铅酸蓄电池的性能检测.(DOC)

铅酸蓄电池的性能检测.(DOC)
铅酸蓄电池的性能检测.(DOC)

铅酸蓄电池的性能检测

一、容量

电池容量是指在规定条件下测得的并由制造商宣称的电池容量值。实际上是在规定温度下,以一定电流放电一定时间,当达到规定的终止电压时,所能给出的电量,用C 表示,以安时(Ah)为单位。

⑴ 起动电池的容量

a. 额定储备容量,用Cr.n表示,其值应符合GB/T 5008.2-2008标准的规定。

b. 实际储备容量,用Cr.e表示,其值应在第3次或之前的储备容量试验时,达到额定储备容量用Cr.n。

c. 20h率额定容量,用C20表示,其值应符合GB/T 5008.2-2008标准的规定。

d. 实际容量,用Ce表示,其值应在第3次或之前的容量试验时,应不低于额定容量C20的95%。

⑵ 牵引电池的容量

a. 额定容量,用C5表示,在30℃温度下放电5h,放电电流是C5/5(A),放电至单体电压1.70V,所给出的电量(Ah),其值应符合GB/T 7403.1-2008标准的规定。

b. 实际容量,用Ce表示,在规定条件下,电池所能放出的电量(Ah),其值应在第1次容量试验时应不低于额定容量C5的85%。实际容量在前10次容量试验内至少有1次达到额定容量。

⑶ 内燃机车用排气式电池的容量

电池的额定容量以C5表示,其值应在第6次循环内达到电池标称容量值,应符合GB/T 7404.1-2008标准的规定。

⑷ 内燃机车用阀控密封式电池的容量

电池的额定容量以C5表示,其值应在第6次循环内达到电池标称容量值,应符合GB/T 7404.2-2008标准的规定。

⑸ 铁路客车用电池的容量

a. 额定容量,用C10、C5、C1表示,其容量值在进行容量试验时要达到额定值,在3次试验中有1次合格为合格,应符合GB/T 13281-2008标准的规定。

b. 实际容量,用Ce表示,即在规定条件下测得的电池实际放电容量。

c. 低温容量,用Cd表示,电池在零下40℃环境中静置8h,以I10(A)电流放电至单体电压1.60V,计算其容量,低温容量Cd与常温容量C10、C5、C1的比值不少于0.4(>40%)。

⑹ 固定型防酸式电池的容量

C10容量在第1次循环不低于0.90C10,第5次循环应达到C10;C1和1.0C容量分别在第7次、第9次循环达到额定值,应符合GB/T 13337.1-2008标准的规定。

⑺ 固定型阀控密封式电池的容量

C10容量在第1次循环不低于0.95C10,第3次循环应达到C10、C3、C1,应符合GB/T 19638.1-2008的规定。

⑻ 小型阀控密封式电池的容量

C20容量应符合GB/T 19639.2-2008的规定。实际容量Ce在第5次充/放循环内应不低于C20。

⑼ 电动道路车辆用电池的容量

a. 额定容量,用C3表示,第1次放电容量应不低于0.85C3,第10次放电容量或之前放电容量应达到C3,应符合GB/T 18332.1-2008的规定。

b. 低温容量,用Cd表示,电池在零下18℃环境中静置24h,以I3(A)电流放电至单体电压1.40V,其容量应不低于0.5C3。

⑽ 电动助力车用密封式电池的容量

a. 额定容量,用C2表示,应在第3次循环内达到。

b. 实际容量,用Ca表示,应符合GB/T 22199-2008的规定。

c. 低温容量,用Cd表示,电池在零下15℃环境中静置24h,以I3(A)电流放电至单体电压1.60V,其容量应不低于0.7C2。

⑾ 储能用电池的容量

a. 10小时率容量,用C10表示,其放电容量应在第6次或之前不低于C10,应符合GB/T 22473-2008的规定。

b. 120小时率容量,用C120表示,其放电容量应在第7次或之前不低于0.80C120,其最大实际容量与最小实际容量差值不应大于5%。

c. 低温容量,用Cd表示,电池在零下10℃环境中静置10h,以I10(A)电流放电至单体电压1.80V,在第4次或之前其容量应不低于0.8C10。

⑿ 摩托车用电池的容量

额定容量,用C10表示,其要求应符合GB/T 23638-2009的规定。电池有阀控式和非阀控式两大类,两大类中有作起动用与非起动用的两大系列产品(详见GB/T

23638-2009中表1和表2)。

二、寿命

电池寿命因其使用方式不同,表述的方式也不同。不管使用方式不同,但电池使用寿命都以使用时间的长短(即经时寿命)表示或以电池在充/放使用的次数表示(即循环寿命)。

⑴ 起动用电池的循环耐久能力

a. A类电池完全充电的电池以5I20 (A)放电1h,再以14.80V (免维护14.40V)恒充2h,最大电流不超过10I20,组成一次循环。电池需连续进行32次此循环,开路静置72h后,再恒充2h。这就是A类电池的一个循环耐久试验单元。要求4个或4个以上循环耐久试验单元。

b. B类电池完全充电的电池以14.80V (免维护14.40V)恒充5h,最大电流不超过5I20,随后以5I20放电2h,组成一次循环。电池需连续进行14次此循环,以14.80V (免维护14.40V)恒充2h,最大电流不超过5I20,开路静置70h。这就是B类电池的一个循环耐久试验单元。要求5个或5个以上循环耐久试验单元。

⑵ 牵引电池寿命

a. 普通型电池充/放循环完全充电的电池以1.25 I5 (A)电流放电3h,紧接着充电9h(以1.05 I5充电3h,0.25 I5充电6h),为一个循环。每49次充/放循环进行一次C5容量试验。若容量仍大于0.8C5,可继续进行下一个50次循环。循环次数应不低于800次。

b. 阀控式电池充/放循环完全充电的电池以1.05 I5 (A)电流放电3.5h,紧接着

14.40V恒充14h、1.05 I5放电3.5h为一个循环。每49次充/放循环进行一次C5容量试验。若容量仍大于0.8C5,可继续进行下一个50次循环。循环次数应不低于800次。

⑶ 内燃机用电池寿命

a. 循环耐久能力管式正极板电池循环次数应不少于750次(非管式正极板电池由制造商与用户协商确定)。

b. 内燃机用阀控电池的循环耐久能力,不低于10个起动能力单元。

⑷ 铁路客车用电池寿命

循环耐久能力 2V或12V电池都不应低于6个循环单元(180次循环)。

⑸ 固定型防酸式电池寿命

a. 充/放循环寿命不低于1000次。

b. 使用寿命在正常浮充状态下运行,其寿命不得低于10年。

⑹ 电动道路车辆用电池寿命

循环耐久能力循环次数不应低于400次。

⑺ 固定型阀控密封电式池寿命

循环耐久能力(寿命)有三种,任选一种:

a. 浮充电循环耐久不应低于300次。

b. 过充电循环耐久 6V和12V电池应不低于180d,2V电池应不低于240d。

c. 加速浮充电循环耐久 6V和12V电池应不低于150d,2V电池应不低于180d。

⑻ 小型阀控密封式电池寿命

循环耐久能力(寿命)有两种,任选一种:

a. 充/放循环寿命不应低于300次。

b. 涓流充电寿命不应低于2年。

⑼ 电动助力车用密封式电池寿命

电池循环次数不应低于350次。

⑽ 储能用电池寿命

a. 阀控式循环周期3次。

b. 排气式循环周期4次。

⑾ 摩托车用电池寿命

循环耐久能力不应低于200次。

三、特性要求

因电池用途不同,要求电池具有适应本用途的特性。下按不同用途的电池分别表述。

⑴ 起动电池

● 充电接受能力:充电电流Ica与C20/20之比不应低于3.0。

● 荷电保持能力:以Is放电30s,电池端电压不应低于7.2V。

● 电液保持能力:表面不得有电液渗漏溅出。

● 耐振动性能:振动60s后(电流为Is)电池端电压不应低于7.2V。

● 水损耗:a. 排气式电池不应大于4g/Ah(或2.66g/min);b. 阀控式电池按实际容量Ce(或实际储备容量)计算电池重量损失被2除之商不得大于1g/Ah(或

