时变电磁场.

时变电磁场.
时变电磁场.

第五章 时变电磁场

5.1 为什么电容器通交流阻直流?位移电流在含有电容的电路中起怎样的作用? 解答:当电容器外加直流电压时,由于电容器两端电压不变,由可知极板上的电荷量不随时间变化,因而连接电容器的导线上没有电流,即电容器阻直流;当电容器外加交流电压时,由可知极板上的电荷量也随时间交变,如正电荷在一个极板上增加时,另一个极板的负电荷量也随之增加,多余的正电荷增量便沿导线传导形成电流,因而电容器通交流。

CU Q =CU Q =电容器极板上的带电量决定了两极板间的电场强度及电位移矢量,极板上电荷量的变化导致另一极板上感应电荷量随之变化,使得两极板间的电位移也随时间同步变化,此变化率称为位移电流(密度)。可见自由电荷的变化形成位移电流并导致传导电流,电容器中的位移电流起到了连接两点(电极)之间真实电流的桥梁作用。

5.2 对于时变场,理想导体表面电场和磁场有何特点?怎样解释?

解答:理想导体表面电场切向为零,只有法向分量;磁场法向为零,只有切向分量。在理想导体中,由222E J σ=,∞→2σ可知,必有02=E ,否则会出现电流无穷大,即电源能量无穷大,这是不可能的。由电场切向连续的边界条件可知,。另外,由0t 1=E 022=??-

=??t

B E 0可知,对于时变场,2=B 。由磁感应法向连续的边界条件可知。 01n =B 5.3 在时变场中为什么电容器会存在分布电感?电感线圈会存在分布电容?

解答:对于外加交变电压的电容器,两极之间的电场也是交变的,由 t ??=??E H ε可知,交变的电场在两极之间会产生磁场分布,即电容器中储存有磁场能量,因此电容器具有分布电感。类似的,线圈中的磁场是交变的,由t

??-=??H E μ可知,交变的磁场在线圈中会产生涡旋电场,即线圈中会储存有电场能量,因此电感线圈具有分布电容。

5.4 在交变电路中,能量是在导线中传递吗?

解答:不是。能量在导线中只有损耗。能量的传递是在导线外进行的,导线起着引导能量传递方向的作用。以同轴传输线为例,内外导体之间的电场分布沿径向方向,磁场分布绕轴沿?角方向,按照坡印廷定理,能流矢量)()()(t t t H E S ?=,方向正是传输线的轴线方向。对平行双线传输线,也有相同的结果。

5.5 用复数表示正弦场有何方便之处?场量的实部和虚部有何关系?

解答:用复数表示正弦场可得到下列运算的对应关系:

(???ω?jsin cos e )(cos 0j 00+=→+=E E E E t m j B B ω→??t

即把正弦函数之间的加减乘除运算变为复数之间的加减乘除运算;把麦克斯韦方程中有关对时间的导数运算对应为用复矢量进行的乘法运算,因而使运算变得较为简单。另外,用复数表示正弦场在分析一些场量之间的相位差时是较为方便的。

从可以看出表示分量比分量在时间上超前π/2。 2/j e j π=j r E E E j +=j E r E

作业06_第四章时变电磁场

作业06_第四章时变电磁场-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第四章 时变电磁场 1. 在无源的自由空间中,已知磁场强度597.210cos(31010)A/m y H t z e -=??-,求位移电流密度。 2. 在电导率310S/m γ=、介电常数06εε=的导电媒质中,已知电场强度 58210sin(10)x E t e -=?π,计算在92.510s t -=?时刻,媒质中的传导电流密度c J 和位移电流密度d J 。 3. 在无源区域,已知电磁场的电场强度90.1cos(6.281020.9)V/m x E t z e =?-,求空间 任一点的磁场强度H 和磁感应强度B 。 4. 一个同轴圆柱型电容器,其内、外半径分别为11cm r =、24cm r =,长度0.5m l =,极板间介质介电常数为04ε,极板间接交流电源,电压为 V u t =π。求极板间任意点的位移电流密度。 5.一个球形电容器的内、外半径分别为a 和b ,内、外导体间材料的介电常数为ε,电导率为γ,在内、外导体间加低频电压sin m u U t ω=。求内、外导体间的全电流。

6. 已知自由空间中电磁波的两个场量表达式为 20002)V/m x E =t z e ωβ-, 5.32sin()A/m y H =t z e ω β- 式中,20MHz f =,0.42rad/m β==。求(1)瞬时坡印亭矢量;(2)平均坡印亭矢量;(3)流入图示的平行六面体(长为2m ,横截面积为0.5m 2)中的净瞬时功率。 7. 一个平行板电容器的极板为圆形,极板面积为S ,极板间距离为d ,介质的介电常数和电导率分别为ε, γ,试问: (1). 当极板间电压为直流电压U 时,求电容器内任一点的坡印亭矢量; (2). 如果电容器极板间的电压为工频交流电压cos314u t =,求电容器内任一点的坡印亭矢量及电容器的有功功率和无功功率。 8. 在时变电磁场中,已知矢量位函数m e cos()z x A A t z e αωβ-=-,其中m A 、α和β均是常数。试求电场强度E 和磁感应强度B 。 x

