PHILIP_出的MFRC500的匹配电路和天线设计指南中文版

PHILIP_出的MFRC500的匹配电路和天线设计指南中文版
PHILIP_出的MFRC500的匹配电路和天线设计指南中文版

高速PCB设计指南

高速PCB设计指南 第一篇 PCB布线 在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大。PCB布线有单面布线、双面布线及多层布线。布线的方式也有两种:自动布线及交互式布线,在自动布线之前,可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。 自动布线的布通率,依赖于良好的布局,布线规则可以预先设定,包括走线的弯曲次数、导通孔的数目、步进的数目等。一般先进行探索式布经线,快速地把短线连通,然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要断开已布的线。并试着重新再布线,以改进总体效果。 对目前高密度的PCB设计已感觉到贯通孔不太适应了,它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用,还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB 板的设计过程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中的真谛。 1 电源、地线的处理

既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。 对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述: (1)、众所周知的是在电源、地线之间加上去耦电容。 (2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm 对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用) (3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。 2 数字电路与模拟电路的共地处理 现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。 数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个

模拟电路课程设计心得体会

模拟电路课程设计心得 体会 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

精选范文:《模拟电路》课程设计心得体会(共2篇)本学期我们开设了《模拟电路》与《数字电路》课,这两门学科都属于电子电路范畴,与我们的专业也都有联系,且都是理论方面的指示。正所谓“纸上谈兵终觉浅,觉知此事要躬行。”学习任何知识,仅从理论上去求知,而不去实践、探索是不够的,所以在本学期暨模电、数电刚学完之际,紧接着来一次电子电路课程设计是很及时、很必要的。这样不仅能加深我们对电子电路的任职,而且还及时、真正的做到了学以致用。这两周的课程设计,先不说其他,就天气而言,确实很艰苦。受副热带高气压影响,江南大部这两周都被高温笼罩着。人在高温下的反应是很迟钝的,简言之,就是很难静坐下来动脑子做事。天气本身炎热,加之机房里又没有电扇、空调,故在上机仿真时,真是艰熬,坐下来才一会会,就全身湿透,但是炎炎烈日挡不住我们求知、探索的欲望。通过我们不懈的努力与切实追求,终于做完了课程设计。在这次课程设计过程中,我也遇到了很多问题。比如在三角波、方波转换成正弦波时,我就弄了很长时间,先是远离不清晰,这直接导致了我无法很顺利地连接电路,然后翻阅了大量书籍,查资料,终于在书中查到了有关章节,并参考,并设计出了三角波、方波转换成正弦波的电路图。但在设计数字频率计时就不是那么一帆风顺了。我同样是查阅资料,虽找到了原理框图,但电路图却始终设计不出来,最后实在没办法,只能用数字是中来代替。在此,我深表遗憾!这次课程设计让我学到了很多,不仅是巩固了先前学的模电、数电的理论知识,而且也培养了我的动手能力,更令我的创造性思维得到拓展。希望今后类似这样课程设计、类似这样的锻炼机会能更多些!

天线匹配调试流程

PCB天线匹配调试流程(个人总结) 根据个人调试经验归纳总结调试天线匹配的步骤流程,仅供参考--ab。 步骤1、根据结构和PCB大小设计线圈圈数、线宽、圆方等设计PCB天线线圈。可以根据实际产品需求按照“附件1:非接触天线电感计算”的参数计算出大约的线圈电感和品质因数Q。 步骤2、按照步骤1设计出PCB的天线线圈,利用网络分析仪测试裸板的天线线圈实际的Q值,然后根据产品对Q值的需要进行并电阻调节Q值大小。 Q值计算和意义: ,f为谐振频率,R为负载电阻,L为回路电感,C为回路电容。 一般而言,Q越高,能量的传输越高,但是过高的Q值会影响读写器的带通特性,尤其是读写器本身频率点比较偏的时候,标签Q值过高,有可能会导致标签的频率点在读卡器的带通范围之外。一般设置Q值为20的时候带通特性和带宽都比较好。一般L和C的值由于要匹配谐振,不怎么好改动,因此要降低Q 可以通过并联一个电阻R来解决。所以在设计之初,需要尽量的让品质因数Q 留有余量,以便后期调试。如果设计太小Q值就不好往高调试了。 步骤3、针对AS3911芯片的匹配电路可以参考“附件2: AS3911_AN01_Antenna_Design_Gui”初步确定出EMC、matching电路。 天线匹配电路参考

