函数的单调性与最值专题练习

函数的单调性与最值专题练习
函数的单调性与最值专题练习

函数的单调性与最值专题练习

一、选择题

1.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为( ) A.-2

B.2

C.-6

D.6

解析 由图象易知函数f (x )=|2x +a |的单调增区间是[-a 2,+∞),令-a

2=3,∴a =-6. 答案 C

2.(2019·北京卷)下列函数中,在区间(-1,1)上为减函数的是( ) A.y =

1

1-x

B.y =cos x

C.y =ln(x +1)

D.y =2-x

解析 ∵y =

1

1-x

与y =ln(x +1)在(-1,1)上为增函数,且y =cos x 在(-1,1)上不具备单调性.∴A ,B ,C 不满足题意.只有y =2-x

=? ????12x

在(-1,1)上是减

函数. 答案 D

3.定义新运算“⊕”:当a ≥b 时,a ⊕b =a 2;当a

B.1

C.6

D.12

解析 由已知得当-2≤x ≤1时,f (x )=x -2, 当1

∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6. 答案 C

4.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a = f

? ??

??

-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )

A.c

B.b

C.b

D.a

解析 ∵函数图象关于x =1对称,∴a =f

? ????-12=f

? ????

52,又y =f (x )在(1,+∞)

上单调递增,∴f (2)

??

52

答案 B

5.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( ) A.(8,+∞) B.(8,9] C.[8,9]

D.(0,8)

解析 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有????

?x >0,x -8>0,x (x -8)≤9,解得8

答案 B 二、填空题

6.(2019·郑州模拟)设函数

f (x )=???1,x >0,

0,x =0,-1,x <0,

g (x )=x 2f (x -1),则函数

g (x )的递

减区间是________.

解析

由题意知g (x )=????

?x 2 (x >1),0 (x =1),

-x 2 (x <1),

函数的图象如图所示的实线部分,根据图象,g (x )的减区间是[0,1). 答案 [0,1)

7.(2019·石家庄调研)函数f (x )=? ????13x

-log 2(x +2)在区间[-1,1]上的最大值为

________.

解析 由于y =? ????13x

在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在

[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3. 答案 3

8.(2020·潍坊模拟)设函数f (x )=???-x 2+4x ,x ≤4,

log 2x ,x >4.若函数y =f (x )在区间(a ,a +

1)上单调递增,则实数a 的取值范围是________.

解析 作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.

答案 (-∞,1]∪[4,+∞) 三、解答题

9.已知函数f (x )=1a -1

x (a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数; (2)若f (x )在??????12,2上的值域是??????12,2,求a 的值. (1)证明 设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0, ∵f (x 2)-f (x 1)=? ????1a -1x 2-? ????1a -1x 1=1x 1-1x 2=x 2-x 1

x 1x 2>0,

∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数.

(2)解 ∵f (x )在??????12,2上的值域是??????12,2,又由(1)得f (x )在??????

12,2上是单调增函

数,

∴f

? ??

??12=1

2,f (2)=2,易知a =25. 10.已知函数f (x )=2x -a

x 的定义域为(0,1](a 为实数). (1)当a =1时,求函数y =f (x )的值域;

(2)求函数y =f (x )在区间(0,1]上的最大值及最小值,并求出当函数f (x )取得最值时x 的值.

解 (1)当a =1时,f (x )=2x -1

x ,任取1≥x 1>x 2>0, 则f (x 1)-f (x 2)=2(x 1-x 2)-? ????1x 1-1x 2=(x 1-x 2)? ?

???2+1x 1x 2.

∵1≥x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0.

∴f (x 1)>f (x 2),∴f (x )在(0,1]上单调递增,无最小值,当x =1时取得最大值1,所以f (x )的值域为(-∞,1].

(2)当a ≥0时,y =f (x )在(0,1]上单调递增,无最小值, 当x =1时取得最大值2-a ; 当a <0时,f (x )=2x +-a

x , 当

-a

2≥1,即a ∈(-∞,-2]时,y =f (x )在(0,1]上单调递减,无最大值,

当x =1时取得最小值2-a ; 当-a 2<1,即a ∈(-2,0)时,y =f (x )在? ??

??

0,

-a 2上单调递减,在?

???

??

-a 2,1上单调递增,无最大值,当x =

-a

2时取得最小值2-2a .

11.(2020·郑州质检)若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =( ) A.4

B.2

C.1

2

D.14

解析 当a >1,则y =a x 为增函数,有a 2=4,a -1=m ,此时a =2,m =1

2, 此时g (x )=-x 在[0,+∞)上为减函数,不合题意. 当0

16. 此时g (x )=34x 在[0,+∞)上是增函数.故a =1

4.

答案 D

12.(2019·枣阳第一中学模拟)已知函数f (x )=e x -1,g (x )=-x 2+4x -3,若存在f (a )=g (b ),则实数b 的取值范围为( ) A.[0,3]

B.(1,3)

C.[2-2,2+2]

D.(2-2,2+2)

解析 由题可知f (x )=e x -1>-1,g (x )=-x 2+4x -3=-(x -2)2+1≤1, 若f (a )=g (b ),则g (b )∈(-1,1], 即-b 2+4b -3>-1,即b 2-4b +2<0, 解得2-2

所以实数b 的取值范围为(2-2,2+2). 答案 D

13.对于任意实数a ,b ,定义min{a ,b }=???a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )

=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________. 解析 依题意,h (x )=?????log 2x ,0

-x +3,x >2.