0.67g/min)。

● 干荷电起动能力:以Is放电5s,电池电压不低于9.0V;以Is放电100s,电池电压不低于6.0V。

● 干荷电在未加电液条件下储存后的起动能力:以Is放电100s,电池电压不低于

6.0V

● 气密性:应具有良好的气密性。

● 耐温变性(塑料槽电池):在65℃环境下静置24h后,气密性合格。

● 封口剂:电池在零下30℃封口剂不与槽盖分离,封口剂不开裂;在65℃环境下封口剂不溢流。

● 储存期:电池储存24个月(在相对湿度80%、温度10~30℃环境中)容量和低温起动能力符合要求。

⑵ 牵引电池

● 荷电保持能力:完全充电的电池在电液平均温度20±2℃,开路存放28d,储存后的容量不低于额定容量的85%。

● 高倍率放电能力:以5I5(A)电流放电至单体1.50V,持续时间不低于30min。

● 封口剂:电池在零下30℃封口剂不与槽盖分离,封口剂不开裂;在65℃环境下封口剂不溢流。

● 密封性能:在规定条件下,电池与空气隔断5s,电池内压稳定不变。

⑶ 内燃机车用排气式电池

● 电解液:电解液密度(在完全充电后)1.260g/cm3±0.005g/cm3。

● 封口剂:电池在零下30℃封口剂不与槽盖分离,封口剂不开裂;在65℃环境下封口剂不溢流。

● 低温起动能力:按规定电流放电至单体0.60V,时间≥95s,电池在规定电流放电至7s时,单体不低于0.75V。

● 荷电保持能力:完全充电的电池在25±2℃环境中放置21d,其容量损失不应大于储存前容量的10%。

● 充电接受能力:充电接受值不少于0.5Is。

● 振动:按规定振动后,容量应保持其额定容量,而且不应有机械伤痕,电池表面无电液渗漏。

⑷ 内燃机车用阀控密封式电池

● 常温起动能力:在常温25±2℃起动电流Is(A)放电7s时,电压≥1.1V/单体;放电110s时,电压≥1.0V/单体。

● 荷电保持能力:完全充电的电池在25±2℃环境中放置28d,其容量损失不应大于储存前容量的5%。

● 充电接受能力:充电接受值不少于0.5Is。

● 密封反应效率:密封反应效率不应低于90%。

● 防爆性能:电池外部遇明火时,其内部不应发生燃烧和爆炸。

● 安全阀动作:安全阀应在1~49kPa范围内自动开启与关闭。

● 气密性:电池除安全阀外,**各处要保持良好的气密性,应能承受30kPa压力。

⑸ 铁路客车用电池

● 密封反应效率:密封反应效率不应低于90%。

● 大电流放电特性:按规定电流放电后,电池的导电部分不应熔化,且电池槽不能有大于2mm的变形及发生漏液现象。

● 荷电保持能力:完全充电的电池在25±2℃环境中放置28d,其容量保持率应大于96%。

● 充电接受能力:电池所能接受充电电流值不小于1.4Is(A)。

● 过充电能力:试验完成后,电池则面不应有大于2mm的变形及发生漏液现象。

● 防爆性能:电池外部遇明火时,其内部不应发生燃烧和爆炸。

● 防酸雾能力:充电电量每1Ah析出的酸雾量不应大于0.025mg。

● 安全阀动作:安全阀应在1~49kPa范围内自动开启与关闭。

● 气密性:电池除安全阀外,**各处要保持良好的气密性,应能承受30kPa压力并保持不少于30s,电池各处不得有泄漏;压力释放后,电池不应有残余变形。

● 振动试验:按规定振动后,电池容量不应减少。

⑹ 固定型防酸式电池

● 气密性:电池应能承受4kPa的正压或负压,电池各处均应保持良好的气密性。

● 瞬间放电:30~500Ah电池按规定方法放电,持续时间不小于10s。

● 自放电:电池静置28d,其容量损失不超过5%。

● 防酸性能:按规定方法试验,电池应无酸雾逸出。

● 安全性能:按规定方法试验,电池应无本体爆炸。

● 最大放电电流:按规定方法试验与电流连续放电,电池极柱不熔断或变形,外观不应有异常。

● 涓流充电与电液储存能力:按规定给电池充电,6个月后电池容量(C10)不低于额定值,同时在6个月试验运行期内,电池应符合:

a. 电解液密度不应超出参试电池电解液平均密度值的±0.025g/cm3;

b. 单体电池端电压不应超出参试电池端电压平均值的0.1~0.05V;

c. 电解液损耗不得超过最高与最低液面之间的电解液储量的50%。

● 封口剂性能:电池在零下30℃封口剂不与槽盖分离,封口剂不开裂;在65℃环境下封口剂不溢流。

● 储存期:按规定储存2年,应符合规定要求。

⑺ 电动道路车辆用电池

● 高倍率放电性能:按规定放电时间不低于30min、单电压不低于1.0V。

● 荷电保持能力:按规定试验,容量保持率应大于85%。

● 快速充电能力:按规定试验放电容量不低于0.80C2。

● 密封反应效率(阀控式):密封反应效率不低于95%。

● 排气阀动作(阀控式):排气阀应在1~49kPa范围内自动开启与关闭。

● 安全性:电池完全充电后,在25±5℃环境中,以0.7I3(A)连续充电5h,电池外观无异常、无漏液。

● 耐振动能力:按规定振动试验后,电池外观及端电压均应正常。

● 水损耗:按规定进行试验,计算水损耗。

● 防爆性能:按规定进行熔断5A保险丝引爆而应不引起电池内部爆炸。

● 峰值功率试验:按规定进行试验,按P(峰值功率)公式计算:

P=[4V2(I2-I1)]÷[9(V1-V2)]

式中:P为峰值功率;I1、I2分别为对应电压为V1、V2时的电流。

⑻ 固定型阀控密封式电池

● 安全性能要求:

a. 气体析出量:按单体电池每Ah·h对外释放气体量Ge在标准状态下应符合规定值:

Ⅰ. Ge≤0.04mL/(Ah·h) (浮充/V);

Ⅱ. Ge≤1.70mL/(Ah·h) (均充/V)。

b. 大电流耐受能力:按规定试验,电池槽、盖不应变形或熔化,电池端子、极柱、汇流排不应熔化或熔断。

c. 短路电流与内阻水平:按规定试验,示出其短路电流值与内阻计算值。

d. 防爆能力:按规定试验,电池外部遇明火时,其内部不应发生燃烧或爆炸。

e. 防酸雾能力:按规定试验,每充电1Ah析出的酸雾量不应大于0.025mg。

f. 排气阀动作:按规定试验,排气阀在1~49kPa范围内可靠地开启与关闭。

g. 耐接地短路能力:按规定试验,不应有腐蚀、灼烧迹象及槽、盖的炭化。

h. 材料的阻燃能力:按规定试验,槽、盖的有焰燃烧时间应≤10s,有焰加无焰焰燃烧时间应≤30s。

i. 抗机械破损能力:按规定试验,槽体不应有破损及漏液。

● 使用性要求:

a. 端电压均衡性:按规定试验。

Ⅰ. 静态:2V电池开路电压最高与最低差≤0.02V;6V电池开路电压最高与最低差≤0.05V;12V电池开路电压最高与最低差≤0.1V。

Ⅱ. 动态:2V电池≤0.09V;6V电池≤0.24V;12V电池≤0.24V;

b. 连接电压降:按规定试验,电池与电池之间连接电压降≤0.01V。

c. 其余各项分别在容量与寿命条款中已叙述。

⑼ 小型阀控密封式电池

● 7min率和27min率放电:按规定进行试验,60I20(A)电流放电至电池单体电压

1.60V,放电时间不少于7min;20I20(A)电流放电至电池单体电压1.60V,放电时间不少于27min。

● 最大放电电流试验:按规定进行试验,300I20(A)电流放电5s,检查导电处有无熔断,外观是否正常。

● 过放电试验:按规定进行试验,最后进行容量检查应不低于0.75C20。

● 过充电试验:按规定进行试验,实际容量0.95C20,外观不得出现异常。

● 气体析出或密封反应效率(任选一项):

a. 气体析出:按规定进行试验,析气量≤0.05mL/(Ah·h)。

b. 密封反应效率:按规定进行试验,密封反应效率>90%。

● 排气阀:按规定进行试验,排气阀在1~49kPa范围内可靠地开启与关闭。

● 安全性:按规定进行试验,电池外观无异常、无漏液等现象。

● 防爆性:按规定进行试验,电池外部遇明火时,其内部不应发生燃烧或爆炸。

● 荷电保存:按规定进行试验,电池容量保存率>75%Ce。

● 耐振动性:按规定进行振动试验,电池端电压不得低于额定电压。

● 耐冲击性:按规定进行振动试验,电池端电压不得低于额定电压,外观不得有漏液等异常现象。

⑽ 电动助力车用密封式电池

● 大电流放电特性:按规定进行试验,放电持续时间不低于15min。

● 容量保存率:按规定进行试验,电池容量的保存率R不低于85%。

● 充电接受能力:按规定进行试验,充电电流Ica与Ca/10的比值应不小于2.0。

● 过充电:按规定进行试验,电池容量不低于0.75C2,外观不得出现异常。

● 密封反应效率:按规定进行试验,密封反应效率不小于95%。

● 排气阀:按规定进行试验,排气阀在1~49kPa范围内可靠地开启与关闭。

● 安全性:按规定进行试验,电池外观无异常、无漏液等现象。

● 耐振动能力:按规定进行耐振动试验,电池端电压不得低于额定电压,外观不得有漏液等异常现象。

● 电池组合一致性:按规定进行试验,电池组中各电池的端电压差不大于0.40V。

● 防爆能力:按规定进行试验,电池外部遇明火时,其内部不应发生燃烧或爆炸。

⑾ 储能用电池

● 容量一致性:按规定进行试验,电池最大与最小实际容量之差不应大于5%。

● 密封性能:按规定进行试验,电池在与空气隔断后5s内,电池内部压力稳定不变。

● 充电接受能力:按规定进行试验,充电电流Ica与Ca/10的比值:

a. 排气式电池:不小于3.0;

b. 阀控式电池:不小于20。

● 荷电保存能力:按规定进行试验,电池开路静置28d后剩余容量不低于0.85C10。

● 水损耗:按规定进行试验,按实际容量Ce计算,电池重量损失不得大于2g/(Ah)。

⑿ 摩托车车电池

● 气密性(仅适用于非带液电池):按规定进行试验,应保持良好的气密性并能承受20kPa正压或负压。

● 排气阀动作(仅适用于阀控电池):按规定进行试验,排气阀在1~49kPa范围内可靠地开启与关闭。

● 安全性:按规定进行试验,电池外观无异常、无漏液等现象。

● 密封反应效率(仅适用于阀控电池):按规定进行试验,密封反应效率不小于95%。

● 低温起动能力:按规定进行试验,以80I10(A)电流放电5s时,电池单体电压不低于1.55V;放电90s时,电池单体电压不低于1.00V。

● 充电接受能力:按规定进行试验,充电电流Ica与Ca/10的比值应不小于1.5。

● 荷电保存能力:按规定进行试验,电池开路静置21d后:

a. 非起动用电池:剩余容量不低于0.80C10;

b. 起动用电池:放电5s时,单体电池平均电压不低于1.50V;放电45s时,单体电池平均电压不低于1.00V。

● 电解液保持能力:按规定进行试验,电池外表不得出现漏液等异常现象。

● 耐振动能力:按规定进行耐振动试验后,电池容量不应小于0.95C10,且电池表面无损伤、无漏液和变形。

● 干荷电性能:按规定进行试验。

a. 非起动用电池:首次容量不低于0.75C10。

b. 起动用电池:首次起动放电5s,单体电压≥1.55V;放电90s,单体电压≥1.00V。

c. 干荷电储存性能:

Ⅰ. 非起动用电池储存1年,容量不低于0.6C10。

Ⅱ. 起动用电池储存0.5年,80I10(A)放电5s,单体电压≥1.50V,放电45s,单体电压≥1.00V。

(注:素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与关注!

铁锂电池与铅酸对比

铁锂电池与铅酸对比

磷酸铁锂电池和密封阀控式铅酸蓄电池的比较 一、产品性能比较和系统组成比较 磷酸铁锂电池和铅酸电池性能比较详见表4。 表4 磷酸铁锂电池和铅酸电池性能比较 电池性能 说明 磷酸铁锂电池 铅酸电池 单体电压 (V ) 3.2 2 重量比能量 (wh/kg ) 110~130 30~50 体积比能量 (wh/L ) 180~220 80~120 循环寿命 1C100%充放 ≥1000次 250~350次 高温性能 循环寿命变化 45℃为25℃时减半 35℃为25℃时减半 低温性能 -20℃容量保持率 50% 55% 自放电 常温搁置28天 4% 5% 充放电效率 >99% 80% 耐过充性能 一般 好 安全性 优 优 环保 无污染 污染 磷酸铁锂蓄电池与铅酸蓄电池在-48V 直流电源系统的组成比较如表5所示。 表1 磷酸铁锂电池组和铅酸电池组参数比较 组单体组单体组单体组单体浮充均充铅酸电池40~572448243.2 1.854.0 2.2556.4 2.35 1.13 1.18铁锂电池40~571651.2 3.243.2 2.755.2 3.4557.6 3.6 1.08 1.13铁锂电池 40~57 1548 3.243.2 2.88 54.0 3.6 56.4 3.76 1.13 1.18 电池设备工作范围只数 标称电压(V)电压比值放电终止电压(V)浮充电压(V) 均充电压(V) 资料显示: ? 充满电后4.0V 的磷酸铁锂蓄电池静置15分钟后回落到3.4V ,电池开 口电压3.4V 。 ? 单体工作电压为2.0V~4.2V 。 ? 在3.65V 以下可以充电性能稳定。 ? 单体电池放电时,3.0V 以下电压下降很快。 综合以上信息,建议48V 直流系统的蓄电池组只数选择16只的配置方案。 二、基站应用方案比较及投资比较 磷酸铁锂电池应用在基站中,主要考虑到不同放电率对该种电池放电容量的影响较小,以及耐受较宽的环境温度。以下将针对基站的功耗、后备时间进行电池容量选择的分析。

(整理)蓄电池性能检测装置详细资料

蓄电池性能检测系统锂电池充放电柜SBCT-3030TS 一、概述 蓄电池使用寿命一般为5-6年,在这么长的使用过程中往往会出现:电池端电压不均匀、电池壳变形、电解液渗漏、容量不足等现象,为供电带来安全隐患。蓄电池容量,是蓄电池充足电后放出电能大小的数值,因此蓄电池的容量反映了蓄电池的健康状况。 蓄电池长期浮充,容易造成活性物质钝化,电解液固化;蓄电池均充频繁,造成电解液干涸、极板栅格腐蚀; 大电流充电或过放电,造成极板变形、硫化。以上原因,导致电池容量降低甚至失效,给系统启动、通讯造成安全隐患; 蓄电池由于长期频繁使用,电解液比重不断增加,浮充电流加大,因此电极腐蚀更为迅速,电极腐蚀也会消耗氧气从而使电解液变干,这是蓄电池特有的故障。 当电池的实际容量下降到其标称容量的90%以下时,电池便进入衰退期。 当电池容量下降到标称容量的80%以下时,便进入急剧的衰退状态,这时电池已存在安全隐患,当电池容量下降到标称的70%以下时,电池已达到报废状态。 《电源维护规程》要求: 1)新安装的蓄电池验收应做100%容量实验; 2)蓄电池每年做一次放电深度为30%-40%实验; 3)超过三年后每年做一次放电深度为100%的容量试验; 4)蓄电池放电期间应每小时测量一次端电压和放电电流。 一、蓄电池检测方案 2.1.电池安装前检测、定期维护——电池容量寿命检测 充满电的蓄电池放置不用,逐渐失去电量的现象,称之自行放电。自行放电是不可避免的,在正常情况下,每天放电率不应超过0.35%~0.5%。自行放电的主要原因: 1)极板或电解液中含有杂质,杂质与极板间或不同杂质间产生了电位差,变成一个局部电池, 通过电解液构成回路,产生局部放电电流,使蓄电池放电。 2)隔板破裂,导致正负极板短路。 3)蓄电池壳表面上有电解液或水,在极桩间成为导体,导致蓄电池放电。 4)活性物质脱落过多,并沉积在电池底部,使极板短路造成放电。 因此安装备用蓄电池前,需要采用“电池容量寿命检测柜”进行100%的核对性实验,先对蓄电池进行补充电,再进行放电、放电完毕后再充电经检测确认蓄电池达到核定容量后,方可投入使用。

蓄电池基础知识

蓄电池基础知识 蓄电池是UPS电源中最关键、最昂贵、最易损坏的部件之一,它对UPS的品质有着重要的影响。正确的使用和维护好蓄电池,是延长蓄电池的寿命,提高放电效率的关键。下面再介绍一些铅蓄电池的小知识。 1. 铅酸蓄电池的结构及电动势的产生: 铅酸蓄电池的构造: 正极板(正极板上的活性物质为二氧化铅PbO2)、 负极板(负极板上的活性物质为海绵状纯铅Pb)、 电解液(电解液由水和硫酸[H2SO4]按一定的比例配制而成)、 电池槽等。 将制作好的正、负极板浸入装有电解液的电池槽中后,负板表面的铅离解产生二价的正铅离子和电子(Pb →Pb2+ + 2e),其中正二价的铅离子进入电解液中,电子留在负极板上,这样负极板和电解液之间形成电位差。 同样正极板上的二氧化铅在电解液中离解成正四价的铅离子和负氢氧根离子(PbO 2 + H2O →Pb4+ + OH- ),其中负的氢氧根离子进入电解液,正4价铅离子留在正极板上,这样在正极板和电解液之间形成电位差。 由于正、负极板与电解液都有电压差,所以正、负极板之间也存在电位差。正、负这间电压的高低与电解液的浓度有关,铅酸蓄电池的每单元电压值可用公式表示:E = 0. 85 + d(15℃) 式中0.85----表示铅酸蓄电池的电动势常数, d(15℃)---表示15℃时极板活性质物质微孔中电解液的比重。 UPS电源中常使用的铅酸蓄电池标称电压为12V,它由6个单元组成。 2. 铅酸蓄电池的放电及常用的充电方法: 2.1 蓄电池的放电:蓄电池向外电路供电叫蓄电池放电,放电时,负极板上的电子通过负载流向正极,随着放电的进行,负极板的铅和硫酸反应生成硫酸铅,正极上的氧化铅和硫酸反应生成硫酸铅,随着放电的进行,蓄电池的端电压逐惭下降,当端电压下降至临界电压时,就应终止放电,否则蓄电池的寿命将大缩短甚至损坏。临界电压是蓄电池制造商为保护蓄电池免受不正常的放电而影响蓄电池的寿命, 2.2 恒流充电:这种充电方法在整个充电过程中,流过蓄电池的电流不变,充电器输出的充电电压随蓄电池的端电压上升而上升。这种充电方法有以下特点:充电时间短,但耗能大,充电后期易产生过压充电而缩短电池使用寿命。目前在UPS电源中,不采用这种方法。 2.3 恒压充电充:使用这种方法充电时,整个过程中充电电压保持不变。常用的恒压充电方式中有高压恒压充电和低压恒压充电之分。