步骤4、利用网络分析仪适当调整EMC、matching电路让天线谐振在,匹配10欧~50欧的电阻。根据AS3911文档推荐匹配20~30欧效率最高,如果考虑功耗等因素可以适当的匹配电阻变大,提高输入阻抗。 天线匹配意义: 在天线的LCR电路中产生谐振,使电路中呈现纯阻抗性,此时电路的阻抗模值最小。当电压V固定时,电流最大。 (1) 电路阻抗最小且为纯电阻。即Z=R+jXLjXC=R (2) 电路电流为最大。 (3) 电路功率因子为1。 (4) 电路平均功率最大。即P=I2R (5) 电路总虚功率为零。即QL=QCQT=QLQC=0 史密斯圆图图示 步骤5:可以根据史密斯圆图来调整匹配电路。目标:将与实数轴相交,交点就是谐振在的电路阻抗最小且呈纯阻性,此时电路的阻抗模值最小。当电压V固定时,电流最大。 可以根据"附件3:AS3911 Matching " 来调整史密斯圆图的参数。 如果想对射频理论知识感兴趣可以参考。《射频电路设计》

程控放大器的设计

HEFEI UNIVERSITY 程控放大器的设计 系别电子信息与电气工程系 专业电气信息类 班级09级电气(4)班 姓名李浩刘阳程超 完成时间2011年3月14日

摘要:本设计由三个模块电路构成:前即高共模抑制比仪器,8wei DAC0832衰减器,和单片机键盘显示处理模块。前级模拟放大部分具有高共模抑制比,高输入电阻,可调节放大倍数;DAC衰减器将模拟放大器的输出信号进行相应的衰减;键盘输入信号放大的倍数,并同时选取适当放大倍数,通过单片机整体控制,实现信号方大的功能。 一:方案设计与论证 1.放大电路 可行方案:如图所示,线路前级为同相差动放大结构,要求量运放的性能万群相同,这样,线路除具有差模,,共模输入电阻大的特点外,量运放的共模增益,失调机其漂移长生的误差也相互抵消,因而不需要精密匹配电阻。后即的作用是抑制共模信号,将双端输出转变为单端放大输出,一室印发给接地负载的需要,后即的带你组精密则要求匹配。增益分配一般前级去高值。 可改进为:因为其电路结构简单,易于定位和控制。但要调节增益必须手动调节变阻器,所以考虑将放大倍数设成固定值,以满足题目的需要。 2.控制部分 利用单片机,MCU最小系统可由51单片机或其他派生芯片构成。置数键可由0-9这10个数字级几个功能键组成,在软件的控制下,单片机开机后先将预置数输入,在送去显示的同时,送入DA然后等待键盘终端,并做相应的处理。 二:系统总体设计方案 1.总体设计思路 根据题目的要求,我们认真取舍,充分利用了模拟和数字系统的有点,采用单片机控制放大器增大的方法,大大的提高了系统的精密度;采用仪器放大其输入,大大提高了放大器的质量。有篇运放构成的前几高共模输入的仪表差动放大器,对不同的差模输入信号电压进行不同的方大倍数,再经过后即的数控衰减器得到要求放大的倍数的输出信号。每种信号渡江在单片机的算法控制下得到最合理的前几放大和后即衰减,一是信号放大的质量最佳。

