线性矩阵不等式及其在控制工程中的应用(1)

线性矩阵不等式及其在控制工程中的应用(1)
线性矩阵不等式及其在控制工程中的应用(1)

矩阵的各种运算详细讲解

一、矩阵的线性运算 定义1 设有两个矩阵和,矩阵与的和记作, 规定为 注:只有两个矩阵是同型矩阵时,才能进行矩阵的加法运算. 两个同型矩阵的和,即为两个矩阵对应位置元素相加得到的矩阵. 设矩阵记 , 称为矩阵的负矩阵, 显然有 . 由此规定矩阵的减法为 . 定义2 数与矩阵A的乘积记作或, 规定为 数与矩阵的乘积运算称为数乘运算. 矩阵的加法与矩阵的数乘两种运算统称为矩阵的线性运算. 它满足下列运算规律:设都是同型矩阵,是常数,则 (1) (2) ; (3) (4) (5) (6) (7) (8) 注:在数学中,把满足上述八条规律的运算称为线性运算. 二、矩阵的相乘 定义3设

矩阵与矩阵的乘积记作, 规定为 其中,( 记号常读作左乘或右乘. 注: 只有当左边矩阵的列数等于右边矩阵的行数时, 两个矩阵才能进行乘法运算. 若,则矩阵的元素即为矩阵的第行元素与矩阵的第列对应元素乘积的和. 即 . 矩阵的乘法满足下列运算规律(假定运算都是可行的): (1) (2) (3) (4) 注: 矩阵的乘法一般不满足交换律, 即 例如, 设则 而 于是且 从上例还可看出: 两个非零矩阵相乘, 可能是零矩阵, 故不能从必然推出 或 此外, 矩阵乘法一般也不满足消去律,即不能从必然推出例如, 设 则 但 定义4如果两矩阵相乘, 有

则称矩阵A与矩阵B可交换.简称A与B可换. 注:对于单位矩阵, 容易证明 或简写成 可见单位矩阵在矩阵的乘法中的作用类似于数1. 更进一步我们有 命题1设是一个n阶矩阵,则是一个数量矩阵的充分必要条件是与任何n阶矩阵可换。 命题2设均为n阶矩阵,则下列命题等价: (1) (2) (3) (4) 三、线性方程组的矩阵表示 设有线性方程组 若记 则利用矩阵的乘法, 线性方程组(1)可表示为矩阵形式: (2) 其中矩阵称为线性方程组(1)的系数矩阵. 方程(2)又称为矩阵方程. 如果是方程组(1)的解, 记列矩阵 则 ,

LMI(线性矩阵不等式)工具箱

LMI:Linear Matrix Inequality,就是线性矩阵不等式。 在Matlab当中,我们可以采用图形界面的lmiedit命令,来调用GUI接口,但是我认为采用程序的方式更方便(也因为我不懂这个lmiedit的GUI)。 对于LMI Lab,其中有三种求解器(solver):feasp,mincx和gevp。 每个求解器针对不同的问题: feasp:解决可行性问题(feasibility problem),例如:A(x)

线性方程组的矩阵求解算法

线性方程组的矩阵求解算法 摘要 线性方程组的矩阵求解算法,只需在约当消元法的基础上,再对方程组的 增广矩阵的行最简形进行行(列)删除和增加行,交换行等运算即可得到方程组的解,并且这种方法既可求解有唯一解的方程组.因而算法简单,易于实现. 关键词 线性方程组;解向量;解法;约当消元法 1 矩阵求解算法 设有线性方程组m n A X b ?=,其增广矩阵())(1,m n A A b ?+=,算法的步骤如下: 第一步:利用约当消元法,把增广矩阵A 化为行最简形,设行最简形为()1m n B ?+.若()t i (),r A r =则方程组无解;否则设(),r A R =并执行以下步骤; 第二步:删除B 中的所有零行和每一行第一个非零元素(这个非零元素一定是1)所在的列,得到矩阵()1,r n r D ?-+并记录每行的第一个非零元所在的列标,放在一维数组()1,,t r L 中,如第i 行的第一个非零元在第j 列,则()t i j =; 第三步:构造矩阵() 1m n r D H F ?-+?? = ? ??,其中 ()()1100 001 0000 10n r n r F -?-+-?? ?- ? = ? ? -??L L L L L L L L 第四步:对矩阵H 中的行作交换运算:把H 中的第i 行(,1,1,i r r =-L 即从第r 行开始直到第一行)依次与其下一行交换,使之成为第()t i 行,交换运算结果后的矩阵记为G ,则G 中的前n r -个n 维列向量即为方程组的一个基础解系,最后一列向量即为方程组的一个特解; 第五步:写出方程组的通解. 2 算法证明 先证一个特殊情形,增广矩阵A 的行最简形矩阵B 的左上角为一r 阶的单位矩阵,即第i 行的第一个非零元的列标为i ,即()()1t i i i r =≤≤,所以设B 为