电磁场理论习题解读

思考与练习一 1.证明矢量3?2??z y x e e e -+=A 和z y x e e e ???++=B 相互垂直。 2. 已知矢量 1.55.8z y e ?e ?+=A 和4936z y e ?.e ?+-=B ,求两矢量的夹角。 3. 如果0=++z z y y x x B A B A B A ,证明矢量A 和B 处处垂直。 4. 导出正交曲线坐标系中相邻两点弧长的一般表达式。 5.根据算符?的与矢量性,推导下列公式: ()()()()B A B A A B A B B A ??+???+??+???=??)( ()()A A A A A 2??-?=???2 1 []H E E H H E ???-???=??? 6.设u 是空间坐标z ,y ,x 的函数,证明: u du df u f ?=?)(, ()du d u u A A ??=??, ()du d u u A A ??=??,()[]0=????z ,y ,x A 。 7.设222)()()(z z y y x x R '-+'-+'-='-=r r 为源点x '到场点x 的距离,R 的方向规定为从源点指向场点。证明下列结果, R R R R =?'-=?, 311R R R R -=?'-=?,03=??R R ,033=??'-=??R R R R )0(≠R (最后一式在0=R 点不成立)。 8. 求[])sin(0r k E ???及[])sin(0r k E ???,其中0E a ,为常矢量。 9. 应用高斯定理证明 ???=??v s d dV f s f ,应用斯克斯(Stokes )定理证明??=??s L dl dS ??。 10.证明Gauss 积分公式[]??????+???=??s V dv d ψφψφψφ2s 。 11.导出在任意正交曲线坐标系中()321q ,q ,q F ??、()[]321q ,q ,q F ???、()3212q ,q ,q f ?的表达式。 12. 从梯度、散度和旋度的定义出发,简述它们的意义,比较它们的差别,导出它们在正交曲线坐标系中的表达式。

时变电磁场

第五章 时变电磁场 1 什么是时变电磁场:场源(电荷、电流或时变场量)和场量(电场、磁场)随时间变化的电磁场。由于时变的电场和磁场相互转换,也可以说时变电磁场就是电磁波。 2 时变电磁场的特点:1)电场和磁场互为对方的涡旋(旋度)源。2)电场和磁场共存,不可分割。3)电力线和磁力线相互垂直环绕。 3 本教科书自第五章以后内容全是关于电磁波的,第五章主要是基础,引入波动方程去掉电场与磁场的耦合,引入复矢量,简化时间变量的分析。第六章以平面波为例,首先研究无限大区域内的电磁波的传播特点,引入用于描述电磁波特性的参量。然后介绍半无限大区域内的电磁波的传播特点-电磁波的反射和折射。第七章首先介绍一个坐标方向无限、其余坐标方向有限的区域内的电磁波传播特性—导行电磁波特性,然后介绍了有限区域内的电磁波谐振特性。第八章介绍了电磁波的产生-天线。 4 本章内容线索:1)理论方面:基本场方程,位函数(引入矢量位),边界条件,波动方程。2)基本方法:复矢量 §5.1时变电磁场方程及边界条件 1 1)因为 t ?? 不为零,电场和磁场相互耦合,不能分开研究。其基本方程就是Maxwell 方程。 微分形式:?? ??? ????????????-=??=??=????-=????+=??t J B D t B E t D J H ρρ 0 积分形式??????? ??????????-=?=?=????-=????+=??????????s V s s V c s c s dV t s d J s d B dV s d D s d t B l d E s d t D J l d H ρρ 0)( 2)物质(本构)方程: 在线性、各向同性媒质中 H B E D με== 其它媒质有:非线性,各向异性,双各向异性,负相对电导率、负相对磁导率媒质等人工媒质。这些媒质在微波、光学、隐身、伪装方面有很多应用。 3)上面的电流J 包括传导电流E J c σ=和运移电流v J v ρ= 2 边界条件: §5.2 时变电磁场的唯一性定理 1 如果1)一个区域内0=t 时,每一点的电场强度和磁场强度的初始值已知,2)区域边界

习题答案第5章时变电磁场和平面电磁波解读

第5章时变电磁场和平面电磁波 5.1 / 5.1-1 已知z2=1+j,求复数z的两个解。 2[解] z=1+j= jπjπ2e z1=2e=1.189ej22.5=1.099+j0.455 j22.5 z2=-1.189e=-1.099-j0.455 5.2 / 5.1-2 已知α是正实数,试证: (a)若α<<1,jα??+jα≈± 1+?; 2?? jα??+jα≈± 1+?;。 2??(b)若α>>1, [解] ( a) α<<1: +jα= (b) α>>1: +α2ejtan-1α≈e(jααα?α???=± cos+jsin?≈± 1+j? 22?2???+jα=+α2ejtanα-1≈?αe?jπ???ππ??=± co+jsi? 44?? =±(1+j)2 =e+je,H(t)的复振幅为H =h+jh,试证5.3 / 5.1-3设E(t)的复振幅为Eii H ejωt,并求E(t)E(t)H(t)≠ReE、H(t)。 ejωt=1E ejωt+E *e-jωt [解] E(t)=ReE[][](2) 1 jωt *e-jωt He+H2 1 * * H ej2ωt+E *H *e-j2ωt 得 E(t)H(t)=EH+EH+E4 1 H *+E H ej2ωt≠ReE H ejωt =ReE2H(t)=()()[][] E(t)=Re(e+jei)ejωt=Re[(e+jei)(cosωt+jsinωt)]=ecosωt-eisinωt 1 [] H(t)=Re(h+jhi)ejωt=hcosωt-hisinωt E(t)H(t)=ehcos2ωt+eihisin2ωt-ehicosωtsinωt-eihcosωtsinωt []=1[eh+eihi+(eh-eihi)cos2ωt-(eh i+eih)sin2ωt] 2 可见,为恒定成分与二倍频成分的叠加. 5.4 / 5.1-4 将下列场矢量的瞬时值变换为复矢量,或作相反的变换:?E0sin(ωt-kz)+y?3E0cos(ωt-kz); (a) (t)=x ??E0sinωt+3E0cos ωt+(b) (t)=x? ?+jy?)e(c) =(x ?jH0e(d) =-y???π???; 6???-jkz;。 -jkzsinθ -j-jkz?E0ee2+y?3E0e-jkz=(-jx?+y?3)E0e-jkz [解] (a) =xπ ππ?j?-j??3?31??1???=x? ??E0e2+3E0e6?=x?E0?-j+3 ?E0 (b) =x+j+j 2?2??2????2????? ?cos(ωt-kz)+y?cos ωt-kz+(c) (t)=x? ?π??cos(ωt-kz)-y?sin(ωt-kz) ?=x2? ?H0co (d) (t)=ysωt-kzsinθ-? ?π??H0sin(ωt-kzsinθ) ?=y2?