几种短波天线的比较

几种短波天线的比较(ZT) 这里我们是常见的几款短波天线,如国产的10米波段1/2波长垂直天线,曰本钻石公司的HV-4,自制的加感天线,自制的DP天线。当然,还很多的其他的天线类型。这次只是对这几款用过的做一个比较,讲一讲个人的一些体会,希望能大家有所帮助。还是会再继续寻找,试图找出更符合个人需要,容易制作和携带的野营天线。 1. 国产的10米波段1/2波长垂直天线: 这种天线好处很多,增益高,发射仰角低,受环境影响小,无须调整,架设高度低,可以直接放在地上。缺点是单波段天线,一个波段得要一根。另外每节1米左右,携带不算很麻烦也不算容易。 2. 曰本钻石公司的HV-4: 这是一款车天线,是适合放在车顶使用的,曾经用吸盘吸在普桑顶上,在行驶的汽车上用15米波段联络曰本电台效果非常好。但是不把它安装在车上,它就无法正常工作,即使加上了模拟地线,谐振点也全部偏低,21MHz波段的谐振点到了18MHz。所以其实是不适合野营使用的。 3. 自制的加感天线: 振子是1.5米长的拉杆天线,收起来的时候很短。加感线圈在底部,另外还需要地线配合。由于当年调试的时候是把天线斜挑出阳台,地线自然下垂的形态。所以今天曾经试图把天线振子竖起来,地线拉水平,或斜向下45度,就都无法谐振。只有摆成当年调试的样子,才能谐振。回想以前玩野外操作的时候,这类天线的加感线圈都是做很多抽头出来,到地方再重新找抽头位置。看来这天线也必须这样做才成,它太受环境的影响。这种天线携带还算容易,不过振子短,有效辐射长度短,效率不会很高。但是也不算太差。 阻抗匹配概念 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。 重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。 阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生

PCB设计原理及规范处理

PCB 设计规范二O 一O 年八月

目录 一.PCB 设计的布局规范- - - - - - - - - - - - - - - - - - - - - - - - -- - 3 ■布局设计原则- - - - - - - - - - - - - - - - - - - - - - - - - - - ------ - - 3 ■对布局设计的工艺要求- - - - - - - - - - - - - - - - - - - - - ------- - - 4 二.PCB 设计的布线规范- - - - - - - - - - - - - - - - - - - - - - - - - - 15 ■布线设计原则- - - - - - - - - - - - - - - - - - - - - - - - - - - ----- - - 15 ■对布线设计的工艺要求- - - - - - - - - - - - - - - - - - - - - - - ------ 16 三.PCB 设计的后处理规范- - - - - - - - - - - - - - - - - - - -- - - - - 25 ■测试点的添加- - - - - - - - - - - - - - - - - - - - - - - - - - ----- - - - 25 ■PCB 板的标注- - - - - - - - - - - - - - - - - - - - - - - - ----- - - - - 27 ■加工数据文件的生成- - - - - - - - - - - - - - - - - - - - - - ----- - - - 31 四.名词解释- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - 33 ■金属孔、非金属孔、导通孔、异形孔、装配孔- - - - - - - - - ---- - 33 ■定位孔和光学定位点- - - - - - - - - - - - - - - - - - - - - - - ------ - 33 ■负片(Negative)和正片(Positive)- - - - - - - - - - - --- - - - - 33 ■回流焊(Reflow Soldering)和波峰焊(Wave Solder)- - --- - - 34 ■PCB 和PBA - - - - - - - - - - - - - - - - - - - - - - - - - - ---- --- - - 34