当02时,h (x )=3-x 是减函数, ∴h (x )在x =2时,取得最大值h (2)=1. 答案 1

14.已知函数f (x )=lg(x +a

x -2),其中a 是大于0的常数. (1)求函数f (x )的定义域;

(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.

解 (1)由x +a

x -2>0,得x 2-2x +a x

>0,

当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞), 当a =1时,定义域为{x |x >0且x ≠1},

当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }. (2)设g (x )=x +a

x -2,当a ∈(1,4),x ∈[2,+∞)时, ∴g ′(x )=1-a x 2=x 2-a

x 2>0. 因此g (x )在[2,+∞)上是增函数, ∴f (x )在[2,+∞)上是增函数. 则f (x )min =f (2)=ln a

2.

(3)对任意x ∈[2,+∞),恒有f (x )>0. 即x +a

x -2>1对x ∈[2,+∞)恒成立. ∴a >3x -x 2.

令h (x )=3x -x 2,x ∈[2,+∞).

由于h (x )=-? ????x -322+9

4在[2,+∞)上是减函数,

∴h (x )max =h (2)=2. 故a >2时,恒有f (x )>0.

因此实数a 的取值范围为(2,+∞).

高中数学函数的单调性与最值练习题

函数的单调性与最值 1.下列函数中,在区间(-1,1)为减函数的是( ) A .x y -=11 B .x y cos = C .)1ln(+=x y D .x y -=2 2.函数)82ln()(2--=x x x f 的单调递增区间是( ) A .)2,(--∞ B .)1,(-∞ C .),1(+∞ D .),4(+∞ 3.若函数m x x x f +-=2)(2在),3[+∞上的最小值为1,则实数m 的值为( ) A .-3 B .-2 C .-1 D .1 4函数x x x f -=1)(的单调递增区间是( ) A .)1,(-∞ B .),1(+∞ C .)1,(-∞,),1(+∞ D .)1,(--∞,),1(+∞ 5设函数)1()(,0,10,00,1)(2-=?? ???<-=>=x f x x g x x x x f ,则函数g (x)的单调递减区间是( ) A .]0,(-∞ B .)1,0[ C .),1[+∞ D .]0,1[- 6.若函数R x x a x x f ∈++=,2)(2在区间),3[+∞和]1,2[--上均为增函数,则实数a 的取值范围是( )A .]3,311[-- B .]4,6[-- C .]22,3[-- D .]3,4[-- 7.函数],(,1 2n m x x x y ∈+-=的最小值为0,则m 的取值范围是( ) A .)2,1( B .)2,1(- C .)2,1[ D .)2,1[- 8.已知函数a ax x x f +-=2)(2在区间)1,(-∞上有最小值,则函数x x f x g )()(=在区间),1(+∞上一定( )A .有最小值 B .有最大值 C .是减函数 D .是增函数 9.若函数2)(2-+=x a x x f 在),0(+∞上单调递增,则实数a 的取值范围是 10.已知函数f (x)的值域为]9 4,83[,则函数)(21)()(x f x f x g -+=的值域为 1.已知函数)1(log 2-=ax y 在)2,1(上单调递增,则实数a 的取值范围是( ) A .]1,0( B .]2,1[ C .+∞,1[) D .+∞,2[)

三角函数的单调性和最值

三角函数的单调性和最值问题 例1已知函数22()sin 2sin cos 3cos f x x x x x =++,x R ∈.求: (I) 函数()f x 的最大值及取得最大值的自变量x 的集合; (II) 函数()f x 的单调增区间. 解(I)1cos 23(1cos 2)()sin 21sin 2cos 222sin(2)224 x x f x x x x x π-+=++=++=++ ∴当2242x k π ππ+=+,即()8x k k Z π π=+∈时, ()f x 取得最大值22+. 函数()f x 的取得最大值的自变量x 的集合为{/,()}8x x R x k k Z ππ∈=+ ∈. (II) ()22sin(2)4f x x π=++ 由题意得: 222()242k x k k Z πππππ- ≤+≤+∈ 即: 3()88 k x k k Z ππππ-≤≤+∈ 因此函数()f x 的单调增区间为3[,]()88 k k k Z ππππ- +∈. 例2 已知函数f (x )=π2sin 24x ??-+ ???+6sin x cos x -2cos 2x +1,x ∈R . (1)求f (x )的最小正周期; (2)求f (x )在区间π0,2 ?? ???? 上的最大值和最小值. (3)求f (x )在区间π0,2?????? 的单调区间和值域。 解:(1)f (x )=2-sin 2x ·ππcos 2cos 2sin 44 x -?+3sin 2x -cos 2x =2sin 2x -2cos 2x =π22sin 24x ??- ?? ?. 所以,f (x )的最小正周期T =2π2 =π. (2)因为f (x )在区间3π0,8??????上是增函数,在区间3ππ,82?????? 上是减函数.又f (0)=-2,3π228f ??= ???,π22f ??= ???,故函数f (x )在区间π0,2??????上的最大值为22,最小值为-2.

