水作用应就是第一可变荷载,在进行结构构件得强度计算时,它得分项系数取为1、27;即,在结构构件得强度计算时,结构有利组合时抗力得分项系数取1、0,水浮力得基本组合设计值为标准值乘上1、27。当计算整体抗浮得稳定性时,抵抗力只计入永久荷载,水浮力采用标准值乘以抗力系数Ks(取1、05)。但其水浮力得作用与结构得受力性能应就是相似得. (三)、地下水作用 真正处于静止状态得地下水就是很少得,水在土体中多就是流动状态(渗流),渗流就是复杂得三维空间课题,饱与土与非饱与土得渗流现象在工程性状上有很大得差异。 土中得孔隙就是下水储存得场所,又就是地下水运动得通道,由渗流分析引伸出得孔隙水压力分析,就是地下水对建筑工程作用分析得基础。 历史最高水位、近期最高水位,都不能直接作为抗浮水位提供。要提供一个比较客观得设计抗浮水位标高,必须要有长期观测资料,了解各层地下水得赋存形态与运动规律,作渗流分析求取地下水对基底得压力,按基底最大压力提供抗浮水位标高.也就就是说,正确确定基础底面处地下水得压力,就是提供建筑物设计抗浮水位标高得前提。 基底得水压力并不完全取决于水位得高低,还与水得存在形态相关。

相关文档
最新文档