电磁场名词解释解读

相关资源::名词解释 请点击所要查询名词的首字母 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A(返回顶端) 安培环路定律 1)真空中的安培环路定律 在真空的磁场中,沿任意回路取B的线积分,其值等于真空的磁导率乘以穿过该回路所限定面积上的电流的代数和。即 2)一般形式的安培环路定律 在任意磁场中,磁场强度H沿任一闭合路径的线积分等于穿过该回路所包围面积的自由电流(不包括磁化电流)的代数和。即 B(返回顶端) 边值问题 1)静电场的边值问题 静电场边值问题就是在给定第一类、第二类或第三类边界条件下,求电位函数的泊松方程 ()或拉普拉斯方程()定解的问题。 2)恒定电场的边值问题 在恒定电场中,电位函数也满足拉普拉斯方程。很多恒定电场的问题,都可归结为在一定条件下求拉普拉 斯方程()的解答,称之为恒定电场的边值问题。 3)恒定磁场的边值问题 (1)磁矢位的边值问题 磁矢位在媒质分界面上满足的衔接条件和它所满足的微分方程以及场域上给定的边界条件一起构成了描述恒定磁场的边值问题。 对于平行平面磁场,分界面上的衔接条件是

磁矢位A所满足的微分方程 (2)磁位的边值问题 在均匀媒质中,磁位也满足拉普拉斯方程。磁位拉普拉斯方程和磁位在媒质分界面上满足的衔接条件以及场域上边界条件一起构成了用磁位描述恒定磁场的边值问题。 磁位满足的拉普拉斯方程 两种不同媒质分界面上的衔接条件 边界条件 1.静电场边界条件 在场域的边界面S上给定边界条件的方式有: 第一类边界条件(狄里赫利条件,Dirichlet) 已知边界上导体的电位 第二类边界条件(聂以曼条件 Neumann) 已知边界上电位的法向导数(即电荷面密度或电力线) 第三类边界条件 已知边界上电位及电位法向导数的线性组合 静电场分界面上的衔接条件 和称为静电场中分界面上的衔接条件。前者表明,分界面两侧的电通量密度的法线分量不连续,其不连续量就等于分界面上的自由电荷面密度;后者表明分界面两侧电场强度的切线分量连续。 电位函数表示的分界面上的衔接条件

交变电流电磁场解读

第1课时 正弦交流电的产生及描述 班级______姓名____________ 【知识梳理】 1. 正弦交流电的产生:线圈在匀强磁场中的匀速转动。正弦交流电有两种:一种是电枢旋转式发电机, 另一种是磁极旋转式。 2. 正弦交流电的数学表达:电动势 t E e m ωsin =,其中E m =nBSω、ω为发电机转子的转动角速度, 也称之为交流电的角频率,交流电的周期ωπ 2=T 。对于交流电的输出电压、电流随时间的变化函数 可通过全电路欧姆定律与外电路欧姆定律推导,但同期一定是相同的。 3. 交流发电机在匀速转动过程中,在线圈平面垂直于磁场时(该平面称之为中性平面),此时的电动势为 零,即此时的磁通量最大,但磁通量的变化率为零,在线圈平面与磁场平行时,虽然磁通量为零,但感应电动势最大,磁通量的变化率最大。 4. 交流电的有效值:如果交流电在某一电阻上产生的热效应与直流电的热效应相同,我们将直流 电的电流或电压值称之为该交流电的有效值。对正弦交流电的有效值与最大值间的关系为:2 m I I =、2m E E =、2 m U U =。 5. 在实际应用中,交流电器铭牌上标明的额定电压、额定电流、交流电流表和交流电压表指示的电流、 电压、保险丝的熔断电流都是有效值。若没有特别说明(包括在题目中),提到的电流、电压、电动势时,都是指有效值。电容器的耐压值是交变电流的最大值。 6. 明确:交变电流中的“四值”(以电压为例) 在研究电容器的耐压值时只能应用最大值; 在研究某一时刻线圈受到的电磁力时,只能用瞬时值; 在研究交流电的热效应,只能用有效值; 在研究交变电流通过导体横截面的电荷量时,只能用平均值。 【典型例题】 例1 一矩形线圈绕垂直于匀强磁场并位于线圈平面内的固定轴匀速转动产生的电动势e-t 图像如图所示,则下列说法中正确的是( ) A .t 1时刻通过线圈的磁通量为零 B .t 2时刻通过线圈的磁通量绝对值最大 C .t 3时刻通过线圈的磁通量变化率绝对值最大 D .每当电流变换方向时,通过线圈的磁通量的绝对值都为最大 例2 如图所示,一个匝数为10的矩形线圈在匀强磁场中绕垂直于磁场的轴匀速转 动,周期为T ;若把万用电表的选择开关拨到交流电压档,测得a 、b 两点间的电压为 20V ,则可知:从中性面开始计时,当t =T /8时,穿过线圈的磁通量的变化率约为( ) A .1.41Wb/s B .2Wb/s C .14.1Wb/s D .20Wb/s

