物理学案专题3-机械能 机械能守恒 功能关系 能量守恒定律 2018

物理学案专题3-机械能 机械能守恒 功能关系 能量守恒定律 2018
物理学案专题3-机械能 机械能守恒 功能关系 能量守恒定律 2018

物理学案专题3-机械能 机械能守恒 功能关系 能量守恒定律

一、基本概念

1. 重力势能:物体由于被举高而具有的能,叫做重力势能。 公式:mgh E P

=

h ——物体具参考面的竖直高度 2. 重力势能参考面

a 重力势能为零的平面称为参考面;

b 选取:原则是任意选取,但通常以地面为参考面

选取不同的参考面,物体具有的重力势能不同,但重力势能改变与参考面的选取无关。 3. 重力做功与重力势能的关系:21P P G

E E W -=

重力做正功时,物体重力势能减少;重力做负功时,物体重力势能增加。

4. 弹簧的弹性势能:22

1kx E P

=

5. 弹力做功与弹性势能的关系:21P P F

E E W -=

6. 势能:相互作用的物体凭借其位置而具有的能量叫势能,势能是系统所共有的。

7. 机械能包含动能和势能(重力势能和弹性势能)两部分,即P K E E E

+=。

8. 机械能守恒定律:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变,即 21

E E =

2211P K P K E E E E +=+

ΔΕK = —ΔΕP ΔΕ1 = —ΔΕ2。 9. 机械能守恒条件:

做功角度:只有重力或弹力做功,无其它力做功; 外力不做功或外力做功的代数和为零; 系统内如摩擦阻力对系统不做功。

能量角度:首先只有动能和势能之间能量转化,无其它形式能量转化;只有系统内能量的交换,没有与外界的能量交换。

10. 能量守恒定律:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变, 即

1212E E E E +=+其它其它机械能机械能。

二、常规题型

只有重力做功,机械能守恒,能量在重力势能和动能之间转变。

例1:在高处的同一点,将三个质量相同的小球,以大小相等的初速度分别上抛、平抛和下抛,并落到同一水平地面上,则( ) A .三个小球落地时,重力的瞬时功率相同

B .从抛出到落地的过程中,重力对它们做功的平均功率相同

C .从抛出到落地的过程中,重力对它们做的功相同

D .三个小球落地时的速率相等 即时练习:

1. 下列关于机械能守恒的说法中正确的是( )

A .做匀速运动的物体,其机械能一定守恒

B .做匀加速运动的物体,其机械能一定守恒

C .做匀速圆周运动的物体,其机械能一定守恒

D .除重力做功外,其他力没有做功,物体的机械能一定守恒

2. 一质量为m 的物体,以1

3g 的加速度减速上升h 高度,g 为重力加速度,不计空气阻力,则( )

A. 物体的机械能守

B. 物体的动能减小13mgh

C. 物体的机械能减少2

3

mgh

D. 物体的重力势能减少mgh

3.一个高尔夫球静止于平坦的地面上,在t =0时球被击出,飞行中球的速率与时间的关系如图5-3-20所示.若不计空气阻力的影响,根据图象提供的信息可以求出

图5-3-20

A .高尔夫球在何时落地

B .高尔夫球可上升的最大高度

C .人击球时对高尔夫球做的功

D .高尔夫球落地时离击球点的距离

4. 小明和小强在操场上一起踢足球,足球质量为m.如图5-3-16所示,小明将足球以速度v 从地面上的A 点踢起,当足球到达离地面高度为h 的B 点位置时,取B 处为零势能参考面,不计空气阻力.则下列说法中正确的是

图5-3-16

A .小明对足球做的功等于12

mv 2+mgh B .小明对足球做的功等于mgh

C .足球在A 点处的机械能为12mv 2

D .足球在B 点处的动能为12

mv 2-mgh

5.如图,两个质量相同的小球A 、B 分别用不计质量的细线悬在等高的O 1、O 2点,A 球的悬线比B 球的长。把两球的悬线分别拉至水平后无初速度释放,则经过最低点时( )

A. A 球的机械能等于B 球的机械能

B. A 球的速度等于B 球的速度

C. A 球的向心加速度等于B 球的向心加速度

D. A 球的动能等于B 球的动能

6.(2010·安徽理综)伽利略曾设计如图5-3-14所示的一个实验,将摆球拉至M 点放开,摆球会达到同一水平高度上的N 点.如果在E 或F 处钉上钉子,摆球将沿不同的圆弧达到同一高度的对应点;反过来,如果让摆球从这些点下落,它同样会达到原水平高度上的M 点.这个实验可以说明,物体由静止开始沿不同倾角的光滑斜面(或弧线)下滑时,其末速度的大小

图5-3-14

A .只与斜面的倾角有关

B .只与斜面的长度有关

C .只与下滑的高度有关

D .只与物体的质量有关

图5-3-23

弹力做正功弹性势能减小,弹簧做负功弹性势能增加,如果整个过程只有弹力或弹力和重力做功,系统机械能将保持不变。 例2 .如图所示,一个轻质弹簧一端固定在粗糙的斜面底端,弹簧轴线与斜面平行,小滑块A 从斜面的某一高度由静止开始沿斜面向下运动一段距离后与弹簧接触,直到把弹簧压缩到最短.在此过程中下列说法正确的是( )

A. 滑块先做匀加速运动后做匀减速运动

B. 滑块先做匀加速运动,接触弹簧后再做匀加速运动最后做变减速运动

C. 滑块重力做功等于内能与弹性势能的增加量

D. 滑块重力势能减少量与内能增加量之和等于弹性势能增加量 即时练习:

图5-3-15

1. 如图5-3-15所示,一质量为m 的小球固定于轻质弹簧的一端,弹簧的另一端固定于O 点处,将小球拉至A 处,弹簧恰好无形变,由静止释放小球,它运动到O 点正下方B 点的速度为v ,与A 点的竖直高度差为h ,则

A .由A 到

B 重力做功为mgh B .由A 到B 重力势能减少12

mv 2

C .由A 到B 小球克服弹力做功为mgh

D .小球到达位置B 时弹簧的弹性势能为?

??

?mgh -12

mv 2

2. 如图5-3-23所示,在倾角为30°的光滑斜面上,有一劲度系数为k 的轻质弹簧,其一端固定在固定挡板C 上,另一端连接一质量为m 的物体A.有一细绳通过定滑轮,细绳的一端系在物体A 上(细绳与斜面平行),另一端系有一细绳套,物体A 处于静止状态.当在细绳套上轻轻挂上一个质量为m 的物体B 后,物体A 将沿斜面向上运动,试求: (1)未挂物体B 时,弹簧的形变量; (2)物体A 的最大速度值.

图5-3-17

3.来自福建省体操队的运动员黄珊汕是第一次在奥运会上获得蹦床奖牌的中国选手.蹦床是一项好看又惊险的运动,如图5-3-17所示为运动员在蹦床运动中完成某个动作的示意图,图中虚线PQ是弹性蹦床的原始位置,A为运动员抵达的最高点,B为运动员刚抵达蹦床时的位置,C为运动员抵达的最低点.不考虑空气阻力和运动员与蹦床作用时的机械能损失,A、B、C三个位置运动员的速度分别是v A、v B、v C,机械能分别是E A、E B、E C,则它们的大小关系是

A.v A<v B,v B>v C B.v A>v B,v B<v C C.E A=E B,E B>E C D.E A>E B,E B=E C

4.如图5所示,跳水运动员最后踏板的过程可以简化为下述模型:运动员从高处落到处于自然状态的跳板(A位置)上,随跳板一同向下运动到最低点(B位置).对于运动员从开始与跳板接触到运动至最低点的过程,下列说法中正确的是

图5

A.运动员到达最低点时,其所受外力的合力为零 B.在这个过程中,运动员的动能一直在减小

C.在这个过程中,跳板的弹性势能一直在增加 D.在这个过程中,运动员所受重力对他做的功小于跳板的作用力对他做的功

5. (2011全国理综).一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离。假定空气阻力可忽略,运动员可视为质点,下列说法正确的是()

A. 运动员到达最低点前重力势能始终减小

B. 蹦极绳张紧后的下落过程中,弹性力做负功,弹性势能增加

C. 蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒

D. 蹦极过程中,重力势能的改变与重力势能零点的选取有关

机械能与内能的互相转化-摩擦力做功

例.如图5-测-4所示,物体以100 J的初动能从斜面底端向上运动,当它通过斜面某一点M时,其动能减小80 J,机械能减少32 J,如果物体能从斜面上返回底端,则物体在运动过程中的下列说法正确的是( )

图5-测-4

A.物体在M点的重力势能为-48 J B.物体自M点起重力势能再增加21 J到最高点

C.物体在整个过程中摩擦力做的功为-80 J D.物体返回底端时的动能为30 J

即时练习:

图5-测-11

1.如图5-测-11所示,质量为m的物体从倾角为θ的斜面上的A点以速度v0沿斜面上滑,由于μmg cosθ<mg sinθ,所以它滑到最高点后又滑下来,当它下滑到B点时,速度大小恰好也是v0,设物体与斜面间的动摩擦因数为μ,求AB间的距离.