函数的单调性、极值与最值问题

函数的单调性、极值与最值问题 典例9 (12分)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 审 题 路 线 图 求f ′(x ) ――――――→讨论f ′(x ) 的符号 f (x )单调性―→f (x )最大值―→解f (x )max >2a -2.

评分细则(1)函数求导正确给1分; (2)分类讨论,每种情况给2分,结论1分; (3)求出最大值给2分; (4)构造函数g(a)=ln a+a-1给2分; (5)通过分类讨论得出a的范围,给2分.

跟踪演练9(优质试题·天津)已知函数f(x)=a x,g(x)=log a x,其中a>1. (1)求函数h(x)=f(x)-x ln a的单调区间; (2)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2, g(x2))处的切线平行,证明x1+g(x2)=-2ln ln a ln a; (3)证明当a≥1e e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线. (1)解由已知得h(x)=a x-x ln a, 则h′(x)=a x ln a-ln a. 令h′(x)=0,解得x=0. 由a>1,可知当x变化时,h′(x),h(x)的变化情况如下表: 所以函数h(x)的单调递减区间为(-∞,0),单调递增区间为(0,+∞). (2)证明由f′(x)=a x ln a,可得曲线y=f(x)在点(x1,f(x1))处 的切线斜率为1x a ln a.由g′(x)= 1 x ln a,可得曲线y=g(x)在点

专题:函数单调性、奇偶性、对称性、周期性.docx

专题:函数单调性、奇偶性、对称性、周期性 一、函数的单调性 1.单调函数与严格单调函数 设 f(x) 为定义在I上的函数,若对任何 x1 , x2I ,当 x1x2时,总有 (ⅰ ) f (x1) f ( x2) ,则称f (x)为I上的增函数,特别当且仅当严格不等式 f ( x1 ) f ( x2 ) 成立时称 f (x) 为I上的严格单调递增函数。 (ⅱ ) f (x1) f ( x2) ,则称f (x)为I上的减函数,特别当且仅当严格不等式 f ( x1 ) f ( x2 ) 成立时称 f (x) 为I上的严格单调递减函数。 2.函数单调的充要条件 ★若 f (x) 为区间I上的单调递增函数,x1、 x2为区间内两任意值,那么有: f (x1) f ( x2)或 x1x20(x1x2)[ f (x1) f (x2)] 0 ★若 f (x) 为区间I上的单调递减函数,x1、 x2为区间内两任意值,那么有: f (x1) x1 3.函数单调性的判断(证明 ) (1)作差法 (定义法 ) (2)作商法 4复合函数的单调性的判定f ( x2)或x 2 )[ f (x1)f (x2)] 0 x20(x1 对于函数 y f (u) 和 u g(x) ,如果函数u g( x) 在区间 (a, b) 上具有单调性,当x a, b 时 u m,n,且函数 y f (u)在区间 (m, n) 上也具有单调性,则复合函数y f ( g( x)) 在区间a,b具有单调性。 5.由单调函数的四则运算所得到的函数的单调性的判断 对于两个单调函数 f (x) 和 g( x) ,若它们的定义域分别为I 和 J ,且 I J: (1)当f (x)和g (x)具有相同的增减性时,函数F1 (x) f (x) g( x) 、 F2 (x) f ( x)g(x) 的增减性与 f ( x)(或g( x) )相同, F3 ( x) f (x) g( x) 、 F4 (x)f (x) ( g(x) 0)的增减性不能确定;g( x) (2)当f (x)和g (x)具有相异的增减性时,我们假设 f ( x) 为增函数, g ( x) 为减函数,那么: ① F1 (x) f (x)g( x) 、 F2 (x) f ( x) g( x) 的增减性不能确定; ② F3 ( x) f ( x)g(x) 、 F4 ( x)f ( x) (g( x)0) 为增函数, F5 (x) g( x) ( f ( x)0) 为减函数。 g (x) f (x) 二、函数的奇偶性 1.奇偶性的定义 如果对于函数 f ( x) 的定义域内的任意一个x ,都有 f ( x) f ( x) ,则称函数 f (x) 为偶函数;如果对于函数 f (x) 的定义域内的任