(整理)铅酸蓄电池的性能检测

铅酸蓄电池的性能检测 一、容量 电池容量是指在规定条件下测得的并由制造商宣称的电池容量值。实际上是在规定 温度下,以一定电流放电一定时间,当达到规定的终止电压时,所能给出的电量,用C 表示,以安时(Ah)为单位。 ⑴起动电池的容量 a. 额定储备容量,用Cr.n表示,其值应符合GB/T 5008.2-2008标准的规定。 b. 实际储备容量,用Cr.e表示,其值应在第3次或之前的储备容量试验时,达到额定储备容量用Cr.n。 c. 20h率额定容量,用C20表示,其值应符合GB/T 5008.2-2008标准的规定。 d. 实际容量,用Ce表示,其值应在第3次或之前的容量试验时,应不低于额定容量C20的95%。 ⑵牵引电池的容量 a. 额定容量,用C5表示,在30℃温度下放电5h,放电电流是C5/5(A),放电至单体电压1.70V,所给出的电量(Ah),其值应符合GB/T 7403.1-2008标准的规定。 b. 实际容量,用Ce表示,在规定条件下,电池所能放出的电量(Ah),其值应在第1次容量试验时应不低于额定容量C5的85%。实际容量在前10次容量试验内至少有1次 达到额定容量。 ⑶内燃机车用排气式电池的容量 电池的额定容量以C5表示,其值应在第6次循环内达到电池标称容量值,应符合GB/T 7404.1-2008标准的规定。 ⑷内燃机车用阀控密封式电池的容量 电池的额定容量以C5表示,其值应在第6次循环内达到电池标称容量值,应符合GB/T 7404.2-2008标准的规定。

⑸铁路客车用电池的容量 a. 额定容量,用C10、C5、C1表示,其容量值在进行容量试验时要达到额定值,在3次试验中有1次合格为合格,应符合GB/T 13281-2008标准的规定。 b. 实际容量,用Ce表示,即在规定条件下测得的电池实际放电容量。 c. 低温容量,用Cd表示,电池在零下40℃环境中静置8h,以I10(A)电流放电至单体电压1.60V,计算其容量,低温容量Cd与常温容量C10、C5、C1的比值不少于0.4(>40%)。 ⑹固定型防酸式电池的容量 C10容量在第1次循环不低于0.90C10,第5次循环应达到C10;C1和1.0C容量分别在第7次、第9次循环达到额定值,应符合GB/T 13337.1-2008标准的规定。 ⑺固定型阀控密封式电池的容量 C10容量在第1次循环不低于0.95C10,第3次循环应达到C10、C3、C1,应符合GB/T 19638.1-2008的规定。 ⑻小型阀控密封式电池的容量 C20容量应符合GB/T 19639.2-2008的规定。实际容量Ce在第5次充/放循环内应不低于C20。 ⑼电动道路车辆用电池的容量 a. 额定容量,用C3表示,第1次放电容量应不低于0.85C3,第10次放电容量或之前放电容量应达到C3,应符合GB/T 18332.1-2008的规定。 b. 低温容量,用Cd表示,电池在零下18℃环境中静置24h,以I3(A)电流放电至单体电压1.40V,其容量应不低于0.5C3。 ⑽电动助力车用密封式电池的容量 a. 额定容量,用C2表示,应在第3次循环内达到。 b. 实际容量,用Ca表示,应符合GB/T 22199-2008的规定。

蓄电池的检测

蓄电池de检测方案 一、检测目的 由于汽车上的需要,我们购买到了一台蓄电池。但出于对蓄电池质量、安全等方面的考虑,特对其进行检测。并制定出一套完整的检测方案。并选择其几项重要的性能指标进行检测。 二、检测要求 符合以下三个标准: ①GB/T2828.1-2003 按接收质量限(AQL)检索的逐批检验抽样计划 ②ZBT35001 电器硬设备基本技术条件 ③ZBT36009 电器接线柱标记 三、蓄电池的性能指标 ①蓄电池的电压 ②蓄电池的容量 ③蓄电池的使用寿命 ④蓄电池的效率 ⑤蓄电池的自放电 ⑥蓄电池的放电深度与荷电态 ⑦蓄电池内阻的检测 ⑧蓄电池的串联与并联 四、蓄电池的检测项目 ①蓄电池的外观检测 ②蓄电池的主要性能指标检测 ③蓄电池的好坏检测 五、检测具体的方法 1、蓄电池的外观检测:

检查产品的标志和标识,其内容包括生产厂家、规格型号、商标、正负极。如果上述内容缺漏,这项检测即为不格。外观检查中应特别小心所标内容与实际不符的情况。外观检查还应该考核蓄电池外壳质量。确保外壳硬度、注液孔等指标。 2、蓄电池的电压检测: 方法一:如图所示,蓄电池的输出电压为12V,利用万用表进行检测。先把万用表打到20V档,让后红棒头与黑棒头分别接到蓄电池的正极和负极。根据万用表显示出的电压判断蓄电池的电压是否正常。但这种测量不准确!因为测量内无负载,所以测量的不一定是蓄电池的实际电压。 方法二:用蓄电池检测仪测量蓄电池接线柱间的断路电压时,如果检测出来的电压等于或大于12.5V时,这是说明蓄电池正常。但是如果电压低于12.5V,则说明蓄电池存在问题或欠压。 3、蓄电池容量检测: 测试需要的准备: 1、测试必要的工具准备 测试所需工具包括:绝缘手套、万用表、测温仪、钳形直流表、蓄电池内阻仪、棘轮扳手、测试记录表、警示标示、防护眼镜、手电筒、PH试纸。 2、环境检查 机房环境检查:机房应该凉爽、干燥,机房内的通风和制冷设备需运行正常,温湿度监控设备运行正常。 UPS设备检查:协调UPS厂家技术人员对设备参数进行确认,根据电池方提供的数据设置UPS参数,其中包括:放电截止电压、均充限流、均充时间限制、均浮充电压的设置。 3、电池检查 电池外观检查:检查外观是否清洁,有无液体或污渍,如有液体或污渍可借助PH试纸帮助判断,并做好设备间的清洁工作帮助对故障点的判断。 4、人员准备 方法一:传统容量测试法。将蓄电池接上假负载,并接上电压表与电流表。调整负载大小使得放电电流保持在一个定值,当蓄电池的端电压到达放电终止电压时放电测试结束。然后根据测出的放电时间和放电电流来计算其容量。 方法二:电源监控控制测试法。此方案利用电源本身的监控,实现对蓄电池在设定时间,设定放电电流(满负荷)的放电,通过放电后电池组的参量变化,来初步估算蓄电池的容量。电源监控控制测试法不需另外增加其它电池容量检测设备。 方法三:曲线比较法。利用蓄电池容量检测设备对蓄电池进行几分钟的放电后再充电,将此过程中记录的数据绘制成曲线,对比该型号蓄电池的特性曲线数据库,进而分析蓄电池的剩余容量。曲线比较方法的特点: (1)用测试后所得的曲线可以比较直观的分析蓄电池的状态; (2)测试蓄电池时,需要该型号的容量分析数据库,制作此数据库需要一定的时间; (3)如负载太小,小于10小时放电率的电流或负载电流波动太大,需连接智能负载。 方法四:交流检测法。交流检测法特点: (1)不改变电源系统的任何工作状态;

铅酸蓄电池的原理与性能

铅酸蓄电池的原理与性能 一、铅酸蓄电池的工作原理 蓄电池是一种化学电源,它的构造可以是各式各样的,可是从原理上讲所有的电池都是由正极、负极、电解质、隔离物和容器组成的,其中 正负两极的活性物质和电解质起电化反应,对电池产生电流 起着主要作用,如图4-1所示。 在电池部,正极和负极通过电解质构成电池的电路,在 电池外部接通两极的导线和负荷构成电池的外电路。 在电极和电解液的接触面有电极电位产生,不同的两极 活性物质产生不同的电极电位,有着较高电位的电极叫做正 极,有着较低电位的电极叫做负极,这样在正负极之间产生了电位差,当外电路接通时,就有电流从正极经过外电路流向负极,再由负极经过电路流向正极,电池向外电路输送电流的过程,叫做电池的放电。 在放电过程中,两极活性物质逐渐消耗,负极活性物质 1.电解质 2.负极 3.容量 4.正极 5.隔离物 6.导线 7.负荷 图4-1 电池构造示意图 放出电子而被氧化,正极活性物质吸收从外电路流回的电子而被还原,这样负极电位逐渐升高,正极电位逐渐降低,两极间的电位差也就逐渐降低,而且由于电化反应形成新的化合物增加了电池的阻,使电池输出电流逐渐减少,直至不能满足使用要求时,或在外电路两电极之间端电压低于一定限度时,电池放电即告终。 电池放电以后,用外来直流电源以适当的反向电流通入,可以使已形成的新化合物还原成为原来的活性物质,而电池又能放电,这种用反向电流使活性物质还原的过程叫做充电。 蓄电池可以反复多次充电、放电,循环使用,使用寿 命长,成本较低,能输出较大的 能量,放电时电压下降很慢。 1.电动势的产生 铅蓄电池的正极是二氧化铅(PbO2),负极是绒状铅 (Pb),它们是两种不同的活性物质,故和稀硫酸(H2SO4)起 化学作用的结果也不同。在未接通负载时,由于化学作用 使正极板上缺少电子,负极板上却多余电子,如图4-2所图4-2 铅蓄电池电势产生过程示,两极间就产生了一定的电位差。 2.放电过程的化学反应 当外电路接上负载(比如灯泡)后,铅蓄电池在 正、负极板间电位差(电动势)的作用下,电流Ⅰ从 正极流出,经负载流向负极,也就是说,负极上的 电子经负载进入正极,如图4-3。同时在蓄电池部 产生化学反应: . 学习.资料.