2.水平传送带匀速运动,速度大小为v,现将一小工件放到传送带上.设工件初速度为零,当它在传送带上滑动一段距离后速度达到v 而与传送带保持相对静止.设工件质量为m,它与传送带间的动摩擦因数为μ,则在工件相对传送带滑动的过程中

A.滑动摩擦力对工件做的功为mv2/2 B.工件的机械能增量为mv2/2

C.工件相对于传送带滑动的路程大小为v2/(2μg) D.传送带对工件做功为零

3. 滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来。如图是滑板运动的轨道,BC和DE是两段光滑弧形轨道,BC段的圆心为O点,圆心角为60o,半径OC与水平轨道CD垂直。水平轨道CD段粗糙且长为8m。一运动员从轨道的A点以3m/s的速度水平滑出,在B点刚好沿轨道的切线方向滑入圆弧轨道BC,经CD轨道后冲上DE轨道,到达E点的速度减为零,然后返回。已知运动员与滑板的总质量为60kg,B、E两点距水平面CD的竖直高度分别为h和H。且h=2m,H=,g取10m/s2。求:

(1)运动员从A点运动到B点时的速度大小v B

(2)轨道CD段的动摩擦因数μ

(3)通过计算说明,第一次返回时,运动员能否回到B点。如能,请求出回到B点时的速度大小;如不能,则最后停在何处

图5-3-22

4.(2011·金考卷)(12分)如图5-3-22所示,光滑弧形轨道下端与水平传送带连接,轨道上的A点到传送带及传送带到地面的高度均为h=5 m.把一物体自A点由静止释放,物体与传送带之间的动摩擦因数μ=.先让传送带不转动,物体滑上传送带后,从右端B 点水平飞出,落在地面上的P点,B、P间的水平距离OP为x=2 m.然后让传送带沿顺时针方向转动,速度大小为v=5 m/s,取g=10 m/s2.求:

(1)传送带转动时,物体落在何处 (2)先后两种情况下,传送带对物体做功的比值.

(3)两种情况下,物体运动所用时间之差.

5. (2010·全国Ⅱ)(15分)如图5-4-18,MNP 为竖直面内一固定轨道,其圆弧段MN 与水平段NP 相切于N ,P 端固定一竖直挡板.M 相对于N 的高度为h ,NP 长度为s.一物块自M 端从静止开始沿轨道下滑,与挡板发生一次完全弹性碰撞(即碰撞过程无机械能损失)后停止在水平轨道上某处.若在MN 段的摩擦可忽略不计,物块与NP 段轨道间的动摩擦因数为μ,求物块停止的地方与N 点距离的可能值.

图5-4-18

6.(浙江卷,18)如图所示为一滑草场。某条滑道由上下两段高均为h ,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ。质量为m 的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计滑草车在两段滑道交接处的能量损失,sin37

=0.6cos37=0.8o

o ,)

。则( )。

A .动摩擦因数67μ

=

B .载人滑草车最大速度为27

gh

C .载人滑草车克服摩擦力做功为mgh

D .载人滑草车在下段滑道上的加速度大小为3

5

g 弹簧的作用:传递力和能量

例. 如图是检验某种防护罩承受冲击能力的装置,M 为半径R = m 、固定于竖直平面内的光滑半圆弧轨道,A 、B 分别是轨道的最低点和最高点;N 为防护罩,它是一个竖直固定的14圆弧,其半径r =4

5 5 m ,圆心位于B 点.在A 放置水平向左的弹簧枪,可向M

轨道发射速度不同的质量均为m = kg 的小钢珠,弹簧枪可将弹性势能完全转化为小钢珠的动能。假设某次发射的小钢珠沿轨道恰好能经过B 点,水平飞出后落到N 的某一点上,取g =10 m/s 2

.求:

(1)滑块与水平面间动摩擦因数μ (2)锁定时弹簧具有的弹性势能E p

(3)滑块停下时与挡板的距离

4. 如图13所示,一位质量m=65 kg参加”挑战极限运动”的业余选手,要越过一宽度为s=3 m的水沟,跃上高为h= m的平台,采用的方法是:人手握一根长L= m的轻质弹性杆一端.从A点由静止开始匀加速助跑,至B点时,杆另一端抵在O点的阻挡物上,接着杆发生形变.同时人蹬地后被弹起,到达最高点时杆处于竖直,人的重心恰位于杆的顶端,此刻人放开杆水平飞出,最终趴落到平台上,运动过程中空气阻力可忽略不计.(g取10 m/s2)

图13

(1)设人到达B点时速度v B=8 m/s,人匀加速运动的加速度a=2 m/s2,求助跑距离S AB.

(2)设人跑动过程中重心离地高度H= m,在(1)、(2)问的条件下,在B点人蹬地弹起瞬间,人至少再做多少功

5.(全国新课标II卷,21)如图,小球套在光滑的竖直杆上,轻弹簧一端固定于O点,另一端与小球相连.现将小球从M点由静止释

放,它在下降的过程中经过了N点,已知在M、N两点处,弹簧对小球的弹力大小相等.且

π

2

ONM OMN

∠<∠<,在小球从M点运

动到N点的过程中()

A.弹力对小球先做正功后做负功 B.有两个时刻小球的加速度等于重力加速度

C.弹簧长度最短时,弹力对小球做功的功率为零 D.小球到达N点时的动能等于其在M、N两点的重力势能差

板块运动模型(动能定理+功能关系)

例.如图所示,长木板A放在光滑的水平地面上,物体B以水平速度冲上A后,由于摩擦力作用,最后停止在木板A上,则从B冲到木板A上到相对木板A静止的过程中,下述说法中正确的是()

A. 物体B动能的减少量等于系统损失的机械能

B. 物体B克服摩擦力做的功等于系统内能的增加量

C. 物体B损失的机械能等于木板A获得的动能与系统损失的机械能之和

D. 摩擦力对物体B做的功和对木板A做的功的总和等于系统内能的增加量

即时练习:

1.如图所示,质量为M=5kg的木板禁止在光滑的水平面上,木板上端有一质量为m=4kg的木块。一水平向左的恒力F=15N作用在木块上。已知木块与木板间动摩擦因数为μ=,求4s内摩擦力对物体做的功。(设最大静摩擦力等于滑动摩擦力,g取10m/s2)

2.一个木块静止于光滑水平面上,现有一颗水平飞来的子弹射入此木块并进入2 cm而相对于木块静止,同时木块被带动前移了1 cm。则子弹损失的动能、木块获得的动能、子弹和木块产生的热量之比为()

A. 3:2:1

B. 3:1:2

C. 2:1:3

D. 2:3:1

3. 如图所示,质量m1= kg 的小车静止在光滑的水平面上,车长L= m,现有质量m2= kg可视为质点的物块,以水平向右的速度v0=2 m/s 从左端滑上小车,最后在车面上某处与小车保持相对静止。物块与车面间的动摩擦因数 =,取g=10 m/s2,求

(1)物块在车面上滑行的时间t;

(2)要使物块不从小车右端滑出,物块滑上小车左端的速度v′0不超过多少。

4.如图所示,A为一具有光滑曲面的固定轨道,轨道底端是水平的,质量为M=40kg的小车B静止于轨道右侧,其板面与轨道底端靠近且在同一水平面上,一个质量为m=20kg,可视为质点的小滑块C以v1=s的初速度从轨道顶端滑下,C冲上小车B后,经过一段时间与小车相对静止并继续一起运动。若轨道顶端与低端水平面的高度差为h=,C与小车板面间的动摩擦因数为μ=,小车与水平面间的摩擦不计,g取10m/s2。求:

(1)C与小车保持相对静止时的速度大小

(2)C从冲上小车的瞬间到与小车保持相对静止瞬间所用的时间

(3)C冲上小车后与小车板面间产生的热量.

5.如图14所示,有一个可视为质点的质量为m=1 kg的小物块,从光滑平台上的A点以v0=2 m/s的初速度水平抛出,到达C点时,恰好沿C点的切线方向进入固定在水平地面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D点的质量为M=3 kg的长木板.已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑,小物块与长木板间的动摩擦因数μ=,圆弧轨道的半径为R

= m,C点和圆弧的圆心连线与竖直方向的夹角θ=60°,不计空气阻力,g取10 m/s2.求:

图14

(1)小物块刚要到达圆弧轨道末端D点时对轨道的压力;

(2)要使小物块不滑出长木板,木板的长度L至少多大

6.(2011广东)、(18分)如图20所示,以A、B和C、D为端点的两半圆形光滑轨道固定于竖直平面内,一滑板静止在光滑水平地面上,左端紧靠B点,上表面所在平面与两半圆分别相切于B、C。一物块被轻放在水平匀速运动的传送带上E点,运动到A时刚好与传送带速度相同,然后经A沿半圆轨道滑下,再经B滑上滑板。滑板运动到C时被牢固粘连。物块可视为质点,质量为m,滑板质量M=2m,两半圆半径均为R,板长l =,板右端到C的距离L在R<L<5R范围内取值。E距A为S=5R,物块与传送带、物块与滑板间的动摩擦因素均为μ=,重力加速度取g.

