基于靶点结构的药物分子设计

分子的立体构型(高考总复习)

分子的立体构型 写出下列物质分子的电子式和结构式,并根据键角确定其分子构型: 分子类型化学式电子式结构式键角分子立体构型 三原子分子 CO2O==C==O180°直线形 H2O105°V形 四原子分子 CH2O约120°平面三角形 NH3107°三角锥形 五原子分子CH4109°28′正四面体形 (1) 分子类型键角立体构型实例 AB2 180°直线形CO2、BeCl2、CS2 <180°V形H2O、H2S AB3 120°平面三角形BF3、BCl3 <120°三角锥形NH3、H3O+、PH3 AB4109°28′正四面体形CH4、NH+4、CCl4 (2)典型有机物分子的立体结构:C2H4、苯(C6H6)、CH2==CH—CH==CH2(1,3-丁二烯)、CH2==CH—C≡CH(乙烯基乙炔)等都是平面形分子;C2H2为直线形分子。 例1(2017·衡水中学高二调考)下列有关键角与分子立体构型的说法不正确的是() A.键角为180°的分子,立体构型是直线形 B.键角为120°的分子,立体构型是平面三角形 C.键角为60°的分子,立体构型可能是正四面体形 D.键角为90°~109°28′之间的分子,立体构型可能是V形 【考点】常见分子的立体构型 【题点】键角与分子立体构型的关系 答案B 解析键角为180°的分子,立体构型是直线形,例如CO2分子是直线形分子,A正确;苯分

子的键角为120°,但其立体构型是平面正六边形,B错误;白磷分子的键角为60°,立体构 型为正四面体形,C正确;水分子的键角为105°,立体构型为V 形,D正确。 例2下列各组分子中所有原子都可能处于同一平面的是() A.CH4、CS2、BF3 B.CO2、H2O、NH3 C.C2H4、C2H2、C6H6 https://www.360docs.net/doc/a79477241.html,l4、BeCl2、PH3 【考点】常见分子的立体构型 【题点】常见分子立体构型的综合判断 答案C 解析题中的CH4和CCl4为正四面体形分子,NH3和PH3为三角锥形分子,这几种分子的所有原子不可能都在同一平面上。CS2、CO2、C2H2和BeCl2为直线形分子,C2H4为平面形分子,C6H6为平面正六边形分子,这些分子都是平面形结构。故选C项。 1.价层电子对互斥理论 分子中的价层电子对包括σ键电子对和中心原子上的孤电子对,由于价层电子对相互排斥的作用,尽可能趋向彼此远离。 2.价层电子对的计算 (1)中心原子价层电子对数=σ键电子对数+孤电子对数。 (2)σ键电子对数的计算 由分子式确定,即中心原子形成几个σ键,就有几对σ键电子对。如H2O分子中,O有2对σ键电子对。NH3分子中,N有3对σ键电子对。 (3)中心原子上的孤电子对数的计算 中心原子上的孤电子对数=1 2(a-xb) ①a表示中心原子的价电子数; 对主族元素:a=最外层电子数; 对于阳离子:a=价电子数-离子电荷数; 对于阴离子:a=价电子数+离子电荷数。 ②x表示与中心原子结合的原子数。 ③b表示与中心原子结合的原子最多能接受的电子数,氢为1,其他原子=8-该原子的价电子数。 实例σ键电 子对数 孤电子 对数 价层电 子对数 电子对的排 列方式 VSEPR模型 分子的立体 构型 BeCl2、CO2202直线形直线形 BF3、BCl330 3平面三角形 平面三角形SO221V形

如何发现药物新靶标

如何发现药物新靶标 文献综述 摘要:药物靶标的发现是创造新药物的前提,也是药物筛选的基础,本文从有效单体化合物、基因表达差异、蛋白质表达差异、蛋白质相互作用和RNA干扰方面着手总结了一些药物新靶标的发现技术进行了综述。 关键词:药物靶标;基因表达差异;差异蛋白质组学;蛋白质相互作用;RNA 干扰 引言:药物靶标是药物作用而实现疗效的目标分子,靶标的发现是药物创新的前提,也是药物筛选的基础。新靶标的发现对于更优良的创新型药物的开发具有重大的促进作用。例如,利用HMG CoA还原酶作为药物靶标开发了一系列他汀类降脂药物,仅2000年,该类药物的销售额达120亿美元,并以每年15%~20%的速度增长。Novartis公司利用慢性粒细胞性白血病(CML)相关蛋白Bcr-Abl为靶标,在短时间内开发出有效治疗CML的新药—高活性Bcr-Abl激酶抑制剂STI571(Gleevac)。【1】从这些例子可以发现,生物医药公司花费大量的物力和财力寻找药物的新靶标。随着生命科学的发展,各种科技的创新,也出现了很多药物靶标的发现技术。 一、从有效单体化合物着手发现药物靶标 以疗效确定的单体化合物(天然产物或现有药物)为探针,然后利用计算机模拟单体分子与相关蛋白质三维结构及其相互作用,找到所有的能与其特定结合的蛋白质,这些蛋白质可能与活性药物单体发挥作用的机制相关,因此是潜在的药物靶标分子。蒋华良等便是用此方法发现了2个抗幽门螺旋杆菌活性的药物的作