铅酸蓄电池用极板检验技术条件

铅酸蓄电池用极板检验技术条件

目次 1.范围 2.引用标准 3.术语、定义 4.产品分类 5.技术要求 6.试验条件 7.试验方法 8.判定标准 9.标志、包装和贮存

铅酸蓄电池用极板 1范围 本附件规定铅酸蓄电池用极板的产品分类、技术要求、试验方法、检验规则、标志、包装、运输和贮存。 本附件适用于涂膏式负极板、涂膏式正极板、管式正极板。 2引用标准 下列文件中的条款通过本附件的引用而成为本附件的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本附件,然而,鼓励根据本附件达成协议的各方研究是否使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本附件。 GB/T 626 化学试剂硝酸 GB/T 631 化学试剂氨水 GB/T 643 化学试剂高锰酸钾 GB/T 676 化学试剂乙酸(冰醋酸) GB/T 694 化学试剂无水乙酸钠 GB 1245 化学基准试剂(容量)草酸钠 GB/T 1266 化学试剂氯化钠 GB/T 1294 化学试剂酒石酸 GB/T 1400 化学试剂六次甲基四胺 GB/T 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划(GB/T ,ISO2859_1:1999,IDT) GB/T 蓄电池名词术语(GB/T , eqvIEC60486:1986) GB/T 6684 化学试剂过氧化氢 GB/T 6685 化学试剂氯化羟胺(盐酸羟胺) GB 6782 食品添加剂柠檬酸钠 GB/T 10111 利用随机数骰子进行随机抽样的方法

GB/T 15347 化学试剂抗坏血酸3术语、定义 下列术语和定义适用于本附件 干式荷电极板 极板为干态且处于高层建筑荷电状态的极板.普通型极板 极板为干态且处于低荷电状态的极板. 涂膏式极板外观术语和定义 3.3.1极板弯曲 极板弧状变形 3.3.2极板活性物质掉块 极板上活性物质脱高板栅,且形成穿透性缺陷. 3.3.3极板表面脱皮有气泡 活性物质之间层状剥离,但未形成穿透性缺陷. 3.3.4极板活性物质凹陷 极板上活性物质局部明显低于极板表面 3.3.5极板四框歪 极板对角线不相等. 3.3.6极板活性物质酥松 活性物质之间或与板栅之间结合力变差 管式极板外观术语和定义 3.4.1丝管破裂 丝管表面一处或多处相互脱离 3.4.2丝管散头 丝管顶端发散. 3.4.3铅膏粘附。 丝管外表面粘附活性物质。

镉电极在铅酸蓄电池性能检测中的应用

镉电极在铅酸蓄电池性能检测中的应用 我们知道,任何一种金属晶体都含有金属离子和自由电子,当金属插入该金属离子的溶液中,由于金属受到电解液溶质,溶剂离子及分子的作用,会出现下列情况:一种情况是组成金属晶格的金属离子脱离金属表面进入溶液中,由于金属离子离开金属表面造成金属表面剩有多余电子而使金属在该溶液中带有负电荷,另一种情况是由于金属离子的溶解度不大,而溶液中的金属阳离子向金属表面沉积使金属表面因阳离子过剩而带正电荷。这样一来,无论那种情况,都会因金属所带的电荷,使得金属与溶液分界处形成“双电层”。 如果金属带负电荷,则溶液中金属附近的阳离子会被金属吸引而集聚在它的附近.而阴离子则由于金属的排斥,在金属附近溶液中的浓度较低。这样,金属附近的溶液—中所带的电荷与金属本身所带的电荷与金属本身所带的电荷恰好相反,这就形成了“双电层”,由于金属与溶液的分界面上“双电层”的存在。则在金属与溶液的分界面上产生一定的电势差,这个电势差的太小与金属及溶液的性质有关。 金属在电解质溶液中形成的“双电层”产生的电势差就是该金属在该溶液中的电极电位。 金属插在溶液中,在同一时间内,有的金属离子从金属表面进入溶液中;有:曲存在于溶液中的金属离子沉积到金属表面上去,当金属离子进入溶液中的速度与溶液中的离子沉积到金属上去的速度相等时,这时的电极电位称为平衡电极电位。 目前,人们尚没有方法直接测量单个电极与溶液之间的电位差,也就是绝对电极电位。这是因为测量时使用电位差计,需要把电位差计测量端的一根导线接到电极上,而把另一根导线插入溶液中,但插入溶液中的导体本身又构成了一个电极,它与我们所测量跑电极组成了一个电池;实际电位差计测出的是这个电池两极的电位差也即电池电动势,而不是被测电极与溶液间的电位差。 因此,在实际中我们可以指定某一电极的电位为零,称为参比电极或标准电极,用参比电极与所测量的电极组成一个电池,用电位差计的负端接作为零点的参比电极,正端接被测量电极,当被测量电极的电位比参比电极高时,相对电极电位为正值,当被测量电极的电位低于参比电极电位时,则相对电极电位为负值。 同一个电极用不同的参比电极来测量,测得的电极电位不同,因此,一般电极电位应注明是相对于哪种参比电极测得的。例如,相对于镉电极铅负极的电极电位=0.1 V,相对于硫酸亚汞电极铅负极的电极电位=-0.101 V,而相对于镉电极硫酸亚汞电极电位=1.11 V。它们之间的关系为:? Pb(相对于Hg2S04电极)=?Pb(相对于Cd电极)-? Hg2S04(相对于Cd电极)=0.1-1.1=-1.01 V。 为了有一个统一的标准,国际上惯常使用标准氢电极作为参比电极,规定在任何温度下标准氢电极的平衡电极电位都为零,由于标准氢电极的精度很高,且制造结构复杂,溶液纯度要求很严,因此不便于实际应用,通常都是根据实际情况选用其它的参比电极进行测量,然后再利用已知的(统一测量完的)参比电极与氢标电极的电极电位再换算成氢标电极电位。 平时我们从标准电极电位表中查得某电极在某溶液中的电极电位有以下几个条件: 1、该电极电位是与标准氢电极电位的相对值。 2、标准电极电位是指标准状态下即各物质浓度为1M,101.33 KPa压力的状态下测得值。 3、该电极电位是平衡电极电位。 所以我们以往知道的铅蓄电池中铅的标准电极电位为-0.358 V,二氧化铅的标准电极电位为+1.69 V,都是符合上述三个条件下的数值。 在实际测量中,要求选用的参比电极电位要稳定,重现性要好,并且参比电极的电解液最好能与被测电极的电解液一致。在铅酸蓄电池电极电位测量中最好用硫酸亚汞电极,即(Hg、Hg2S04·H2S04),它的精度很高,但制作和使用比较麻烦,所以在一般试验室常采用镉电极(Cd、CdS04·H2S04)来测量铅蓄电地充放电时正负极的电位。其应用很方便,但准确性较低,误差可达十几毫伏以上。 参比电极的工作面积一般都不大,因此.有很小的电流通过,它的电位就会发生波动,在测量时,参比电极与被测电极之间存在龟位差会有电流经过测量仪表构成回路,测量电压表的内阻越大,经过的电流越小,对电位测量造成的误差越小,所以,在测量铅蓄电池的膈电压时要求电压表的阻抗在每伏1 000Ω以上。 在铅蓄电池的充放电过程中,常采用镉电极来测量正负极电位变化情况,通过测量结果可以判断极板是否工作正常。 金属镉(Cd),密度为8.65,溶点约为388℃,镉电极用纯金属镉制成,新制的镉电极在使用前应浸泡在密度为1.10的稀硫酸溶液中3昼夜以上,否则因极化作用而量值不准,当镉电极不使用时,也必须把它浸在稀