线性矩阵不等式的LMI工具箱求解

一、线性矩阵不等式的LMI 工具箱求解 (一)可行性问题(LMIP ) 1、可行性问题描述 系统状态方程: []11223301000210-4014x x x x u x x ????????????????=-+????????????????-???????? &&& 在判断系统的稳定性时,根据线性定常系统的雅普诺夫稳定性判据,需要判断是否存在实对称矩阵P ,使得: T A P+PA=Q - 成立,其中Q 为正定矩阵。 那么判断系统稳定性的问题,可以转化为下面不等式是否存在解的问题: T A P+PA<0 这种不等式解是否存在的问题可以用MATLAB 的LMI 工具箱进行判断。 2、仿真所需要用到的命令 setlmis([]) :开始一个线性矩阵不等式系统的描述; X= lmivar(TYPE,STRUCT):定义一个新的矩阵变量; lmiterm(TERMID,A,B,FLAG):确定线性矩阵不等式的一个项的容; LMISYS = getlmis :结束一个线性矩阵不等式系统的描述,返回这个现行矩阵不等式系统的部表示向量LMISYS ;

X = dec2mat(LMISYS,DECV ARS,XID):由给定的决策变量得到相应的矩阵变量值。 [tmin,xfeas]=feasp(lmisys):可行性问题的求解器函数,tmin大于0时,表明LMI系统不可行,P阵无解,系统不稳定,tmin小于0时,便可以用dec2mat函数求解出P矩阵。 3、仿真结果 可以看到,仿真结果tmin<0,因此P阵存在,系统是稳定的。进一步用dec2mat函数求解出P矩阵。得:

线性方程组与矩阵

高代小练习 专业课研究部 一、填空题 1.设n 元齐次线性方程组的系数矩阵的秩r < n ,则方程组的基础解系由_n-r__个解向量组成. 2.向量组123,,ααα线性无关,则122331(,,)rank αααααα+++=__3____. 3.设向量组12,,,r βββ 可以由向量组12,,,s ααα 线性表出.如果向量组12,,,r βββ 线性无关,则r __<=___s (填大小关系). 4.在数域K 上的4维向量空间K 4内,给定向量组α1 =(1,-3,0,2)α2 =(-2,1,1,1)α3 =(-1,-2, 1,3),则此向量组的秩是_2____. 5.若V={(a+bi ,c+di)|a,b,c,d 属于R},则V 对于通常的加法和数乘,在复数域上是__2____维的,而在实数域上是__4_____维的. 6.设线性方程组AX=0的解都是线性方程组BX=0的解,则秩A ?>=??秩B. 7.设t ηηη,,,21 及t t ηληληλ+++ 2211都是)0(≠=b b AX 的解向量,则 =+++t λλλ 21______。 8.设任意一个n维向量都是齐次线性方程組0=AX 的解向量,则=)(A r ______。 9.已知321,,ααα是齐次方程组0=AX 的基础解系,那么基础解系还可以是______. (A) 332211αααk k k ++ (B) 133221,,αααααα+++ (C) 3221,αααα-- (D) 233211,,αααααα-+- 10.在三维几何空间中,用V 1表示通过原点的直线,V 2表示通过原点且与V 1垂直的平面,试求 21V V ?=_原点____,和21V V ?=_整个空间R 3 ____。 二.解答题 1.在4维向量空间中, (1)求基 到基 的过渡矩阵。

线性方程组和矩阵知识总结.doc

线性方程组和矩阵知识总结 吴荣魁 2013201363 线性方程组的基本概念 ???????=+++=+++=+++m mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 322112222212111212111 其中未知数的个数n 和方程式的个数m 不必相等. 线性方程组的解是一个n 维向量它满足:当每个方中的未知数xi 都用ki 替代时都成为等式. 线性方程组的解的情况有三种:无解,唯一解,无穷多解. 对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解 b1=b2=…=bm=0的线性方程组称为齐次线性方程组. n 维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解). 把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组. 线性方程组的解法 ???????=+++=+++=+++m mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 322112222212111212111 (1)、写出线性方程组的增广矩阵。 (2)、用初等行变换把增广矩阵化为阶梯形矩阵。 (3)、看阶梯形矩阵的最后一个非零行的首非零元是否在最后一列。如果是,则方程组无解;反之方程组有解。 (4)、在有解的情况下,找出阶梯形矩阵中非零行的个数r 。如果r=n ,则方程组有唯一解;如果r

