光伏组件用接线盒

光伏组件用接线盒
光伏组件用接线盒

1.1 接线盒

接线盒是集电气设计、机械设计与材料科学相结合的跨领域的综合性设计;接线盒充当"保镖"时,它利用二极管自身的性能使得太阳电池组件在遮光、电流失配等其他不利因素发生时,还能保持其能工作,适当降低损失。接线盒的作用一是增强组件的安全性能,二密封组件电流输出部分(引线部分)三使组件使用更便捷、可靠。

一般接线盒由盒盖、盒体、接线端子、二极管、连接线、连接器几大部分组成。外壳要具有强烈的抗老化、耐紫外线能力;符合室外恶劣环境条件下的使用要求;自锁功能使连接方式更加便捷、牢固;必须应有防水密封设计、科学的防触电绝缘保护,具有更好的安全性能;接线端子安装要牢固,与汇流带有良好的焊接性。

二极管分为:旁路二极管和防反冲二极管。二极管的主要功能是单向导通功能。旁路二极管主要作用是防止组件的热斑效应。在太阳能电池板正常工作时旁路二极管不会起到作用,但当遇到热斑效应时,旁路二极管会自动越过该串电池串并与其它电池串相连继续工作。现在我们所使用的旁路二极管主要的作用也就是防止电池片烧掉。防反冲二极管主要作用是组件在没有光照时防止蓄电池电流倒流。连接器、连接线要具有良好的绝缘性能,公母插头带有自锁功能是太阳能电池板与电气连接更便捷可靠。

1.1.1接线盒的基本应用

目前市场上主流接线盒品种较多,样式各异,按照与汇流条的连接方式可分为卡接式与焊接式;二者除了与汇流条的连接方式不同外,其结构基本是一致的。

常规型的接线盒基本由以下几部分构成:底座、导电块、二极管、卡接口/焊接点、密封圈、盒盖、后罩及配件、连接器、电缆线等,如图1所示:

一个简单的接线盒所需要的材料就达十多种,原材料的性能及使用寿命关乎着接线盒本身的质量,所以接线盒的材料一直受到厂商及组件厂使用者的倍加关注,表1简单的例举了接线盒原材料的材质:

接线盒在太阳能电池组件中的作用简单的来讲可以概括为两点:a)连接和传输功能,b)保护组件;它是一门集电气设计、机械设计和材料科学相结合的跨领域的综合性设计。

太阳能电池组件是通过太阳能电池进行光电转换的,而单个组件发出的电想传输到充电、控制系统中去,必须要通过接线盒进行传输;而且接线盒还是整个太阳能方阵的"纽带",将许多组件串联在一起形成一个发电的整体,所以接线盒在太阳能应用中的作用是不容忽视的。

接线盒还有一个更重要的作用就是保护组件;当阵列中的组件受到乌云、树枝、鸟粪等其它遮挡物而发生热斑时,旁路在组件中的二极管,利用自身的单向导电性能,将问题电池、电池串旁路掉,保护整个组件乃至整个阵列,确保能使其保持在必要的工作状态,减少不必要的损失。

最理想的组件应是每片电池都应旁路一个二极管,这样才能保证组件的绝对安全,但是出于成本以及工艺角度,目前为止大家采用是一串电池旁路一个二极管,这样做是一种简单有效的办法。

1.1.2接线盒的性能

3.1接线盒性能要求及选型

由于接线盒对于组件的重要性,选择一个合适的接线盒显得尤为重要;对于一个优秀的太阳能电池组件用接线盒必须要具备以下几点性能要求:

a)满足于室外恶劣环境条件下的使用要求;

b)外壳有强烈的抗老化、耐紫外线能力;

c)优秀的散热模式和合理的内腔容积来有效降低内部温度,以满足电气安全要求;

d)良好的防水、防尘保护为用户提供安全的连接方案;

e)较低的体电阻,以尽可能的减小接线盒带来的功率损耗;

具体的使用要求或指标简单的概括如下所示,表2列出了部分接线盒的性能指标,图2是接线盒测试部件拉力示意图:

1.1.3接线盒的选用

市场上的接线盒如果想被组件厂商接受的话就必须通过TUV、UL等其他国际知名认证机构的认证,这些认证机构针对接线盒会有一系列的检查、测试方法,以确保其满足客户的使用要求。

组件厂在使用选择接线盒时,除了要求接线盒已取得TUV、UL等认证外,还必须关注以下方面,才能确保自己找到合适的接线盒:

第一,二极管额定电流结温测试(旁路二极管热性能试验);由于太阳能电池采用低电压高电流的模式,对于接线盒中旁路二极管的额定电流就显得尤为重要;据不完全统计,接线盒在认证测试时仅此一项试验失败的就高达40%,在组件户外应用中,出现接线盒烧毁的现象也屡见不鲜。

目前要求二极管的结温不能超过200℃,但是不同二极管之间是有差异的,如果二极管的节温过高,不但会导致二极管的本身的损坏和使用寿命的降低,而且会给组件带来负面影响,比如EVA脱层、EVA及背板加速老化等其它不良状况,甚至会引起组件烧毁现象。所以大家在选择接线盒时额定电流尽可能的大,结温测试温度越低越好。

第二,接线盒体电阻;接线盒由各种金属、塑料组成,本身会有一定的电阻,外加到组件中去无疑会增加组件的功率损耗,这一会给组件额外增加一部分不必要的功率损失,所以这部分电阻需要越小越好。

接线盒性能测量

接线盒在认证时会经过一系列的安全、性能测试,包括IP测试、拉力测试、旁路二极管热性能试验、湿漏电试验、环境试验等其他实验项目,各标准、认证机构有着非常详细的要求规定,本文不一一叙述,这里着重讨论一下旁路二极管热性能试验与接线盒体电阻的测试方法。

旁路二极管热性能试验

按照IEC6121510.18.3的要求进行测试试验,以下是测试某一组件旁路二极管热性能试验过程:先测试该组件的电性能,确定Isc为5.53A,并测试二极管的管压降;前期工作准备完毕后,将组件放入温度为75℃±5℃的腔室内进行加温,并同时通以等于标准测试条件下短路电流±2%的电流;1小时后测试每个二极管的表面温度,再利用下列方程计算二极管的测试最大结温:

二极管结温测试后,再增加通以组件电流到标准测试条件下短路电流1.25倍,同时保持组件的温度在75℃±5℃,保持通过组件电流1h,验证二极管仍能工作,

表3是测试过程部分数据记录:

此块组件的二极管结温测试结果是比较理想的,且通完1.25倍的标准测试条件下短路电流1小时后,二极管仍能继续工作。

制作组件时层压温度一般设定为150℃左右,如果二极管结温测试超过170℃,那可就要当心了,若再加上接线盒的散热性能不好,后果那是相当严重的,比如会造成组件材料的封装退化、加速老化等其他不良现象,组件可能会较早或加速失效,虽然它并没有超过200℃。

为了避免或减低组件在户外使用的时候出现接线盒烧毁、组件烧灼的现象(如图3所示),就必须要关注此项测试,结温测试结果要尽可能的低。

接线盒体电阻测试

如图4所示,我们模拟组件中的连接方式,将2根同规格汇流条分别插接在接线盒两边的卡接口,并将公母头短接,用低电阻测试仪测试汇流条两端电阻。接线盒的实际电阻,为测试电阻减去2根汇流条电阻的差值。这个电阻主要与3部分有关:接触电阻、线阻及内部金属电阻;

一般接线盒的体电阻在13mΩ,根据P=I2R进行估算,13mΩ的电阻会给组件带来近1W的功率损失,但是每个接线盒的体电阻是不一样的,我们又进行了以下试验:选用3个厂商的接线盒进行对比测试,测试3种接线盒的体电阻后,分别连接在同一块组件层压件上进行电性能测试,表4是测试结果,组件层压件的测试功率为248.52W,结果显示体电阻小的接线盒封装组件后,功率损失小,反之则大:

以上实验可以看出,接线盒的体电阻对组件封装损失的影响;如果接线盒体电阻测试值较大的话,虽然其本身的其他性能良好,但是高体电阻的接线盒给组件带来的负面影响是显而易见的,所以我们在选择接线盒时在保证其他性能的前提下,它的体电阻应越小越好。