蓄电池的基本知识大全

铅酸蓄电池基本常识 1、什么是放电效率? 放电效率是指在一定的放电条件下放电至终点电压所放出的实际电量与额定容量之比,主要受放电倍率,环境温度,内阻等到因素影响,一般情况下,放电倍率越高,则放电效率越低。温度越低,放电效率越低。 2、何为电池的倍率放电? 指放电时,放电电流(A)与额定容量(A?h)的倍率关系表示。 3、何为电池的小时率放电? 按一定输出电流放完额定容量所需的小时数数,称为放电时率。 4、何为电池的能量密度? 指电池的单位体积所含的电能。 5、铅酸电池使用什么标准? 电池标准分国家标准、行业标准、企业标准三个级别。目前车用电池执行的是编号为JB/T 10262——2001的行业标准。 6、电动车铅酸电池是如何命名的? 车用铅酸电池名称叫做6-DZM-X,其中的X为后缀,X可以是8、10、12,代表电池的容量。6DZM代表6组单格电池组合成一块12V电压的电动车专用阀控密封免维护电池,如果是胶体电池,其标示方法为6-DJM-X。 7、铅酸蓄电池容量标示方法是什么? 应当以C2为准,即以0.5C2电流放电,当电压达到该电池的放电终止电压时的放电时间和电流的乘积应等于或接近额定容量值。比如:一块12V、12Ah 的电池,以5A电流放电,放电终止电压达到10.5V时,时间不能少于140min;

同样,一块12V、10Ah的电池,以5A电流放电到电压达到终止电压10.5V时,时间不能少于120min。其误差为0.1Ah 实际上行业标准规定:10Ah的电池,以5A电流放电到终止电压时间不得小于120min。企业产品实际达到的为130~137min。 8、什么是电池的过充电能力? 行业标准规定,铅酸蓄电池以1.2A电流连续充电48h,实际容量不得低于额定容量的95%。 9、什么是电池的过放电能力? 行业标准规定,铅酸蓄电池开始放电电流为12A±1.2A、以定阻抗方式连续放电2.0h,实际容量不得低于75% 10、什么是电池的低温保存特性? 行业标准规定,铅酸蓄电池在-10℃±0.1℃的环境条件下存放10h,实际容量不能低于70%。 11、如何评价铅酸蓄电池的寿命? 以容量75%的深度放电,寿命不应低于350次。 12、铅酸电池有那些优缺点? (1)优点——价格低廉:铅酸电池的价格为其余类型电池价格的1/4~1/6。一次投资比较低,大多数用户能够承受。 (2)缺点——重量大、体积大、能量质量比低,娇气,对充放电要求严格。 13、为什么电池要储存一段时间后才能包装出货? 电池的储存性能是衡量电池综合性能稳定程度的一个重要参数。电池经过一定时间储存后,允许电池的容量及内阻有一定程度的变化。经过了一段时间的

蓄电池基本知识培训试题

蓄电池基本知识培训试题 一、填空: 1、蓄电池按极板结构可分为:涂膏式、管式、形成式。 2、极板是铅酸蓄电池的主体部件,是由板栅与活性物质构成。 3、微孔橡胶隔板是一种用生胶硅酸以及其他添加剂制成的,具有10ūm以下微孔的平板式隔板。 4、蓄电池的主要部件,正负极板、极板、电池槽、电池液和一些零部件。 5、蓄电池封口的作用是防止电液溢流。 二、判断题 1、移动型蓄电池是为了便于携带,在移动情况下使用的电源 设备,因此,它具有体积大,重量轻,瞬时放电电流大和耐震、耐冻性较好等基本要求。(×) 2、蓄电池极板一般为单数,至少在三片以上,负极板总比正 极板多一块。(√) 3、蓄电池槽是用来储盛电解液与支撑极板,所以它必须具 有防止酸液漏泄,耐腐蚀、坚固和耐高温等条件。(√) 4、极板所能付出的能量与他的表面积成反比。(×) 5、蓄电池供给外电路电流时所做放电。(√) 三、问答题 1、什么叫蓄电池的容量、流程,理论容量、额定容量、实际 容量三者的区别?

答:蓄电池的容量是指在一定的放电条件下可以从电池中获得的电量,用A·H容量,W·H容量表示,A·H容量是电池输出的电量,W·H容量表示其作功能力的能量。 理论容量:根据活性物质的重量,按照法拉第定律求得的。 实际容量:是指在一定放电条件下(放电率、终止电压、温度)电池实际放出的电量,它总是低于理论容量。 额定容量:是指在设计电池和生产电池时规定或保证电池在放电条件下应该放出的最低限度容量。 2、说说特殊工作栓的工作原理。 答:特殊工作栓主要是由金刚沙压制而成,金刚沙有称刚玉,即氧化铝为多孔性物质一般孔率在30-40%,成型后用四氧乙烯处理,形成一层膜四氧乙烯有较强的憎水性,电池中出的酸雾遇到这层膜变为液珠,又流回电池起到防酸作用。 3、根据有关标准,产品型号的含义可分为三段,解释下列几 种电池型号的含义是什么? (1)6-DZM-10 6个单体串联、电动、助动用、密封、10AH (2)D330KT “D”电机“K”矿用“T”特殊,容量330AH (3)N-462 “N”内燃机用,容量462AH (4)GFM-300 单格电池,“G”“F”阀控“M”密封,容量300AH 4、什么叫穿壁焊? 穿壁焊:又称对焊,它是用对焊机将相邻单体极群的偏极柱。在

电动汽车电池的分类及性能参数

电动汽车电池的分类及性能参数 电池的分类 电动汽车用电池为化学电源,它的分类方法很多。按电解液分为: a.碱性电池。即电解液为碱性水溶液的电池; b.酸性电池。即电解液为酸性水溶液的电池; c.中性电池。即电解液为中性水溶液的电池; d.有机电解质溶液电池。即电解液为有机电解质溶液的电池。 按活性物质的存在方式分为: a.活性物质保存在电极上。可分为一次电池(非再生式,原电池)和 二次电池(再生式,蓄电池); b.活性物质连续供给电极。可分为非再生燃料电池和再生燃料电池。按电池的某些特点分为: a.高容量电池; b.免维护电池; c.密封电池; d.燃结式电池; e.防爆电池; f.扣式电池、矩形电池、圆柱形电池等。 尽管由于化学电源品种繁多,用途广泛,外形差别大,使上述分类方法难以统一,但习惯上按其工作性质及存贮方式不同,一般分为四类: a. 一次电池

一次电池,又称“原电池”,即放电后不能用充电的方法使它复原的电池。换言之,这种电池只能使用一次,放电后电池只能被遗弃了。这类电池不能再充电的原因,或是电池反应本身不可逆,或是条件限制使可逆反应很难进行。如: 锌锰干电池 Zn│NH4Cl·ZnCl2│MnO2(C) 锌汞电池 Zn│KOH│HgO 银锌电池 Zn│KOH│Ag2O b.二次电池 二次电池,又称“蓄电池”,即放电后又可用充电的方法使活性物质复原而能再次放电,且可反复多次循环使用的一类电池。这类电池实际上是一个化学能量贮存装置,用直流电将电池充足,这时电能以化学能的形式贮存在电池中,放电时,化学能再转换为电能。如:铅酸电池 Pb│H2SO4│PbO2 镍镉电池 Cd│KOH│NiOOH 镍氢电池 H2│KOH│NiOOH 锂离子电池 LiCoO2│有机溶剂│6C 锌空气电池 Zn│KOH│O2(空气) c.贮备电池 贮备电池,又称“激活电池”,是正、负极活性物质和电解液不直接接触,使用前临时注入电解液或用其他方法使电池激活的一类电池。这类电池的正、负极活性物质的化学变质或自放电,因与电解液的隔离而基本上被排除,从而使电池能长时间贮存。如:镁银电

天能阀控铅酸蓄电池电池检测标准

附件一:阀控铅酸蓄电池的检 测 1、检测方法、判断标准 1.1万用表电压检测法 情况一:蓄电池在短期内突然出现放电时间或行驶里程骤降。 步骤:a.电池间连接线检查。检查电池间连接线是否连接牢固有无松动,连接线有无腐蚀断丝; b.放电。将电池总电压放至测量值,即单格电压达到1.8V(6V电池为 5.4V/单只,8V电池为7.2V/单只,12V电池为10.8V/单只); c.放电后电压记录。打开车载用电设备(如:大灯、冷暖风机等)迅 速测量每单只电池的电压并按照不同方位电池做好电压记录; e.补充电。如有△U值大于以上参考值,对这只电池作好记号便于找到,并作以 下补充电; (1)用车载充电器充电至充电完成; (2)用单只充电器对△U值大于以上参考值的电池进行补电; (3)重复b至d步骤; (4)如△U值仍大于参考值,用车载充电器充电至充电完成后更换这只落后电池。 f.平衡适应阶段。为更好使更换的电池达到与其它电池间平衡和适应过程前期 务必按以下操作,切勿作深放电;