矩阵在线性方程组中的应用

矩阵在线性方程组中的应用 摘要 矩阵和线性方程组都是高等数学的重要教学内容。在高等数学教学中利用矩阵解线性方程组的方法基本上是所知的固定几种:利用矩阵初等变换、克拉默法则、高斯—若尔当消去法。但是解一个线性方程组有时需要几种方法配合使用,有时则需要选择其中的最简单的方法。而对于一些特殊的线性方程组的解法很少有进行归类、讲解。我们希望可以通过对本课题的研究,总结和归纳用特殊矩阵解几类特殊线性方程组的解法。 关键词矩阵;线性方程组;齐次线性方程组;非齐次线性方程组

MATRICES IN THE APPLICATIONS OF THE SYSTEM OF LINEAR EQUATIONS ABSTRACT Matrices and system of linear equations are important content of advanced mathematics. We often use several fixed methods to solve system of linear equations in advanced mathematics,such as Matrix transformations;Cramer's Ruleand Gauss-Jordan elimination method. But sometimes, we need to choose one of the most simple ways,or we need to use several methods to solve system of linear equations. For some special solution method of system of linear equations, there are few classification and explanation in detail. We hope that we can research, summarizes and induces solution method of some special system of linear equations with special matrices. KEY WORDS matrices; system of linear equations; homogeneous system of linear equations; nonhomogeneoussystem of linear equations

矩阵与线性方程组

第1 章矩阵与线性方程组 矩阵是描述和求解线性方程组最基本和最有用的工具。本章涉及向量和矩阵的基本 概念,归纳了向量和矩阵的基本运算。 1.1 主要理论与方法 1.1.1 矩阵的基本运算 一、矩阵与向量 a11x1 + a12x2 + ¢ ¢ ¢+ a1n x n = b1 a21x1 + a22x2 + ¢ ¢ ¢+ a2n x n = b2 ... a m1x1 + a m2x2 + ¢ ¢ ¢+ a mn x n = b m 9> >>>=>>>>; (1.1) 它使用m个方程描述n个未知量之间的线性关系。这一线性方程组很容易用矩阵||向量 形式简记为 Ax = b (1.2) 式中 A =26664 a11 a12 ¢ ¢ ¢ a1n a21 a22 ¢ ¢ ¢ a2n ... ... ... a m1 a m2 ¢ ¢ ¢ a mn 37775 (1.3) 称为m £ n矩阵,是一个按照长方阵列排列的复数或实数集合;而 x =26664 x1 x2 ... x n 37775 ; b =26664 b1 b2 ... b m 37775 (1.4) 分别为n £1向量和m£1向量,是按照列方式排列的复数或实数集合,统称列向量。类似地,按照行方式排列的复数或实数集合称为行向量,例如 a = [a1; a2; ¢ ¢ ¢ ; a n] (1.5) 是1 £ n向量。 二、矩阵的基本运算 1. 共轭转置:若A = [a ij ]是一个m£ n矩阵,则A的转置记作A T,是一个n £m矩阵, 定义为[A T]ij = a ji;矩阵A的复数共轭A¤定义为[A¤]ij = a¤ji;复共轭转置记作A H,定义 为 A H =26664 a¤11 a¤21 ¢ ¢ ¢ a¤m1 a¤12 a¤22 ¢ ¢ ¢ a¤m2 ...

常系数线性方程组基解矩阵的计算

常系数线性方程组基解矩阵的计算

常系数线性方程组基解矩阵的计算 董治军 (巢湖学院数学系,安徽巢湖238000) 摘要:微分方程组在工程技术中的应用时非常广泛的,不少问题都归结于它的求解问题,基解矩阵的存在和具体寻求是不同的两回事,一般齐次线性微分方程组的基解矩阵是无法通过积分得到的,但当系数矩阵是常数矩阵时,可以通过方法求出基解矩阵,这时可利用矩阵指数exp A t,给出基解矩阵的一般形式,本文针对应用最广泛的常系数线性微分方程组,结合微分方程,线性代数等知识,讨论常系数齐次线性微分方程的基解矩阵的几个一般的计算方法. 关键词;常系数奇次线性微分方程组;基解矩阵;矩阵指数 Calculation of Basic solution Matrix of