用靶标蛋白def和TyX,并测定了def蛋白复合物的晶体结构。张永清【2】等利用基因芯片研究苦参碱诱导白血病K562细胞基因表达谱改变,发现CCNB1,cyclinD1,PCNA等基因表达发生明显改变,这些基因可能是苦参碱作用靶点之一。Chen【3】等也利用这个方法研究阿霉素处理MCF-7细胞后蛋白质表达的改变,发现阿霉素造成MCF-7细胞中热休克蛋白27(Hsp27)的3个异形体表达显著下降,由此推测Hsp27可能是控制乳腺癌生长的一个潜在药物靶标。 二、以正常组织与病理组织基因表达差异发现靶标 基因在不同组织和疾病发生发展的不同时空存在着明显的基因表达差异,表达明显发生变化的基因常与发病过程及药物作用途径密切相关,这些表达异常的基因很有可能是药物作用的靶点,可作为潜在的筛选药物的靶标【4】。基因芯片技术、mRNA差异显示技术、抑制性消减杂交技术和基因表达系列性分析技术等在现代生命科学研究中使用也日益广泛,这些技术在新的药物靶标的发现中同样扮演了重要的角色。 Heller【5】等利用基因芯片技术分析了正常及诱发病变的巨噬细胞、软骨细胞系、原代软骨细胞和滑膜细胞的mRNA,发现了数种变化明显的基因,其中包括基质金属弹性蛋白酶基因,为治疗类风湿关节炎提供了新的药物靶标。Kapp【6】等利用该技术分析了霍奇金病细胞系中950个基因的表达情况,并与EB病毒永生化的B淋巴细胞系LCL-GK的基因表达谱相比较,发现白细胞介素-13及其信号转导通路可能成为治疗HD新的药物靶标。 Yamamoto【7】等通过基因表达系列性分析技术分析Hela细胞中基因的表达模式,发现了许多高表达的基因,同时也发现了许多新的肿瘤特异性基因,这为肿瘤的治疗提供了新的靶标。Ryo【8】等利用该技术研究HIV-1病毒感染人T细胞株MOLT-4后基因表达模式变化,发现了53个发生显著表达变化的基因,这为艾滋病的研究提供了重要的线索。 Fisher【9】等将mRNA差异显示技术用于乳腺癌细胞与正常乳腺上皮细胞的对比研究中,发现周期蛋白D2在癌细胞中表达下降,并且进一步实验,结果暗示了周期蛋白D2基因可能是5-氮杂胞苷治疗乳腺癌的一个靶基因。Violette【10】等用该技术比较药物敏感的结肠癌细胞系HT-29与其耐药的3个子细胞系的基因表达,

药物设计学简答题

简答题 11、理想的药物靶点应具有哪些特点? (1)药物作用于靶点对疾病治疗的有效性。 (2)中靶后引起的毒副作用反应小。 (3)便于筛选药物的靶点成药性 13、骨架迁越及在药物设计中的应用? 骨架迁越:由苗头或先导化合物分子产生新结构的分子,保留原有的生物活性,通过结构骨架变换,连接适宜的药效团,产生新结构类型的药物,骨架迁越涉及丰富的药物化学内涵和技巧。 应用:(1)将化合物转化成为类药分子-----改善药物动力学性质; 刚-柔骨架的变换,改善药代性质;亲脂-极性骨架变换,改善溶解性和分配性;新的骨架若参与同受体结合,可改善与受体的亲和力;骨架适中的策略如果过小的骨架如苯环缺乏有用信息;过于复杂的骨架带来成本过高问题。 (2)创制具有自主知识产权的新药或IP产品--破专利,Me-too,Me-better; 14、前药设计应注意哪些原则? (1)在母体药物最适宜功能基处键合载体分子。 (2)前药应无活性或活性较低,转运基团应无活性。 (3)明确前药在体内的活化机制。 (4)转化为母体药物的速度应该是快速动力学过程,并降低母体药物的直接代谢,以保证母体药物在靶点有足够的浓度。 (5)应容易合成与纯化,最好是一步反应,且载体廉价易得。 1、简述基于靶点结构的药物设计的基本流程。 定义活性位点→产生配体分子→配体分子打分→合成及活性测定→先导物 2、根据设计来源不同软药可以分为几种类型?软药和前药的区别有几个方面? 软类似物;活化的软类似物;用控释内源物设计天然软药;活性代谢物;无活性代谢物等类型。区别:①先导物不一样,前药是以原药为先导物的,软药的先导物既可以是原药也可以是原药的代谢物;②作用方式不一样,前药在体外无活性,只有到达靶点释放出原药才有活性,而软药在体外是有活性的,它们到达靶点发挥治疗作用后一步代谢失活。 3、简述先导物发现的可能途径。 ①筛选途径:从众多的化合物中运用生物筛选模型挑选有生物活性的先导物。现代筛 选途径涉及组合化学、组合库和高通量高内含筛选。 ②合理药物设计:基于靶点和配体的作用机制、三维结构和识别过程以及与药物理化 性质相关的体内过程,进行有的放矢的药物设计。 4、药物作用的靶点的定义及理想的药物靶点特点是什么? 靶点:也称靶标,指具有重要生理或病理功能,能够与药物相结合并产生药理作用的生物大分子及其特定的结构位点,这些生物大分子主要是蛋白质,有一些是核酸或其他物质。特点:①药物作用于靶点对疾病治疗的有效性②药物作用于靶点后引起的毒副反应小③便于筛选药物靶点的成药性。 5、简述药效基团的虚拟筛选一般流程。 小分子准备→产生构象→由活性分子生成药效基团的假设→优化、修改药效基团的假设→生成药效团模型→数据库搜寻(虚拟筛选) 6、Lipinski的类药五倍律是什么?什么情况下该方法不适合预测药物的类药性?