人教版高中数学《函数的单调性与最值》教学设计全国一等奖

1.3.1函数的单调性与最大(小)值(第一课时) 教学设计 一、教学内容解析: (1)教学内容的内涵、数学思想方法、核心与教学重点; 本课教学内容出自人教版《普通高中课程标准实验教科书必修数学1》(以下简称“新教材”)第一章节。 函数的单调性是研究当自变量x不断增大时,它的函数y增大还是减小的性质.如增函数表现为“随着x增大,y也增大”这一特征.与函数的奇偶性不同,函数的奇偶性是研究x成为相反数时,y是否也成为相反数,即函数的对称性质. 函数的单调性与函数的极值类似,是函数的局部性质,在整个定义域上不一定具有.这与函数的奇偶性、函数的最大值、最小值不同,它们是函数在整个定义域上的性质. 函数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法:加强“数”与“形”的结合,由直观到抽象;由特殊到一般.首先借助对函数图象的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步用数学符号刻画. 函数单调性的概念是研究具体函数单调性的依据,在研究函数的值域、定义域、最大值、最小值等性质中有重要应用(内部);在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用(外部).可见,不论在函数内部还是在外部,函数的单调性都有重要应用,因而在数学中具有核心地位. 教学的重点是:引导学生对函数定义域I的给定区间D上“随着x增大,y也增大(或减小)”这一特征进行抽象的符号描述:在区间D上任意取x1,x2,当x1<x2时,有f(x1)<f(x2)(或f(x1)>f(x2)),则称函数f(x)在区间D上是增函数(或减函数). (2)教学内容的知识类型; 在本课教学内容中,包含了四种知识类型。函数单调性的相关概念属于概念性知识,函数单调性的符号语言表述属于事实性知识,利用函数单调性的定义证明函数单调性的步骤属于程序性知识,发现问题----提出问题----解决问题的研究模式,以及从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明等研究问题的一般方法,属于元认知知识. (3)教学内容的上位知识与下位知识; 在本课教学内容中,函数的单调性,是文字语言、图形语言、符号语言的上位知识.图象法、作差法是判断证明函数单调性的下位知识. (4)思维教学资源与价值观教育资源; 生活常见数据曲线图例子,能引发观察发现思维;函数f(x)= +1和函数 1 y x x =+,能引发 提出问题---分析问题----解决问题的研究思维,不等关系等价转化为作差定号,是转化化归思维的好资源,是树立辩证唯物主义价值观的好契机;创设熟悉的二次函数探究背景,是引发从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明思维的好材料,树立了“事物是普遍联系的”价值观. 二、教学目标设置: 本课教学以《普通高中数学课程标准(实验)》(以下统称为“课标”)为基本依据,以“数学育人”作为根本目标设置。 “课标”数学1模块内容要求是:不仅把函数看成变量之间的依赖关系,还要用集合与对应的语言刻画函数,体会函数的思想方法与研究方法,结合实际问题,体会函数在数学和其他学科中的重要性。 “课标”对本课课堂教学内容要求是:通过已学过的函数特别是二次函数,理解函数的单调性.(第一课时) 为尽好达到以上要求,结合学生实际,本课课堂教学目标设置如下: (1)知识与技能: 理解函数单调性的概念,让学生能清晰表述函数单调性的定义与相关概念; 能利用图象法直观判断函数的单调性;

函数的单调性与最值练习题(适合高三)

函数的单调性与最值练习题 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(每小题4分) 1.函数2()log f x x =在区间[1,2]上的最小值是( ) A.1- B.0 C.1 D.2 2.已知212()log (2)f x x x =-的单调递增区间是( ) A.(1,)+∞ B.(2,)+∞ C.(,0)-∞ D .(,1)-∞ 3.定义在R 上的函数()f x 对任意两个不相等实数,a b ,总有 ()()0f a f b a b ->-成立, 则必有( ) A.()f x 在R 上是增函数 B.()f x 在R 上是减函数 C.函数()f x 是先增加后减少 D.函数()f x 是先减少后增加 4.若在区间(-∞,1]上递减,则a 的取值范围为( ) A. [1,2) ? B. [1,2] ? C. [1,+∞)???D. [2,+∞) 5.函数y=x 2﹣2x ﹣1在闭区间[0,3]上的最大值与最小值的和是( ) A.﹣1 B.0 C.1 D.2 6.定义在),0(+∞上的函数()f x 满足对任意的))(,0(,2121x x x x ≠+∞∈,有 2121()(()())0x x f x f x -->.则满足(21)f x -<1()3 f 的x 取值范围是( ) A.(12,23) B.[13,23) C. (13,23) D.[12,23 ) 7.已知(x)=???≥<+-)1(log )1(4)13(x x x a x a a 是(-∞,+∞)上的减函数,那么a的取值范围是( ) A.(0,1) B .(0,31 ) C.[71,31) D.[71,1) 8.函数22log (23)y x x =+-的单调递减区间为( ) A.(-∞,-3) B .(-∞,-1) C.(1,+∞) D .(-3,-1) 9.已知函数()f x 是定义在[0,) +∞的增函数,则满足(21)f x -<1()3f 的x 取值范围是( ) (A )(∞-,23) (B )[13,23) (C)(12,∞+) (D)[12,23 ) 10.下列函数中,在定义域内是单调递增函数的是( ) A .2x y = B.1y x = C.2y x = D .tan y x =

必修一函数的单调性专题讲解(经典)

第一章 函数的基本性质之单调性 一、基本知识 1.定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当 21x x <时,都有 ))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。 重点 2.证明方法和步骤: (1) 取值:设21,x x 是给定区间上任意两个值,且21x x <; (2) 作差:)()(21x f x f -; (3) 变形:(如因式分解、配方等); (4) 定号:即0)()(0)()(2121<->-x f x f x f x f 或; (5) 根据定义下结论。 3.常见函数的单调性 时, 在R 上是增函数;k<0时, 在R 上是减函数 (2),在(—∞,0),(0,+∞)上是增函数, (k<0时),在(—∞,0),(0,+∞)上是减函数, (3)二次函数的单调性:对函数c bx ax x f ++=2)()0(≠a , 当0>a 时函数)(x f 在对称轴a b x 2- =的左侧单调减小,右侧单调增加; 当0