Linear Homogeneous System with Constant Coefficients Zhijun Dong (Department of Mathematics, Chaohu College Anhui, Chaohu) Abstract: Differential equations application in engineering technology is very extensive, when many problems are attributable to its solving problem, base solution matrix existence and specific seek is different things, general homogeneous linear differential equations is not the base solution matrix by integral get, but when coefficient matrix is constant matrix, can pass out the base solution matrix method, then are available matrix exponential t, the general form base solution matrix, the paper discusses the most widely used differential equations with constant coefficients, combined with differential equations, linear algebra, discuss knowledge of homogeneous linear differential equation with constant coefficients of base solution matrix several general calculation method. Keyword: linear homogeneous system with constant coefficients; matrix of basic solutions; matrix exponent 引言: 线性微分方程组的求解历来是常微分方程的重点,根据线性微分方程组的解的结构理论,求解线性微分方程组的关键在于求出对应齐次线性微分方程组的基解矩阵,本文主要讨论齐次线性微分方程组 X ’=AX ★ 的基解矩阵的计算问题,这里A 是n n ?常数矩阵. 一.矩阵指数exp A 的定义和性质: 1.矩阵范数的定义和性质 定义:对于n n ?矩阵A =ij a ???? n ×n 和n 维向量X =()1,...,T n X X 定义A 的范数为A =,1 n ij i j a =∑ ,X =1 n i i x =∑ 设A ,B 是n ×n 矩阵,x ,y 是n 维向量,易得下面两个性质:

线性方程组的几何意义与矩阵之间的关系

线性方程组的几何意义与矩阵之间的关系 数学系数052 蒋春 摘要:通过对二元线性方程组,三元线性方程组,四元线性方程组有关系数矩阵,增广矩阵的秩的分析,对其列,行向量的线性相关性分析,初步得出如何用矩阵的方式讨论线性方程组的几何意义。 关键词:线性方程组 空间直线 系数矩阵 增广矩阵 矩阵秩 线性相关性 引言:判断空间中平面与平面、直线与直线及直线与平面的位子关系是代数知识在空间解析几何上的应用,体现了几何与代数的完美结合,虽在解析中给出了两条判定定理,但在实际应用中这两条定理是不够用的,本文用方程组系数矩阵,增广矩阵的秩,对其列,行向量的线性相关性作出系统研究,并给出了一些非常有用的结论。 1:二元线性方程组几何意义与矩阵之间的关系 设线性方程组:1111 2 222a x b y c l a x b y c l +=?????????+=???????? 因为i i i a x b y c +=表示平面内一条直线i l 根据解析几何知1l 与2l 的几何关系: ○1:相交的充分必要条件是(不重合): ()11 22 1a b a b ≠??????? ○2平行的充分必要条件是: ()111 222 2a b c a b c =≠??????? ○3重合的充分必要条件是: ()111222 3a b c a b c ==??????? 设线性方程组系数矩阵和增广矩阵分别为 1122a b A a b ??=????,111222a b c B a b c ??=???? 现记线性方程组增广矩阵的列向量 112a a α??=????,122b b α??=????,132c c α?? =???? 则

线性方程组的矩阵求法.

线性方程组的矩阵求法 摘要: 关键词: 第一章引言 矩阵及线性方程组理论是高等代数的重要内容, 用矩阵 方法解线性方程组又是人们学习高等代数必须掌握的基本 技能,本文将给出用矩阵解线性方程组的几种方法,通过对线性方程组的系数矩阵(或增广矩阵)进行初等变换得到其解,并列举出几种用矩阵解线性方程组的简便方法。 第二章用矩阵消元法解线性方程组 第一节预备知识 定义1:一个矩阵中不等于零的子式的最大阶数叫作这个矩阵的秩。定理1:初等变换把一个线性方程组变为一个与它同解的线性方程组。 定义2:定义若阶梯形矩阵满足下面两个条件: (1)B的任一非零行向量的第一个非零分量(称为的 一个主元)为1; (2)B中每一主元是其所在列的唯一非零元。 则称矩阵为行最简形矩阵。 第二节 1.对一个线性方程组施行一个初等变换,相当于对它的增广矩

阵施行一个对应的行初等变换,而化简线性方程组相当于用行初等变换化简它的增广矩阵,因此,我们将要通过花间矩阵来讨论化简线性方程组的问题。这样做不但讨论起来比较方便,而且能给我们一种方法,就一个线性方程组的增广矩阵来解这个线性方程组,而不必每次都把未知量写出来。 下面以一般的线性方程组为例,给出其解法: (1) 11112211 21122222 1122 , , . n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++= +++= +++ = 根据方程组可知其系数矩阵为: (2) 11121 21222 12 n n m m mn a a a a a a a a a ?? ? ? ? ? ??? 其增广矩阵为: (3) 111211 212222 12 n n m m mn m a a a b a a a b a a a b ?? ? ? ? ? ??? 根据(2)及矩阵的初等变换我们可以得到和它同解的线性方程组,并很容易得到其解。 定理2:设A是一个m行n列矩阵