时变电磁场

简述电磁波与电磁辐射 电磁波是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效地传递能量和动量。而电磁波是怎样产生的呢?电磁波是电磁场的一种运动形态。电与磁可说是一体两面,变化的电场会产生磁场,变化的磁场则会产生电场。变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,也常称为电波。电磁辐射可以按照频率分类,从低频率到高频率,包括有无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等等。人眼可接收到的电磁辐射,波长大约在380至780纳米之间,称为可见光。只要是本身温度大于绝对零度的物体,都可以发射电磁辐射,而世界上目前并未发现低于或等于绝对零度的物体。因此,人们周边所有的物体时刻都在进行电磁辐射。尽管如此,只有处于可见光频域以内的电磁波,才是可以被人们看到的。 电磁波在生活中的应用非常广泛。简单地讲,无线电波用于通信等;微波用于微波炉、卫星通信等;红外线用于遥控、热成像仪、红外制导导弹等;可见光是所有生物用来观察事物的基础;紫外线用于医用消毒,验证假钞,测量距离,工程上的探伤等;X射线用于CT 照相;伽玛射线用于治疗,使原子发生跃迁从而产生新的射线等。下面我们重点来看无线电波、电磁波和X射线的应用。

电磁波无线电广播与电视都是利用电磁波来进行的。在无线电广播中,人们先将声音信号转变为电信号,然后将这些信号由高频振荡的电磁波带着向周围空间传播。而在另一地点,人们利用接收机接收到这些电磁波后,又将其中的电信号还原成声音信号,这就是无线广播的大致过程。而在电视中,除了要像无线广播中那样处理声音信号外,还要将图象的光信号转变为电信号,然后也将这两种信号一起由高频振荡的电磁波带着向周围空间传播,而电视接收机接收到这些电磁波后又将其中的电信号还原成声音信号和光信号,从而显示出电视的画面和喇叭里的声音。无线电广播利用的电磁波的频率很高,范围也非常大,而电视所利用的电磁波的频率则更高,范围也更大。 微波炉的工作原理为微波炉是利用食物在微波场中吸收微波能量而使自身加热的烹饪器具。在微波炉微波发生器产生的微波在微波炉腔建立起微波电场,并采取一定的措施使这一微波电场在炉腔中尽量均匀分布,将食物放入该微波电场中,由控制中心控制其烹饪时间和微波电场强度,来进行各种各样的烹饪过程。因此,微波炉由七大部分组成,即磁控管、电源变压器、炉腔、波导、旋转工作台、炉门、时间功率控制器。磁控管:是微波炉的“心脏”,由它产生和发射微波(直流电能转换成微波震荡输出),它实际上是一个真空管(金属管)。电源变压器:是给磁控管提供电压的部件。炉腔:也称谐振腔,它是烹调食物的地方,由涂复非磁性材料的金属板制成。在炉腔的左侧和顶部均开有通风孔。经波导管输入炉腔内的微波在腔壁内来回反射,每次传播都穿过和经过食物。在设计微波炉时,通常使炉腔的边

电磁场复习解读

静电场 小节 1. 基本概念和基本理论 ① 静电场的概念 基本场量:E 、D 、? ?-?=?E ? ??=?=Q P l l E l E d d ? 依据赫姆霍兹定理,从E ??和D ??去研究电场。 ② 静电场的基本方程: 积分形式 微分形式 环路定律: 0d =??l E l 0=??E 高斯定律: q S =??S D d ρ=??D 说明静电场是无旋、有散场。 ③ 介质的构成方程: P E D +=0ε E D ε= 介质的极化: ?P P ?-?=p ρ、n p e P ?=σ ④ 静电能量: 静电能量: ()()???='''='V V V V W d 2 1d E D r r ρ? 静电能量密度: DE w 2 121=?=E D 2. 基本计算方法 (1)计算条件 介质分界面衔接条件: ① 场量表示: ()012=-?E E e n , ()σ=-?12D D e n 当 0=σ 时有 t t E E 21=, n n D D 21= ② 电位表示: 当 0=σ 时, 21??=, n n ??=??2211?ε?ε 介质和导体分界面边界条件 ① 场量表示: 02=?E e n , σ=?2D e n ② 电位表示: 21??=, σ?ε-=??n 22 (2)计算方法 a) 四种计算静电场分布的方法: ① 在无限大各向同性线性均匀介质中,由场---源关系式计算。 ② 高斯定理计算:

分析电场分布的对称性 ? 确定计算范围 ? 作计算图 ? 建立坐标系 ? 选择高斯面 ? 计算E 、 D ? 确定参考点 ? 计算?。 ③ 解电位微分方程: 泊松(拉普拉斯)方程 + 边界条件 ? 解边值问题,计算?。 ④ 间接计算方法: 镜像法、电轴法。 b) 计算电容、静电能量和电场力等: ① 按定义式计算电容 U q C =。 ② 在电场分布计算已完成的基础上,按电能分布式或场源所在区域计算能量。 ③ 有了静电能量,再按虚位移法计算电场力。或按库仑定律计算电场力。 恒定电场 小节 1. 基本概念和基本规律 ①导电媒质中恒定电场的基本方程 0=??l E d 0=??E 0=??S d s J 0=??J 恒定电场是无散、无旋场。导电媒质的构成方程(欧姆定律的微分形式) E J γ= 损耗介质中的恒定电场 0d =??l E l 0=??E 0d =??S S J 0=??J q S =??S D d ρ=??D 损耗介质的构成方程 E J γ= E D ε= ② 电位函数满足拉普拉斯方程 02=? ? ③ 电流与电流密度 体电流 ???==S S I I S J d d v J ρ= 面电流 ⊥??=l I l k d