1.1.4接线盒的未来发展方向

由于接线盒对太阳能电池组件的重要性,以及随着整个光伏市场以及广大客户的应用,目前各大接线盒厂商也在朝着高质量的接线盒的方向努力,比如设计出高额定电流、高防水性、优良的散热性、低体电阻等等的接线盒,这些随着技术发展必将会在今后的接线盒产品中出现。

另一方面,传统的太阳能组件随着年月而退化(一般来说组件的性能会以每年0.5%至1.0%的速度逐渐退化),导致这个现象的原因可能包括光伏组件之间的失配、旁路二极管的热能耗散令组件性能加速退化、以及各种的环境因素如浮云、污垢及碎片等等;大大降低了单个组件以及整个系统的发电量,人们为了解决或尽可能减小这个问题,在接线盒内部进行改造,并对改造后的接接线盒称为"SmartBox",而应用这种接线盒的组件则称之为"SmartModule"。而"SmartBox"通常利用的技术有MOS集成电路基础的智能光伏组件、旁路电路集成无线发射接收数据系统、MPPT+DCtoDC/DCtoAC转换方式等其他新技术。

4.1MOS集成电路基础的智能光伏组件

此组件使用MOS集成电路代替传统二极管,降低组件被遮挡时二极管的发热能耗,同时减少组件正常工作时晶体管的反向漏电流,提高组件的发电效率;

由于二极管的特性,当大电流流过时会在上面产生1V左右的电压降。由

W=V*I得知,当有10A的电流流过时就会有10W左右的功率损失,长时间的积累使二极管的温度逐渐升高,且二极管没有散热装置,二极管就会发烫,甚至烧坏极管,烧毁接线盒;

而MOS管与普通的二极管比较,其导通电阻只有5~10mΩ,且其自带散热片,散热性能较好等优点,图5是QCSOLAR公司生产的MOS电路接线盒。

4.2旁路电路集成无线发射接收数据系统

此系统中接线盒内集成了无线收发装置,可以实时监控并传输数据,譬如组件的电流、电压、功率等,其工作原理是组件在工作时,利用接线盒内的单片机,通过检测两串太阳电池的端电压来判断太阳电池是否处于正常工作状态,一旦检测到两处电压不一样,就认为低电压的一串电池出现了热斑效应,两串电池的输出电流就有差别,此时单片机通过控制MOS管的栅极电压来控制MOS管的导通状态,来把其中一串电池多产生的电流旁路掉,使组件正常工作,实现了MOS 管的旁路作用。单片机在监控光伏组件工作,控制MOS管的同时,把每一时刻的电压、电流信息采集下来,经过其内部运算累加,得到整个组件的发电量,并在需要时可传输相关数据信息。

4.3MPPT+DCtoDC/DCtoAC转换方式

接线盒加装此种装置后,通过对阵列中每块电池板分布式安装最大功率跟踪模块,使电站方阵中每块板始终工作在最大功率输出点。目前市场上出现的产品都是基于美国国家半导体研制的SolarMagic技术之上设计开发出的;

当阵列中的组件被建筑、云、树等阴影遮挡、自身出现失配情况时,由于二极管的作用部分电池会被旁路掉,从而减低了整个组件阵列的发电总量;利用NS 的SolarMagic技术能够以太阳能电池组件为单位进行控制,使其在MPP状态下工作,在以上情况发生时与之前比较最多可提高45%的发电量;图6是NS开发的SolarMagic智能太阳能光伏组件接线盒,以及摘自Photon杂志的一组利用这一技术性能数据:

虽然这类技术优势明显,但是高额的成本很大程度上限制了它的广泛应用,相信随着科学技术的发展,人们一定会找到合适的办法去生产出价廉物美的接线盒。

1.1.5电缆

接线盒目前采用的电缆规格有三种2.5、 4、 6mm2,但是从目前的组件设计上看,组件最大的短路电流没有超过10A的,光伏电缆的要求很高,导体的铜含量很高,即使2.5mm2的电缆载流量也不会低于15A,4mm2的电缆应该不会低于25A,而且如果这么大的电流通过的话,应该可以保证电缆不会发热。再就是,电池组件采用的是串联方式连接,汇流带承载的电流应该和电缆上的电流是一样的,汇流带按照目前的最大的组件设计的截面计算7.5*0.2=1.5mm2,电缆的截面积远远大于汇流带的截面积,因此,个人认为目前晶体硅组件的接线盒完全可以采用2.5mm2的电缆,一方面可以降低成本,另一方面可以节约自然资源的消耗,铜的资源本身也并不是很丰富,既然是绿色资源产业,同仁们应该考虑各方面对资源的消耗,

从电流方面说,一般的组件用2.5MM2的是够了,节省了很多成本,节约资源。但现在一般晶体硅组件用的都是4.0MM2的电缆,功率再大点的,可能要用到6.0MM2的。2.5MM2只有薄膜组件用的比较多。这个可能考虑到电池板使用寿命长,系统稳定性要求高,使用环境恶劣等原因,所以采用规格更大的电缆吧。另外,行业里也约定熟成了,渐渐的也成了一种标准。

1.1.6二极管

在太阳电池方阵中,二极管是很重要的元器件,常用的二极管有防反充(阻塞)二极管和旁路二极管。

在储能蓄电池或逆变器与太阳电池方阵之间,要串联一个阻塞二极管,以防止夜间或阴雨天太阳电池方阵工作电压低于其供电的直流母线电压时,蓄电池反过来向太阳电池方阵倒送电,既而消耗能量和导致方阵发热。它串联在太阳电池方阵的电路中,起单向导通的作用。

在有较多太阳电池组件串联或太阳电池方阵时,需要在每个太阳电池组件两端并联一个二极管,挡其中某个组件被阴影遮挡或出现故障而停止发电时,在二极管两端可以形成正向偏压,实现电流的旁路,不至于影响其他正常组件的发电,同时也保护太阳电池组件避免受到较高的正向偏压或由于“热斑效应”发热而损坏。这类并联在组件两端的二极管成为旁路二极管。光伏方阵中通常使用的是硅整流型二极管,在选用型号时应注意其容量应留有一定余量,以防止击穿损坏。通常其耐压容量应能达到最大反向工作电压的两倍,电流容量也要达到预期最大运行电流的两倍。

由于阻塞二极管存在导通管压降,串联在电路中运行时要消耗一定的功率。一般使用的硅整流二极管管压降为0.6-0.8V,大容量硅整流二极管的管压降可达1-2V,若用肖特基二极管,管压降可降低为0.2-0.3V,但肖特基二极管的耐压和电流容量相对较小,选用时要加以注意。

有些控制器具有防反接功能,这时也可以不接阻塞二极管,如果所有的组件都是并联的就可不连接旁路二极管,实际应用时,由于设置旁路二极管要增加成本和损耗,对于组件串联数目不多并且现场工作条件比较好的场合,也可不用旁路二极管。

5.9.

6.1二极管的工作原理

晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。

当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。

当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。

5.9.

6.2二极管的类型

二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN 结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。

面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。

平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。

5.9.

6.3二极管的导电特性

二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。正向特性:在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端

的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。

反向特性:在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。

5.9.

6.4二极管的主要参数

用来表示二极管的性能好坏和适用范围的技术指标,称为二极管的参数。不同类型的二极管有不同的特性参数。对初学者而言,必须了解以下几个主要参数:1、额定正向工作电流

是指二极管长期连续工作时允许通过的最大正向电流值。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为140左右,锗管为90左右)时,就会使管芯过热而损坏。所以,二极管使用中不要超过二极管额定正向工作电流值。例如,常用的IN4001-4007型锗二极管的额定正向工作电流为1A。2、最高反向工作电压

加在二极管两端的反向电压高到一定值时,会将管子击穿,失去单向导电能力。为了保证使用安全,规定了最高反向工作电压值。例如,IN4001二极管反向耐压为50V,IN4007反向耐压为1000V。

3、反向电流

反向电流是指二极管在规定的温度和最高反向电压作用下,流过二极管的反向电流。反向电流越小,管子的单方向导电性能越好。值得注意的是反向电流与温度有着密切的关系,大约温度每升高10,反向电流增大一倍。例如2AP1型锗二极管,在25时反向电流若为250uA,温度升高到35,反向电流将上升到500uA,依此类推,在75时,它的反向电流已达8mA,不仅失去了单方向导电特性,还会使管子过热而损坏。又如,2CP10型硅二极管,25时反向电流仅为5uA,温度升高到75时,反向电流也不过160uA。故硅二极管比锗二极管在高温下具有较好的稳定性。

5.9.