多靶点药物分子设计

多靶点药物分子设计 郭彦伸, 郭宗儒* (中国医学科学院、北京协和医学院药物研究所, 北京100050) 摘要: 作用于单一分子靶标的药物治愈多基因相关疾病如癌症、或影响多个组织或细胞类型的疾病如糖尿病等存在的问题逐渐被人们所认识。与选择性药物的治疗作用相比,几个靶标间的平衡调节能够提供较好的疗效和较低的副作用,同时作用于多个靶标的多靶点药物能够较好地控制复杂的疾病。本文详细比较分析了单靶点药物的不足和多靶点药物的优势,介绍了多靶点配体药物分子设计的方法及需要优化的参数。对于多靶点药物设计,关键的挑战是如何保证获得平衡的活性同时又能够实现选择性以及适当的药代动力学性质。到目前为止, 多靶点药物分子设计的方法对于药物化学家、药理学家、毒理学家以及生物化学家仍然是一项新的挑战。 关键词: 多靶点配体; 药效团组合; 药物分子设计 中图分类号: R916.1 文献标识码:A 文章编号: 0513-4870 (2009) 03-0276-06 Design of multiple targeted drugs GUO Y an-shen, GUO Zong-ru* (Institute Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China) Abstract: Drugs designed to act on individual molecular targets usually can not combat multigenic diseases such as cancer, or diseases that affect multiple tissues or cell types such as diabetes. Increasingly, it is being recognised that a balanced modulation of several targets can provide a superior therapeutic effect and side effect profile compared to the action of a selective ligand. The multi-target drugs which impact multiple targets simultaneously are better at controlling complex disease systems and are less prone to drug resistance. Here, we compare the disadvantage of the selective ligands and the predominance of multi-targets drugs in detail and introduce the approaches of designing multiple ligands and the procedure of optimization particularly. A key challenge in the design of multiple ligands is attaining a balanced activity at each target of interest while simul-taneously achieving a wider selectivity and a suitable pharmacokinetic profile. On this point, the multi-target approach represents a new challenge for medicinal chemists, pharmacologists, toxicologists, and biochemists. Key words: multiple targeted ligands; pharmacophore combination; design of drug 药物靶标是指与疾病的发生有因果关系或者参与疾病的发展过程, 并通过药物对其进行调节而实现治疗目的的生物分子。自30多年前引入离体筛选(in vitro) 的概念以来, 基因组学和高通量筛选技术的进步,使药物发现从依赖动物筛选逐渐转变到“一病一靶”。现代药理学研究已深入到细胞和分子水平, 更加强调药物作用的靶标, 发现了许多单一靶点选 收稿日期: 2009-02-11. *通讯作者Tel: 86-10-83155752, E-mail: zrguo@https://www.360docs.net/doc/a79477241.html, 择性的药物, 在临床上表现出显著的疗效, 如选择性的HMG辅酶A还原酶抑制剂[1]。随着进一步的深入研究, 发现单一靶点药物也存在着明显的不足。单一靶点抗肿瘤药物单独用药对于晚期患者的化疗效率不高, 人们逐渐认识到单一靶点药物之间的联合应用或作用于多个分子靶标的“多靶点”药物在治疗功能失调类疾病时将起到重要作用[2,3]。目前人们有意识地、理性地设计作用于特定的多个靶点的配体成为研究趋势, “多靶点”药物研发将成为研究的热点。

-合理药物设计

合理药物设计 合理药物设计(rational drug design)是依据与药物作用的靶点即广义上的受体,如酶、受体、离子通道、抗原、病毒、核酸、多糖等,寻找和设计合理的药物分子。主要通过对药物和受体的结构在分子水平甚至电子水平上全面准确地了解,进行基于结构的药物设计和通过对靶点的结构功能与药物作用方式及产生生理活性的机理的认识进行基于机理的药物设计。合理药物设计是化学、生物学、数学、物理学以及计算机科学交叉的产物,是在社会对医药需求的强大推动下逐步发展起来的,主要应用各种理论计算方法和分子图形模拟技术来进行合理药物设计。合理药物设计方法包括3类:①基于配体的药物设计②基于受体结构的药物设计③基于药物作用机理的药物设计。 1.基于配体的药物设计方法 合理药物分子设计必须在已知受体结构模型的条件下才能进行但到目前为止许多已知药物作用的受体结构是未知的在未知受体结构时应用合理药物设计的原理和概念开始药物设计也有了不少的尝试,这方面的研究大致可分为两类;探索系列小分子药物三维结构与活性的关系---主要有3D-QSAR;根据已知药物结构反推受体结构模型,再行合理药物设计,如药效团模型(Pharmacophore Modeling)方法。 1.1定量构效关系(3D-QSAR) 从对药物与受体相互作用的研究可以知道药物的作用是依赖自身空间形状的,其与受体的作用一般为非共价性质虽然在未知受体结

构时无法进行常规意义上的合理药物设计,但可以在对已知药物研究的基础上进行受体形状推测(receptor-mapping),将与药物本身形状有关的参数引入到定量构效关系中,称之为3D-QSAR。该方法是基于被研究的分子结合在同一个靶标生物大分子的相同部位的基本假定,将药物的结构信息、理化参数与生物活性进行拟合计算,建立合理的定量关系的数学模型,再以此关系设计新的化合物。不同方法采用不同的结构性质来确定构效关系。 利用小分子三维结构作为参数的三维定量构效关系方法在预测小分子与生物大分子的相互作用时非常有用,各种在化合物三维结构基础上进行三维定量构效关系研究的方法(3D-QSAR),在药物研究中己经越来越广泛地应用。主要方法为距离几何(Distance Geometry, DG)、分子形状分析(Molecular Shape Analysis, MSA)、比较分子场分析(Comparative Molecular Field Analysis, CoMFA)以及虚拟受体(Pseudo Receptor)方法。 在3D-QSAR中,CoMFA是目前应用最为广泛的方法,它采用化合物周围的静电场、范德华力场等的空间分布作为化合物结构描述变量,通过最小二乘法建立化合物的生物活性与化台物周围各种力场空间分布之间关系的模型。CoMFA是在不了解受体结构的情况下,通过将分子势场图示到网格点上来表示分子的周围环境,比较它们与药物分子的生物活性定量关系,用以推测受体的某些性质,并可依次建立起作用模型来设计新的化合物,定量地预测其活性强度。 1.2药效基团模型方法