线性方程组求解方法

华北水利水电大学 线性方程组地求解方法 课程名称:线性代数 专业班级: 成员组成: 联系方式: 年月日 线性方程组地求解方法 摘要:线性方程组地求解方法在代数学中有着极其重要地作用,线性代数地主要研究对象是线性方程组,线性代数地基本工具是矩阵及其基本理论,线性方程组求解地地实质可以理解为矩阵地初等变换,不管是线性方程组还是矩阵,它们都来源于生产和生活实践.大量地科学技术问题,最终往往归结为解线性方程组地问题,但对于十分复杂地问题,精确地求解往往是困难地,因此在线性方程组解地结构等理论性工作取得令人满意地进展地同时,线性方程组地数值解法也得到快速发展,现在,线性方程组地数值解法在计算数学中占有重要地位.个人收集整理勿做商业用途 关键字:线性方程组,增广矩阵求解,高斯消元法求解 :,,, , , . , , , , , , , .个人收集整理勿做商业用途 ;,,;个人收集整理勿做商业用途 引言: 线性方程组分为其次线性方程组和非齐次线性方程组,其解得实质又是何时有解,何时无解,有解又有多少个解.解又分为一般解(通解),零解和非零解.无论是讨论线性方程组解地结构,还是线性方程组地求解,又需要首先讨论向量组地线性相关性,即向量组地线性相关和线性无关.本节主要对线性方程组解地情况进行讨论,给出当解不唯一时通解地表示形式.另外还介绍了几种特殊地线性方程组地求解方法.线性方程组可以分成两类,一类是未知量个数与方程地个数相等,另一类是未知量个数与方程地个数不等个人收集整理勿做商业用途 线性方程组求解 线性方程组地概念 线性方程组地一般表示方式方法如下: …, …, …… …, 其中(,...,:,...,)是方程组未知元地系数,(,...,:)为常数项,如果,则方程组为齐次线性方程组,≠,线性方程组为非齐次先行性方程组.如果线性方程组有解,则称线性方程组相容,否则,称线性方程组不相容.个人收集整理勿做商业用途 线性方程组地求解 对于,如果,即方程个数等于未知元个数地情形,有法则,齐次线性方程组有非零解地充分必要条件是系数矩阵地行列式,如果<,即方程个数小于未知元个数我们可以按照…,地形式添加个方程,使其满足“方程个数等于未知元个数”而得到新地齐次线性方程组根据行列式知识,显然,因此得到如下定理:如果齐次线性方程组中地方程是

Matlab中LMI(线性矩阵不等式)工具箱使用教程

博客首页 注册 建议与交流 排行榜 加入友情链接 推荐 投诉 搜索: 帮助 https://www.360docs.net/doc/a67796936.html, 管理博客 发表文章留言收藏夹博客圈音乐相册文章首页

项(Terms):项是常量或者变量(Terms are either constant or variable)。 常项(Constant Terms)是确定的矩阵。可变项(Variable Terms)是哪些含有矩阵变 量的项,例如:X*A, X*C'。如果是X*A + X*C',那么记得要把它当成两项来处理。 好了废话不说了,让我们来看个例子吧(下面是一线性时滞系统)。 针对这个式子,如果存在满足如下LMI的正矩阵(positive-define)的Q,S1,S2和矩阵M,那么我们就称作 该系统为H-inf渐进稳定的,并且gammar是上限。 该论文的地址为:论文原文地址 该论文的算例为: 我们要实现的就利用LMI进行求解,验证论文结果。 首先我们要用setlmis([])命令初始化一个LMI系统。 接下来,我们就要设定矩阵变量了。采用函数为lmivar 语法:X = lmivar(type,struct)

type=1: 定义块对角的对称矩阵。 每一个对角块或者是全矩阵<任意对称矩阵>,标量<单位矩阵的乘积>,或者是零阵。 如果X有R个对角块,那么后面这个struct就应该是一个Rx2阶的的矩阵,在此矩阵中,struct(r,1)表示第r个块的大小,struct(r,2) 表示第r个块的类型<1--全矩阵,0--标量,-1--零阵)。 比如一个矩阵有两个对角块,其中一个是2x2的全对称矩阵,第二个是1x1的一个标量,那么该矩阵变量应该表示为X = lmivar(1, [2 1; 1 0]) 。 type=2: mxn阶的矩阵,只需要写作struct = [m,n]即可。 type=3: 其它类型。针对类型3,X的每一个条目(each entry of X)被定义为0或者是+(-)xn,此处xn代表了第n个决策变量。 那么针对我们的例子,我们如此定义变量: % Q is a symmetric matrix, has a block size of 2 and this block is symmetric Q = lmivar(1, [2 1]); % S1 a symmeric matrix, size 2 S1 = lmivar(1, [2 1]); % S2 is 1 by 1 matrix S2 = lmivar(1, [1 0]); % Type of 2, size 1 by 2 M = lmivar(2, [1 2]); 定义完成变量之后,我们就该用lmiterm来描述LMI中的每一个项了。Matlab的官方文档提示我们,如果要描述一个LMI只需要描述上三角或者下三角元素就可以了,否则会描述成另一个LMI。 When describing an LMI with several blocks, remember to specify only the terms in the blocks on or below the diagonal (or equivalently, only the terms in blocks on or above the diagonal). 语法为:lmiterm(termID,A,B,flag) termID是一个四维整数向量,来表示该项的位置和包含了哪些矩阵变量。 termID(1)可以为+p或者-p,+p代表了这个项位于第p个线性矩阵不等式的左边,-p代表了这个项位于第p个线性矩阵不等式的右边。注意:按照惯例来讲,左边通常指较小的那边。 termID(2:3): 1、对于外部变量来说,取值为[0,0]; 2、对于左边或者右边的内部变量来说,如果该项在(i,j)位置,取值[i,j] termID(4): 1、对于外部变量,取值为0 2、对于A*X*B,取值X 3、对于A*X'*B,取值-X flag(可选,值为s): 因为:(A*X*B) + (A*X*B)T = A*X*B + B'*X'*A',所以采用s来进行简写。 比如:针对A*X + X'*A' 我们采用笨方法: lmiterm([1 1 1 X],A,1) lmiterm([1 1 1 -X],1,A') 那么简写就是lmiterm([1 1 1 X],A,1,'s')