高考总复习:函数的单调性与最值

第三节函数的单调性与最值 [知识能否忆起] 一、函数的单调性 1.单调函数的定义

图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 2.单调区间的定义 若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 二、函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 ①对于任意x ∈I ,都有f (x )≤M ; ②存在x 0∈I ,使得f (x 0)=M ①对于任意x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M 结论 M 为最大值 M 为最小值 [小题能否全取] 1.(2012·陕西高考)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1 x D .y =x |x | 解析:选D 由函数的奇偶性排除A ,由函数的单调性排除B 、C ,由y =x |x |的图象可知此函数为增函数,又该函数为奇函数,故选D. 2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12 B .k <12 C .k >-1 2 D .k <-1 2 解析:选D 函数y =(2k +1)x +b 是减函数, 则2k +1<0,即k <-1 2 .

3.(教材习题改编)函数f (x )=1 1-x 1-x 的最大值是( ) A.4 5 B.54 C.3 4 D.43 解析:选D ∵1-x (1-x )=x 2 -x +1=? ????x -122+34≥34 ,∴0<11-x 1-x ≤43. 4.(教材习题改编)f (x )=x 2 -2x (x ∈[-2,4])的单调增区间为________;f (x )max =________. 解析:函数f (x )的对称轴x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8. 答案:[1,4] 8 5.已知函数f (x )为R 上的减函数,若m f (n ); ???? ??1x >1,即|x |<1,且x ≠0. 故-1 (-1,0)∪(0,1) 1.函数的单调性是局部性质 从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,是局部的特征.在某个区间上单调,在整个定义域上不一定单调. 2.函数的单调区间的求法 函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.对于基本初等函数的单调区间可以直接利用已知结论求解,如二次函数、对数函数、指数函数等;如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间. [注意] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.

函数的单调性与最值(讲义)

函数的单调性与最值 【知识要点】 1.函数的单调性 (1)单调函数的定义 (2)单调区间的定义 如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y = f (x )的单调区间. (3)判断函数单调性的方法 ①根据定义;②根据图象;③利用已知函数的增减性;④利用导数;⑤复合函数单调性判定方法。 2.函数的最值 求函数最值的方法: ①若函数是二次函数或可化为二次函数型的函数,常用配方法;

②利用函数的单调性求最值:先判断函数在给定区间上的单调性,然后利用单调性求最值; ③基本不等式法:当函数是分式形式且分子、分母不同次时常用此法。 【复习回顾】 一次函数(0)y kx b k =+≠具有下列性质: (1)当0k >时,函数y 随x 的增大而增大 (2)当0k <时,函数y 随x 的增大而减小 二次函数y =ax 2+bx +c (a ≠0)具有下列性质: (1)当a >0时,函数y =ax 2+bx +c 图象开口向上,对称轴为直线x =-2b a ;当x <2b a -时, y 随着x 的增大而减小;当x >2b a - 时,y 随着x 的增大而增大; (2)当a <0时,函数y =ax 2+bx +c 图象开口向下,对称轴为直线x =-2b a ;当x <2b a -时, y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小; 提出问题: ①如图所示为一次函数y=x ,二次函数y=x 2和y=-x 2的图象,它们的图象有什么变化规律?这反映了相应的函数值的哪些变化规律? ①这些函数走势是什么?在什么范围上升,在什么区间下降? ②如何理解图象是上升的?如何用自变量的大小关系与函数值的大小关系表示函数的增减性? ③定义:一般地,设函数f(x)的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1、x 2,当x 1f(x 2),那么就说函数f(x)在区间D 上是减函数.简称为:步调不一致减函数. 几何意义:减函数的从左向右看,图象是的. 例如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数? 解:函数y=f(x)的单调区间是[-5,2),[-2,1),[1,3),[3,5].其中函数y=f(x)在区间[-5,2),[1,3)上是减函数,在区间[-2,1),[3,5]上是增函数. 点评:图象法求函数单调区间的步骤是第一步:画函数的图象;第二步:观察图象,利用函数单调性的几何意义写出单调区间.

函数的基本性质——单调性与最大(小)值

函数的基本性质——单调性与最大(小)值 【教学目标】 1.知识与技能:了解单调函数、单调区间的概念:能说出单调函数、单调区间这两个概念的大致意思 2.过程与方法:理解函数单调性的概念:能用自已的语言表述概念;并能根据函数的图象指出单调性、写出单调区间 3.情感、态度与价值观:掌握运用函数的单调性定义解决一类具体问题:能运用函数的单调性定义证明简单函数的单调性 【教学重难点】 教学重点:函数的单调性的概念。 教学难点:利用函数单调的定义证明具体函数的单调性 【教学过程】 一、复习引入。 1 分别画函数2x y =和3x y =的图象。2 x y =的图象如图1,3x y =的图象如图2. 2.引入:从函数2x y = 的图象(图1)看到: 图象在y 轴的右侧部分是上升的,也就是说,当x 在区间[0,+∞)上取值时,随着x 的增大,相应的y 值也随着增大,即如果取21,x x ∈[0,+∞),得到1y =)(1x f ,2y =)(2x f ,那么当 1x <2x 时,有1y <2y 。 这时我们就说函数y =)(x f =2x 在[0,+∞)上是增函数。图象在y 侧部分是下降的,也就是说,当x 在区间(-∞,0)上取值时,随着x 的增大,相应的y 值反而随着减小,即如果取21,x x ∈(-∞,0),得到1y =)(1x f , 2y =)(2x f ,那么当1x <2x 时,有1y >2y 。