6.5测试二极管的好坏

初学者在业余条件下可以使用万用表测试二极管性能的好坏。测试前先把万用表的转换开关拨到欧姆档的RX1K档位(注意不要使用RX1档,以免电流过大烧坏二极管),再将红、黑两根表笔短路,进行欧姆调零。

1、正向特性测试

把万用表的黑表笔(表内正极)搭触二极管的正极,,红表笔(表内负极)搭触二极管的负极。若表针不摆到0值而是停在标度盘的中间,这时的阻值就是二极管的正向电阻,一般正向电阻越小越好。若正向电阻为0值,说明管芯短路损坏,若正向电阻接近无穷大值,说明管芯断路。短路和断路的管子都不能使用。

2、反向特性测试

把万且表的红表笔搭触二极管的正极,黑表笔搭触二极管的负极,若表针指在无穷大值或接近无穷大值,管子就是合格的。

5.9.

6.6二极管的应用

1、整流二极管

利用二极管单向导电性,可以把方向交替变化的交流电变换成单一方向的脉动直流电。

2、开关元件

二极管在正向电压作用下电阻很小,处于导通状态,相当于一只接通的开关;在反向电压作用下,电阻很大,处于截止状态,如同一只断开的开关。利用二极管的开关特性,可以组成各种逻辑电路。

3、限幅元件

二极管正向导通后,它的正向压降基本保持不变(硅管为0.7V,锗管为0.3V)。利用这一特性,在电路中作为限幅元件,可以把信号幅度限制在一定范围内。4、继流二极管

在开关电源的电感中和继电器等感性负载中起继流作用。

5、检波二极管

在收音机中起检波作用。

6、变容二极管

使用于电视机的高频头中。

一、热斑效应

一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组件所产生的能量。被遮蔽的太阳电池组件此时会发热,这就是热斑效应。这种效应能严重的破坏太阳电池。有光照的太阳电池所产生的部分能量,都可能被遮蔽的电池所消耗。为了防止太阳电池由于热斑效应而遭受破坏,最好在太阳电池组件的正负极间并联一个旁路二极管,以避免光照组件所产生的能量被受遮蔽的组件所消耗。

二、Bypassdiode的作用:

当电池片出现热斑效应不能发电时,起旁路作用,让其它电池片所产生的电流从二极管流出,使太阳能发电系统继续发电,不会因为某一片电池片出现问题而产生发电电路不通的情况。

三、Bypassdiode选择原则:

1、耐压容量为最大反向工作电压的两倍;

2、电流容量为最大反向工作电流的两倍;

3、结温温度应高于实际结温温度;

4、热阻小;

5、压降小;

当电池片正常工作时,旁路二极管反向截止,对电路不产生任何作用;若与旁路二极管并联的电池片组存在一个非正常工作的电池片时,整个线路电流将由最小电流电池片决定,而电流大小由电池片遮蔽面积决定,若反偏压高于电池片最小电压时,旁路二极管导通,此时,非正常工作电池片被短路。

1.1.7接线盒的检验

光伏组件接线盒规范

竭诚为您提供优质文档/双击可除光伏组件接线盒规范 篇一:光伏接线盒认证技术规范(初稿) cgc 北京鉴衡认证中心认证技术规范 cgc/gF00x:20xx 地面用光伏组件接线盒技术要求和试验方法 technicalspecificationsandtestmethodsofjunctionboxe susedin terrestrialpVmodules (备案稿) 200x-x-xx发布200x-x-xx实施 北京鉴衡认证中心发布 目次 前言................................................. (iii) 标题:地面用光伏组件接线盒技术要求和试验方

法 (1) 1范围................................................. .. (1) 2规范性引用文件................................................. (1) 3术语和定义................................................. . (2) 4技术要求................................................. (5) 4.1概述................................................. (5) 4.2电击防护................................................. .. (5) 4.3接口及连接方法................................................. .. (6)

太阳能光伏电池的设计与制作

河南工程学院 《光伏材料设计》 实习实训报告书 太阳能光伏电池的设计与制作2016 -2017学年第二学期 学院:赵博 学生姓名:理学院 学号:201411004215 学生班级:应用物理1442 指导教师:牛金钟赵瑞锋 日期:2017 年6 月14日

摘要:太阳能光伏电池的设计与制造是我们本专业的最主要内容之一,本次实训的目的是让我们更加深刻了解太阳能光伏电池的发电原理,了解太阳能电池组件的生产流程和生产工艺,了解太阳能光伏电池的应用,并且制作一件太阳能光伏电池板。本文主要讲的是本次的太阳能光伏太阳能电池制作过程,包括选择制作材料,电池板的设计,焊接太阳能电池片,组装太阳能电池,以及对电池组件进行测试。 关键词:电池组件设计组装测试

目录 一、简介 (1) 二、材料及其性质 (1) 1.黏结剂 (1) 2.玻璃-上盖板材料 (1) 3.背面材料 (1) 4.边框 (1) 5.接线盒 (2) 6.硅胶 (2) 7.电池片 (2) 三、设计原理及组装 (2) 1.设计原理 (2) 2.太阳能电池组件设计 (3) 3.电池组件的制作 (3)

一、简介 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。太阳能电池又称为“太阳能芯片”或“光电池”,是一种利用太阳光直接发电的光电半导体薄片。通常采用硅半导体 二、材料及其性质 真空层压封装太阳能电池,主要使用的材料有黏结剂、玻璃、复合模、连接条、铝框等。合理地选用封装材料和采取正确的封装工艺能保证太阳能电池的高效利用并延长使用寿命。优良的太阳能电池组件,除了要求太阳能电池本身效率高外,优良的封装材料和合理的封装工艺也是不可缺少的。 1.黏结剂 黏结剂是固定和保证电池与上、下盖板密合的关键材料,要求可见光范围内具有高透光性,抗紫外线老化;具有一定弹性,可缓冲不同材料见的热胀冷缩;具有良好的电绝缘性能和化学稳定性,不产生有害电池的气体和液体;具有优良的气密性,适用于自动化的组件封装。本次实训中采用的是EVA膜。 2.玻璃-上盖板材料 玻璃是覆盖在电池板正面的上盖板材料,构成组件最外层,既要求透光高,又要坚固,耐风霜雨雪,经受沙砾冰雹冲击,起到长期保护电池作用。 普通玻璃体内含铁量过高及玻璃表面的光反射过大是降低太阳能利用率的主要原因。目前在商业化生产中标准太阳能电池组件的上盖板材料通常采用低铁钢化玻璃,其特点是:透光率高、抗冲击能力强、使用寿命长。厚度一般为3.2mm,透光率达90%以上,对于波长大于1200nm的红外线有较高的反射率,同时能耐太阳紫外线的辐射。 3.背面材料 组件底板对电池既有保护作用又有支撑作用。对底板的一般要求为:具有良好的耐气候性能,能隔绝从背面进来的潮气和其他有害气体:在层压温度下不起任何变化:与黏结材料结合牢固。一般所用的底板材料为玻璃、铝合金、有机玻璃以及PVF复合膜等。目前生产上较多应用的是PVF复合膜。 4.边框 平板式组件应有边框,以保护组件和便于组件与方阵支架的连接固定。边框