线性矩阵不等式的LMI工具箱求解

一、线性矩阵不等式的LMI 工具箱求解 (一)可行性问题(LMIP ) 1、可行性问题描述 系统状态方程: []11 223 3 1000210-4 14x x x x u x x ???? ???? ???????? =-+????????????????-???? ???? 在判断系统的稳定性时,根据线性定常系统的李雅普诺夫稳定性判据,需要判断是否存在实对称矩阵P ,使得: T A P +P A =Q - 成立,其中Q 为正定矩阵。 那么判断系统稳定性的问题,可以转化为下面不等式是否存在解的问题: T A P +P A <0 这种不等式解是否存在的问题可以用MATLAB 的LMI 工具箱进行判断。 2、仿真所需要用到的命令 setlmis([]) :开始一个线性矩阵不等式系统的描述; X= lmivar(TYPE,STRUCT):定义一个新的矩阵变量; lmiterm(TERMID,A,B,FLAG):确定线性矩阵不等式的一个项的内容; LMISYS = getlmis :结束一个线性矩阵不等式系统的描述,返回这个现行矩阵不等式系统的内部表示向量LMISYS ; X = dec2mat(LMISYS,DECV ARS,XID):由给定的决策变量得到相应的矩阵变量值。 [tmin,xfeas]=feasp(lmisys):可行性问题的求解器函数,tmin 大于0时,表明LMI 系统不可行,P 阵无解,系统不稳定,tmin 小于0时,便可以用dec2mat 函

数求解出P矩阵。 3、仿真结果 可以看到,仿真结果tmin<0,因此P阵存在,系统是稳定的。进一步用dec2mat函数求解出P矩阵。得:

矩阵与线性方程

矩阵与线性方程

————————————————————————————————作者:————————————————————————————————日期: 2

1 第一章 矩阵与线性方程组 在中学已经学习了有关两个未知量、两个方程的二元一次方程组的基本知识。一次方程又称为线性方程。在自然科学、社会科学和许多工程技术问题中,常常需要处理几十、几百甚至成千上万个未知量的线性方程组,未知量的个数和方程的个数也不一定完全一致,这就要求我们把关于二元一次方程组的知识推广到有n 个未知量和m 个方程的线性方程组上去。矩阵是解决这类问题的重要工具之一。 1.1 矩阵及其运算 1.1.1 线性方程组及其矩阵表示 线性方程组(system of linear equations )的一般形式为 ???????=+++=+++=+++m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛ22112 222212********* (1.1) 显见,二元一次方程组是其特款。方程组(1.1)中有m 个 方程、n 个未知量。a ij 代表第i 个方程中未知量x j 的系数,b i 是 第i 个方程的常数项。当常数项b 1 ,b 2 ,…,b m 全为零时,式(1.1)称为齐次线性方程组;当常数项不全为零时,式(1.1)称为非齐次线性方程组。 当m 、n 较大时,方程组(1.1)的书写需重复许多次未知量以及“+”、“=”运算符号,如用计算机进行处理,则浪费很多存储空间。因此,我们将方程组(1.1)中未知量的系数简化