这时我们就说函数y =)(x f =2x 在(-∞,0)上是减函数。函数的这两个性质,就是今天我们要学习讨论的。 二、讲解新课。 1.增函数与减函数。 定义:对于函数)(x f 的定义域I 内某个区间上的任意两个自变量的值 21,x x ,(1)若当1x <2x 时,都有)(1x f <)(2x f ,则说)(x f 在这个区间上是 增函数(如图3);(2)若当1x <2x 时,都有)(1x f >)(2x f ,则说)(x f 在这个区间上是减函数(如图4)。 说明:函数是增函数还是减函数,是对定义域内某个区间而言的。有的函数在一些区间上是增函数,而在另一些区间上不是增函数。例如函数2 x y =(图1),当x ∈[0,+∞)时是增 函数,当x ∈(-∞,0)时是减函数。 2.单调性与单调区间。 若函数y=f (x )在某个区间是增函数或减函数,则就说函数)(x f 在这一区间具有(严格的)单调性,这一区间叫做函数)(x f 的单调区间。此时也说函数是这一区间上的单调函数。 在单调区间上,增函数的图象是上升的,减函数的图象是下降的。 说明:(1)函数的单调区间是其定义域的子集; (2)应是该区间内任意的两个实数,忽略需要任意取值这个条件,就不能保证函数是增函数(或减函数),例如,图5中,在21,x x 那样的特定位置上,虽然使得)(1x f >)(2x f , (3)除了严格单调函数外,还有不严格单调函数,它的定义类似上述的定义,只要将上述定义中的“)(1x f <)(2x f 或)(1x f >)(2x f ,”改为“)(1x f )(2x f 或) (1x f ≥ )(2x f ,”即可; (4)定义的内涵与外延: 内涵是用自变量的大小变化来刻划函数值的变化情况; 外延①一般规律:自变量的变化与函数值的变化一致时是单调递增,自变量的变化与函数值的变化相对时是单调递减。 ②几何特征:在自变量取值区间上,若单调函数的图象上升,则为增函数,图象下降则为减函数。 三、讲解例题。

2函数的单调性及其应用高三复习专题

函数的单调性 1.单调性与单调区间: 例1.下列函数中,满足“对任意1x ,2x ∈(0,+∞),当1x <2x 时,都有1()f x >2()f x ”的是( ) A .()f x =1x B .()f x =2(1)x - C .()f x =x e D .()ln(1)f x x =+ 演变1.给定函数:①1 2y x =,②12 log (1)y x =+,③|1|y x =-,④12x y +=,其中在区间 (0,1)上单调递减的函数序号是( ) A .①② B .②③ C .③④ D .①④ 例2.函数2()21 x f x x -= -的单调区间为__________ 演变1.函数25---=a x x y 在),1(+∞-上单调递增,则a 的取值范围是__________ 例3.函数267)(x x x f --=的单调递增区间为__________ 演变1. 函数()f x =__________ 例4.函数2()2||3f x x x =--的单调递增区间为__________ 演变1.函数|32|)(2--=x x x f 的单调递增区间为__________ 2.利用单调性求参数范围: 例1.已知函数2)1(22+-+=x a x y 在)4,(-∞上是减函数,则实数a 的取值范围是_______ 演变1.若ax x x f 2)(2+-=与1 )(+=x a x g 在区间[1,2]上都是减函数,则a 的取值范围是__________ 例2.已知函数(31)4(1)()log (1)a a x a x f x x x -+

第05讲-函数的单调性与最值(讲义版)

第05讲-函数的单调性与最值 一、考情分析 借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义. 二、知识梳理 1.函数的单调性 (1)单调函数的定义 增函数减函数 定义设函数y=f(x)的定义域为A,区间M?A,如果取区间M中任意两个值x1,x2,改变量Δx=x2-x1>0,则当 Δy=f(x2)-f(x1)>0时,就称 函数y=f(x)在区间M上是增 函数 Δy=f(x2)-f(x1)<0时,就称函数y =f(x)在区间M上是减函数 图象 描述 自左向右看图象是上升的自左向右看图象是下降的 (2)上是增函数或是减函数, 性,区间M称为单调区间. 2.函数的最值 前提设函数y=f(x)的定义域为I,如果存在实数M满足 条件(1)对于任意x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0)=M (3)对于任意x∈I,都有f(x)≥M; (4)存在x0∈I,使得f(x0)=M 结论M为最大值M为最小值 [方法技巧] 1.(1)闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上单调时最值一定在端点处取到. (2)开区间上的“单峰”函数一定存在最大值(或最小值).