太阳能光伏组件接线盒测试常见分题分析

太阳能光伏组件接线盒测试常见问题分析 摘要:本文阐述了户外组件使用中因接线盒问题引起的故障,以及 TUV、UL 认证测试过程中因接线盒问题而出现的失败项,从技术角度对接线盒的质量进行初步分析和探讨。 光伏组件接线盒的主要作用是连接和保护太阳能光伏组件,传导光伏组件所产生的电流。光伏组件接线盒作为太阳能电池组件的一个重要部件,是集电气设计、机械设计和材料应用于一体的综合性产品,为用户提供了太阳能光伏组件的组合连接方案。 目前,中国组件制造商生产的组件很多都存在不少的质量问题和隐患,而其中很大一部分组件质量问题来自于接线盒自身的设计和品质。作为光伏组件制造商的配套企业,接线盒制造商不仅需要对组件制造商负责,更需要对终端客户负责,特别是对使用过程中人身安全的保护。所以,优化接线盒结构设计、提高质量是所有接线盒制造企业的首要任务。 常州天华新能源科技有限公司(简称“天华新能源”)下属常州华阳光伏检测技术有限公司(简称“华阳检测”,于 2009 年 12 月获得了 CNAS 实验室认可,认可范围包括光伏组)件、光伏材料共 119 项检测能力。公司自 2008 年开始进行接线盒检测(依据标准: VDE0126-5:2008),讫今共完成 30 家接线盒供应商、50 多款接线盒的检测和质量分析,获得了大量的检测数据。 结合光伏组件户外使用的实际情况,我们总结出目前接线盒常见失败项目主要有:IP65防冲水测试、结构检查、拉扭力试验、湿漏电试验、二极管温升试验、环境试验、750℃灼热丝试验。 接线盒测试常见失败项目统计图:

注:每种测试按照100% 考虑一、户外组件因接线盒问题引起的故障图片 接线盒引线端子烧毁

光伏组件问题系列总结——接线盒选择及安装过程注意事项

光伏组件问题系列总结——接线盒选择及安装过程注意事项 1.0绪论 如何选择性价比好的原材料是各组件企业首先考虑的问题,多数企业在选择接线盒时比较注重的是该厂家的产品是否通过相关的国际认证,如德国TUV认证或者美国UL认证。通过认证的产品是企业优先选择的对象。TUV莱茵集团目前采用的标准E D IN EN50548 (VDE0126-500)::210-02对光伏组件接线盒进行安全方面的认证。但如何将众多原材料合理的运用到组件制作中,使其成为合格优秀的产品是光伏企业值得思考的问题。 2.0接线盒的选择 首先介绍一下接线盒的作用: 1.引出光伏组件内电流,使其更好的与其他设备连接,便于安装; 2.保护光伏组件的电器、防止水汽进入是电器导电,造成安全隐患。 3.对于工作中的组件,可以防止热斑效应的发生。 2.1接线盒选型 除选择通过各项认证的接线盒外,还需考虑不同规格的组件选择不同的接线盒来满足功率输出和安全使用的要求。选择合适的接线盒有以下几点需要注意:组件的类型、输出功率、电性能参数、引出线的数量等。

2.2接线盒外形 根据接线盒的外形来分,样式比较繁多,就平时电站上常用款式来看,分为盒顶有装饰(凸形)与无装饰两种,盒顶有装饰的,凸出部分宽度在25mm-35mm左右。制作组件时,背板开口的位置需要考虑这一距离,保证接线盒安装在组件上的美观性。 2.3接线盒检验 3.0接线盒安装过程注意事项 1.针对接线盒设计不同,需制定不同的打胶工艺,若操作不当则引起接线盒渗水, 导致使用过程中接线盒渗水后元器件短路,若做TUV、UL等相关实验室湿漏电流测试失败,下图列举几种打胶方式:

太阳能光伏组件制造技术习题答案

太阳能光伏组件制造技术习题答案 习题1 1.画图说明太阳能电池的工作原理。 答:PN结光生伏特效应示意图如图1-8所示,其工作原理如下:当太阳光照射到半导体表面时,半导体内部N区和P区中原子的价电子受到太阳光子的冲击,通过光辐射获取到超过禁带宽度E g的能量,脱离共价键的束缚从价带激发到导带,由此在半导体材料内部产生出很多处于非平衡状态的电子—空穴对。这些被光激发的电子和空穴,或自由碰撞,或在半导体中复合恢复到平衡状态。其中复合过程对外不呈现导电作用,属于光伏电池能量自身损耗部分。光生电子-空穴对在耗尽区产生后,立即被内建电场分离,光生电子被推向N 区,光生空穴被推向P区。因此,在P区有过剩的空穴,在N区有过剩的电子,如此便在PN结两侧形成了正负电荷的积累,产生与势垒电场方向相反的光生电动势,也就是光生伏特效应。将半导体做成太阳能电池并外接负载后,光电流从P区经负载流至N区,负载即得到功率输出,太阳能便变成了电能。 2.画出太阳能电池的等效电路图,说明各等效参数的含义。 答:图中I ph为光生电流,此值正比于太阳能电池的面积和入射光的辐照度。I D为暗电流,是太阳能电池在无光照时,由于外电压作用下PN结内流过的单向电流,其方向与光生电流方向相反,会抵消部分光生电流。I L为太阳能电池输出的负载电流。U OC为电池的开路电压,与入射光辐照度的对数成正比,与环境温度成反比,与电池面积的大小无关。R s和R sh均为硅太阳能电池本身固有电阻,相当于电池的内阻。 3.太阳能电池、太阳能光伏组件的分类如何?

答: 太能能光伏组件有以下几种不同的分类。 (1)按照基体材料分类 可分为晶硅太阳能光伏组件(单、多晶硅)、非晶硅薄膜太阳能光伏组件、微晶硅薄膜太阳能光伏组件、纳晶硅薄膜太阳能光伏组件、多元化合物太阳能光伏组件(包括砷化镓、硫化镉电池、碲化镉电池、铜硒铟等)。 (2)按照结构分类 可分为同质结太阳能光伏组件(在相同的半导体材料上构成PN结)、异质结太阳能光伏组件(在不相同的半导体材料上构成PN结)、肖特基结太阳能光伏组件、复合结太阳能光伏组件、液结太阳能光伏组件等。 (3)按照用途分类 可分为空间太阳能光伏组件、地面太阳能光伏组件。 (4)按使用状态分类 可分为平板太阳能光伏组件、聚光太阳能光伏组件。 (5)按封装材料分类 可分为刚性封装太阳能光伏组件、半刚性封装太阳能光伏组件、柔性衬底封装太阳能光伏组件。 4.画图说明太阳能电池片的外形结构。 答:电池片的结构如图1-17所示。正面是电池的负极,上面有细栅线、主栅线和减反射膜;背面是电池的正极,有铝背场和背电极等。 5.太阳能光伏组件的结构如何? 答:大多数晶体硅太阳能光伏组件是由透明的前表面、胶质密封材料、太阳能电池片、接线盒、端子、背表面和框架等组成。 6.简述太阳能电池、太阳能光伏组件的制作工艺过程。 答:太阳能电池片的生产工艺流程分为硅片检测、表面制绒、扩散制结、等离子体刻边、去磷硅玻璃、镀减反射膜、丝网印刷、快速烧结等。 太阳能光伏组件的制作工序主要有:电池片的分选、单片焊接、串联焊接、组件叠层、

光伏接线盒的安装

Photovoltaic Junction Box

1 Affixing the base part The particularly easy, fast and safe installation is the main feature of Weidmüller’s new photovoltaic junction box – for manual as well as for fully automated production processes. Only three small work steps are necessary to mount the two-piece housing at the rear side of the solar panel and to connect the solder ribbons. Photovoltaic Junction Box The first step is to affix the ribbon carrier near the solder ribbons. This is done by means of a prefixed adhesive pad that furthermore only needs removal of the protective sheet. The fact that the Weidmüller system does not require exact positioning may be extra helpful.

+ 321

光伏组件故障分析..