第12章变化的电磁场作业解读

第12章 变化的电磁场 思考题 12.1 在电磁感应定律t d d ?ε-=中,负号的意义是什么?你是怎样根据正负号来确定感应电动势的方向的? 答:负号反映了感应电动势的方向,是愣次定律的体现。用正负符号来描述电动势的方向,首先应明确电动势的正方向(即电动势符号为正的时候所代表的方向)。在电磁感应现象中电动势的正方向即是所选回路的绕行方向,由于回路的绕行方向与回路所围面积的法线方向(即穿过该回路磁通量的正方向)符合右手螺旋,所以,回路电动势的正方向与穿过该回路磁通量的正方向也符合右手螺旋。原则上说,对于穿过任一回路的磁通量,可以任意规定它的正负,因此,在确定感应电动势的方向的时,可以首先将穿过回路的磁通量规定为正,然后,再按右手螺旋关系确定出该回路的绕行方向(即电动势的正方向)。最后,再由电动势ε的符号,若ε的符号为正即电动势的方向与规定的正方向相同,否则相反。 12.2 如图,金属棒AB 在光滑的导轨上以速度v 向右运动,从而形成了闭合导体回路ABCDA 。楞次定律告诉我们,AB 棒中出现的感应电流是自B 点流向A 点,有人说:电荷总是从高电势流向低电势。因此B 点的电势应高于A 点,这种说法对吗?为什么? 答:这种说法不对。回路ABCD 中AB 棒相当于一个电源,A 点是电源的正极,B 点是电源的负极。这是因为电源电动势的形成是非静电力做功的结果,非静电力在将正电荷从低电势的负极B 移向高电势的正极A 的过程中,克服了静电力而做功。所以正确的说法是:在作为电源的AB 导线内部,正电荷从低电势移至高电势。是非静电力做正功;在AB 导线外部的回路上,正电荷从高电势流至低电势,是静电力做正功。因此,B 点的电势低,A 点的电势高。 12.3 一根细铜棒在均匀磁场中作下列各种运动(如图),在哪种运动中铜棒内产生感应电动势?其方向怎样? (1) 铜棒向右平移(图a )。 (2) 铜棒绕通过其中心的轴在垂直于B 的平面内转动(图b )。 (3) 铜棒绕通过中心的轴在平行于B 的平面内转动(图c )。 答:(a)无;(b)由中心指向两端;(c)无。 图12.2 思考题12.3图 (a) (b) (c) A B 图12.1 思考题12-2图

高中物理电磁场公式总结

高中物理电磁场公式总结 高中物理电磁场公式 1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T,1T=1N/Am 2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)} 3.洛仑兹力f=qVB(注V⊥B);质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)} 4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种): (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0 (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下 (a)F向=f洛 =mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm /qB; (b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。 强调:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;

(2)磁感线的特点及其常见磁场的磁感线分布要掌握; (3)其它相关内容:地磁场/磁电式电表原理、回旋加速 器、磁性材料 高中物理电场公式 1.两种电荷、电荷守恒定律、元电荷: (e=1.60×10-19C);带电体电荷量等于元电荷的整数 倍 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作 用力(N),k:静电力常量k=9.0×109Nm2/C2,Q1、Q2: 两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们 的连线上,作用力与反作用力,同种电荷互相排斥,异种电 荷互相吸引} 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该 位置的距离(m),Q:源电荷的电量} 5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷 的电量(C),E:电场强度(N/C)} 7.电势与电势差:UAB=φA-φB, UAB=WAB/q=-ΔEAB/q

论时变电磁场的衔接条件

论时变电磁场的衔接条件 摘要 本文研究时变电磁场街接条件的独立性问题。在进行电磁场分析计算时,只需顾及不同媒质交界面上电场强度的切线分量和磁场强度的切线分量连续条件。 在科学技术发展史上所起的重大作用,了解自然科学发展史的人都知道,电磁场基本理论是不可替代的。自1888年赫兹用实验证明了电磁波的存在至今,一百多年的时间里电磁理论不断的深化,其应用领域不断的扩大。同时,电磁场理论和近年来迅速发展的电磁场数值分析方法,正日渐渗入到许多交叉领域和新兴学科,应用范围越来越广。鉴于这种情况,我就以本文对电磁场的应用作些简单的介绍,主要从静态场、时变电场、电磁波等方面论述。并以电磁波的应用为主。希望通过此文能引起人们对电磁场理论的注意。 有内在联系、相互依存的电场和磁场的统一体的总称。随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。 时变电磁场是一种随时间变化着的电磁场。时变电磁场与静态的电场和磁场有显著的差别,出现一些由于时变而产生的效应。这些效应有重要的应用,并推动了电工技术的发展。 时变电磁场与静态电磁场不应被对立起来看待。作为电磁场的两类,其根本区别仅在于激励源(也称场源)的时变性,由此而导致两者特性的诸多不同。当这种时变性完全不被考虑时,时变电磁场便退化为静态电磁场;当部分被忽略这种时变性时,时变电磁场便退化为准静态电磁场(一种兼具时变场和静态场某些特征的电磁场)。 M.法拉第提出的电磁感应定律表明,磁场的变化要产生电场。这个电场与来源于库仑定律的电场不同,它可以推动电流在闭合导体回路中流动,即其环路积分可以不为零,成为感应电动势。现代大量应用的电力设备和发电机、变压器等都与电磁感应作用有紧密联系。由于这个作用。时变场中的大块导体内将产生涡流及趋肤效应。电工中感应加热、表面淬火、电磁屏蔽等,都是这些现象的直接应用。 继法拉第电磁感应定律之后,J.C.麦克斯韦提出了位移电流概念。电位移来源于电介质中的带电粒子在电场中受到电场力的作用。这些带电粒子虽然不能自由流动,但要发生原