(1)求物块滑到B点的速度大小;

(2)试讨论物块从滑上滑板到离开滑板右端的过程中,克服摩擦力做的功W f与L的关系,并判断物块能否滑到CD轨道的中点。

g

圆周运动、机械能守恒:注意圆周运动最高点没有支持力的情况下需要最小速度R

例.如图5-3-19所示,一物体从光滑斜面AB底端A点以初速度v0上滑,沿斜面上升的最大高度为h.下列说法中正确的是(设下列情境中物体从A点上滑的初速度仍为v0)

图5-3-19

A.若把斜面CB部分截去,物体冲过C点后上升的最大高度仍为h

B.若把斜面AB变成曲面AEB,物体沿此曲面上升仍能到达B点

C.若把斜面弯成圆弧形D,物体仍沿圆弧升高h

D.若把斜面从C点以上部分弯成与C点相切的圆弧状,物体上升的最大高度有可能仍为h

即时练习:

1. 如图7所示,固定在地面上的半圆轨道直径ab水平,质点P从a点正上方高H处自由下落,经过轨道后从b点冲出竖直上抛,上

升最大高度为2

3

H,(空气阻力不计)当质点下落再次经过轨道由a点冲出时,能上升的最大高度h为

图7

A.h=2

3H B.h=

H

3

C.h<

H

3

<h<

2

3

H

2.如图所示,光滑水平面AB与竖直面内的半圆形粗糙导轨在B点衔接,导轨半径为R。一个质量为m的物块将弹簧压缩后静止在A处,释放后在弹力作用下获得一向右的速度,当它经过B点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能到达半圆导轨的最高点C。求:

(1)弹簧被压缩至A点时的弹性势能(2)物块从B至C克服阻力做的功

3. 如图5-3-24甲所示,竖直平面内的光滑轨道由直轨道AB和圆轨道BC组成,小球从轨道AB上高H处的某点由静止滑下,用力传感器测出小球经过圆轨道最高点C时对轨道的压力为F,并得到如图乙所示的压力F随高度H的变化关系图象.(小球在轨道连接处无机械能损失,g=10 m/s2)求:

图5-3-24

(1)小球从H=3R处滑下,它经过最低点B时的向心加速度的大小;

(2)小球的质量和圆轨道的半径.

4.如图所示,传送带A、B之间的距离为L=,与水平面间的夹角θ=37o,传送带沿顺时针方向移动,速度恒为v=2m/s。在A点无初速度放置一个质量为m=1kg、大小可视为质点的金属块,它与传送带之间的动摩擦因数为μ=.金属块滑离传送带后,经过弯道,沿半径R=的光滑圆轨道做圆周运动,恰好能通过最高点E,已知B、D两点竖直高度差为h=(g取10m/s2)。求:

(1)金属块经过D点时的速度(2)金属块在BCD弯道上克服阻力做的功。

5.【2017·新课标Ⅱ卷】如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直。一小物块以速度从轨道下端滑入轨道,并从轨道上端水平飞出,小物块落地点到轨道下端的距离与轨道半径有关,此距离最大时。对应的轨道半径为(重力加速度大小为g)

A.

2

16

v

g B.

2

8

v

g C.

2

4

v

g D.

2

2

v

g

6.(2016·全国I卷)(18分)如图,一轻质弹簧原长为2R,其一端固定在倾角为37o的固定直轨道AC的底端A处,另一端位于直轨

道上的B处,弹簧处于自然状态。直轨道与一半径为5

6

R的光滑圆弧轨道相切与C点,AC=7R,A、B、C、D均在同一竖直平面内。质

量为m的小物块P自C点由静止开始下滑,最低到达E点(未画出)。随后P沿轨道被弹回,最高到达F点,AF=4R。已知P与直轨道

间的动摩擦因数为

1

=

4

μ,重力加速度大小为g。(取

34

sin37,cos37

55

?=?=)

(1)求P第一次运动到B点时的速度大小(2)求P运动到E点时弹簧的弹性势能

(3)改变P的质量,将P推至E点,从静止开始释放。已知P自圆弧轨道的最高点D水平抛出后,恰好通过G点。G点在C点的左下

方,与C点水平相距7

2

R、竖直相距为R。求P运动到D点时速度的大小和改变后的P的质量。

天体运动轨道变化伴随机械能的改变,低轨道到高轨道动能减小,重力势能增加,机械能增大;高轨道到低轨道动能增大,重力势能减小,机械能减小。

即时练习:

2.【2017·新课标Ⅱ卷】如图,海王星绕太阳沿椭圆轨道运动,P为近日点,Q为远日点,M、N为轨道短轴的两个端点,运行的周期

T。若只考虑海王星和太阳之间的相互作用,则海王星在从P经过M、Q到N的运动过程中

A.从P到M所用的时间等于0/4

T

B.从Q到N阶段,机械能逐渐变大

C.从P到Q阶段,速率逐渐变小

D.从M到N阶段,万有引力对它先做负功后做正功

3.【2017·新课标Ⅰ卷】(12分)一质量为×104 kg的太空飞船从其飞行轨道返回地面。飞船在离地面高度×105 m处以×103 m/s

的速度进入大气层,逐渐减慢至速度为100 m/s时下落到地面。取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为 m/s2。(结果保留2位有效数字)

(1)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;

(2)求飞船从离地面高度600 m处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的%。

4.(2011·金考卷)发射地球同步卫星要经过三个阶段:先将卫星发射至近地圆轨道1,然后使其沿椭圆轨道2运行,最后将卫星送入同步圆轨道3.轨道1、2相切于Q点,轨道2、3相切于P点,如图5-3-21所示.当卫星分析别在轨道1、2、3上正常运行时,则以下说法正确的是

图5-3-21

A.卫星在轨道3上的运行速率大于km/s B.卫星在轨道3上的机械能小于它在轨道1上的机械能

C.卫星在轨道2上,P点的机械能大于Q点的机械能D.卫星在轨道1上的机械能小于在轨道2上的机械能

5.【2017·新课标Ⅰ卷】(12分)一质量为×104kg的太空飞船从其飞行轨道返回地面。飞船在离地面高度×105m处以×103m/s 的速度进入大气层,逐渐减慢至速度为100 m/s时下落到地面。取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为 m/s2。(结果保留2位有效数字)

(1)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;

(2)求飞船从离地面高度600 m处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的%。

物理高一下册 机械能守恒定律专题练习(word版

一、第八章 机械能守恒定律易错题培优(难) 1.如图所示,竖直墙上固定有光滑的小滑轮D ,质量相等的物体A 和B 用轻弹簧连接,物体B 放在地面上,用一根不可伸长的轻绳一端与物体A 连接,另一端跨过定滑轮与小环C 连接,小环C 穿过竖直固定的光滑均匀细杆,小环C 位于位置R 时,绳与细杆的夹角为θ,此时物体B 与地面刚好无压力。图中SD 水平,位置R 和Q 关于S 对称。现让小环从R 处由静止释放,环下落过程中绳始终处于拉直状态,且环到达Q 时速度最大。下列关于小环C 下落过程中的描述正确的是( ) A .小环C 、物体A 和轻弹簧组成的系统机械能不守恒 B .小环 C 下落到位置S 时,小环C 的机械能一定最大 C .小环C 从位置R 运动到位置Q 的过程中,弹簧的弹性势能一定先减小后增大 D .小环C 到达Q 点时,物体A 与小环C 的动能之比为cos 2 θ 【答案】BD 【解析】 【分析】 【详解】 A .在小环下滑过程中,只有重力势能与动能、弹性势能相互转换,所以小环C 、物体A 和轻弹簧组成的系统机械能守恒,选项A 错误; B .小环 C 下落到位置S 过程中,绳的拉力一直对小环做正功,所以小环的机械能一直在增大,往下绳的拉力对小环做负功,机械能减小,所以在S 时,小环的机械能最大,选项B 正确; C .小环在R 、Q 处时弹簧均为拉伸状态,且弹力大小等于B 的重力,当环运动到S 处,物体A 的位置最低,但弹簧是否处于拉伸状态,不能确定,因此弹簧的弹性势能不一定先减小后增大,选项C 错误; D .在Q 位置,环受重力、支持力和拉力,此时速度最大,说明所受合力为零,则有 cos C T m g θ= 对A 、B 整体,根据平衡条件有 2A T m g = 故 2cos C A m m θ=