微生物药物靶标 课程论文

微生物药物靶标 摘要: 微生物作为抗生素的重要来源,在发掘抗耐药菌新型抗生素的研究中承担了重要角色,许多微生物来源的天然化合物展现了显著的抗耐药菌活性。在因组学、蛋白质组学与生物信息学等技术的推动下,一些新的微生物药物靶标寻找方法应运而生了。靶标可根据作用对象,作用原理等进行分类。许多新型的药物靶标被发现,如以群体感应为靶标,调控群体感应过程中的关键步骤可以达到治疗感染性疾病的目的。 关键词:微生物药物靶标群体感应 微生物耐药性问题日益严重,很多病原微生物,例如结核分枝杆菌和恶性疟原虫等对人类生命健康造成了极大的威胁,开发新的抗菌药物迫在眉睫。微生物作为抗生素的重要来源,在发掘抗耐药菌新型抗生素的研究中承担了重要角色,许多微生物来源的天然化合物展现了显著的抗耐药菌活性。这些天然化合物本身或其改造后的产物已经成为医疗领域中主要使用的药物;同时,在农业领域的病虫害防治上也有重要的应用。它们进入细胞与特定的生物分子即靶标相结合,通过靶标影响整个细胞及组织的功能,起到特定的治疗或预防作用。微生物药物靶标在整个过程中起关键作用。 1 微生物候选药物靶标的选择 候选药物靶点(标) 的条件之一是微生物生存或致病所必需。目前微生物的毒力因子和保守基因为主要的药物靶标。细菌毒力因子包括黏附素,侵袭素,内、外毒素以及细菌超抗原与革兰氏阴性(G - )菌的Ⅲ型分泌系统等。 1.1 微生物生存相关的药物靶标目前临床应用的抗生素主要包括β-内酰胺类、氨基糖苷类、四环素类、氯霉素类、大环内酯类、喹诺酮类、磺胺类等,其作用机制主要包括抑制细菌细胞壁合成和损伤细胞膜功能、影响蛋白质合成、抑制核酸合成等过程,这些抗生素的作用点都是细菌生存所必需。广谱抗生素的作用靶点为多种细菌中保守的蛋白。在多个物种中高度保守的基因很可能就是生存必需的基因,可通过比较不同物种尤其是进化距离比较远的物种之间寻找保守基因。 1.2 微生物致病和毒力相关的药物靶标微生物致病和毒力相关的一些基因产物为微生物非必需,针对这些药物靶点的药物可降低微生物的致病力但并不能杀灭它们,例如,结核分枝杆菌fbpA 和sapM 基因双敲除后,其毒力降低。将这两个基因克隆后发现它们属于结核分枝杆菌的非必需基因。另外,致病性G - 菌的Ⅲ型分泌系统(type Ⅲsecretion system,T3SS) 主要位于细菌致病岛中,编码其输送系统的基因高度保守,编码20 多种基因产物。不同的病原菌之所以能够产生不同的疾病和症状,可能是因为它们分泌不同的蛋白质,作用于不同的宿主细胞和分子。耶尔森菌可分泌10 多种效应分子,并将它们分别注入宿主细胞,其中YopE 和YopH 可修饰巨噬细胞蛋白,破坏细胞的功能,使巨噬细胞不能够吞噬和杀伤该菌;YopJ/ P 蛋白抑制MAPK 和NF-κ B 信号通路,抑制促炎细胞因子和趋化因子(TNF-α、IL-8、IL-12 和IL-18 等) 的产生,诱导细胞凋亡。 1.3 可作为药物靶标的其他分子其他一些分子也可成为潜在的药物靶点,例

分子的立体构型

分子的立体构型 第1课时价层电子对互斥理论 [目标定位] 1.认识共价分子结构的多样性和复杂性。2.理解价层电子对互斥理论的含义。3.能根据有关理论判断简单分子或离子的构型。 一、常见分子的立体构型 1.写出下列物质分子的电子式和结构式,并根据键角确定其分子构型: 2.归纳总结分子的立体构型与键角的关系:

分子的立体构型 (1)分子构型不同的原因:共价键的方向性与饱和性,由此产生的键长、键角不同。 (2)依据元素周期律推测立体结构相似的分子,如CO2与CS2、H2O与H2S、NH3与PH3、CH4与CCl4等;CH4和CCl4都是五原子型正四面体,CH3Cl、CH2Cl2、CHCl3是四面体构型但不是正四面体,而白磷是四原子型正四面体,它与CH4等五原子型正四面体的构型、键角是不同的(P4分子中的键角为60°)。 (3)典型有机物分子的立体结构:C2H4、苯(C6H6)、CH2===CH—CH===CH2(丁二烯)、CH2===CH—C≡CH(乙烯基乙炔)等都是平面形分子;C2H2为直线形分子。 1.硫化氢(H2S)分子中,两个H—S键夹角都接近90°,说明H2S分子的立体构型为__________;二氧化碳(CO2)分子中,两个C===O键夹角是180°,说明CO2分子的立体构型为__________;四氯化碳(CCl4)分子中,任意两个C—Cl键的夹角都是109°28′,说明CCl4分子的立体构型为____________。 答案V形直线形正四面体形 解析用键角可直接判断分子的立体构型。三原子分子键角为180°时为直线形,小于180°时为V形。S、O同主族,因此H2S和H2O分子的立体构型相似,为V形。由甲烷分子的立体构型可判断CCl4的分子构型。 2.下列各组分子中所有原子都可能处于同一平面的是() A.CH4、CS2、BF3B.CO2、H2O、NH3 C.C2H4、C2H2、C6H6D.CCl4、BeCl2、PH3 答案 C 解析题中的CH4和CCl4为正四面体形分子,NH3和PH3为三角锥形分子,这几种分子的所有原子不可能都在同一平面上。CS2、CO2、C2H2和BeCl2为直线形分子,C2H4为平面形分子,C6H6为平面正六边形分子,这些分子都是平面形结构。故选C项。 二、价层电子对互斥理论 1.价层电子对互斥理论的基本内容:分子中的价电子对——成键电子对和孤电子对由于相互排斥作用,尽可能趋向彼此远离。 (1)当中心原子的价电子全部参与成键时,为使价电子斥力最小,就要求尽可能采取对称结构。