2.函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1 f (x ) 的单调性相反. 3.“对勾函数”y =x +a x (a >0)的增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ]. 三、 经典例题 考点一 确定函数的单调性(区间) 【例1-1】(2019·安徽省泗县第一中学高二开学考试(理))如果函数f(x)在[a ,b]上是增函数,对于任意的x 1,x 2∈[a ,b](x 1≠x 2),下列结论不正确的是( ) A . ()()1212 f x f x x x -->0 B .f(a)0 D .()() 2121x x f x f x -->0 【答案】B 【解析】 试题分析:函数在[a ,b]上是增函数则满足对于该区间上的12,x x ,当12x x <时有()()12f x f x <,因此 ()()1212 0f x f x x x ->-,(x 1-x 2) [f(x 1)-f(x 2)]>0, ()() 21 210x x f x f x ->-均成立,因为不能确定12,x x 的 大小,因此f(a)

函数单调性与最值讲义及练习题.docx

函数的单调性与最值 基础梳理 1.函数的单调性 (1) 单调函数的定义 增函数减函数 一般地,设函数 f ( x) 的定义域为 I . 如果对于定义域I 内某个区间 D 上的任意两个自变量的值x1,x2 定义当x1<x2时,都有 f ( x1 ) 当x1<x2时,都有 f ( x1) <f ( x2) ,那么就 >f ( x2 ) ,那么就说函数f 说函数 f ( x) 在区间 D 上是增函数 ( x ) 在区间 D上是减函数 图象 描述 自左向右图象是上升的自左向右图象是下降的(2)单调区间的定义 若函数 f ( x) 在区间 D上是增函数或减函数,则称函数 f ( x) 在这一区间上具有 ( 严格的 ) 单调性,区间 D 叫做 f ( x) 的单调区间. 2.函数的最值 前提 设函数 y=f ( x) 的定义域为 I ,如果存在实数 M 满足 ①对于任意 x∈ I ,都①对于任意 x∈I ,都有 条件有 f ( x) ≤ M; f ( x) ≥ M; .②存在 x0∈ I ,使得②存在 x0∈ I ,使得 f ( x0 ) f ( x0 ) = M M = . 结论M为最大值M为最小值注意:

一个防范 1 函数的单调性是对某个区间而言的,所以要受到区间的限制.例如函数y=x分别在 ( -∞, 0) ,(0 ,+∞ ) 内都是单调递减的,但不能说它在整个定义域即 ( -∞,0) ∪(0 ,+∞ ) 内单调递减,只能分开写,即函数的单调减区间为 ( -∞,0) 和(0 ,+∞ ) ,不能用“∪”连 接.两种形式 设任意 x1,x2∈[ a, b] 且 x1<x2,那么 f x1-f x2 f x1-f x2 ①> 0? f ( x) 在 [ a,b] 上是增函数;<0? f ( x) x1-x2x1-x2 在 [ a,b] 上是减函数. ②( x1- x2 )[ f ( x1) -f ( x2)] >0? f ( x) 在[ a,b] 上是增函数;( x1-x2)[ f ( x1) -f ( x2)] <0? f ( x) 在 [ a,b] 上是减函 数.两条结论 (1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最 值一定在端点取到. (2)开区间上的“单峰”函数一定存在最大 ( 小 ) 值. 四种方法 函数单调性的判断 (1)定义法:取值、作差、变形、定号、下结论. (2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函 数. (3)导数法:利用导数研究函数的单调性. (4)图象法:利用图象研究函数的单调性. 单调性与最大(小)值同步练习 一、选择题 1、下列函数中,在 (0 ,2) 上为增函数的是 ( )

高考数学专题:函数的单调性

高考数学函数的单调性复习教案 考纲要求:了解函数单调性的概念,掌握判断一些简单函数的单调性的方法 。 函数单调性可以从三个方面理解 (1)图形刻画:对于给定区间上的函数()f x ,函数图象如从左向右连续上升,则称函数在该区间上单调递增,函数图象如从左向右连续下降,则称函数在该区间上单调递减。 (2)定性刻画:对于给定区间上的函数()f x ,如函数值随自变量的增大而增大,则称函数在该区间上单调递增,如函数值随自变量的增大而减小,则称函数在该区间上单调递减。 (3)定量刻画,即定义。 上述三方面是我们研究函数单调性的基本途径 判断增函数、减函数的方法: ①定义法:一般地,对于给定区间上的函数()f x ,如果对于属于这个区间的任意两个自变量的值1x 、2x ,当21x x <时,都有()()21x f x f <〔或都有()()21x f x f >〕,那么就说()f x 在这个区间上是增函数(或减函数)。 与之相等价的定义:⑴()()02121>--x x x f x f ,〔或都有()()02 121<--x x x f x f 〕则说()f x 在这个区间上是增函数(或减函数)。其几何意义为:增(减)函数图象上的任意两点()()()()2211,,,x f x x f x 连线的斜率都大于(或小于)0。 ⑵()()()[]02121>--x f x f x x ,〔或都有()()()[]02121<--x f x f x x 〕则说()f x 在这个区间上是增函数(或减函数)。 ②导数法:一般地,对于给定区间上的函数()f x ,如果()0`>x f 那么就说()f x 在这个区间上是增函数;如果()0`a 且0≤b 。 (年广东卷)下列函数中,在其定义域内既是奇函数又是减函数的是