电磁场复习题解读

电磁场与电磁波复习题 一、选择题 1.静电场中试验电荷受到的作用力大小与试验电荷的电量 ( D ) A.成反比 B.成平方关系 C.成正比 D.无关 2.导体在静电平衡下,其内部电场强度 ( ) A.为常数 B.为零 C.不为零 D.不确定 3.真空中磁导率的数值为 ( C ) A.4π×10-5H/m B.4π×10-6H/m C.4π×10-7H/m D.4π×10-8H/m 4.磁通Φ的单位为 ( B ) A.特斯拉 B.韦伯 C.库仑 D.安匝 5.矢量磁位的旋度是( ) A.磁感应强度 B.磁通量 C.电场强度 D.磁场强度 6.真空中介电常数ε0的值为 ( D ) A.8.85×10-9F/m B.8.85×10-10F/m C.8.85×10-11F/m D.8.85×10-12F/m 7.若电介质中的极化强度矢量和电场强度成正比关系,则称这种电介质为 ( BC ) A.均匀的 B.各向同性的 C.线性的 D.可极化的 8.均匀导电媒质是指其电导率无关于 ( ) A.电流密度 B.空间位置 C.时间 D.温度 9.交变电磁场中,回路感应电动势与回路材料电导率的关系为 ( D ) A.电导率越大,感应电动势越大 B.电导率越小,感应电动势越大 C.电导率越大,感应电动势越小 D.感应电动势大小与导电率无关 10.下面说法正确的是 ( ) A.凡是有磁场的区域都存在磁场能量 B.仅在无源区域存在磁场能量 C.仅在有源区域存在磁场能量 D.在无源、有源区域均不存在磁场能量 11.真空中均匀平面波的波阻抗为 ( ) A.377Ω B.237Ω C.277Ω D.337Ω 12.磁感应强度B与磁场强度H的一般关系为 ( D ) A.H=μB B.B=μH C.H=μr B D.B=μ0H 13.平板电容器的电容量与极板间的距离( ) A.成正比 B.成反比 C.成平方关系 D.无关 14.在磁场B中运动的电荷会受到洛仑兹力F的作用,F与B的空间位置关系( ) A.是任意的 B.相互垂直 C.同向平行 D.反向平行 15.相同尺寸和匝数的空心线圈的电感系数与铁心线圈的电感系数之比( ) A.大于1 B.等于1

变化的电磁场解读

第8章 变化的电磁场 一、选择题 1. 若用条形磁铁竖直插入木质圆环, 则在环中是否产生感应电流和感应电动势的判 断是 [ ] (A) 产生感应电动势, 也产生感应电流 (B) 产生感应电动势, 不产生感应电流 (C) 不产生感应电动势, 也不产生感应电流 (D) 不产生感应电动势, 产生感应电流 2.关于电磁感应, 下列说法中正确的是 [ ] (A) 变化着的电场所产生的磁场一定随时间而变化 (B) 变化着的磁场所产生的电场一定随时间而变化 (C) 有电流就有磁场, 没有电流就一定没有磁场 (D) 变化着的电场所产生的磁场不一定随时间而变化 3. 在有磁场变化着的空间内, 如果没有导体存在, 则该空间 [ ] (A) 既无感应电场又无感应电流 (B) 既无感应电场又无感应电动势 (C) 有感应电场和感应电动势 (D) 有感应电场无感应电动势 4. 在有磁场变化着的空间里没有实体物质, 则此空间中没有 [ ] (A) 电场 (B) 电力 (C) 感生电动势 (D) 感生电流 5. 两根相同的磁铁分别用相同的速度同时插进两个尺寸完全相同的木环和铜环内, 在同一时刻, 通过两环包围面积的磁通量 [ ] (A) 相同 (B) 不相同, 铜环的磁通量大于木环的磁通量 (C) 不相同, 木环的磁通量大于铜环的磁通量 (D) 因为木环内无磁通量, 不好进行比较 6. 半径为a 的圆线圈置于磁感应强度为B 的均匀磁场中,线圈平面与磁场方向垂直, 线圈电阻为R .当把线圈转动使其法向与B 的夹角 60=α时,线圈中通过的电量与线圈 面积及转动的时间的关系是 [ ] (A) 与线圈面积成反比,与时间无关 (B) 与线圈面积成反比,与时间成正比 (C) 与线圈面积成正比,与时间无关 (D) 与线圈面积成正比,与时间成正比 图8-1-1

全国2004年4月高等教育自学考试电磁场试题解读

免费试听.自考名师.课件更新.报名演示.学习卡. 最权威的师资阵容 最及时的在线答疑 全程视频授课,反复观看 不限次数 自考365网校数百门课程全面招生! 基础班+串讲班 祝您成功每一天! 郭建华 韩旺辰 郝玉柱 张旭娟 孙茂竹 白薇 全国2004年4月高等教育自学考试 电磁场试题 课程代码:02305 第一部分 选择题 (共30分) 一、单项选择题(本大题共15小题,第1~3题每小题1分,第 4~12题每小题2分,第13~15题每小题3分,共30分) 在每小题列出的四个备选项中只有一个是符合题目要求的, 请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.全电流定律的微分方程为( ) A .▽× B .▽×(或)+t D ?? C .▽×t D ?? D .▽×0 2.所谓点电荷是指可以忽略掉电荷本身的( ) A .质量 B .重量 C .体积 D .面积 3.静电场中两点电荷之间的作用力与它们之间的距离( ) A .成正比 B .平方成正比 C .平方成反比 D .成反比 4.真空中均匀平面波的波阻抗为( ) A .237Ω B .277Ω