药物设计学复习资料

名词解释 1、合理药物设计:根据药物发现过程中基础研究所揭示的药物作用靶点,即受体,再参考 其内源性配体或天然药物的化学结构特征,根据配体理化性质寻找和设计合理的药物分子,以便有效发现、到达和选择性作用与靶点的又具有药理活性的先导物;或根据靶点3D结构直接设计活性配体。 2、高通量筛选:HTS,以分子水平和细胞水平的实验方法为基础,以微板形式作为实验工具 载体,以自动化操作系统执行实验过程,以灵敏快速的检验仪器采集实验数据,以计算机分析处理实验数据,在同一时间检测数以万计的样品并以得到的相应数据库支持运转的技术体系。 3、药物的体内过程即A、D、M、E的中文名称及各自定义:分别为 吸收:药物从用药部位进入体循环的过程。 分布:药物在血液、组织及器官间的可逆转运过程。 代谢:药物在吸收过程或进入体循环后,在体内酶系统、体液的PH或肠道菌从的作用下,发生结构转变的过程,此过程也称为生物转化。 排泄:药物或其代谢物排除体外的过程。 4、基于靶点的药物设计:TBBD,以生命科学为基础,根据疾病特异的功能、症状和机制, 发现和研究药物作用靶点以及与预防相关的调控过程。 5、基于性质的药物设计:PBBD,运用计算机辅助设计软件,根据配体的理化性质对设计的 先导物结构预测它们的吸收、分布、代谢、排泄和毒性(ADME/T),估计药物在体内的释放度和生物利用度,判断类药性 6、基于结构的药物设计:SBDD,以计算机辅助药物设计为手段,其方法分为基于靶点的直 接药物设计和基于配体的简介药物设计两类,运用受体学说和分子识别原理,设计对受体进行调控的先导物,或根据已有药物作用力大小和构效关系判断来推测新化合物的药效,达到发现活性分子的目地。 7、定量构效关系:QSAR,研究的是一组化合物的生物与其结构特征之间的相互关系,结构特 征以理化参数、分子拓扑参数、量子化学指数和结构碎片指数表示,用数理统计的方法进行数据回归分析,并以数学模型表达和概括量变规律。 8、三维定量构效关系:3D-QSAR,以配体和靶点的三维结构特征为基础,根据分子的内能变 化和分子间相互作用的能量变化,将已知一系列药物的理化参数和三维结构参数与药效拟合出定量关系,再以此化合物预测新化合物的活性,进行结构的优化和改造。 1、简述基于靶点结构的药物设计的基本流程。 定义活性位点→产生配体分子→配体分子打分→合成及活性测定→先导物 2、根据设计来源不同软药可以分为几种类型?软药和前药的区别有几个方面? 软类似物;活化的软类似物;用控释内源物设计天然软药;活性代谢物;无活性代谢物等类型。区别:①先导物不一样,前药是以原药为先导物的,软药的先导物既可以是原药也可以是原药的代谢物;②作用方式不一样,前药在体外无活性,只有到达靶点释放出原药才有活性,而软药在体外是有活性的,它们到达靶点发挥治疗作用后一步代谢失活。 3、简述先导物发现的可能途径。 ①筛选途径:从众多的化合物中运用生物筛选模型挑选有生物活性的先导物。现代筛 选途径涉及组合化学、组合库和高通量高内含筛选。 ②合理药物设计:基于靶点和配体的作用机制、三维结构和识别过程以及与药物理化

基于生物信息学方法发现潜在药物靶标

基于生物信息学方法发现潜在药物靶标 刘伟;谢红卫 【期刊名称】《生物化学与生物物理进展》 【年(卷),期】2011(038)001 【摘要】药物靶点通常是在代谢或信号通路中与特定疾病或病理状态有关的关键分子.通过绑定到特定活动区域抑制这个关键分子进行药物设计.确定特定疾病有关的靶标分子是现代新药开发的基础.在药物靶标发现的过程中,生物信息学方法发挥了不可替代的重要的作用,尤其适用于大规模多组学数据的分析.目前,已涌现了许多与疾病相关的数据库资源,基于生物网络特征、多基因芯片、蛋白质组、代谢组数据等建立了多种生物信息学方法发现潜在的药物靶标,并预测靶标可药性和药物副作用.%Typically a drug target is a key molecule involved in a particular metabolic or signaling pathway, that is specific to a disease condition or pathology. Drugs may be designed that bind to the active region and inhibit this key molecule. Determining specific disease-related target molecules is the basis of modern drug development. In the process of drug target discovery, bioinformatics methods play irreplaceable roles, especially suited for the analyses of large-scale and multi-omics data. On current, many disease-related database resources have emerged.Various bioinformatics methods have been established based on biological network characteristics, multiple gene chips, proteomics and metabolomics data to discover potential drug targets, and predict the target druggability and side effects of

分子的立体构型(1)