一.接线盒 光伏组件接线盒的主要作用是连接和保护太阳能光伏组件,传导光伏组件所产生的电 流。光伏组件接线盒作为太阳能电池组件的一个重要部件,是集电气设计、机械设计和材料 应用于一体的综合性产品,为用户提供了太阳能光伏组件的组合连接方案。 目前,中国组件制造商生产的组件很多都存在不少的质量问题和隐患,而其中很大一部 分组件质量问题来自于接线盒自身的设计和品质。作为光伏组件制造商的配套企业,接线盒 制造商不仅需要对组件制造商负责,更需要对终端客户负责,特别是对使用过程中人身安全 的保护。所以,优化接线盒结构设计、提高质量是所有接线盒制造企业的首要任务。 常州天华新能源科技有限公司(简称“天华新能源”)下属常州华阳光伏检测技术有限 公司(简称“华阳检测”,于 2009 年 12 月获得了 CNAS 实验室认可,认可范围包括光伏组) 件、光伏材料共 119 项检测能力。公司自 2008 年开始进行接线盒检测(依据标准:VDE 0126-5:2008),讫今共完成 30 家接线盒供应商、50 多款接线盒的

检测和质量分析,获得了

大量的检测数据。 结合光伏组件户外使用的实际情况,我们总结出目前接线盒常见失败项目主要有:IP65 防冲水测试、结构检查、拉扭力试验、湿漏电试验、二极管温升试验、环境试验、750℃灼 热丝试验。 接线盒测试常见失败项目统计图:

一、户外组件因接线盒问题引起的故障图片 接线盒引线端子烧毁 接线盒烧毁 引起组件背板烧焦 组件碎裂 二、接线盒在认证测试中常见失败项目及原因分析 1.接线盒 IP65 防冲水测试 防水性能是接线盒性能的重要指标。认证测试中,先进行老化预处理测试,然后进行防 冲水测试,再通过外观结构检查和工频耐压测试进行评判。测试能否顺利通过,取决于接线 盒的密封保护程度,而接线盒的密封保护直接影响到成品组件的防触电保护和漏电防护的等 级。就目前常规构造的接线盒而言,其设计和材料的缺陷已在认证测试中显露无疑。 图 1 IP65 防冲水测试测试图片

太阳能光伏组件过程检验标准

由品管员每个工作日均衡时间抽检,各工岗负责自检。 分选 1)具体分档标准按作业指导书要求; 2)确认电池片清洁无指纹、无损伤; 3)所分组件的电池片无严重色差。 单焊 1)互联条选用根据技术图纸; 2)保持烙铁温度在330-350℃之间(特殊工艺须另调整),每隔两小时对烙铁温度进行抽检; 3)当把已焊上的互联条焊接取下时,主栅线上应留下均匀的银锡合金; 4)互联条焊接光滑、无毛刺、无虚焊、脱焊、无锡珠堆锡; 5)焊接平直,牢固,用手沿45°左右轻提焊带不脱落; 6)焊带均匀的焊在主栅线内,焊带与电池片的主栅线的错位不能大于0.5㎜,最好在0.2㎜以内; 7)电池片表面保持清洁,完整,无损伤。 串焊 1)焊带均匀的焊在主栅线内,焊带与电池片的背电极错位不能大于0.5㎜; 2)保持烙铁温度在350-380℃之间(特殊工艺须另调整),每隔两小时对烙铁温度进行抽检; 3)每一单串各电池片的主栅线应在一条直线上,错位不能大于1㎜; 4)互联条焊接光滑、无毛刺、无虚焊、脱焊、无锡珠; 5)串焊后电池片正面无焊花,焊带脱落现象; 6)电池片表面保持清洁;

7)单片完整,无损伤。 叠层 1)叠层好的组件定位准确,串与串之间间隙一致,误差±0.5㎜; 2)串接条正、负极摆放正确; 3)汇流条选择符合图纸要求,汇流条平直、无折痕及其他缺陷; 4)EV A、背板要盖满玻璃(背板、玻璃无划伤现象); 5)拼接过程中,保持组件中无杂质、污物、手印、焊带条等残余部分; 6)玻璃、背板、EV A的“毛面”向着电池片; 7)序列号号码贴放正确,与隔离背板上边缘平行,隔离TPT上边缘与玻璃平行; 8)组件内部单片无破裂; 9)涂锡带多余部分要全部剪掉; 10)电流电压要达到设计要求; 11)所有焊点不能存在虚焊; 12)不同厂家的EV A不能混用。 层压 1)组件内单片无破裂、无裂纹、无明显位移、串与串之间距离不能小于1.0㎜; 2)焊带及电池片上面不允许有气泡,其余部位0.5-1m㎡的气泡不能超过3个,1-1.5m㎡的气泡不能超过1个; 3)组件内部无杂质和污物; 4)EV A的交联度控制在75%~90%,每批次EV A测量两次; 5)层压工艺参数严格按照技术部提供设定参数;

光伏组件用接线盒

1.1 接线盒 接线盒是集电气设计、机械设计与材料科学相结合的跨领域的综合性设计;接线盒充当"保镖"时,它利用二极管自身的性能使得太阳电池组件在遮光、电流失配等其他不利因素发生时,还能保持其能工作,适当降低损失。接线盒的作用一是增强组件的安全性能,二密封组件电流输出部分(引线部分)三使组件使用更便捷、可靠。 一般接线盒由盒盖、盒体、接线端子、二极管、连接线、连接器几大部分组成。外壳要具有强烈的抗老化、耐紫外线能力;符合室外恶劣环境条件下的使用要求;自锁功能使连接方式更加便捷、牢固;必须应有防水密封设计、科学的防触电绝缘保护,具有更好的安全性能;接线端子安装要牢固,与汇流带有良好的焊接性。 二极管分为:旁路二极管和防反冲二极管。二极管的主要功能是单向导通功能。旁路二极管主要作用是防止组件的热斑效应。在太阳能电池板正常工作时旁路二极管不会起到作用,但当遇到热斑效应时,旁路二极管会自动越过该串电池串并与其它电池串相连继续工作。现在我们所使用的旁路二极管主要的作用也就是防止电池片烧掉。防反冲二极管主要作用是组件在没有光照时防止蓄电池电流倒流。连接器、连接线要具有良好的绝缘性能,公母插头带有自锁功能是太阳能电池板与电气连接更便捷可靠。 1.1.1接线盒的基本应用 目前市场上主流接线盒品种较多,样式各异,按照与汇流条的连接方式可分为卡接式与焊接式;二者除了与汇流条的连接方式不同外,其结构基本是一致的。 常规型的接线盒基本由以下几部分构成:底座、导电块、二极管、卡接口/焊接点、密封圈、盒盖、后罩及配件、连接器、电缆线等,如图1所示:

一个简单的接线盒所需要的材料就达十多种,原材料的性能及使用寿命关乎着接线盒本身的质量,所以接线盒的材料一直受到厂商及组件厂使用者的倍加关注,表1简单的例举了接线盒原材料的材质: 接线盒在太阳能电池组件中的作用简单的来讲可以概括为两点:a)连接和传输功能,b)保护组件;它是一门集电气设计、机械设计和材料科学相结合的跨领域的综合性设计。 太阳能电池组件是通过太阳能电池进行光电转换的,而单个组件发出的电想传输到充电、控制系统中去,必须要通过接线盒进行传输;而且接线盒还是整个太阳能方阵的"纽带",将许多组件串联在一起形成一个发电的整体,所以接线盒在太阳能应用中的作用是不容忽视的。 接线盒还有一个更重要的作用就是保护组件;当阵列中的组件受到乌云、树枝、鸟粪等其它遮挡物而发生热斑时,旁路在组件中的二极管,利用自身的单向导电性能,将问题电池、电池串旁路掉,保护整个组件乃至整个阵列,确保能使其保持在必要的工作状态,减少不必要的损失。 最理想的组件应是每片电池都应旁路一个二极管,这样才能保证组件的绝对安全,但是出于成本以及工艺角度,目前为止大家采用是一串电池旁路一个二极管,这样做是一种简单有效的办法。 1.1.2接线盒的性能 3.1接线盒性能要求及选型 由于接线盒对于组件的重要性,选择一个合适的接线盒显得尤为重要;对于一个优秀的太阳能电池组件用接线盒必须要具备以下几点性能要求: a)满足于室外恶劣环境条件下的使用要求; b)外壳有强烈的抗老化、耐紫外线能力; c)优秀的散热模式和合理的内腔容积来有效降低内部温度,以满足电气安全要求; d)良好的防水、防尘保护为用户提供安全的连接方案; e)较低的体电阻,以尽可能的减小接线盒带来的功率损耗; 具体的使用要求或指标简单的概括如下所示,表2列出了部分接线盒的性能指标,图2是接线盒测试部件拉力示意图:

太阳能光伏组件常见重大质量问题解析

太阳能光伏组件常见重大质量问题解析 网状隐裂原因 1.电池片在焊接或搬运过程中受外力造成. 2.电池片在低温下没有经过预热在短时间内突然受到高 温后出现膨胀造成隐裂现象 组件影响: 1.网状隐裂会影响组件功率衰减. 2.网状隐裂长时间出现碎片,出现热斑等直接影响组件性能 预防措施: 1.在生产过程中避免电池片过于受到外力碰撞. 2.在焊接过程中电池片要提前保温(手焊)烙铁温度要 符合要求. 3.EL测试要严格要求检验. 网状隐裂 EVA脱层原因 1.交联度不合格.(如层压机温度低,层压时间短等)造成 2.EVA、玻璃、背板等原材料表面有异物造成. 3.EVA原材料成分(例如乙烯和醋酸乙烯)不均导致不能在正常温度下溶解造成脱层 4. 助焊剂用量过多,在外界长时间遇到高温出现延主栅线脱层 组件影响: 1.脱层面积较小时影响组件大功率失效。当脱层面积较大时直接导致组件失效报废 预防措施:

2.加强原材料供应商的改善及原材检验. 3. 加强制程过程中成品外观检验 4.严格控制助焊剂用量,尽量不超过主栅线两侧0.3mm 硅胶不良导致分层&电池片交叉隐裂纹原因 1.交联度不合格.(如层压机温度低,层压时间短等)造成 2.EVA、玻璃、背板等原材料表面有异物造成. 3.边框打胶有缝隙,雨水进入缝隙内后组件长时间工作中发热导致组件边缘脱层 4.电池片或组件受外力造成隐裂 组件影响: 1.分层会导致组件内部进水使组件内部短路造成组件报废 2.交叉隐裂会造成纹碎片使电池失效,组件功率衰减直接影响组件性能 预防措施: 1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验。 2.加强原材料供应商的改善及原材检验. 3. 加强制程过程中成品外观检验 4.总装打胶严格要求操作手法,硅胶需要完全密封 5. 抬放组件时避免受外力碰撞 硅胶不电池交

2015年太阳能光伏产业定制报告(竞争对手分析)

2015年太阳能光伏产业定制报告 目录 第一章:中国光伏发电产业现状分析 第一节:中国光伏发电产业定义与产业链 一、光伏发电产业定义 二、光伏发电产业链及结构 第二节中国光伏发电产业政策环境分析 一、光伏发电产业主要国家政策 二、光伏发电产业主要地方政策 三、光伏发电产业相关发展规划 第三节:中国光伏发电产业市场现状分析 一、中国光伏发电产业整体运行情况 1、中国光伏发电产业装机容量 2、中国光伏发电装机地区分布 二、中国光伏发电产业竞争情况分析 三、中国光伏发电产业营销策略分析 四、中国光伏发电产业发展前景及趋势预测第二章:中国光伏逆变器市场发展分析 第一节:中国光伏逆变器行业政策环境分析 一、光伏逆变器行业相关政策法规 1、光伏逆变器行业主要国家政策 2、光伏逆变器行业主要地方政策 二、光伏逆变器行业相关规划分析 第二节:中国光伏逆变器行业发展现状分析 一、中国光伏逆变器行业供需现状 二、中国光伏逆变器行业市场规模 三、中国光伏逆变器行业市场区域分布 四、中国光伏逆变器价格走势分析 五、中国光伏逆变器主要指标监测分析 第三节:中国光伏逆变器行业五力竞争分析 一、光伏逆变器行业新进入者威胁 二、光伏逆变器行业替代品威胁 三、光伏逆变器行业供应商议价能力 四、光伏逆变器行业客户议价能力 五、光伏逆变器行业竞争现状分析 第四节:中国光伏逆变器行业发展前景及趋势预测 一、2015年主要光伏展会及论坛汇总 1、2015年中国主要光伏展会汇总 2、2015年中国主要光伏论坛汇总 二、中国光伏逆变器行业发展前景分析 三、中国光伏逆变器行业发展趋势预测

第三章:光伏发电行业领先企业经营形势分析 第一节:光伏投资商经营形势分析 (注:项目运营包括如下:项目名称、地点、规模、投资额度、并网时间、上网电价等) 一、中国民生投资股份有限公司 1、企业基本信息 (1)企业发展概况 (2)企业组织结构 (3)人员结构/构成 2、企业主营业务分析 3、企业经营状况分析 (1)企业市场策略分析 (2)企业业绩分布情况 (3)企业各项成本分析 4、企业光伏电站市场份额 5、企业光伏电站项目运营 (1)光伏电站现有项目汇总 (2)光伏电站储备项目汇总 (3)光伏电站区域分布情况 6、企业竞争力分析 (1)企业优势分析 (2)企业劣势分析 (3)企业发展潜力 7、企业最新动向分析 8、企业发展规划分析 二、江苏振发新能源科技发展有限公司 1、企业基本信息 (1)企业发展概况 (2)企业组织结构 (3)人员结构/构成 2、企业主营业务分析 3、企业经营状况分析 (1)企业市场策略分析 (2)企业业绩分布情况 (3)企业各项成本分析 4、企业光伏电站市场份额 5、企业光伏电站项目运营 (1)光伏电站现有项目汇总 (2)光伏电站储备项目汇总 (3)光伏电站区域分布情况 6、企业竞争力分析 (1)企业优势分析 (2)企业劣势分析 (3)企业发展潜力 7、企业最新动向分析

(参考资料)光伏接线盒全面解析

光伏接线盒全面解析 前言 在光伏发电系统中,如果光伏接线盒选取不当,可使电池板烧毁甚至整个光伏系统崩溃。俗话说得好,“切莫因小失大”。 作为太阳能电池组件的一种连接器,光伏接线盒主要的作用就是将太阳能电池模块产生的电能经电缆导出。由于太阳能电池使用场合的特殊性和其本身的昂贵价值,光伏接线盒必须经过特殊设计才能满足太阳能电池组件的使用要求。 一、功能 光伏接线盒主要具有两种功能:基本功能为连接光伏组件和负载,将组件产生的电流引出并产生功率。附加功能为保护组件引出线,防止热斑效应。 1.1连接 接线盒作为连接器,起到连接太阳能组件与逆变器等控制装置的桥梁作用。接线盒内部通过接线端子和连接器将太阳能组件产生的电流引出并导入到用电设备中。 为了尽量减小接线盒对组件功率的损耗,接线盒所用的导电材料要求电阻小,和汇流带引出线的接触电阻要小。 1.2保护 接线盒的保护作用包括三部分,一是通过旁路二极管防止热斑效应,保护电池片及组件;二是通过特殊材料密封设计防水防火;三是通过特殊的散热设计降低接线盒的工作温度,减小旁路二极管的温度,进而降低其漏电流对组件功率的损耗。 二、性质 2.1耐候性 耐候性是指:材料如涂料、塑料、橡胶制品等,应用于室外经受气候的考验,如光照、冷热、风雨、细菌等造成的综合破坏,其耐受能力叫耐候性。 接线盒暴露在环境中的部分为盒体、盒盖及连接器(PC),它们都是由耐候性强的材料制作,目前最常用的材料为PPO(聚苯醚),它是世界五大通用工程塑料之一。具有刚性大、耐热性高、难燃、强度较高、电性能优良等优点。另外,聚本醚还具有耐磨、无毒、耐污染等优点。PPO的介电常数和介电损耗在工程塑料中是最小的品种之一,几乎不受温度、湿度的影响,可用于低、中、高频电场领域。PPO的负荷变形温度可达 190℃以上,脆化温度为-170℃。 2.1.1耐高温高湿 组件的工作环境非常恶劣,有的工作在热带地区,日平均温度非常高;有的工作温度非常低,如高海拔地区、高纬度地区;有的昼夜温差非常大,如沙漠地区。因此要求接线盒要有优良的耐高温,耐低温性能。 耐候性测试如下表所示:

太阳能光伏发电系统施工

第7章太阳能光伏发电系统施工 太阳能光伏发电系统的安装包括太阳电池阵列的安装、电气设备的安装、配线以及接地等。太阳电池阵列的安装方法根据安装的地点(如灯柱上、地上、屋顶等)以及不同的太阳电池组件而有不同的安装方法。本章主要介绍典型的太阳能光伏发电系统的施工、维护过程。 7.1光伏发电系统去装碓各 7.1.1机房条件要求 开工前必须按设计对机房建筑提出的工艺要求及有关情况进行检查,具备下列条件方可开工: ①与机房有关的土建应竣工,具备安装条件; ②预留洞孔,走线地槽,预埋穿线管应符合设计要求; ③安装太阳电池方阵的水泥基础的方位排列应符合设计要求; ④在太阳电池方阵的采光方向上应无遮挡物。 7.1.2设备器材检验要求 ①开工前应对到达施工现场的设备和材料进行数量清点和外观检査;易碎物品要用木箱装运,以免损坏,蓄电池不能倾倒,防止电解液溢出(密封蓄电池除外)。 ②设备、材料的规格程式应符合设计要求,不得在工程中使用未经鉴定和不合格的设备、器材。 ③对设备进行开箱检查,其合格证、说明书、检测记录、附件、备件等均应齐全。 ④按设备要求检查太阳电池组件的型号、规格、数量和完好程度,应无漏气、漏水、裂缝等损坏现象 ⑤如发现设备、器材有受潮或破损等现象,应由施工单位会同建筑单位、订货单位检査测量并做好记录,确有问题时,应由建设单位及时解决。 7.1.3安全准备