(1)充电后放电深度在30%左右进行充电为宜,即如正常可行驶100公里,在行驶30公里左右停止; (2)用车载充电器充电至充电完成; (3)以此浅放电循环至少3次以上方可,建议放电深度不大于70%为宜(即在平缓的路况行驶时感觉车速下降动力不足),如长期进行深 放电会造成电池间压差增大,电池容量、寿命快速下降的风险。 情况二:蓄电池在一定期间内放电时间或行驶里程短大于电池正常衰减且后续未出现急剧下降; 步骤:a.充电后电压记录。用车载充电器充电至充电完成,断开充电器静止2小时测量每单只电池电压并按照不同方位电池做好电压记录, 充满电即单格电压在2.2V左右(6V电池为6.6V/单只,8V电池 为8.8V/单只,12V电池为13.2V/单只),作为判断电池是否因充 电器问题未充满电; b.放电1。将电池总电压放至测量值,即单格电压达到1.8V(6V 电池为5.4V/单只,8V电池为7.2V/单只,12V电池为10.8V/单只); c.放电后电压记录。打开车载用电设备(如:大灯、冷暖风机等) 迅速测量每单只电池的电压并按照不同方位电池做好电压记录, 作为判断是否可能因电池单只落后导致,如单只落后按情况一d 至f进行,如电压正常继续以下操作; d.放电2。将电池总电压放至截止电压,即单格电压达到1.65V (6V电池为4.95V/单只,8V电池为6.6V/单只,12V电池为9.9V/ 单只); e.放电后电压记录。打开车载用电设备(如:大灯、冷暖风机等) 迅速测量每单只电池的电压并按照不同方位电池做好电压记录, 作为判断控制器欠压保护是否设置太高导致;

蓄电池实验报告doc

蓄电池实验报告 篇一:直流系统蓄电池充放电试验报告 2 篇二:蓄电池测试 报告 蓄电池测试报告 使用单位:凯翔电池型号:产品名称:制造厂商:测试单位:凯翔测试人员:测试日期:打印日期:测试站点:凯翔 05 XX-11-10 XX-02-20 电流曲线图: 特性比较图: 单体条形图: 容量分析: 篇三:实验报告01--车用蓄电池技术状况的检查 实验一车用蓄电池技术状况的检查 实验时间:XX年9月29日实验地点:A-08 107 指导教师:亢凤林 一、实验目的 1、认识铅酸免维护蓄电池 2、高效放电计在检测蓄电池技术状况中的正确使用; 3、认识和正确使用蓄电池充电机。 二、实验设备

蓄电池、12V高率放电计; GZL-24V-60型过载保护硅整流充电机。 三、实验方法及步骤 1、观察6-QW-54蓄电池外观; 记录:可以看到两个接线柱:红色的一个标有“+”,另一个黑色标有”—”两个都是螺栓接线柱,一个蓄电池技术状态观察窗口,从外边可以看到蓝色的圆点 2、观察蓄电池技术状态指示器 记录:看到蓝色的圆环中间位黑色的圆点 记录分析:说明技术状态良好存电充足 3、12V高率放电计的正确使用; (1)使用高率放电计辨别蓄电池正负极 方法步骤:把高效放电计两个接线端接在蓄电池的两极,要保证两个接线柱都与电极接触完好,通过观察高效放电计的只是灯判定蓄电池的正负极。 (2)使用高率放电计辨别蓄电池技术状态 方法步骤:保持高效放电计的两个接线端接通蓄电池的两极,通过观察放电计上的电压表示数,观察时间最好不超过五秒。 测量数据:11.2V 数据分析:11—12V技术状态良好,9-11V技术状态较好,小于9V技术状态不好。通过本次测量电压表示数为11.2V

铅酸蓄电池的原理与性能

. 铅酸蓄电池的原理与性能 一、铅酸蓄电池的工作原理 蓄电池是一种化学电源,它的构造可以是各式各样的,可是从原理上讲所有的电池都是由正极、负极、电解质、隔离物和容器组成的,其中正负两极的活性物质和电解质起电化反应,对电池产生电流起着主要作用,如图4-1所示。 在电池内部,正极和负极通过电解质构成电池的内电路,在电池外部接通两极的导线和负荷构成电池的外电路。 在电极和电解液的接触面有电极电位产生,不同的两极活性物质产生不同的电极电位,有着较高电位的电极叫做正极,有着较低电位的电极叫做负极,这样在正负极之间产生了电位差,当外电路接通时,就有电流从正极经过外电路流向负极,再由负极经过内电路流向正极,电池向外电路输送电流的过程,叫做电池的放电。 在放电过程中,两极活性物质逐渐消耗,负极活性物质 1.电解质 2.负极 3.容量 4.正极 5.隔离物 6.导线 7.负荷 图4-1 电池构造示意图 放出电子而被氧化,正极活性物质吸收从外电路流回的电子而被还原,这样负极电位逐渐升高,正极电位逐渐降低,两极间的电位差也就逐渐降低,而且由于电化反应形成新的化合物增加了电池的内阻,使电池输出电流逐渐减少,直至不能满足使用要求时,或在外电路两电极之间端电压低于一定限度时,电池放电即告终。 电池放电以后,用外来直流电源以适当的反向电流通入,可以使已形成的新化合物还原成为原来的活性物质,而电池又能放电,这种用反向电流使活性物质还原的过程叫做充电。 蓄电池可以反复多次充电、放电,循环使用,使用寿命长,成本较低,能输出较大的能量,放电时电压下降很慢。 1.电动势的产生 铅蓄电池的正极是二氧化铅(PbO 2),负极是绒状铅(Pb),它们是两种不同的活性物质,故和稀硫酸(H 2SO 4)起化学作用的结果也不同。在未接通负载时,由于化学作用 使正极板上缺少电子,负极板上却多余电子,如图4-2所 图4-2 铅蓄电池电势产生过程 示,两极间就产生了一定的电位差。 2.放电过程的化学反应 当外电路接上负载(比如灯泡)后,铅蓄电池在正、负极板间电位差(电动势)的作用下,电流Ⅰ从正极流出,经负载流向负极,也就是说,负极上的电子经负载进入正极,如图4-3。同时在蓄电池内部产生化学反应:

铅酸蓄电池在线监测系统

铅酸蓄电池在线监测系统 关键字:铅酸蓄电池在线监测系统蓄电池内阻仪蓄电池放电仪蓄电池检测仪 当前,蓄电池的检测和监测已逐渐成为一个热点问题,电力系统、电信系统、移动通讯系统及其他信息产业领域都对蓄电池的检测和监测提出了相应的要求,各大生产厂商都在积极开发相关产品。 从信息安全和供电安全角度来说,电池监测本身与电池具有同样的重要性。在高度现代化的当今社会,很难想象电力网停电、电信网瘫痪给社会政治、经济带来的损失。为了避免这样的损失,在相应的设备上都使用电池作为备用电源,这样,即使电力网停电,也可以从容地采用其他应急手段,避免重大损失的发生。电池如同其他电子元件一样,同样存在早期失效问题,而且电池还存在正确运行的问题,电池监测正是要从这两个角度来提高系统的可靠性,也就是说一方面监测可以保证电池处于正确的运行状态,另一方面监测可以发现即将失效的电池。所以电池监测对重要系统的运行安全具有重要的意义。 电池监测并不是一个新的概念,它的历史几乎同铅酸电池的历史一样长,只是由于电子技术和信息技术的发展才给它注入了新的概念。从使用者的角度说,仅仅对电池组电压和电池组电流进行监测的产品已经不能满足需要,具有单体电池电压监测乃至具有电池内阻监测的产品正在被越来越多地采用。另一方面,新技术已经广泛采用,继电器触点式电池切换逐渐消失代之以先进的电子式切换,单片机技术使监测产品具有了强大的功能,数字信号处理技术使监测产品具有更高的精度和更低的成本。这一领域的各种应用使新一代电池监测产品正从各个角度不断完善。 蓄电池用户最关心的问题是电池监测产品能否满足他们应用系统的安全要求。而市场上销售的电池监测产品并非都能令用户满意。从国内外的研究结果来看,单体电池电压监测除了能够发现电池短路和电池断路这样类型的电池失效外,对电池容量下降很难发现,电池容量下降是电池失效的最主要模式,目前只有电池内阻监测可以有效地发现这样的电池。 产品的性能和成本是用户最关心的两个问题。电池组运行参数监测产品对电池组的正确运行帮助很大,对电池失效基本没有检测能力;具有单电池电压监测的产品可以发现如电池短路和电池断路这样类型的严重失效电池,对电池容量下降基本没有检测能力;具有电池内阻监测的产品可以满足高安全性要求的应用需要。电池组运行参数监测产品具有最低成本;极有单电池电压监测的产品具有较低的成本;具有电池内阻监测的产品成本较高。也有针对特定大批量需求用户的高性能的产品可供选用。由于应用系统的安全性要求,系统不能随时停机维护,在线监测能更好满足这方面的需求。在线监测还能提高效率,更加准确可靠地完成电池监测任务。电池监测问题和网络有着密不可分的关系。网络安全除了与软件、系统管理等问题有关,还与硬件有着密切关系,而电池监测则是应该重点考虑的问题之一。另一方面,从监测自动化角度来说,网络化监测是电力、通讯行业的特点,这就要求电池监测产品具有网络兼容性。 针对蓄电池用户关心的问题,本公司特推出以下产品来解决: 蓄电池内阻测试仪,PITE3915内阻仪采用最先进的交流放电测试方法,能够精确测量蓄电池两端电压和内阻,并以此来判断蓄电池电池容量和技术状态的优劣。客户可以根据自身情况选择按键操作和液晶触摸两种操作方式。它既可以对蓄电池进行成组测量,也可以进行单节测量。 蓄电池活化仪,PITE3930/3932智能蓄电池活化仪,是专用于日常维护中对落后蓄电池处