新课标人教版选修三物质结构与性质 第二章 分子结构与性质 第二节 分子的立体结构 第一课时 一、形形色色的分子 【投影展示】CO 2、H 2O 、NH 3、CH 2O 、CH 4分子的球辊模型(或比例模型); 1、 三原子分子 化学式 结构式 分子的立体结构模型 分子的空间构型 键角 直线形 180° V 形 105° 2、 四原子分子 化学式 结构式 分子的立体结构模型 平面三角形 120° 三角锥形 107° 3、五原子分子 正四面体形 109°28’ 4、其他分子 5、资料卡片 CH 3 COOH C 8H 8 CH 3OH C 6H 6 CH 3CH 2 OH

分子世界如此形形色色,异彩纷呈,美不胜收,常使人流连忘返。 分子立体构型与其稳定性有关。例如,上图S 83像皇冠,如果把其中一个向上的硫原子倒转向下,尽管也可以存在,却不如皇冠是稳定;又如椅式C 6H 6比船式C 6H 6稳定 【问题】1、什么是分子的立体构型? 答:分子的立体构型是指分子中原子的空间排布。 那么分子结构又是怎么测定的呢?可以用现代手段测定。 【阅读】 选修3 P37——科学视野分子的立体结构的测定: 红外线光谱 【问题】 3、 同为三原子分子的CO 2和H 2O ,四原子分子的NH 3和CH 2O ,它们的立体结构却不同,为什么? 分子中的原子 分子立体构型 红外线 分析

二、价层电子对互斥模型(VSEPR 模型) 1、价层电子对互斥模型: 1940年美国的Sidgwick NV 等人相继提出了价层电子对互斥理论,简称VSEPR 法,该法适用于主族元素间形成的ABn 型分子或离子。 该理论认为:一个共价分子或离子中,中心原子A 周围所配置的原子B (配位原子)的几何构型,主要决定于中 心原子的价电子层中各电子对间的相互排斥作用。 a:中心原子的价电子数(最外层电子数) ① 对于阳离子价电子数=最外层电子数-电荷数 ② 对于阴离子价电子数=最外层电子数+电荷数 x :与中心原子相结合的原子数 b :与中心原子相结合的原子能得到的电子数 例如:CO 2: CO 2 孤电子对=1/2(4-2×2) =0 H 2O : O 上孤电子对数=1/2(6 -2×1) =2 CO 32-: C 上孤电子对数=1/2(4 +2 -3×2) =0 学生活动:填写下表内容 分子或离子中的价层电子对在空间的分布(即含孤电子对的VSEPR 模型) 分子真实 构型 中心原子上孤电子对=1/2(a -x b)

《药物设计学》复习题

滨州医学院继续教育学院课程 考试 药物设计学》复习题 一、名词解释 1. ADMET 2. 受体 3. 酶 4. Mee-too Drug 5. 生物电子等排体 6. 过渡态类似物抑制剂 7. QSAR 8. 高内涵筛选技术 9. 多底物类似物 10. 占领学说 11. 第三信使 12. 诱导契合学说 13. 组合化学 14. 同源蛋白 15. 模板定位法 16. 表观分布容积 、简答题 简述活性片段的检测技术中,磁共振技术的检测原理和分类。 简述酶的激活方式。 简述以核酸为靶点的药物设计类别。 简述反向化学基因组学的定义及其研究方法。 根据化合物库的来源不同,发现先导化合物的方法有哪些? 简述前药设计的目的。 基于片段的药物设计中,片段库的建立需要注意哪些问题? 简述药物研发失败率较高的原因。 可以从哪些方面考虑进行专利边缘的创新药物设计? 10. 引起药物毒性的因素有哪些? 11. 试述蛋白质在信号转导功能中的变化。 12. 在前药设计时一般应考虑哪些因素? 13. 试述钙离子成为胞内信使的基础。 14. 试述基于类药性的药物设计策略。 三、论述题 1、有的知识,论述先导化合物发现的预测方法。 2、论述下列化合物的设计原理和特点 (1) 1. 2. 3. 4. 5. 6. 7. 8. 9.

(2) 2 CH 2 COONa NH N 先导化合物 3、根据已有的知识,论述从片段到先导化合物的设计方法并解释各类方法的原理。

滨州医学院继续教育学院课程考试 药物设计学》复习题答案 一、名词解释 1.ADMET 药物的吸收、分布、代谢、排谢、毒性 2.受体 是细胞在进化过程中形成的生物大分子成分,能识别周围环境中极微量的某些化学物质,并与之结合,引发生理反应或药理效应。 3. 酶是由活体细胞分泌,对其特异底物具有高效催化作用的蛋白质。 4.Mee-too Drug 将已知药物的化学结构作局部改变,具有相似的药理作用,药物结构不受专利的保护,使该类模仿药快速投放市场。 5. 生物电子等排体 指具有相同价电子数,并且具有相近理化性质,能产生相似或相反生物活性的分子或基团。 6. 过渡态类似物抑制剂 酶与过渡态之间的亲和力高于酶同底物或产物的亲和力,酶可以降低这种能量壁垒,使反应速率提高。过渡态类似物抑制剂是一类特异的竞争性抑制剂,其结构类似于反应中不稳定过渡态的底物部分。 7. QSAR 一种借助分子的理化性质参数或结构参数,以数学和统计学手段定量研究有机小分子与生物大分子相互作用、有机小分子在生物体内吸收、分布、代谢、排泄、毒性等生理相关性质的方法。 8.高内涵筛选技术 在保持细胞结构和功能完整性的前提下,尽可能同时检测被筛选样品对细胞生长、分化、迁移、凋亡、代谢途径及信号转导等多个环节的影响,从单一实验中获取大量相关信息,确定其生物活性和潜在毒性。 9.多底物类似物 模拟同时结合在酶的活性位点的两个或多个底物的结构,通过共价键把两个或多个底物或底物类似物结合在一起。与靶酶结合力大大增强,并且特异性更高。 10.占领学说 认为药理效应与受体被药物结合的数量成正比,而且这种结合是可逆的,其剂量和效应的关系符合质量作用定律。 11.第三信使 又称为DNA 结合蛋白,负责细胞核内外信息传递的物质。 12.诱导契合学说 当药物与受体接触时,由于分子间的各种键力,诱导受体作用部位的构象可逆性改变,以与药物更相适应地契合,进而使整个受体分子构象呈可逆性改变,于是影响相邻部位酶的活性改变或生化反应,从而产生相应的药理效应。