线性方程组与矩阵

第一章 线性方程组与矩阵 课程教案 授课题目:第二节 矩阵概念与矩阵的初等变换 教学目的:1.掌握高斯消元法求解线性方程组. 2.理解矩阵的概念、运算及其性质,掌握矩阵的初等行变换. 教学重点:本章以课堂教学为主,使学生掌握矩阵的初等行变换,提高学生的逻 辑思维能力和计算能力. 教学难点: 初等行变换的运用. 课时安排:2学时. 授课方式:多媒体与板书结合. 教学基本内容: §1.2 矩阵概念与矩阵的初等变换 1. 概念 对线性方程组 ?????? ?=+++=+++=+++m mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 322112 222212*********ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ (1) 其系数可用?????? ? ??mn m m n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211表示. 定义1 m n ?个数排列成m 行(横向)、n 列(纵向)的矩形数表: 1112 12122212 n n m m mn a a a a a a A a a a ?? ? ? = ? ??? L L L L L L L 称为m n ?矩阵,简记为()ij m n A a ?=,其中ij a 为A 中第i 行第j 列的元素.如 ???? ??????-5162120710903 是3行4列的矩阵.这里,3×4是个记号,表明矩阵有3行4列的事实而不能取乘积“12”. 2. 一些特殊的矩阵 1) 行矩阵——只有一行的矩阵. 例(12 5)A =.

2) 列矩阵——只有一列的矩阵. 例312B ????=-?????? . 3) 零矩阵——所有元素都等于0的矩阵.例000000C ?? =? ???. 4) 同型矩阵——行数相同、列数也相同.例235176D ?? =? ? ?? 与C 同型. 5) 当m n =时称 ()ij n n A a ?=为n 阶方阵;1122,,,nn a a a L 所在的对角线称为方阵的主对角线. 6) 主对角线下(上)方的元素全为零的方阵称为上(下)三角阵.例???? ??????500230704为上三角阵;???? ? ?????5613035004为下三角阵. 7) 主对角线以外的元素全为零的方阵称为对角阵,记为????? ?? ?? ???=n d d d D Λ M M M Λ Λ 00000021,简记为),,,(21n d d d diag D Λ=. 8) 数量阵——对角阵中(1)i d d i n =≤≤. 例300030003A ????=??????. 9) 单位阵——数量阵中1d =,记以I 或E .例100010001E ????=?????? . 注 (1) 只有1列或1行的矩阵分别称为列矩阵或行矩阵,也被称为列向量或行向量.这 样,它们就有了矩阵和向量的双重“身份”. 作为向量,常用小写黑体字母a 、b 、……等标记之,向量的元也称为分量,一个向量 所含分量的个数称为维(是个数),如???? ??????-213是个3维列向量,其实就是由3个数组成的一个有序数组.

矩阵与线性方程详解

第6章矩阵与线性方程 本章主要涉及线性代数中向量和矩阵的运算、线性方程组的解法等知识,介绍线性代数再经济方面的应用,以及MATLAB有关线性代数运算的命令。 6.1 引例: 某城镇有三个重要产业,一个煤矿,一个发电厂和一条地方铁路。开采一元钱的煤,煤矿要支付0.25元的电费和0.35元的运输费;生产一元钱的电,发电厂要支付0.40元的煤费,0.05元的电费及0.10元的运输费;提供一元钱的运输服务,铁路要支付0.45元的煤费的0.10元的电费和0.10元的运输费,在某一周内煤矿接到外地金额50000元定货,发电厂接到外地金额25000元定货,外界对地方铁路需求为30000元。问: (1)三个企业间一周内总产值多少才能满足自身及外界需求? (2)三个企业间相互支付多少金额?三个企业各创造多少新价值? (3)如果煤矿需要增加总产值10000元,它对各个企业的产品或服务的完全需求分别将是多少? (4)假定三企业的外部需求仍是用于城镇的各种消费和积累,其中用于消费的产品价值分别为35000元、18000元和20000元,而假定三个企业的新创造价值又包括支付劳动报酬(工资等)和纯收入,其中支付劳动报酬分别为25488元、10146元和14258元,试分析各企业产品使用情况的比例关系;以及该星期系统的经济效益; (5)若在以后的三周内,企业外部需求的增长速度分别是15%、3%和12%;那么各企业的总产值将增长多少? 投入产出综合平衡分析: 在一个国家或区域的经济系统中,各部门(或企业)既有投入又有产出。生产的产品满足系统内部各部门和系统外的需求,同时也消耗系统内各部门内的产品。应如何组织生产呢? 俄裔美国经济学家W.Leontief于20世纪30年代首先提出并成功地建立了研究国民经济投入产出地数学模型,他数次主持制定了美国的国民经济投入产出列表,且由此对国民经济各部门的结构和各种比例关系进行了定量分析。这一方法即投入产出法,投入产出法以其重要的应用价值迅速为世界各国经济学界和决策部门所采纳。W.Leontief因此于1973年获得了Nobel经济学奖。 数学模型:假设有n个经济部门,x i为部门i的总产出;a ij为部门j单位产品对部门i产品的消耗;y i为外部对部门i的需求;z j为部门j 新创造的价值。则