(1)安装人员为确保自身安全以及防止二次事故,在作业前应做好相应的安全准备,在安装时必须穿适当的防护服装。 ①戴安全帽 ②系安全带(为防止坠落,必须使用)。 ③系安全防护鞋或轻便运动鞋(有防滑效果) ④携带工具袋(防止工具和工程零件掉落) (2)安装人员出发前应尽可能全面了解施工现场环境条件(包括:气候条件、海拔高度、施工期间预计天气状况、准确位置及到达路线、交通状况、当地居民概况、联系人员及方式等),拟订总体工作思路,带齐所有必备的工具及安装材料。 7.2太阳电池方阵基座 基座是指安装固定方阵机架的基础底座,安装在地面或屋顶上面的方阵一般建水泥基座,在旷野或山头上一般采用立若干根电杆上架设设备平台和方阵机架平台,该平台一般采用钢型材焊接的框架。 7.2.1地面混凝土基座 ①混凝土基座离地面髙度、基座强度和水平度偏差应符合设计规定,基座的水平偏差不应大于3mm/m。 ②地脚螺栓的规格、埋设尺寸应符合设计规定,外漏长度不应小于6cm。 ③用水泥埋设的地脚螺栓必须养护五天以上方可安装机架。 7.2.2水泥杆架空式基座 ①水泥杆架空方式,方位应符合施工图规定 ②水泥杆和拉线、地锚的规格程式应符合设计规定。 ③方阵平台和设备平台的方位和尺寸、承重量和两者的间距应符合设计规定,平台的水平偏差不应大于3mm/m。

光伏接线盒的细节

光伏接线盒的细节 光伏接线盒应用在光伏组件太阳电池板背面的背板上,通过内部的端子与组件汇流条连接将电池组件产生的电能输出到外部系统中,外部再经过电线线路,控制器,逆变器,蓄电池等元器件将电能输出到用户或储存再使用。接线盒在应用中的一些细节如下: 1.盒体选材:常用PPO它具有刚性大、耐热性高、难燃、强度较高电性能优良等优点。另外,聚苯醚还具有耐磨、无毒、耐污染、耐候性好等优点。PPO的介电常数和介电损耗在工程塑料中是最小的品种之一,几乎不受温度、湿度的影响,可用于低、中、高频电场领域。当然在使用时要求不能掺杂回收料,否则其性能依然会打折扣。 2. 密封圈选材:硅胶,其最突出性能是: a.耐温特性好产品的热稳定性高,高温下(或辐射照射)分子的化学键

不断裂、不分解。硅胶不但可耐高温,而且也耐低温,可在一个很宽的温度范围内使用。无论是化学性能还是物理机械性能,随温度的变化都很小。 b.耐候性好自然环境下的使用寿命可达几十年。 c.电气绝缘性能好,硅胶是一种稳定的电绝缘材料,被广泛应用于电子、电气工业上,除了具有优良的耐热性外,还具有优异的拒水性,这是电气设备在湿态条件下使用具有高可靠性的保障。 3. 端子选材红铜(紫铜)表面电镀处理。紫铜,铜+银 CuAg:≥99.90 %具有良好的导电、导热性能。

4.二极管选择:国内二极管(价格相对比较便宜)与进口二极管(Diotec二极管,比同类产品具有更好的电性表现,特别在大电流,高电压方面,独具 优势,价格相对较高)。

4.二极管与金属端子多点大面积接触,便于散热,二极管长期稳定工作。 二极管与端子大面积接触 5.3M背胶应用,在接线盒与背板粘接硅胶未凝固前起固定定位作用,方便作业操作。 3M背胶(使用时揭掉贴膜)

太阳能光伏组件生产制造实用技术教程

太阳能光伏组件生产制造实用技术教程第1章太阳能光伏发电及光伏组件 1.1 太阳能光伏发电概述 1.2 太阳能光伏发电系统的构成及工作原理 1.3 太阳能光伏组件与方阵 第2章太阳能光伏组件的主要原材料及部件 2.1 太阳能电池片 2.2 面板玻璃 2.3 EVA胶膜 2.4 背板材料TPT 2.5 铝合金边框 2.6 互连条及助焊剂 2.7 有机硅胶 2.8 接线盒及连接器 2.9 原材料的检验标准及方法 第3章太阳能光伏组件生产工序及工艺流程 第4章电池片的分选、检测和切割工序 第5章电池片的焊接工序 第6章叠层铺设工序

第7章层压工序 第8章装边框及清洗工序 第9章光伏组件的检验测试 第10章光伏组件的包装 第11章常用设备及操作、维护要点 第12章光伏组件的生产管理 12.1 光伏组件生产常用图表及技术文件12.2 光伏组件的板型设计 12.3 光伏组件生产的6S管理 12.4 光伏组件生产车间管理制度 12.5 光伏组件生产工序布局 附录1 常用光伏组件规格尺寸及技术参数附录2 IEC61215质量检测标准 附录3 …………

第1章太阳能光伏发电及光伏组件 本章主要介绍太阳能光伏发电系统的特点、构成、工作原理及分类。使读者对太阳能光伏发电系统有一个大致的了解。 1.1 太阳能光伏发电概述 1.1.1 太阳能光伏发电简介 太阳能光伏发电的基本原理是利用太阳能电池(一种类似于晶体二极管的半导体器件)的光生伏打效应直接把太阳的辐射能转变为电能的一种发电方式,太阳能光伏发电的能量转换器就是太阳能电池,也叫光伏电池。当太阳光照射到由P、N型两种不同导电类型的同质半导体材料构成的太阳能电池上时,其中一部分光线被反射,一部分光线被吸收,还有一部分光线透过电池片。被吸收的光能激发被束缚 图1-1 太阳能光伏电池发电原理 的高能级状态下的电子,产生电子—空穴对,在p-n结的内建电场作用下,电子、空穴相互运动 (如图1-1) ,n区的空穴向p区运动,p 区的电子向n区运动,使太阳电池的受光面有大量负电荷(电子)积累,而在电池的背光面有大量正电荷(空穴)积累。若在电池两端接上

光伏接线盒知识大全

光伏接线盒*概述 光伏接线盒是介于太阳能电池组件构成的太阳能电池方阵和太阳能充电控制装置之间的连接器,其主要作用是连接和保护太阳能光伏组件,将太阳能电池产生的电力与外部线路连接,传导光伏组件所产生的电流。接线盒应和接线系统组成一个封闭的空间,接线盒为导线及其连接提供抗环境影响的保护,为带电部件提供可接触性的保护,为与之相连的接线系统减缓拉力。 光伏组件接线盒的光伏组件接线盒作为太阳能电池组件的一个重要的部件,是一门集电气设计、机械设计与材料科学相结合的跨领域的综合性设计产品。目前,中国组件产品很多都存在隐患,而其中很大一部分组件质量问题来自于接线盒自身的设计和品质。 光伏接线盒*技术指标 (以160-185W组件接线盒为主) 额定电流:16A 额定电压:DC 1000V 使用温度:-40℃~+85℃ 安全等级:calss Ⅱ 防水等级:IP65 连接线规格:4平米电缆; 电缆尺寸: 90MM长; 原材料:美国GE或其它的PPO材料,具有抗紫外线的能力; 光伏接线盒*产品特性 (一)外壳有强烈的抗老化、耐紫外线能力; (二)符合于室外恶劣环境条件下的使用要求; (三)优秀的散热模式和合理的内腔容积来有效降低内部温度,以满足电气安全要求; (四)良好的防水、防尘保护、防触电保护,为用户提供安全的连接方案。 (五)自锁功能使连接方式更加便捷、牢固 光伏接线盒*功能特点 光伏接线盒的功率是在标准条件:温度25度,AM1.5, 1000W/M2下测试出来的。一般用WP表示,也可以用W表示。在这个标准下测试出来的功率称为标称功率。 1.外壳采用进口高级原料生产,具有极高的抗老化,耐紫外线能力;