如何发现药物新靶标

如何发现药物新靶标

如何发现药物新靶标 文献综述 摘要:药物靶标的发现是创造新药物的前提,也是药物筛选的基础,本文从有效单体化合物、基因表达差异、蛋白质表达差异、蛋白质相互作用和RNA干扰方面着手总结了一些药物新靶标的发现技术进行了综述。 关键词:药物靶标;基因表达差异;差异蛋白质组学;蛋白质相互作用;RNA 干扰 引言:药物靶标是药物作用而实现疗效的目标分子,靶标的发现是药物创新的前提,也是药物筛选的基础。新靶标的发现对于更优良的创新型药物的开发具有重大的促进作用。例如,利用HMG CoA还原酶作为药物靶标开发了一系列他汀类降脂药物,仅2000年,该类药物的销售额达120亿美元,并以每年15%~20%的速度增长。Novartis公司利用慢性粒细胞性白血病(CML)相关蛋白Bcr-Abl为靶标,在短时间内开发出有效治疗CML的新药—高活性Bcr-Abl激酶抑制剂STI571(Gleevac)。【1】从这些例子可以发现,生物医药公司花费大量的物力和财力寻找药物的新靶标。随着生命科学的发展,各种科技的创新,也出现了很多药物靶标的发现技术。 一、从有效单体化合物着手发现药物靶标 以疗效确定的单体化合物(天然产物或现有药物)为探针,然后利用计算机模拟单体分子与相关蛋白质三维结构及其相互作用,找到所有的能与其特定结合的蛋白质,这些蛋白质可能与活性药物单体发挥作用的机制相关,因此是潜在的药物靶标分子。蒋华良等便是用此方法发现了2个抗幽门螺旋杆菌活性的

药物的作用靶标蛋白def和TyX,并测定了def蛋白复合物的晶体结构。张永清【2】等利用基因芯片研究苦参碱诱导白血病K562细胞基因表达谱改变,发现CCNB1,cyclinD1,PCNA等基因表达发生明显改变,这些基因可能是苦参碱作用靶点之一。Chen【3】等也利用这个方法研究阿霉素处理MCF-7细胞后蛋白质表达的改变,发现阿霉素造成MCF-7细胞中热休克蛋白27(Hsp27)的3个异形体表达显著下降,由此推测Hsp27可能是控制乳腺癌生长的一个潜在药物靶标。 二、以正常组织与病理组织基因表达差异发现靶标 基因在不同组织和疾病发生发展的不同时空存在着明显的基因表达差异,表达明显发生变化的基因常与发病过程及药物作用途径密切相关,这些表达异常的基因很有可能是药物作用的靶点,可作为潜在的筛选药物的靶标【4】。基因芯片技术、mRNA差异显示技术、抑制性消减杂交技术和基因表达系列性分析技术等在现代生命科学研究中使用也日益广泛,这些技术在新的药物靶标的发现中同样扮演了重要的角色。 Heller【5】等利用基因芯片技术分析了正常及诱发病变的巨噬细胞、软骨细胞系、原代软骨细胞和滑膜细胞的mRNA,发现了数种变化明显的基因,其中包括基质金属弹性蛋白酶基因,为治疗类风湿关节炎提供了新的药物靶标。Kapp【6】等利用该技术分析了霍奇金病细胞系中950个基因的表达情况,并与EB病毒永生化的B淋巴细胞系LCL-GK的基因表达谱相比较,发现白细胞介素-13及其信号转导通路可能成为治疗HD新的药物靶标。 Yamamoto【7】等通过基因表达系列性分析技术分析Hela细胞中基因的表达模式,发现了许多高表达的基因,同时也发现了许多新的肿瘤特异性基因,这为肿瘤的治疗提供了新的靶标。Ryo【8】等利用该技术研究HIV-1病毒感染人T细胞株MOLT-4后基因表达模式变化,发现了53个发生显著表达变化的基因,这为艾滋病的研究提供了重要的线索。 Fisher【9】等将mRNA差异显示技术用于乳腺癌细胞与正常乳腺上皮细胞的对比研究中,发现周期蛋白D2在癌细胞中表达下降,并且进一步实验,结果暗示了周期蛋白D2基因可能是5-氮杂胞苷治疗乳腺癌的一个靶基因。Violette【10】等用该技术比较药物敏感的结肠癌细胞系HT-29与其耐药的3个子细胞系的基因