经典模拟、数字电路设计

实验一 单级阻容耦合放大器设计 一、设计任务书 1.已知条件 电源电压V cc =+12V,信号源U s =10mV,内阻R s =600Ω,负载R L =2k Ω。 2.主要技术指标 输入电阻R i >2k Ω,频率响应20Hz ~500kHz,输出电压U o ≥0.3V,输出电阻R O <5k Ω,电路工作稳定。 3.实验用仪器 双踪示波器一台,信号发生器一台,直流稳压电源一台,万用表一台。 二、电路设计 1.电路形式讨论 由于电压增益A V =U O /U S =30,采用一级放大电路即可,要求电路工作稳定,采用分压式电流负反馈偏置电路,输入电阻比较大和频率响应比较宽,引入一定的串联负反馈,电路如图。 2.具体电路设计 (1)静态工作点选择 I CQ =2mA,V BQ =3V (选择硅管) (2)晶体管的选择 78) (2 =+=L s i V R R R A β取100, U CEO >V CC =12V,I CM >2I CQ =4mA, P CM >I CQ V CC =24mW, f T >1.5βf H =75MHz 选择9014:U CEO >20V,I CM >100mA, P CM >300mW,f T >80MHz,Cb'c<2.5pF (3)元件参数的计算 R E =(V BQ -0.7)/I CQ ≈1.2k Ω I BQ =I CQ /β=20μA 则 Ω== k I V R BQ BQ B 15102,R B2=15k Ω Ω=-= k I V V R BQ BQ CC B 45101,取标称值47k Ω Ω≈++=k mA I mV r EQ be 6.1) (26) 1(300β, 取R F =10Ω.则Ω=++=k R r R F be i 16.2)1('β Ω==k R R R R i B B i 12.2////'21,取A V =40,

射频发射和射频接收电路

图3.26动态天线的增益变化(左后轮) 图3.27动态天线的阻抗变化(左后轮) 根据上图动态天线的模拟结果,我们可以得知,天线的实际辐射电阻值比较小,而且随着轮轴的旋转而不断变化,分析可知上述变化规律和上图2.1所示的垂直辐射电阻的变化规律十分类似。 3.2 TPMS接收天线的仿真分析 TPMS传输天线的模型如下图3.30所示,传输天线使用1 /4λ型天线。接下来,笔者将详细的论述在理想条件下单天线与车辆,以及单天线组成的结构特征。图3.30接收天线模型

1)单天线 图3.31单天线方向图 图3.32方位角平面(仰角900)方向图

图3.34仰角平面(方位角900)方向图 2)车天线 图3.35车天线方向图

图3.37仰角平面(方位角00)方向图 图3.38仰角平面(方位角900)方向图

以上说明:单天线可以很好的维持1 /4λ型天线的所有特征,但是车身与单天线组成的车辆整体受到的影响作用比较强烈(上述方向图有一定的对称性,但是在很多方向也产生零点)。 3.3 本章小结 在本章里,笔者详细论述了针对TPMS传输天线展开的模拟仿真运行: (1)考虑到车身和轮胎对信号收发的影响,建立了动态天线模型,进行了相关的仿真。 (2)对车天线进行了方向性分析。

4 射频发射和射频接收电路 4.1 身寸频发射电路设计 射频发射电路的设计目的为:把数据信号中频率是315±0. 035MHz 的射频数据信号,符合FCC 关于短距离无线通信规定20dB 带宽≤0.25%的要求,同时把数据信号展开功率扩增处理。 基本上所有的TPMS 射频电路使用的都是Infineon 集团推出的低能耗单片合成FSK/ASK 传送IC 模块TDK5101F 来实现,其工作原理示意图如下图4.1所示。这个板块生成FSK 数据信号的工作原理和第二章里提到的工作原理类似,不同之处在于数据信号的调整改变采用的是频率源的工作频率,并不是锁相环的分频率。 图4.1 TDK S101F 功能图 主要性能参数如下表所示: 工作频率围 311~317MHz 最大信号发射功率 5dBm 射频发射电路要注意的几个问题: 1)功率放大器输出匹配: TDA5101F 的功率扩增设备运行在高效率的C 状态,从理论上分析可知,最佳载荷阻抗为R opt ,根据下式可以得出: o S opt P V R 2/2 其中,V s 为供电电压,P o 为输出功率。但是在实际上,阻抗还会受到其他多种运行参数的作用,因此,必须结合实际工作情况,获得有效的匹配值。 在实际工作中,采用动态天线电阻的调整改变来进行匹配电路的设计具有很