光伏接线盒介绍

太阳能光伏接线盒简介 太阳能光伏接线盒,英文名字为:PV JUNCTION BOX ,是安装在光伏组件背面的一个防水接线盒,通过它可以十分方便地与外电路连接。附图如下: 光伏接线盒

组成连接系统 太阳能光伏接线盒其实就是直流汇线盒,在一个太阳能组件中,把单个电池串联起来,以获得更高的电压。如下图为内部电路结构:

加装二极管的作用主要是:防止反向充电损坏光电池;防止一个光电池断路整个光电池组都无法使用 举例200W左右的光伏接线盒一般技术指标: ●外壳有强烈的抗老化,耐紫外线能力(一般为GE公司专用的PPO材料); ●符合于室外恶劣环境条件下的使用; ●根据需要可以任意内置2~6个接线端子; ●所有的连接方式采用插入式连接 主要技术规格: ●最大工作电流16A ●最大耐压1000V ●使用温度-40~90℃ ●最大工作湿度5%~95%(无凝结) ●防水等级IP65 ●连接线规格4mm 需要符合的标准和认证: 国外的著名品牌,如瑞士的MC,德国的Tyco,日本的Yukita等。 在光伏组件认证领域,德国莱茵TüV具有着很高的知名度和认可度。为了避免重复测试以及为客户节省认证费用,对于光伏组件中所应用到的光伏零部件,德国莱茵TüV可以为其出具相关的认证证书。对于光伏零部件厂商而言,在取得德国莱茵TüV颁发的认证证书之后,其产品可以被多个组件厂家所采用而不用增加额外的测试;对于光伏组件厂商而言,选用德国莱茵TüV认证过的光伏零部件,可以节省其认证费用,同时降低认证中可能的失败风险。 PV电线电缆认证要求: 1、德国– VDE Mark, Germany Baurat Mark 1)电线电缆,DKE/AK 411.2.3 Leitungen für PV-Systeme ; 2)连接器, DIN V VDE V 0126-3 Connector for photovoltaic systems – Safety requirements and tests; 3)接线盒, DIN V VDE V 0126-5 Junction boxes for photovoltaic modules; 2、美国– UL Mark 1) 电线电缆,UL 4703 Outline for Photovoltaic Wire; 2) 控制器及连接设备,UL 1471 Inverters, Converters, Controllers and Interconnection System Equipment for Use With Distributed Energy Resources;

太阳能光伏组件常见重大质量问题汇总

太阳能光伏组件常见重大质量问题汇总解析网状隐裂原因 1.电池片在焊接或搬运过程中受外力造成. 2.电池片在低温下没有经过预热在短时间内突然受到高 温后出现膨胀造成隐裂现象 组件影响: 1.网状隐裂会影响组件功率衰减. 2.网状隐裂长时间出现碎片,出现热斑等直接影响组件性能 预防措施: 1.在生产过程中避免电池片过于受到外力碰撞. 2.在焊接过程中电池片要提前保温(手焊)烙铁温度要 符合要求. 3.EL测试要严格要求检验. 网状隐裂 EVA脱层原因

1.交联度不合格.(如层压机温度低,层压时间短等)造成 2.EVA、玻璃、背板等原材料表面有异物造成. 3.EVA原材料成分(例如乙烯和醋酸乙烯)不均导致不能在正常温度下溶解造成脱层 4. 助焊剂用量过多,在外界长时间遇到高温出现延主栅线脱层 组件影响: 1.脱层面积较小时影响组件大功率失效。当脱层面积较大时直接导致组件失效报废 预防措施: 1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验,并将交联度控制在85%±5%内。 2.加强原材料供应商的改善及原材检验. 3. 加强制程过程中成品外观检验 4.严格控制助焊剂用量,尽量不超过主栅线两侧0.3mm

硅胶不良导致分层&电池片交叉隐裂纹原因 1.交联度不合格.(如层压机温度低,层压时间短等)造成 2.EVA、玻璃、背板等原材料表面有异物造成. 3.边框打胶有缝隙,雨水进入缝隙内后组件长时间工作中发热导致组件边缘脱层 4.电池片或组件受外力造成隐裂 组件影响: 1.分层会导致组件内部进水使组件内部短路造成组件报废 2.交叉隐裂会造成纹碎片使电池失效,组件功率衰减直接影响组件性能 预防措施: 1.严格控制层压机温度、时间等重要参数并定期按照要求做交联度实验。 2.加强原材料供应商的改善及原材检验.

太阳能光伏组件产品及原材料检测实验室建设方案

太阳能光伏组件产品及原材料检测实验室建设方案 一:实验室定位 实验室定位于能对组件各种原材料与成品做比较全面的测试,可能较大程度上影响到组件电性能、使用寿命和可靠性等指标的原材料特性、成品特性作为检测的重点。 根据以上的定位,结合我司目前已有的检测设备、仪器,下表列出实验室预期的测试项目。 名称测试项目 电池片电性能、减反膜附着力、户外暴晒、温湿影响、紫外老化、隐裂检测涂锡带层间剥离强度、可焊性、温湿影响、电阻率、拉伸强度、硬度 EVA交联度、剥离强度、收缩性、温湿影响、透光率、紫外老化 背板剥离强度、热稳定性、抗划伤、盐雾腐蚀、透湿性、功率增益性 玻璃透光率、盐雾腐蚀、机械载荷、落球冲击 铝框抗划伤、机械载荷 接线盒 端子拉力、发热可靠性、二极管正向漏电流/反向耐压、落球冲击、盐雾腐蚀、IP65 组件 电性能、绝缘耐压、户外暴晒、紫外老化、盐雾腐蚀、湿漏电流、机械载荷、电流过载、热斑效应、额定工作温度(NOCT) 二:实验室的职责 对组件来料进行检测并提供结果予IQC,包括常规来料检测及新材料评估。 对组件半成品进行抽检,及时发现异常并通知IPQC、技术部。 对组件成品进行抽测,确保组件的品质与可靠性。 尽量丰富测试手段与提高测试水平,对组件进行研发性测试。 三:实验室人员 工程师:2名,负责实验室日常管理、实验测试评估、人员培训等,以及创新实验。 技术员:1名,负责实验室测试操作、数据记录分析、设备维护、校准、计量等。 测试员:6名,负责实验室测试操作、数据记录、设备维护等。 四:实验室规划

实验室应能从电学、热学、光学、力学、化学五方面进行一定测试项目。以下按实验室功能区域划分进行简单说明: 物理测试区:微电阻测试、稳压直流测试、红外成像检测(热斑测试)、剥离强度测试、收缩率测试等; 力学测试区:机械载荷测试、落球冲击测试; 可靠性试验区:紫外老化测试、盐雾腐蚀/喷淋测试、湿冻测试、湿热测试、热循环测试; 安全测试区:绝缘耐压测试、湿漏电流测试; 化学测试区:简单的化学试剂检测; 交联度测试区:EVA交联度测试; 样品放置区:待测样品与已测样品分区存放; 办公区:处理实验数据、日常办公。 具体放置的测试仪器和尺寸图略 五:实验室预算 仪器及费用如下表: 序号仪器、设 备 需适用对象 测试项 目 购买/自制 费用 1 机械载 荷实验装置 1 套 组件成品 机械载 荷测试 自制约1500元 2 落球冲 击试验机 1 套 组件成 品、玻璃、接 线盒 冲击测 试 自制约1300元 3 滑动变 阻器 2 台 组件成 品、接线盒 电性能 测试 购买约200元 4 EVA交联 度测试装置 1 套 EVA 交联度 测试 购买1,800元 5 微电阻 测试仪 1 台 涂锡带、 接线盒端子、 电缆 电阻率 测试 购买4,500元 6 盐水喷 雾试验机 1 台 小组件、 接线盒、背板、 铝型材 盐雾腐 蚀测试、喷淋 测试 购买9,000元

相关文档
最新文档