《药物设计学》复习题

滨州医学院继续教育学院课程考试 《药物设计学》复习题 一、名词解释 1. ADMET 2. 受体 3. 酶 4. Mee-too Drug 5. 生物电子等排体 6. 过渡态类似物抑制剂 7. QSAR 8. 高内涵筛选技术 9. 多底物类似物 10. 占领学说 11. 第三信使 12. 诱导契合学说 13.组合化学 14. 同源蛋白 15. 模板定位法 16. 表观分布容积 二、简答题 1. 简述活性片段的检测技术中,磁共振技术的检测原理和分类。 2. 简述酶的激活方式。 3. 简述以核酸为靶点的药物设计类别。 4. 简述反向化学基因组学的定义及其研究方法。 5. 根据化合物库的来源不同,发现先导化合物的方法有哪些? 6. 简述前药设计的目的。 7. 基于片段的药物设计中,片段库的建立需要注意哪些问题? 8. 简述药物研发失败率较高的原因。 9. 可以从哪些方面考虑进行专利边缘的创新药物设计? 10. 引起药物毒性的因素有哪些? 11.试述蛋白质在信号转导功能中的变化。 12.在前药设计时一般应考虑哪些因素? 13.试述钙离子成为胞内信使的基础。 14.试述基于类药性的药物设计策略。 三、论述题 1、有的知识,论述先导化合物发现的预测方法。 2、论述下列化合物的设计原理和特点 (1)

O H O COCH 2 CH 2 COONa (2) N NH 2 N NH N N H 3、根据已有的知识,论述从片段到先导化合物的设计方法并解释各类方法的原理。

滨州医学院继续教育学院课程考试 《药物设计学》复习题答案 一、名词解释 1. ADMET 药物的吸收、分布、代谢、排谢、毒性 2. 受体 是细胞在进化过程中形成的生物大分子成分,能识别周围环境中极微量的某些化学物质,并与之结合,引发生理反应或药理效应。 3. 酶 是由活体细胞分泌,对其特异底物具有高效催化作用的蛋白质。 4. Mee-too Drug 将已知药物的化学结构作局部改变,具有相似的药理作用,药物结构不受专利的保护,使该类模仿药快速投放市场。 5. 生物电子等排体 指具有相同价电子数,并且具有相近理化性质,能产生相似或相反生物活性的分子或基团。 6. 过渡态类似物抑制剂 酶与过渡态之间的亲和力高于酶同底物或产物的亲和力,酶可以降低这种能量壁垒,使反应速率提高。过渡态类似物抑制剂是一类特异的竞争性抑制剂,其结构类似于反应中不稳定过渡态的底物部分。 7. QSAR 一种借助分子的理化性质参数或结构参数,以数学和统计学手段定量研究有机小分子与生物大分子相互作用、有机小分子在生物体内吸收、分布、代谢、排泄、毒性等生理相关性质的方法。 8. 高内涵筛选技术 在保持细胞结构和功能完整性的前提下,尽可能同时检测被筛选样品对细胞生长、分化、迁移、凋亡、代谢途径及信号转导等多个环节的影响,从单一实验中获取大量相关信息,确定其生物活性和潜在毒性。 9. 多底物类似物 模拟同时结合在酶的活性位点的两个或多个底物的结构,通过共价键把两个或多个底物或底物类似物结合在一起。与靶酶结合力大大增强,并且特异性更高。 10. 占领学说

药物设计基础的主要内容

《药物设计基础》主要内容 导论 主要内容 “药物发现”的定义、基本阶段,药物设计的主要内容,药物作用的体内过程,先导物发现的阶段和途径,筛选途径,合理药物设计。 第一节药物发现 一、药物发现的定义 ①定义: 按广义的定义,包括内容一起 P 1-2 狭义定义 ②阶段: 研究过程4个阶段:基础研究,可行性分析、项目研究、非临床开发 开发过程:临床研究,还包括注册申请和上市销售 基础研究的目标:发现多种靶点,确定靶点成药性,新化学实体 可行性分析:先导物 项目研究:发现可进行临床研究的研究中新药,包括药学、药理学、毒理学等方面; 生物利用度在3个参数:达峰时间、达峰浓度、药时曲线下面积 三性试验:急性、亚急性或慢性毒理试验 三致实验:致突、致畸、致癌 非临床开发:尽早淘汰不适合的候选药物 核心:安全性评估问题 临床研究:确证研究中新药的应用价值 需4期试验,进行新药申请和注册上市后,还需进行后期验证Ⅰ期试验:人体对IND的有效性、耐受程度和安全性; Ⅱ期试验:确证临床应用的实际价值,对何疾病有效,有效剂量范围和最适给药方案 Ⅲ期试验:IND试产后的安全考察期 Ⅳ期试验:新药申请后的跟踪考察验证 药效(PD)、药动(PK)和毒性(T)研究是交叉贯穿于新药R&D的各个阶段 第二节药物设计

一、药物设计的概念P9 狭义的药物发现过程 药物发现的中心环节――先导物的发现途径(衍生和优化)以及所涉及的理论、技术和方法 靶点与配基的概念 药物与受体结合引发内在活性,据产生的生物效应不同可分为激动剂和拮抗剂 药物在体内作用过程可分为三个相:药剂相、药代相和药效相 ADME/T是药物设计自始至终要改善的问题 P11 二、先导物 如何发现先导物是寻找新药的主要途径,也是新药R&D的关键,是药物发现的第一步 发现先导化合物的途径:筛选和合理药物设计 现代筛选途径涉及组合化学、组合库、高通量高内涵筛选P 12 合理药物设计的概念P 12 基于靶点的药物设计 合理药物设计分类基于性质的药物设计 基于结构的药物设计 在已知作用靶点的三维结构可采用基于靶点的直接药物设计,有配体对接 和从头设计等策略P 16 在未知大部分靶点的结构,宜用基于配体的间接药物设计 CADD既可用于先导物衍生,也可用于先导物优化,是实现基于结构和基于性质的药物设计的技术手段 三、筛选途径 分类 筛选模型P 17 发现从传统的整体动物器官和组织水平发展到细胞和分子水平有效的筛选模型和方法:光学试验、荧光筛选、基于细胞的筛选、小动物试验系列、影像学 组合化学的定义:P18 外消族转换:P21 药物设计的目标P22 重点以及发展方向

相关文档
最新文档