程控放大器的设计与实现

程控放大器的设计与实现 摘要 本文介绍了一种可通过程序改变增益的放大器。它与ADC相配合,可以自动适应大范围变化的模拟信号电平。系统以89S51单片机作微处理器,运用NE5532芯片组成运放电路,采用CD4052芯片担任增益切换开关,通过软件控制开关的闭合或断开来达到改变电路的增益。 文章首先对系统方案进行论证,然后对硬件电路和软件设计进行了说明,最后重点阐述了系统的调试过程,并且对调试过程中遇到的问题以及解决方案进行了详细说明。该系统设计达到了预期要求,实现了最大放大60db的目的。 关键词 程控放大器;运算器放大器;单片机;增益 The Design and Realization of Program-Controll Amplifier Abstract This article introduces a amplifier which changes the gain through the software. It coordinates with ADC and adapts the simulated signal level with wide range change automatically. The system uses the 89s51 SCM as the core. The NE5532 chip composes the operational circuit and the CD4052 chip composes the gain switch. The gain of the circuit is changed by software which can control switch closed or disconnect. The article first demonstrates the system plan, then introduces the hardware and the software, finally explains the debugging process of the system with emphasis. It also especially analogizes the problem in the debugging process and the resolutions. This system design has achieved anticipative request and realized enlarged 60db most greatly the goal. Key words Program-controlled amplifier; operational Amplifier; SCM; gain

短波天线尺寸计算

短波天线尺寸计算 计算方法: 用电磁波的速度(光速)30万公里除以频率等于该频率的波长,再除以4就是波长为单边振子长度,再去93--97%的缩短率: 比如: 频率 7.05兆的单边振子xx为: 10.64米,加上 0.3米作为修剪余量;l* p" u;[6 q!L/p7B5s: }6频率 14.22兆的单边振子xx为: 5.3米,加上 0.3米的修剪余量; 频率 21.26兆的单边振子xx为: 3.53米,加上 0.2米的修剪余量即可;再用天线测试仪测定每对振子的谐振频率,开始频率低,慢慢修剪到相应谐振频率为止。 主干高度如果在8米,阻抗应该差不多50欧姆,驻波会低于 1.3。 倒V天线单边振子长度数据及计算方式如下:

水平、倒V天线计算公式 /4波长水平、倒V天线xx的计算公式: 光速/频率/4*95%=(单臂)xx 21.400MHz天线的计算长度3000/ 21.*95%=3330mm 14.270MHz天线的计算长度3000/ 14.*95%=4993mm 7.05MHz天线的计算长度3000/ 7.*95%=107mm 29.60MHz天线的计算长度3000/ 29.*95%=2667mm 以上仅仅是按照公式计算所得的长度,每个波段的天线最好是预长300mm 左右,固定好位置后,用驻波表监测着逐步裁剪到最理想驻波的长度。 或者使用发信机结合驻波表,监测每对振子的谐振频率(驻波低于 1.2的频点),边测边剪(随着谐振频率的升高,振子也在缩短,直到达到您所要的中心频点都低于等于 1.2即可)。 例如: 假设我们的目标频率是 21.400MHz上述天线SWR最小值时候的频率读数是 19.896MHz。