专题一:导数与函数的单调性

专题一:导数与函数的单调性 题型一:求函数的单调区间 1.函数()2 ln f x x x =的减区间为( ) A. ( B. ?+∞???? C. ?-∞ ?? D. ? ?? 2.设()f x '是函数()f x 的导函数,()f x '的图象如图所示,则()y f x =的图象是( ) A B C D 3.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图像可能是( ) A B C D 4. 判断函数2x y x e =-的单调性. 题型二: 含有参数的单调区间 1. 求函数()1x f x e ax =--的单调区

2. 求函数()21ln 2f x x ax =+的单调区间 3.讨论函数()()2112x f x x e ax =--的单调性 题型三:已知单调性求参数取值范围 1. 已知()1x f x e ax =--在区间[]-2,3为减函数,求a 的取值范围。 2. 已知()()3212+33 f x x bx b x =+++在R 上是单调递增函数,求b 的范围。若函数()f x 不是单调函数b 范围又是多少? 3.已知()2 1+x e f x ax =在R 是单调函数,求a 的取值范围 4.若函数()22ln f x x x =-在其定义域内的一个子区间()1,1k k -+内不是单调函数,求实数k 的取值范围 5.()()21ln 202 f x x ax x a =--≠存在单调递减区间,求a 的取值范围。

函数的单调性与最值(含例题详解)

函数的单调性与最值 一、知识梳理 1.增函数、减函数 一般地,设函数f(x)的定义域为I,区间D?I,如果对于任意x1,x2∈D,且x1f(x2) . 2.单调区间的定义 若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间. 3.函数的最值 前提设函数y=f(x)的定义域为I,如果存在实数M满足 条件①对于任意x∈I,都有 f(x)≤M;②存在x0∈I,使得 f(x0)=M ①对于任意x∈I,都有f(x)≥M;②存在 x0 ∈ I,使得f(x0) =M 结论M为最大值M为最小值 注意: 1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 2.两函数f(x),g(x)在x∈(a,b)上都是增(减)函数,则f(x)+g(x)也为增(减)函数,但 f(x)·g(x),1等的单调性与其正负有关,切不可盲目类比. f( x) [试一试] 1.下列函数中,在区间(0,+∞)上为增函数的是( ) A.y=ln(x+2) B.y=-x+1 D.y=x+1 解析:选 A 选项 A 的函数y=ln(x+2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数. 2.函数f(x)=x2-2x(x∈[-2,4])的单调增区间为___ ;f(x)max= ________ . 解析:函数f(x)的对称轴x=1,单调增区间为[1,4],f(x)max=f(-2)=f(4)=8. 答案:

2013函数的单调性及最值⑵

函数的单调性及最值之二 一、例题讲解 例1.已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间; (Ⅱ)设函数()f x 在区间2133??-- ???,内是减函数,求a 的取值范围. 例2、已知函数32()(3)x f x x x ax b e -=+++ (1)如3a b ==-,求()f x 的单调区间; (1)若()f x 在(,),(2,)αβ-∞单调增加,在(,2),(,)αβ+∞单调减少,证明: βα-<6. 例3.已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间; (Ⅱ)设函数()f x 在区间2133??-- ???,内是减函数,求a 的取值范围. 例4.已知a 是实数,函数())f x x a =-。 (Ⅰ)求函数()f x 的单调区间;Ⅱ)设)(a g 为()f x 在区间[]2,0上的最小值。 (i )写出)(a g 的表达式;(ii )求a 的取值范围,使得2)(6-≤≤-a g 。 二、课后作业 1.(2009年广东卷文)函数x e x x f )3()(-=的单调递增区间是 ( ) A. )2,(-∞ B.(0,3) C.(1,4) D. ),2(+∞ 2.(2009天津重点学校二模)已知函数=y )(x f 是定义在R 上的奇函数,且当)0,(-∞∈x 时不等式0)()('<+x xf x f 成立, 若)3(33.03.0f a =,),3(log )3(log ππf b = )9 1(log )91(log 33f c =,则c b a ,,的大小关系是 ( )A .c b a >> B .a b c >> C .c a b >> D .b c a >> 3.(2009浙江文)若函数2()()a f x x a x =+∈R ,则下列结论正确的是 ( ) A.a ?∈R ,()f x 在(0,)+∞上是增函数 B.a ?∈R ,()f x 在(0,)+∞上是减函数 C.a ?∈R ,()f x 是偶函数 D.a ?∈R ,()f x 是奇函数 4.(2007年福建理11文)已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x > 时,()0()0f x g x ''>>,,则0x <时 ( ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>, D .()0()0f x g x ''<<, 5.( 08年湖北卷)若21()ln(2)2 f x x b x =-++∞在(-1,+)上是减函数,则b 的取值 范围是 ( ) A . [1,)-+∞ B . (1,)-+∞ C . (,1]-∞- D . (,1)-∞- 6(2009辽宁卷文)若函数2()1 x a f x x +=+在1x =处取极值,则a = 7.(2009江苏卷)函数32()15336f x x x x =--+的单调减区间为 .

相关文档
最新文档