中考化学大题精典训练专题10质量守恒定律

专题10 质量守恒定律 1.【河南省平顶山市2018届九年级上学期期末】请用学过的化学知识解释下列现象。 (1)将变瘪的乒乓球放在热水中能重新鼓起。______ (2)铝是活泼金属,为什么却有较好的抗腐蚀性?______ (3)为验证质量守恒定律,某同学设计了如图进行实验,结果没有达到实验目的。请帮助该同学分析原因。 ______ 【答案】温度升高,分子间隔变大铝在常温下与空气中的氧气反应,生成了一层致密的氧化铝薄膜,阻止了铝进一步被氧化它们反应产生的二氧化碳逸散到空气中了 2.【广东省东莞市中堂星晨学校2018届九年级下学期开学考试】氢气是一种清洁能源,以氢燃料电池为动力的汽车已在北京试运行。 (1)氢气燃烧的化学方程式是____________________________________________。 (2)从质量守恒定律观点看,水可作为制取氢气的原料,其原因是______________。 (3)目前,开发利用氢能源的困难之一是___________________________________。 【答案】 2H2 + O2 2H2O 水中含有氢元素制取成本高(其他答案合理得分) 【解析】本题考查了氢气的性质和氢能的优缺点和质量守恒定律。(1)氢气与氧气在点燃时生成了水。氢气燃 烧的化学方程式是:2H2 + O2 2H2O;(2)从质量守恒定律观点看,水可作为制取氢气的原料,是因为水中含有氢元素;(3)目前,开发利用氢能源的困难是制取成本高、不容易贮存等。 3.【重庆育才初中2018级九年级上第二次月考】小明为验证质量守恒定律,做了镁粉在空气燃烧的实验(如图1),该反应的化学方程式是__。实验结束,他发现镁粉在空气中充分燃烧后,产物中还有少量黄色固体。为了弄清黄色固体的成分,小明进行了如下实验探究:

初三化学质量守恒定律-知识点-习题及答案

1第五单元:质量守恒定律 一、质量守恒定律: 1、内容:参加化学反应的各物质的质量总和,等于反应后生成的各物质的质量总和。 说明:①质量守恒定律只适用于化学变化,不适用于物理变化; ②不参加反应的物质质量及不是生成物的物质质量不能计入“总和”中; ③要考虑空气中的物质是否参加反应或物质(如气体)有无遗漏。 2、微观解释:在化学反应前后,原子的种类、数目、质量均保持不变(原子的“三不变”)。 3、化学反应前后 : (1)一定不变宏观:反应物、生成物总质量不变;元素种类不变 微观:原子的种类、数目、质量不变 (2)一定改变宏观:物质的种类一定变微观:分子种类一定变 (3)可能改变:分子总数可能变 二、化学方程式 1、遵循原则:①以客观事实为依据②遵守质量守恒定律 2、书写:(注意:一写、二配、三标、四等) 3、含义:以2H2+O2点燃2H2O为例 * ①宏观意义:表明反应物、生成物、反应条件氢气和氧气在点燃的条件下生成水 ②微观意义:表示反应物和生成物之间分子 每2个氢分子与1个氧分子化合生成2个个水分子 (对气体而言,分子个数比等于体积之比) ③各物质间质量比(系数×相对分子质量之比) 每4份质量的氢气与32份质量的氧气完全化合生成36份质量的水 4、化学方程式提供的信息包括 ①哪些物质参加反应(反应物);②通过什么条件反应:③反应生成了哪些物质(生成物);④参加反应的各粒子的相对数量;⑤反应前后质量守恒等等。 ~ 5、利用化学方程式的计算 三、化学反应类型 1、四种基本反应类型 ①化合反应:由两种或两种以上物质生成另一种物质的反应 ②分解反应:由一种反应物生成两种或两种以上其他物质的反应 ③置换反应:一种单质和一种化合物反应,生成另一种单质和另一种化合物的反应 ④复分解反应:两种化合物相互交换成分,生成另外两种化合物的反应

中考专题--质量守恒定律

中考化学专题—质量守恒定律 1、质量守恒定律的内容: 参加化学反应的各物质的,等于反应后生成的各物质的,这个规律叫做。 2、质量守恒定律的实质: (1)微观:化学反应的过程就是参加反应的原子而生成其他物质的过程。在化学反应中原子的没有改变,没有增减,也没有改变,所以化学反应前后必然相等。 (2)宏观:化学反应前后元素的种类、质量不变 3、理解质量守恒定律, 抓住:“五个不变”、“两个一定改变”,“两个可能改变” 六个不变:宏观:物质总质量不变、元素种类不变、元素质量不变 微观:原子种类不变 原子数目不变 原子质量不变 两个改变:宏观:物质的种类一定改变 微观:分子种类一定改变 两个可能变:宏观:元素的化合价可能改变 微观:分子总数可能改变 5、A、运用质量守恒定律内容解释现象的一般步骤: (1)说明化学反应的反应物和生成物; (2)根据质量守恒定律摆出参加反应的和生成的各物质的质量关系; (3)与题目中实验现象相联系,说明原因。 B、运用质量守恒定律实质解释现象的一般步骤: (1)叙述物质的宏观元素组成或者微观的粒子构成 (2)根据质量守恒定律,化学反应前后元素的种类、质量或原子的种类、数目、质量不变(3)具体分析,得出结论。 考点二化学方程式 1.用化学式表示化学反应的式子叫化学方程式。 化学方程式的意义: (1)表示反应物、生成物、反应条件 (2)表示反应物、生成物之间的质量关系(质量比)(3)表示反应物、生成物的各粒子的相对数量关系 如:S+O2=点燃SO2表示三重意义:;

;。 2.化学方程式配平: (一)最小公倍数法 KClO3→KCl+O2↑ 右边氧原子个数为2,左边是3,最小公倍数为6,因此KClO3前系数应配2,O2前配3,式子变为:2KClO3→KCl+3O2↑,由于左边钾原子、氯原子变为2个,则KCl前配2,短线改为等号,标明条件: 2KClO3=2KCl+3O2↑ (二)归一法:选择最复杂的化学式,系数定为1 如:C2H2+O2→CO2+H2O,选C2H2为标准,系数定为1 ,则CO2前配2,H2O前配1,右边氧原子共5个,则O2前配5/2。式子为:C2H2+5/2O2-2CO2+H2O,最后系数化为最简整数比:2C2H2+5O2=4CO2+2H2O 再如:Fe2O3 + CO—Fe + CO2选Fe2O3为标准,系数定位1,则Fe前配2,氧出现多次,不能一下确定,但据C个数守恒,CO和CO2前系数必相等,不妨设为x:Fe2O3 + xCO—2Fe 据O个数守恒,列等式:3+x=2x,解得x=3,则Fe2O3 + 3CO == 2Fe + 3CO2 (一)质量守恒定律内容和实质的考查 1、在反应A+B→C+D中,A与B参加反应的质量比为4∶3,生成的C和D的质量和为2.8g,则参加反应的B的质量为()。 A.0.3 g B.0.9g C.1.2g D 1.6g 解:根据质量守恒定律,参加反应的A和B的质量和等于生成的C和D的质量总和相等, 所以参加反应的B的质量为:2.8g×3/7=1.2g 观察选项可以知道选项C是正确的.故选C. 2、(2013?安徽)二氧化碳和氢气可在一定条件下反应,生成一种重要的化工原料甲 醇:.下列有关该反应的说法正确的是()A.为CO2的利用创造了一种新途径 B.钌-膦铬合物的质量在反应前后发生了变化 C.氢原子数在反应前后发生了改变 D.属于复分解反应 解:A、二氧化碳含量多了会造成温室效应,该反应能吸收二氧化碳,且生成甲醇和水,所以为CO2的利用创造了一种新途径,故A正确; B、钌-膦铬合物是该反应的催化剂,催化剂反应前后质量不变,故B错; C、根据质量守恒定律可知反应前后各种原子的数目和种类不变,故C错; D、反应物中有单质,复分解反应的反应物和生成物都必须是化合物,所以该反应不是复分解反应,D错.故选A. (二)、根据质量守恒定律判断物质的化学式或元素组成或原子个数