线性方程组的平方根解法

浅析线性方程组的平方根解法 在求解线性方程组时,直接解法有顺序高斯消元法、列主元高斯消元法、全主元高斯消元法、高斯约当消元法、消元形式的追赶法、LU 分解法、矩阵形式的追赶法,当我们遇到对称正定线性方程组时,我们就要用到平方根法(对称LLT 分解法)来求解,为了熟悉和熟练运用平方根法求解线性方程组,下面对运用平方根法求解线性方程组进行解析。 一、运用平方根法求解线性方程组涉及到的定理及定义 我们在运用平方根法求解线性方程组时,要判定线性方程组Ax=b 的系数矩阵A 是否是对称正定矩阵,那么我们就要了解正定矩阵的性质和如下定理及定义: 1、由线性代数知,正定矩阵具有如下性质: 1) 正定矩阵A 是非奇异的 2) 正定矩阵A 的任一主子矩阵也必为正定矩阵 3) 正定矩阵A 的主对角元素均为正数 4) 正定矩阵 A 的特征值均大于零 5) 正定矩阵A 的行列式必为正数 定义一 线性方程组Ax=b 的系数矩阵A 是对称正定矩阵,那么Ax=b 是对称正定线性方程组。 定义二 如果方阵A 满足A=AT ,那么A 是对称阵。 2.1.4 平方根法和改进的平方根法 如果A 是n 阶对称矩阵,由定理2还可得如下分解定理: 定理2 若A 为n 阶对称矩阵,且A 的各阶顺序主子式都不为零,则A 可惟一分解为:A =LDLT ,其中L 为单位下三角阵,D 为对角阵。 证明 因为A 的各阶顺序主子式都不为零,所以A 可惟一分解为:A =LU 因为 ,所以可将 U 分解为: ??????? ??=nn u u u U 2211??????? ?? ??11122211112 u u u u u u n nn n 1DU = 其中 D 为对角矩阵,U1为单位上三角阵.于是:A =LDU1=L(DU1) 因为A 为对称矩阵,所以,A =AT =U1TDTLT =U1T(DLT),由 A 的 LU 分解的惟一性即得:L =U1T ,即U1=LT ,故A =LDLT 。 工程技术中的许多实际问题所归结出的线性方程组,其系数矩阵常有对称正定性,对于具有此类特殊性质的系数矩阵,利用矩阵的三角分解法求解是一种较好的有效方法,这就是对称正定矩阵方程组的平方根法及改进的平方根法,这种方法目前在计算机上已被广泛应用。 定理3 对称矩阵A 为正定的充分必要条件是A 的各阶顺序主子式大于零。 2 对称正定矩阵的三角分解 定理 (Cholesky 分解)设A 为n 阶对称正定矩阵,则存在惟一的主对角线元素都

线性矩阵不等式求解实例-待分析

在求解如下凸优化问题中遇到了问题: 1.不知道如何编程得到最优的γ2 2.求解提示为没有可行解 是否是我退出的不等式有问题或者其他方面有问题 A=[0,1,0,-1;-882,-28.4,0,28.4;0,0,0,1;1696.15,54.62,-657.12,-2680.39;]; B=[0,0,0,-0.039]'; Bw=[0,0,-1,2625.77]'; C1=[-882,-28.4,0,28.4]; C2=[0,0,10,0]; Ea=[0,0,-65.71,262.58] %Eb=0 L=[0,0,0,1]' I=eye(1) gam=4.2; %γ=gam a=0.01; %ρ=a b=0.1; %ε=b c=inv(b); umax=3000 setlmis([]); X=lmivar(1,[4 1]); %定义决策变量 Z=lmivar(2,[1 4]);

lmiterm([1 1 1 X],A,1,'s'); lmiterm([1 1 1 Z],B,1,'s'); lmiterm([1 1 2 0],L); lmiterm([1 1 3 X],1,Ea'); %Ea→Ea' lmiterm([1 1 4 0],Bw); lmiterm([1 1 5 X],1,C1'); lmiterm([1 2 2 0],-c); lmiterm([1 3 3 0],-b); lmiterm([1 4 4 0],-gam^2); lmiterm([1 5 5 0],-1); lmiterm([-2 1 1 X],1,1); lmiterm([3 1 1 0],-1); lmiterm([3 1 2 Z],0.95,1); lmiterm([3 2 2 X],-3000,1); lmiterm([4 1 1 0],-1); lmiterm([4 1 2 X],C2,0.95); lmiterm([4 2 2 X],-1,1); lmisys=getlmis; %完成LTI框架的设设置 [tmin,xfeas]=feasp(lmisys); %求解可行解问题 X=dec2mat(lmisys,xfeas,X); %提取解矩阵把决策变量转化为矩阵形式Z=dec2mat(lmisys,xfeas,Z); P=inv(X); K=Z*P

相关文档
最新文档