C.337ΩD.377Ω 5.载流回路中的电流在建立过程中需要外源提供能量,故一部分能量将转化为() A.电场能量B.线圈能量 C.磁场能量D.电流能量 6.变压器电动势的产生条件是() A.电场恒定B.磁场恒定 C.电场变化D.磁场变化 7.已知两点电荷在同一处产生的电场分别为E148.060.0,E2=74.9124.9,则该处的电场强度为() A.74.948.0 B.-74.948.0184.9 C.74.948.0184.9 D.74.948.064.9 8. ε是真空中的介电常数,其值为() A.4π×10-7B.4π×10-12 C.8.85×10-12D.8.85×10-12F·m 9.已知平行板电容器中,电位函数2ax ?,则电容器中的电场强 = 度为() A.2 B.2ε C.2εD.-2 10.在恒定电场中,导体内的电场强度为() A.恒定B.为零

时变电磁场.

第五章 时变电磁场 5.1 为什么电容器通交流阻直流?位移电流在含有电容的电路中起怎样的作用? 解答:当电容器外加直流电压时,由于电容器两端电压不变,由可知极板上的电荷量不随时间变化,因而连接电容器的导线上没有电流,即电容器阻直流;当电容器外加交流电压时,由可知极板上的电荷量也随时间交变,如正电荷在一个极板上增加时,另一个极板的负电荷量也随之增加,多余的正电荷增量便沿导线传导形成电流,因而电容器通交流。 CU Q =CU Q =电容器极板上的带电量决定了两极板间的电场强度及电位移矢量,极板上电荷量的变化导致另一极板上感应电荷量随之变化,使得两极板间的电位移也随时间同步变化,此变化率称为位移电流(密度)。可见自由电荷的变化形成位移电流并导致传导电流,电容器中的位移电流起到了连接两点(电极)之间真实电流的桥梁作用。 5.2 对于时变场,理想导体表面电场和磁场有何特点?怎样解释? 解答:理想导体表面电场切向为零,只有法向分量;磁场法向为零,只有切向分量。在理想导体中,由222E J σ=,∞→2σ可知,必有02=E ,否则会出现电流无穷大,即电源能量无穷大,这是不可能的。由电场切向连续的边界条件可知,。另外,由0t 1=E 022=??- =??t B E 0可知,对于时变场,2=B 。由磁感应法向连续的边界条件可知。 01n =B 5.3 在时变场中为什么电容器会存在分布电感?电感线圈会存在分布电容? 解答:对于外加交变电压的电容器,两极之间的电场也是交变的,由 t ??=??E H ε可知,交变的电场在两极之间会产生磁场分布,即电容器中储存有磁场能量,因此电容器具有分布电感。类似的,线圈中的磁场是交变的,由t ??-=??H E μ可知,交变的磁场在线圈中会产生涡旋电场,即线圈中会储存有电场能量,因此电感线圈具有分布电容。 5.4 在交变电路中,能量是在导线中传递吗? 解答:不是。能量在导线中只有损耗。能量的传递是在导线外进行的,导线起着引导能量传递方向的作用。以同轴传输线为例,内外导体之间的电场分布沿径向方向,磁场分布绕轴沿?角方向,按照坡印廷定理,能流矢量)()()(t t t H E S ?=,方向正是传输线的轴线方向。对平行双线传输线,也有相同的结果。 5.5 用复数表示正弦场有何方便之处?场量的实部和虚部有何关系?

时变电磁场和电磁波解读

第九章 时变电磁场和电磁波 我们已经接受了电场和磁场的各种基本规律。作为最后一章,将要对这些规律加以总结。麦克斯韦于1865年首先将这些规律归纳为一组基本方程,现在称之为麦克斯韦方程组。根据它可以解决宏观电磁场的各类问题,特别是关于电磁波(包括光)的问题。本章首先列出麦克斯韦方程组,并分别说明各方程的物理意义。然后介绍电磁波的一般性质,包括其中电场和磁场的特征、能量和动量等。 §1 麦克斯韦方程组 一、麦克斯韦方程组 电磁学的基本规律是真空中的电磁场规律,它们是 I ??==?V S dV q S d E ρεε001 II 0=??S S d B III ?????-=Φ-=?S L S d t B dt d l d E 0 IV ?????+=Φ+=?S e L S d t E J dt d c I l d B )(10020εμμ 这就是关于真空的麦克斯韦方程组的积分形式。在已知电荷和电流分布的情况下,这组非常可以给出电场和磁场的惟一分布。特别是当初始条件给定后,这组方程还能惟一地预言电磁场此后变化的情况。正像牛顿运动方程能完全描述质点的动力学过程一样,麦克斯韦非常组能完全描述电磁场的动力学过程。 二、方程组中各方程的物理意义 方程I 是写成的高斯定律,它说明电场强度和电荷的关系。尽管电场和磁场的变化也有关系(如感生电场),但总的电场和电荷的联系总服从这一高斯定律。 方程II 是磁通连续定律,它说明,目前的电磁场理论认为在自然界中没有单一