机械能守恒定律高考专题复习

第八章机械能守恒定律专题 考纲要求: 1.弹性势能、动能和势能的相互转化——一Ⅰ级 2.重力势能、重力做做功与重力势能改变的关系、机械能守恒定律——一Ⅱ级 3.实验 验证机械能守恒定律 知识达标: 1.重力做功的特点 与 无关.只取决于 2 重力势能;表达式 (l )具有相对性.与 的选取有关.但重力势能的改变与此 (2)重力势能的改变与重力做功的关系.表达式 .重力做正功时. 重力势能 .重力做负功时.重力势能 . 3.弹性势能;发生形变的物体,在恢复原状时能对 ,因而具有 . 这种能量叫弹性势能。弹性势能的大小跟 有关 4.机械能.包括 、 、 . 5.机械能守恒的条件;系统只 或 做功 6 机械能守恒定律应用的一般步骤; (1)根据题意.选取 确定研究过程 (2)明确运动过程中的 或 情况.判定是否满足守恒条件 (3)选取 根据机械能守恒定律列方程求解 经典题型: 1.物体在平衡力作用下的运动中,物体的机械能、动能、重力势能有可能发生的是 A 、机械能不变.动能不变 B 动能不变.重力势能可变化 C 、动能不变.重力势能一定变化 D 若重力势能变化.则机械能变化 2.质量为m 的小球.从桌面上竖直抛出,桌面离地高为h .小球能到达的离地面高度为H , 若以桌面为零势能参考平面,不计空气气阻力 则小球落地时的机械能为 A 、mgH B .mgh C mg (H +h ) D mg (H-h ) 3.如图,一小球自A 点由静止自由下落 到B 点时与弹簧接触.到C 点时弹簧被压缩到最 短.若不计弹簧质量和空气阻力 在小球由A -B —C 的运动过程中 A 、小球和弹簧总机械能守恒 B 、小球的重力势能随时间均匀减少 C 、小球在B 点时动能最大 D 、到C 点时小球重力势能的减少量等于弹簧弹性势能的增加量 4、如图,固定于小车上的支架上用细线悬挂一小球.线长为L .小车以速度V 0做匀 速直线运动,当小车突然碰到障障碍物而停止运动时.小球上升的高度的可能值是. A. 等于g v 202 B. 小于g v 202 C. 大于g v 202 D 等于2L A B C

机械能守恒定律练习题含答案

机械能守恒定律练习题 一、选择题(每题6分,共36分) 1、下列说法正确的是:(选CD ) A 、物体机械能守恒时,一定只受重力和弹力的作用。(是只有重力和弹力做功) B 、物体处于平衡状态时机械能一定守恒。(吊车匀速提高物体) C 、在重力势能和动能的相互转化过程中,若物体除受重力外,还受到其他力作用时,物体的机械能也可能守恒。(受到一对平衡力) D 、物体的动能和重力势能之和增大,必定有重力以外的其他力对物体做功。 2、两个质量不同而动能相同的物体从地面开始竖直上抛(不计空气阻力),当上升到同一高度时,它们(选C) A.所具有的重力势能相等(质量不等) B.所具有的动能相等 C.所具有的机械能相等(初始时刻机械能相等) D.所具有的机械能不等 3、一个原长为L 的轻质弹簧竖直悬挂着。今将一质量为m 的物体挂在弹簧的下端,用手托住物体将它缓慢放下,并使物体最终静止在平衡位置。在此过程中,系统的重力势能减少,而弹性势能增加,以下说法正确的是(选A ) A 、减少的重力势能大于增加的弹性势能(手对物体的支持力也有做功,根据合外力做功为0) B 、减少的重力势能等于增加的弹性势能 C 、减少的重力势能小于增加的弹性势能 D 、系统的机械能增加(动能不变,势能减小) 4、如图所示,桌面高度为h ,质量为m 的小球,从离桌面高H 处 自由落下,不计空气阻力,假设桌面处的重力势能为零,小球落到 地面前的瞬间的机械能应为(选B ) A 、mgh B 、mgH C 、mg (H +h ) D 、mg (H -h ) 6、质量为m 的子弹,以水平速度v 射入静止在光滑水平面上质量为M 的木块, 并留在其中,下列说法正确的是(选BD ) A.子弹克服阻力做的功与木块获得的动能相等(与木块和子弹的动能,还有热能) B.阻力对子弹做的功与子弹动能的减少相等(子弹的合外力是阻力) C.子弹克服阻力做的功与子弹对木块做的功相等 D.子弹克服阻力做的功大于子弹对木块做的功(一部分转化成热能) 二、填空题(每题8分,共24分) 7、从离地面H 高处落下一只小球,小球在运动过程中所受到的空气阻力是它重 力的k 倍,而小球与地面相碰后,能以相同大小的速率反弹,则小球从释放开始,直至停止弹跳为止,所通过的总路程为 H/k 。 8、如图所示,在光滑水平桌面上有一质量为M 的小车,小车跟 绳一端相连,绳子另一端通过滑轮吊一个质量为m 的砖码, 则当砝码着地的瞬间(小车未离开桌子)小车的速度大小为 在这过程中,绳的拉力对小车所做的功为________。 9、物体以100 k E J 的初动能从斜面底端沿斜面向上运动,当该物体经过斜面上某一点时,动能减少了80J ,机械能减少了32J ,则物体滑到斜面顶端时的机

高质量守恒定律专题复习

质量守恒定律的应用专题复习 类型一:确定反应中某反应物或生成物的化学式 确定依据:反应前后原子的种类和个数均不变。 1、无人驾驶汽车处理系统的核心材料是高纯度的硅。工业制硅的反应之一如下:2X + SiCl4 =Si + 4HCl。该反应中,X的化学式是。 2、()钛具有硬度大、密度小、熔点高、抗腐蚀性强等优良性能,被誉为“未来金属”。钛铁矿石的主要成分是钛酸亚铁(FeTiO3)。冶炼金属钛时,主要发生以下两个反应:①2FeTiO3+6C+7Cl2==2X+2TiCl4+6CO,②TiCl4+2Mg =Ti + 2MgCl2则X为 3、(2015秋?校级期末)西班牙的瑞奥汀托河是一条酸河.经调查发现是由于上游河床含有的某种物质R在水中氧的作用下发生反应所致,其反应的化学方程式为:7O2+2R+2H2O═2FeSO4+2H2SO4,则R的化学式为. 4、()物质X是一种可再生绿色能源,其燃烧的化学方程式为X+3O22CO2+3H2O,则X的化学式为【】 A.C2H4 B. CH3OH C. C2H5OH D. C2H6 类型二:推断反应物或生成物的组成元素 推断依据:反应前后元素的种类和质量不变 1、(2014秋?校级期中)取某可燃物1.6g在足量的氧气中

完全燃烧,生成了4.4CO2和3.6H2O.通过计算可确定该物质的化学式为. 2、 2.2 g某有机物在氧气中完全燃烧,生成6.6 g二氧化碳和3.6 g水(无其它生成物)。下列对该物质组成的推断正确的是 A.只含碳、氢元素 B.含有碳、氢、氧三种元素 C.含有碳、氢元素,可能含有氧元素 D.碳、氢原子个数比为3 : 4 3、4.6g某有机物完全燃烧需9.6g氧气,可生成8.8gCO2和5.4gH2O,则该有机物 A.只含碳、氢两种元素 B.含有碳、氢、氧三种元素 C.含有碳、氢两种元素,可能含氧元素 D.含有碳、氢两种元素,不含氧元素 4、常用燃烧法测定有机物的组成。现取2.3 g某有机物在足量的氧气中完全燃烧,生成4.4gCO2和2.7 gH2O。对该物质的组成有下列推断:①一定含C、H元素②一定不含O元素③可能含O元素④一定含O元素⑤分子中C、H的原子个数比为2:5 ⑥分子中C、H、O元素的质量比为12:3:8。其中正确的是 ( ) A. ①②⑤ B.①④⑥ C.①③⑤ D.④③

2020高三高考物理二轮复习专题强化练习卷:机械能守恒及能量守恒定律

机械能守恒及能量守恒定律 1.(2019·山西高三二模)2018年2月13日,平昌冬奥会女子单板滑雪U 形池项目中,我国选手刘佳宇荣获亚军。如图所示为U 形池模型,其中a 、c 为U 形池两侧边缘,在同一水平面,b 为U 形池最低点。刘佳宇从a 点上方h 高的O 点自由下落由左侧进入池中,从右侧飞出后上升至最高位置d 点相对c 点高度为h 2。不计空气阻力,下列判 断正确的是( ) A .从O 到d 的过程中机械能减少 B .从a 到d 的过程中机械能守恒 C .从d 返回到c 的过程中机械能减少 D .从d 返回到b 的过程中,重力势能全部转化为动能 2. (2019·广东省“六校”高三第三次联考)(多选)如图固定在地面上的斜面倾角为θ=30°,物块B 固定在木箱A 的上方,一起从a 点由静止开始下滑,到b 点接触轻弹簧,又压缩至最低点c ,此时将B 迅速拿走,然后木箱A 又恰好被轻弹簧弹回到a 点。已知木箱A 的质量为m ,物块B 的质量为3m ,a 、c 间距为L ,重力加速度为g 。下列说法正确的是( ) A .在A 上滑的过程中,与弹簧分离时A 的速度最大 B .弹簧被压缩至最低点c 时,其弹性势能为0.8mgL C .在木箱A 从斜面顶端a 下滑至再次回到a 点的过程中,因摩擦产生的热量为1.5mgL D .若物块B 没有被拿出,A 、B 能够上升的最高位置距离a 点为L 4 3. (2019·东北三省三校二模)(多选)如图所示,竖直平面内固定两根足够长的细杆L 1、L 2,两杆分离不接触,且两杆间的距离忽略不计。两个小球a 、b (视为质点)质量均为m ,a 球套在竖直杆L 1上,b 球套在水平杆L 2上,a 、b 通过铰链用长度为L 的刚性轻杆连接。将a 球从图示位置由静止释放(轻杆与L 2杆夹角为45°),不计一切摩擦,已知重