铅酸蓄电池生产质检标准

以下是国家质检总局关于铅酸蓄电池生产许可证中相关产品的质检标准: 表7 铅酸蓄电池产品生产许可证检验项目及判定标准 表7.1 起动用铅酸蓄电池(汽车起动用) 序号检验项目名称检验依据标准及条款检验方法依据标准或条款 不合格 分类 备 注 1 容量GB/T 5008.1-2005:4.1 GB/T 5008.1-2005:5.4 A 2 低温起动能力GB/T 5008.1-2005:4.2 GB/T 5008.1-2005:5.5 B 3 充电接受能力GB 5008.1-2005:4.3 GB/T 5008.1-2005:5.6 B 4 荷电保持能力GB/T 5008.1-2005:4.4 GB/T 5008.1-2005:5.7 B 5 电解液保持能力GB/T 5008.1-2005:4.5 GB/T 5008.1-2005:5.8 B 6 耐振动性GB/T 5008.1-2005:4. 7 GB/T 5008.1-2005:5.10 A 7 耐温变性GB/T 5008.1-2005:4.12 GB/T 5008.1-2005:5.15 B 8 封口剂GB/T 5008.1-2005:4.13 GB/T 5008.1-2005:5.16 B 9 水损耗GB/T 5008.1-2005:4.8 GB/T 5008.1-2005:5.11 A 10 气密性GB/T 5008.1-2005:4.11 GB/T 5008.1-2005:5.14 B 11 最大外形尺寸GB/T 5008.2-2005 GB/T 5008.2-2005 A 12 干式荷电蓄电池 起动能力 GB/T 5008.1-2005:4.9 GB/T 5008.1-2005:5.12 B 13 标志GB/T 5008.1-2005:7 GB/T 5008.1-2005:7 B 表7.2 起动用铅酸蓄电池(船舶起动用) 序号检验项目名称 检验依据标准及条 款 检验方法依据标准或条 款 不合格 分类 备注 1 气密性CB/T 728-2000:4.6 CB/T 728-2000:5.5 B 2 绝缘电阻CB/T 728-2000:4.8 CB/T 728-2000:5.6 B 3 干式荷电或湿荷电 蓄电池起动能力 CB/T 728-2000:4.11 CB/T 728-2000:5.9 B 4 容量CB/T 728-2000:4.9 CB/T 728-2000:5.7 A 5 低温起动能力CB/T 728-2000:4.10 CB/T 728-2000:5.8 B 6 充电接受能力CB/T 728-2000:4.12 CB/T 728-2000:5.10 B 7 荷电保持能力CB/T 728-2000:4.13 CB/T 728-2000:5.11 B

铅酸蓄电池的主要性能指标

铅酸蓄电池的主要性能指标 1. 铅酸蓄电池的主要性能指标 (1)安全性能 安全性能指标不合格的蓄电池是不可接受的,其中影响最大的是爆炸和漏液。爆炸和漏液的发生主要与蓄电池的内压、结构、工艺设计(比如安全阀失效)及应当禁止的不正确操作有关。 (2)额定容量 为了蓄电池的容量,定义了蓄电池的额定容量。额定容量是蓄电池制造的时候,规定蓄电池在一定的放电条件下应该放出的最低限度的电量,其单位为Ah。使用条件不同,蓄电池能够放出的容量也不同。规定的蓄电池放电条件为: ①蓄电池放电电流。一般所说的就是放电率,针对蓄电池放电电流的大小分别有时间率和电流率。放电时间率是指在一定的放电条件下放电到终止电压的时间长短。依据IEC标准,放电率分别为20小时率、10小时率、5小时率、3小时率、2小时率、1小时率、0.5小时率等。蓄电池的额定容量用C来表示,以不同的放电率得到的蓄电池的容量会不同。 ②放电终止电压。放电电流不同,终止放电电压也不相同。随着放电的进行,蓄电池的端电压会逐步下降。在25℃条件下放电到能够再次反复充电使用的最低电压称为放电终止电压。放电率不同,放电终止电压也不相同。一般为10小时率放电的终止电压多数为1.8V/单格,以2小时率方电的终止电压一般为1.75V/单格。低于这个电压时,虽然可以放出稍微多一点的电量,但是容易形成再次充电的容量下降,所以除非特殊情况,不要放电到终止电压。 ③放电温度。需电池在低温时的放电容量小,高温时的容量大,为了统一放电容量就规定了放电温度。 ④蓄电池的实际容量。蓄电池的实际容量反应蓄电池实际存储电量的多少,单位用安时表示(Ah)表示。同样安时数越大,则蓄电池的容量就越大,电动自行车的续行里程就越远。在使用过程中,蓄电池的实际容量会逐步衰减。国家标准规定新出厂的蓄电池的实际容量大于额定容量者为合格蓄电池。如现在市场上电动自行车的蓄电池,以恒定电流5A放电要超过2h,相当于电动自行车在平坦的路上连续行驶2h以上。 影响蓄电池容量的因素有极板的构造、充放电电流的大小、电解液的温度及密度等,其中以充放电电流和温度的影响最大。如充放电流过大,将使极板上的活性物质变化处于表面,容量则降低很多。蓄电池的放电电流不同,所能够放出的容量也不相同,放电电流越大,能够放出的电量越小。例如电动自行车常用的电流为5A,使用标称10Ah的蓄电池就是2小时率放电,如果采用10小时率放电,可以达到12Ah。这样,该蓄电池如果按照2小时率标称应该是10Ah,如果按照10小时率标称就是12Ah.所以评价蓄电池的容量不仅仅要看蓄电池的标称容量,还要看蓄电池的放电率。电动自行车蓄电池往往标称为10Ah,同一个蓄电池也可以标12Ah和14Ah。再比如,14Ah的许电车也可以标为17Ah。还有一些蓄电池标为20Ah,蓄电池容量标称值大了,但是其容量没有明显的变化。 (3)内阻 蓄电池的内阻是指电流流过蓄电池内部时所受的阻力,铅酸蓄电池的内阻很小,需要用专门的仪器才可以测得到比较准确的结果。一般所指的蓄电池内阻是充电态内阻,即蓄电池充满电时的内阻。与之对应的是放电态内阻,并且不太稳定。蓄电池的内阻越大,蓄电池自身消耗掉的能量越多,其使用效率越低。内阻很大的蓄电池在充电时发热很厉害,使蓄电池的温度急剧上升,对蓄电池和充电器的影响都很大。随着蓄电池使用次数的增多,由于电解液的消耗及蓄电池内部化学物质活性的降低,蓄电池的内阻会有不同程度的增大,质量越差的蓄电池增大的越快。 蓄电池内部阻抗会因放电量增加而增大,尤其是在放电终止时阻抗最大,主要因为放电的进行使得极板内产生不良导体硫酸铅以及电解液比重下降,故放电后务必马上充电。若任其持续放电,则硫酸铅形成安定的白色结晶(即硫化现象)后,即使充电,极板的活性物质亦无法恢复原状,从而将缩短蓄电池的使用寿命。 温度的下降将导致电解液流动性变差,极板收缩,化学变化迟缓,蓄电池内阻增加。从30℃开始,若温度下降1℃,容量将下降1%左右,其内阻也有所增大。所以在严寒地区,气温在-20℃以下时容量已下降至60%,内阻增大,常感到蓄电池电力不足。在严寒地区易出现过量放电,而在温带地区则经常出现过量充电的问题。所以要使用好蓄电池,必须根据当地的气候条件,针对实际情况,掌握其使用规律。蓄电池的充电必须根据不同情况选择适当的方法并正确的使用充电设备,这样才能提高蓄电池的容量,延长蓄电池的使用寿命。 铅酸蓄电池的内阻与镍氢蓄电池及锂离子蓄电池相比较小,即蓄电池容量下降2/3后,仍能提供较大的电流,而电源电压基本稳定,波动较小。而镍氢蓄电池及锂离子蓄电池就不同了。以36V/9Ah锂离子蓄电池为例,当容量下降到原来的1/3后,电流输出为12A时,电压就会有4~5V的波动,即有电流输出时为31V,无电流输出时接近35V。这样在电动自行车应用中,骑行时会出现运行不平稳,时而有输出时而无输出的现象。 (4)循环寿命 循环寿命是指蓄电池可经历的重复充放电次数。蓄电池的寿命和容量成反比关系,循环寿命还与充放电条件密切相关,一般充电电流越大(充电速度越快),循环寿命越短。 寿命是表示蓄电池容量衰减速度的一项指标,随着使用的深入,蓄电池容量的衰减是不可避免的,当容量衰减到某规定值时,

相关文档
最新文档