的“磁荷”(磁单极子)存在。 方程III 是法拉第电磁感应定律,它说明变化的磁场和电场的联系。虽然电场荷电场和电荷也有联系,但总的电场和磁场的联系总符合这一规律。 方程IV 是一般形式下的安培环路定理,它说明磁场和电流(即运动的电荷)以及变化的电场的联系。 为了求出电磁场对带电粒子的作用从而预言粒子的运动,还需要洛伦兹力公式 B v q E q F ?+= 这一公式实际上是电场E 和磁场B 的定义。 §2 电磁波 电磁波在当今信息技术和人类生活的各个方面已成为不可或缺的“工具”了,从电饭锅、微波炉、手机、广播、电视到卫星遥感、宇宙飞行的控制等都要利用电磁波。电磁波的可能存在是麦克斯韦在1873年根据他创立的电磁场理论导出的。根据上节介绍的方程组可以证明,电荷做加速运动(例如简谐振动)时,其周围的电场和磁场将发生变化,并且这种变化会从电荷所在处向四外传播。这种互相紧密联系的变化的电场和磁场就叫电磁波。麦克斯韦根据他得到的电磁波的传播速度和光速相同而把电磁波的领域扩展到了光现象。麦克斯韦的理论预言在20年后被赫兹用实验证实,从而开阔了无线电应用的新时代。 电磁波具有的一般性质: (1) 电磁波是横波,即电磁波中的电场E 和磁场B 的方向都和传播方向垂直。 (2) 以最简单的电磁波即简谐电磁波(其中电场和磁场都做简谐变化分电磁波) 为例,其电场方向和磁场方向也相互垂直,传播方向、电场方向和磁场方向三者形成右手螺旋关系(见图1)。 B E k ?=

大学物理 电磁感应 电磁场(一)习题答案 上海理工

一。选择题 [ A ]1. 如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂 直于棒长且沿磁场方向的轴OO ' 转动(角速度ω 与B 同方向),BC 的长度为棒长的3 1 ,则 (A) A 点比B 点电势高. (B) A 点与B 点电势相等. (C) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点 【分析】在B O '上取一个长度微元x d ,它离O '点的距离为x ,方 向向B 端。则x d 两端的电势差由动生电动势公式可求得: ()Bxdx vBdx x d B v d i ωε==??= 所以O '、B 两端的电势差为: 230 181 BL Bxdx V V L O B ωω= =-?' 同理O '、A 两端的电势差为: 2320 18 4 BL Bxdx V V L O A ωω= =-? ' 所以A 、B 两点的电势差可求得: 26 1 BL V V B A ω=- A 点的电势高。 [ D ]2. 在圆柱形空间内有一磁感强度为B 的均匀磁场,如图所示.B 的大小以速率 d B /d t 变化.在磁场中有A 、B 两点,其间可放直导线AB 和弯曲的导线AB ,则 (A) 电动势只在导线AB 中产生. (B) 电动势只在导线中产生. (C) 电动势在AB 和AB 中都产生,且两者大小相等. (D) AB 导线中的电动势小于导线中的电动势 【分析】连接oa 与ob ,ob ab ob oab εεεε++=。因为涡旋电场总是与圆柱截面垂直,所以oa 和ob 上的涡旋电场方向处处垂直于oa 、ob ,即0=?= =? → →l d E ob ob εε oab ob d dB S dt dt φεε==- =- o ab oab d d dt dt ??∴<

时变电磁场

时变电磁场 1 什么是时变电磁场:场源(电荷、电流或时变场量)和场量(电场、磁场)随时间变化的电磁场。由于时变的电场和磁场相互转换,也可以说时变电磁场就是电磁波。 2 时变电磁场的特点:1)电场和磁场互为对方的涡旋(旋度)源。2)电场和磁场共存,不可分割。3)电力线和磁力线相互环绕。 3 本教科书自第五章以后内容全是关于电磁波的,第五章主要是基础,引入波动方程去掉电场与磁场的耦合,引入复矢量,简化时间变量的分析。第六章以平面波为例,首先研究无限大区域内的电磁波的传播特点,引入用于描述电磁波特性的参量。然后介绍半无限大区域内的电磁波的传播特点-电磁波的反射和折射。第七章首先介绍一个坐标方向无限、其余坐标方向有限的区域内的电磁波传播特性—导行电磁波特性,然后介绍了有限区域内的电磁波谐振特性。第八章介绍了电磁波的产生-天线。 4 本章内容线索:1)理论方面:基本场方程,位函数(引入矢量位),边界条件,波动方程。2)基本方法:复矢量 §5.1时变电磁场方程及边界条件 1 1)因为 t ??不为零,电场和磁场相互耦合,不能分开研究。其基本方程就是Maxwell 方程。 微分形式:???????? ?????????-=??=??=????-=????+=??t J B D t B E t D J H ρ ρ 0 积分形式??????? ??????????-=?=?=????-=????+=??????????s V s s V c s c s dV t s d J s d B dV s d D s d t B l d E s d t D J l d H ρρ )( 2)物质(本构)方程: 在线性、各向同性媒质中 H B E D με== 其它媒质有:非线性,各向异性,双各向异性,负相对电导率、负相对磁导率媒质等人工媒质。这些媒质在微波、光学、隐身、伪装方面有很多应用。 3)上面的电流J 包括传导电流E J c σ=和运移电流v J v ρ= 2 边界条件: §5.2 时变电磁场的唯一性定理 1 如果1)一个区域内0=t 时,每一点的电场强度和磁场强度的初始值已知,2)区域边界

相关文档
最新文档