机械能守恒定律典型例题精析(附答案)

机械能守恒定律 一、选择题 1.某人用同样的水平力沿光滑水平面和粗糙水平面推动一辆相同的小车,都使它移动相同的距离。两种情况下推力做功分别为W1和W2,小车最终获得的能量分别为E1和E2,则下列关系中正确的是()。 A、W1=W2,E1=E2 B、W1≠W2,E1≠E2 C、W1=W2,E1≠E2 D、W1≠W2,E1=E2 2.物体只在重力和一个不为零的向上的拉力作用下,分别做了匀速上升、加速上升和减速上升三种运动.在这三种情况下物体机械能的变化情况是() A.匀速上升机械能不变,加速上升机械能增加,减速上升机械能减小 B.匀速上升和加速上升机械能增加,减速上升机械能减小 C.由于该拉力与重力大小的关系不明确,所以不能确定物体机械能的变化情况 D.三种情况中,物体的机械能均增加 3.从地面竖直上抛一个质量为m的小球,小球上升的最大高度为H.设上升过程中空气阻力F阻恒定.则对于小球的整个上升过程,下列说法中错误的是() A.小球动能减少了mgH B.小球机械能减少了F阻H C.小球重力势能增加了mgH D.小球的加速度大于重力加速度g 4.如图所示,一轻弹簧的左端固定,右端与一小球相连,小球处于光滑水平面上.现对小球施加一个方向水平向右的恒力F,使小球从静止开始运动,则小球在向右运动的整个过程中() A.小球和弹簧组成的系统机械能守恒 B.小球和弹簧组成的系统机械能逐渐增加 C.小球的动能逐渐增大 D.小球的动能先增大后减小 二、计算题 1.如图所示,ABCD是一条长轨道,其AB段是倾角为的斜面,CD段是水平的,BC是与AB和CD相切的一小段弧,其长度可以略去不计。一质量为m的物体在A点从静止释放,沿轨道滑下,最后停在D点,现用一沿轨道方向的力推物体,使它缓慢地由D点回到A点,设物体与轨道的动摩擦因数为,A点到CD间的竖直高度为h,CD(或BD)间的距离为s,求推力对物体做的功W为多少 2.一根长为L的细绳,一端拴在水平轴O上,另一端有一个质量为m的小球.现使细绳位于 水平位置并且绷紧,如下图所示.给小球一个瞬间的作用,使它得到一定的向下的初速度. (1)这个初速度至少多大,才能使小球绕O点在竖直面内做圆周运动 (2)如果在轴O的正上方A点钉一个钉子,已知AO=2/3L,小球以上一问中的最小速度开始运动,当它运动到O点的正上方,细绳刚接触到钉子时,绳子的拉力多大 3.如图所示,某滑板爱好者在离地h=1.8m高的平台上滑行,水平离开A点后落在水平地

专题十三--探究题(质量守恒定律)

九年级化学 沭阳银河学校 1 专题十三—探究之质量守恒 1、某兴趣小组为验证质量守恒定律,做了镁条在空气中燃烧的实验。 (1)请写出镁条与氧气反应的化学方程式_______________。 (2)小明发现燃烧产物的质量大于反应物镁条的质量,认为这个反应不遵循质量守恒定律。我_____(“同意”或“不同意”)小明的观点,因为__________________________。 (3)小红按下图装置改进实验,验证了质量守恒定律,却发现产物中还有少量黄色固体。 【提出问题】黄色固体是什么呢? 【查阅资料】①氧化镁为白色固体;②镁能与氮气剧烈反应生成黄色的氮化镁(Mg 3N 2)固体;③氮化镁可与水剧烈反应产生氨气,该气体能使湿润的红色石蕊试纸变蓝。 【做出猜想】黄色固体是Mg 3N 2 【实验探究】请设计实验,验证猜想 实验操作 实验现象及结论 【反思与交流】空气中N 2的含量计远大于O 2的含量,而镁条在空气中燃烧生成的MgO 却远多于Mg 3N 2,为什么呢?请给出合理的解释_____________。 (4)该兴趣小组又做了镁条与盐溶液反应的实验,发现均能产生H 2,实验现象如下: 实验序号 实验1 实验2 实验3 与镁条反应的溶液 NH 4Cl NaCl Na 2SO 4l H 2O 实验现象 有大量气泡产生 有较多气泡产生 有少量气泡产生 气泡极少 加热后,实验现象 气泡明显增多可 闻到氨味 气泡增多 气泡增多 气泡增多 上表中,用水进行实验的目的是_________________。 根据上表中的实验现象,请写出三条结论,并分析可能的原因(不分析原因,不得分): ①________________________;②_________________________;③______________________。

机械能守恒定律专题复习

第七章 机械能守恒定律 一、选择题(共15小题。,1~12小题只有一个选项正确,13~15小题有多个选项正确;) 1.下列说法中正确的是( ) A.物体受力的同时又有位移发生,则该力对物体做的功等于力乘以位移 B.力很大,位移很大,这个力所做的功一定很多 C.机械做功越多,其功率越大 D.汽车以恒定功率上坡的时候,司机必须换挡,其目的是减小速度,得到较大的牵引力 2.一小石子从高为10 m 处自由下落,不计空气阻力,经一段时间后小石子的动能恰等于它的重力势能 (以地面为参考平面),g=10 m/s 2,则该时刻小石子的速度大小为( ) A.5 m/s B.10 m/s C.15 m/s D.20 m/s 3.从空中以30 m/s 的初速度水平抛出一个重10 N 的物体,物体在空中运动4 s 落地,不计空气阻力,g 取10 m/s 2,则物体落地时重力的瞬时功率为( ) A.400 W B.500 W C.300 W D.700 W 4.将地面上静止的货物竖直向上吊起,货物由地面运动至最高点的过程中,v -t 图象如图所示。以下判断正确的是( ) A.前3 s 内货物处于失重状态 B.最后2 s 内货物只受重力作用 C.前3 s 内与最后2 s 内货物的平均速度相同 D.第3 s 末至第5 s 末的过程中,货物的机械能守恒 5.如图所示,在地面上以速度v 0抛出质量为m 的物体,抛出后物体落到 比地面低的海平面上。若以地面为零势能面而且不计空气阻力,则( ) A .物体到海平面时的重力势能为mgh B .从抛出到落至海平面,重力对物体做功为mgh+1 2 mv 02 C .物体在海平面上的动能为mgh D .物体在海平面上的机械能为 12 mv 02 6.如图,表面光滑的固定斜面顶端安装一定滑轮,小物块A 、B 用轻绳连接并跨过滑轮(不计滑轮的质量和摩擦)。初始时刻,A 、B 处于同一高度并恰好处于静止状态。剪断轻绳后,A 下落、B 沿斜面下滑,则从剪断轻绳到物块着地,两物块( )

机械能守恒定律典型分类例题

一、单个物体的机械能守恒 判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。 (2)物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。 所涉及到的题型有四类:(1)阻力不计的抛体类。(2)固定的光滑斜面类。(3)固定的光滑圆弧类。(4)悬点固定的摆动类。(1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。 (2)固定的光滑斜面类 在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。 (3)固定的光滑圆弧类 在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。 (4)悬点固定的摆动类 和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。由于悬线的拉力自始至终都沿法线方向,和物体运动的速度方向垂直而对运动物体不做功。因此只有重力做功,物体的机械能守恒。 作题方法: 一般选取物体运动的最低点作为重力势能的零势参考点,把物体运动开始时的机械能和物体运动结束时的机械能分别写出来,并使之相等。 注意点:在固定的光滑圆弧类和悬点定的摆动类两种题目中,常和向心力的公式结合使用。这在计算中是要特别注意的。 习题: 1、三个质量相同的小球悬挂在三根长度不等的细线上,分别把悬线拉至水平位置后轻轻释放小球,已知线长L a L b L c,则悬线摆至竖直位置时,细线中张力大小的关系是() A T c T b T a B T a T b T c C T b T c T a D T a=T b=T c 4、一质量m = 2千克的小球从光滑斜面上高h = 3.5米高处由静止滑下斜面底端紧接着一个半径R = 1米的光滑圆环(如图)求: (1)小球滑至圆环顶点时对环的压力; (2)小球至少要从多高处静止滑下才能越过圆环最高点; (3)小球从h0 = 2米处静止滑下时将在何处脱离圆环(g =9.8米/秒2)。 二、系统的机械能守恒 由两个或两个以上的物体所构成的系统,其机械能是否守恒,要看两个方面 (1)系统以外的力是否对系统对做功,系统以外的力对系统做正功,系统的机械能就增加,做负功,系统的机械能就减少。不做功,系统的机械能就不变。 (2)系统间的相互作用力做功,不能使其它形式的能参与和机械能的转换。 系统内物体的重力所做的功不会改变系统的机械能 系统间的相互作用力分为三类: 1)刚体产生的弹力:比如轻绳的弹力,斜面的弹力,轻杆产生的弹力等 2)弹簧产生的弹力:系统中包括有弹簧,弹簧的弹力在整个过程中做功,弹性势能参与机械能的转换。 3)其它力做功:比如炸药爆炸产生的冲击力,摩擦力对系统对功等。 在前两种情况中,轻绳的拉力,斜面的弹力,轻杆产生的弹力做功,使机械能在相互作用的两物体间进行等量的转移,系统的

专题练习:连接体中的机械能守恒定律

连接体中的机械能守恒定律 例题精讲 例、(2017年重庆调研)如图所示,A 、B 、C 三个可视为质点的物体通过轻绳连接,A 、B 间轻绳长为L .C 静置于水平地面上,用手托住A ,两段轻绳都伸直,A 距水平地面高也为L ,然 后将A 从静止开始释放.已知物体A 、B 的质量均为m ,物体C 的质量为32m ,重力加速度 为g ,定滑轮光滑且质量不计,不计空气阻力,物体A 着地后不反弹.求: (1)刚释放A 时,A 、B 间绳的弹力大小F T ; (2)运动过程中,物体C 距离地面的最大高度H . 【答案】F T =67mg ; H =127L 同步练习 1.(多选)轻绳一端通过光滑的定滑轮与物块P 连接,另一端与套在光滑竖直杆上的圆环Q 连接,Q 从静止释放后,上升一定距离到达与定滑轮等高处,则在此过程中( ) A .任意时刻P 、Q 两物体的速度大小满足v P

动能E k 与离地高度h 的关系如图乙所示,其中高度从h 1下降到h 2,图象为直线,其余部分为曲线,h 3对应图象的最高点,轻弹簧劲度系数为k ,小物体质量为m ,重力加速度为g .以下说法正确的是( ) A .小物体下落至高度h 3时,弹簧形变量为0 B .小物体下落至高度h 5时,加速度为0 C .小物体从高度h 2下降到h 4,弹簧的弹性势能增加了2m 2g 2k D .小物体从高度h 1下降到h 5,弹簧的最大弹性势能为2mg (h 1-h 5) 【答案】:C 3.如图所示,带有挡板的光滑斜面固定在水平地面上,斜面的倾角为θ=30°.质量均为1 kg 的A 、B 两物体用轻弹簧拴在一起,弹簧的劲度系数为5 N/cm ,质量为2 kg 的物体C 用细线通过光滑的轻质定滑轮与物体B 连接.开始时A 、B 均静止在斜面上,A 紧靠在挡板处,用手托住C ,使细线刚好被拉直.现把手拿开,让C 由静止开始运动,从C 开始运动到A 刚要离开挡板的过程中,下列说法不正确的是(取g =10 m/s 2)( ) A .初状态弹簧的压缩量为1 cm B .末状态弹簧的伸长量为1 cm C .物体B 、C 与地球组成的系统机械能守恒 D .物体C 克服绳的拉力所做的功为0.2 J 【答案】:C 【解析】 4.(多选)(2017年广东广州模拟)如图所示,A 、B 两小球由绕过轻质定滑轮的细线相连,A 放在固定的光滑斜面上,B 、C 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,C

机械能守恒定律单元测试题

机械能及其守恒定律 一、单项选择题(每小题4分,共40分) 1. 关于摩擦力做功,下列说法中正确的是( ) A. 静摩擦力一定不做功 B. 滑动摩擦力一定做负功 C. 静摩擦力和滑动摩擦力都可做正功 D. 相互作用的一对静摩擦力做功的代数和可能不为0 2.一个人站在高出地面h 处,抛出一个质量为m 的物体.物体落地时的速率为v ,不计空气阻力,则人对物体所做的功为( ) A .mgh B .mgh /2 C . 2 1mv 2 D . 2 1mv 2 -mgh 3.从同一高度以相同的速率分别抛出质量相等的三个小球,一个竖直上抛,一个竖直下抛,另一个平抛,则它们从抛出到落地( ) ①运行的时间相等 ②加速度相同 ③落地时的速度相同 ④落地时的动能相等 以上说法正确的是 A .①③ B .②③ C .①④ D .②④ 4.水平面上甲、乙两物体,在某时刻动能相同,它们仅在摩擦力作用下停下来.图7-1中的a 、b 分别表示甲、乙两物体的动能E 和位移s 的图象,则( ) 图7-1 ①若甲、乙两物体与水平面动摩擦因数相同,则甲的质量较大 ②若甲、乙两物体与水平面动摩擦因数相同,则乙的质量较大 ③若甲、乙质量相同,则甲与地面间的动摩擦因数较大 ④若甲、乙质量相同,则乙与地面间的动摩擦因数较大 以上说法正确的是( ) A .①③ B .②③ C .①④ D .②④ 5.当重力对物体做正功时,物体的( ) A .重力势能一定增加,动能一定减小 B .重力势能一定增加,动能一定增加 C .重力势能一定减小,动能不一定增加 D .重力势能不一定减小,动能一定增加 6.自由下落的小球,从接触竖直放置的轻弹簧开始,到压缩弹簧有最大形变的过程中,以下说法中正确的是( ) A .小球的动能逐渐减少 B .小球的重力势能逐渐减少 C .小球的机械能守恒 D .小球的加速度逐渐增大 7.一个质量为m 的物体以a =2g 的加速度竖直向下运动,则在此物体下降h 高度的过程中,物体的( )

质量守恒定律专题

质量守恒定律专题练习 一、判断下列说法是否正确(正确的打“√”,错误的打“×”) (1)根据质量守恒定律,1L氢气和1L氧气反应生成2L水。( ) (2)10 g水蒸发变成10 g水蒸气符合质量守恒定律。( ) (3)只有固体、液体间反应遵守质量守恒定律,如果有气体参加反应,就不遵守质量守恒定律。( ) (4)水在催化剂的作用下可变成燃油(主要含C、H)。( ) (5)氢气和氧气形成混合物的质量一定等于其反应后生成水的质量() 二.选择题: 1.镁带在耐高温的密闭容器中(内含空气)燃烧,能正确表示容器里所盛物质总质量变化的图象是( ) 2.潜艇中船员呼吸产生的二氧化碳能通过化学反应2Na2O2+2CO2═2X+O2吸收,则X的化学式为() A.NaOH B.Na2C C.Na2O D.Na2CO3 3.a克过氧化氢溶液和b克二氧化锰混合, 待完全反应后得c克残余物, 则生成氧气的质量为() A. (a-c)克 B. (a + b-c)克 C. (a-b + c)克 D.(a-b-c)克 4.一定条件下,在一个密闭容器内发生某反应,测得反应前后各物质的质量见下表,下列说法中正确的是() 物质 a b c d 18 1 2 32 反应前物质质量 /g 待测26 2 12 反应后物质质量 /g A.该反应的基本类型为化合反应 B.待测数据是23 C.参加反应a、d的质量比为4:1 D.c物质一定是该反应的催化剂 5.已知化学反应:2A + B = 2C + D,当10g A和8g B恰好完全反应后,生成6g C。如果要得到3g D,则参加反应的B物质的质量是() A.1g B.2g C.3g D.4g

高中物理机械能守恒定律专题资料讲解

【松柏教育内部资料】 机械能守恒定律专题 ●功,功率; ●重力势能; ●弹性势能; ●动能,动能定理; ●机械能守恒定律; ●能量守恒定律; 例题一:关于功率以下说法中正确的是( ) A .据t W P =可知,机器做功越多,其功率就越大。 B .据 P=Fv 可知,汽车牵引力一定与速度成反比。 C .据 t W P = 可知,只要知道时间t 内机器所做的功,就可以求得这段时间内任一时刻机器做功的功率。 D .根据 P=Fv 可知,发动机功率一定时,交通工具的牵引力与运动速度成反比。 例题二:一质量为m 的木块静止在光滑的水平面上,从t=0开始,将一个大小为F 的水平恒 力作用在该木块上,在t=t 1时刻F 的功率( ) A .m t F 212 B .m t F 2212 C .m t F 12 D .m t F 2 12 例题三:将质量为0.5kg 的物体从10m 高处以6m/s 的速度水平抛出,抛出后0.8s 时刻重力 的瞬时功率是( ) A .50W B .40W C .30W D .20W 例题四:一辆汽车的额定功率为P ,汽车以很小的初速度开上坡度很小的坡路时,如果汽车 上坡时的功率保持不变,关于汽车的运动情况的下列说法中正确的是 ( ) A .汽车可能做匀速运动 B .汽车可能做匀加速运动 C .在一段时间内汽车的速度可能越来越大 D .汽车做变加速运动 例题五:有一个水平恒力F 先后两次作用在同一个物体上,使物体由静止开始沿着力的方向 发生相同的位移s ,第一次是在光滑的平面上运动;第二次是在粗糙的平面上运 动.比较这两次力F 所做的功1W 和2W 以及力F 做功的平均功率1P 和2P 的大小 ( ) A .21W W =,21P P > B .21W W =,21P P = C .21W W >,21P P >

专题六 机械能及其守恒定律

专题六机械能及其守恒定律 考点一功和功率 1.(2013浙江理综,17,6分)如图所示,水平木板上有质量m=1.0kg的物块,受到随时间t变化的水 平拉力F作用,用力传感器测出相应时刻物块所受摩擦力F f的大小。取重力加速度g=10m/s2,下 列判断正确的是() A.5s内拉力对物块做功为零 B.4s末物块所受合力大小为4.0N C.物块与木板之间的动摩擦因数为0.4 D.6s-9s内物块的加速度大小为2.0m/s2 答案D 2.(2013四川理综,10,17分)在如图所示的竖直平面内,物体A和带正电的物体B用跨过定滑轮的绝缘轻绳连接,分别静止于倾角θ=37°的光滑斜面上的M点和粗糙绝缘水平面上,轻绳与对应平面平行。劲度系数k=5 N/m的轻弹簧一端固定在O点,一端用另一轻绳穿过固定的光滑小环D与A相连,弹簧处于原长,轻绳恰好拉直,DM垂直于斜面。水平面处于场强E=5×104N/C、方向水平向右的匀强电场中。已知A、B的质量分别为m A=0.1kg和m B=0.2kg,B所带电荷量q=+4×10-6C。设两物体均视为质点,不计滑轮质量和摩擦,绳不可伸长,弹簧始终在弹性限度内,B电量不变。取g=10m/s2,sin37°=0.6,cos37°=0.8。 (1)求B所受静摩擦力的大小; (2)现对A施加沿斜面向下的拉力F,使A以加速度a=0.6m/s2开始做匀加速直线运动。A从M到N的过程中,B的电势能增加了ΔE p=0.06J。已知DN沿竖直方向,B与水平面间的动摩擦因数μ=0.4。求A到达N点时拉力F的瞬时功率。 答案(1)0.4N(2)0.528W 考点二动能定理及其应用 3.(2013江苏单科,9,4分)如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连。弹簧处于自然长度时物块位于O点(图中未标出)。物块的质量为m,AB=a,物块与桌面间的动摩擦因数为μ。现用水平向右的力将物块从O点拉至A点,拉力做的功为W。撤去拉力后物块由静止向左运动,经O点到达B点时速度为零。重力加速度为g。则上述过程中() A.物块在A点时,弹簧的弹性势能等于W-μmga B.物块在B点时,弹簧的弹性势能小于W-μmga C.经O点时,物块的动能小于W-μmga D.物块动能最大时弹簧的弹性势能小于物块在B点时弹簧的弹性势能 答案BC 4.(2013天津理综,10,16分)质量为m=4kg的小物块静止于水平地面上的A点,现用F=10N的水平恒力拉动物块一段时间后撤去,物块继续滑动一段位移停在B点,A、B两点相距x=20m,物块与地面间的动摩擦因数μ=0.2,g取10m/s2,求: (1)物块在力F作用过程发生位移x1的大小;

《机械能守恒定律》单元测试题及答案

《机械能守恒定律》单元测试题 一、选择题。(本大题共有12小题,每小题4分,共48分。其中,1~8题为单选题,9~12题为多选题) 1、下列说法正确的是( ) A 、一对相互作用力做功之和一定为零 B 、作用力做正功,反作用力一定做负功 C 、一对平衡力做功之和一定为零 D 、一对摩擦力做功之和一定为负值 2、如图所示,一块木板可绕过O 点的光滑水平轴在竖直平面内转动,木板上放有一木块, 木板右端受到竖直向上的作用力F ,从图中实线位置缓慢转动到虚线位置,木块相对木板不 发生滑动.则在此过程中( ) A .木板对木块的支持力不做功 B .木板对木块的摩擦力做负功 C .木板对木块的摩擦力不做功 D .F 对木板所做的功等于木板重力势能的增加 3、三个质量相同的物体以相同大小的初速度v 0在同一水平面上分别进行竖直上抛、沿光滑斜面上滑和斜上抛.若不计空气阻力,它们所能达到的最大高度分别用H 1、H 2和H 3表示,则( ) A .H 1=H 2=H 3 B .H 1=H 2>H 3 C .H 1>H 2>H 3 D .H 1>H 2=H 3 4、如图所示,质量为m 的物体用细绳经过光滑小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个值F 时,转动半径为R ,当拉力逐渐减小到F 4时,物体仍做匀速圆周运动,半径 为2R ,则外力对物体所做功的绝对值是( ). A.FR 4 B. 3FR 4 C.5FR 2 D .0 5、质量为m 的物体,从静止出发以g /2的加速度竖直下降h ,下列几种说法正确的是( ) ①物体的机械能增加了 21mg h ②物体的动能增加了2 1 mg h ③物体的机械能减少了2 1 mg h ④物体的重力势能减少了mg h A .①②③ B .②③④ C .①③④ D .①②④ 6、如图所示,重10 N 的滑块在倾角为30°的斜面上,从a 点由静止下滑,到b 点接触到一个轻弹簧。滑块压缩弹簧到c 点开始弹回,返回b 点离开弹簧,最后又回到a 点,已知ab =0.8m ,bc =0.4m ,那么在整个过程中叙述不正确的是( ) A .滑块动能的最大值是6 J B .弹簧弹性势能的最大值是6 J C .从c 到b 弹簧的弹力对滑块做的功是6 J D .滑块和弹簧组成的系统整个过程机械能守恒

化学中考真题汇编专题质量守恒定律

化学中考真题汇编专题质量守恒定律 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

专题7 质量守恒定律 一、选择题 1.【2017江苏扬州】某反应前后分子变化的微观示意图如下。下列说法正确的是 A.反应物与生成物共有3种物质 B.反应后原子个数增多 的反应 D.反应物中元素的化合价都为0 C.该图可示意CO与O 2 2.【2017浙江宁波】如图是物质甲和乙反应生成丙的微观示意图。下列说法正确的是 A.该化学反应属于化合反应 B.甲和乙属于单质,丙属于化合物 C.参加反应的甲与乙的分子个数比为1 : l D.l个丙分子由1个甲分子和2个乙分子构成

3.【2017浙江丽水】科技人员成功研制出一种新型催化剂,可将二氧化碳转化成液体燃料,反应的微观示意图如下。有关该反应的说法正确的是() A.该反应属于化合反应 B.反应前碳元素的化合价为+2价 C.生成物的化学式可用C 2H 2 O表示 D.参加反应的两物质的质量比为1:1 4.【2017四川广安】下列变化,遵循质量守恒定律的是 A.石墨制成金刚石 B.2gH 2完全燃烧生成36gH 2 O C.水变成汽油 D.冰转化成干冰 5.【2017浙江金华】将宏观、微观及化学符号联系在一起是化学学科的特点。在一定条件下,A和B能发生化学反应生成C和D。其微观示意图如图所示,下列相关叙述正确的是() A.从宏观角度看,物质C由两种元素组成,属于混合物 B.从微观角度看,该化学变化中发生根本改变和微粒是原子 C.若D为空气中体积分数最大的气体,则D的微观符号可表示为N 2

D.该反应属于基本反应类型中的转换反应,反应前后各元素化合价不变6.【2017四川德阳】二氧化碳在一定条件下可转化为重要的化工原料乙烯,其反应的微观过程如下图所示。 下列有关叙述中正确的是() A.碳原子结构示意图为 B.二氧化碳和乙烯均属于氧化物 C.反应前后原子种类和数目均不变 D.参加反应两种分子的个数比为4:1 7.【2017四川达州】20175月,中国科学家取得了将二氧化碳在一定条件下转化为化工原料的重大突破。二氧化碳和氢气反应制取乙烯,其反应的微观过程如下图所示。下列说法正确的是 A.生成物分子数之比是1:2:4 B.乙烯的化学式为C 2H 4 C.反应前后分子种类、数目均不变

相关文档
最新文档