电源pcb设计指南包括PCB安规emc布局布线PCB热设计PCB工艺

电源pcb设计指南包括:PCB安规、emc、布局布线、PCB热设计、PCB工艺 导读 1.安规距离要求部分 2.抗干扰、EMC部分 3.整体布局及走线部分 4.热设计部分 5.工艺处理部分 1.安规距离要求部分 安全距离包括电气间隙(空间距离),爬电距离(沿面距离)和绝缘穿透距离。 1、电气间隙:两相邻导体或一个导体与相邻电机壳表面的沿空气测量的最短距离。 2、爬电距离:两相邻导体或一个导体与相邻电机壳表面的沿绝绝缘表面测量的最短距离。 一、爬电距离和电气间隙距离要求,可参考NE61347-1-2-13/GB19510.14. (1)、爬电距离:输入电压50V-250V时,保险丝前L—N≥2.5mm,输入电压250V-500V时,保险丝前L—N≥5.0mm;电气间隙:输入电压50V-250V时,保险丝前L—N≥1.7mm,输入电压250V-500V时,保险丝前L—N≥3.0mm;保险丝之后可不做要求,但尽量保持一定距离以避免短路损坏电源。 (2)、一次侧交流对直流部分≥2.0mm (3)、一次侧直流地对地≥4.0mm如一次侧地对大地 (4)、一次侧对二次侧≥6.4mm,如光耦、Y 电容等元器零件脚间距≤6.4mm 要开槽。 (5)、变压器两级间≥6.4mm 以上,≥8mm加强绝缘。 2.抗干扰、EMC部分 在图二中,PCB 布局时,驱动电阻R3应靠近Q1(MOS管),电流取样电阻R4、C2应靠近IC1的第4 Pin,如图一所说的R应尽量靠近运算放大器缩短高阻抗线路。因运算放大器输入端阻抗很高,易受干扰。输出端阻抗较低,不易受干扰。一条长线相当于一根接收天线,容易引入外界干扰。 在图三的A中排版时,R1、R2要靠近三极管Q1放置,因Q1的输入阻抗很高,基极线路过长,易受干扰,则R1、R2不能远离Q1。 在图三的B中排版时,C2要靠近D2,因为Q2三极管输入阻抗很高,如Q2至D2的线路太长,易受干扰,C2应移至D2附近。 二、小信号走线尽量远离大电流走线,忌平行,D>=2.0mm。 三、小信号线处理:电路板布线尽量集中,减少布板面积提高抗干扰能力。 四、一个电流回路走线尽可能减少包围面积。 如:电流取样信号线和来自光耦的信号线

天线匹配电路电子切换开关研究报告

天线匹配电路电子切换开关研究报告 (研发中心线路研究部曾庆刚) 一、项目背景 模拟对讲机的天线由于尺寸和结构形式的限制,最坏频点的驻波比通常会大于2,在VHF 频段甚至会接近4;这样,由于主机与天线阻抗不匹配而导致发射机的效率降低,同时,接收机的灵敏度也会下降,除此之外,发射机的反射功率对射频功率放大器也会造成不同程度的损伤;所以,在主机电路中增加天线匹配电路是十分必要的,但是,由于HYT现有产品只有一个射频输出口,匹配了天线就会影响传导指标测试的结果,这样就出现了天线匹配与指标测试的矛盾,该研究项目也正是基于这个矛盾而提出的。 二、设计思路 天线匹配与指标测试的矛盾是由于天线阻抗与测量仪器输入阻抗不一致引起的,既然这样,主机只需要提供两种输出阻抗就可以同时满足指标测试与天线匹配的要求。Motorola的做法是用一个机械式的切换开关在指标测试与天线匹配之间切换,这样做的好处是既满足了指标测试与天线匹配的要求,又让使用者感觉不到有两个输出端口;但机械式的切换开关会增加成本和结构的复杂度,所以,本文介绍了一种电子式的切换开关,下文将详述这种电子开关的电路结构、设计说明和性能指标。 三、VHF频段天线匹配电路电子切换开关设计实例 电路结构如下图所示:

容,R1、R2是限流电阻,L2提供直流到地的通路,Q1、Q2、Q3、R3、R4是把一个控制信号转换为两个控制信号,同时给开关二极管提供驱动电流。D2反接是为了提高不同阻抗之间的隔离度。 调试说明: 1、 高频扼流电感和旁路电容的取值应根据工作频率来确定,工作频率越高其值越小 2、 限流电阻的取值应根据二极管的正向导通电阻和二极管最大允许电流来确定 3、 匹配电路中,到地的并联谐振回路应在工作频带内保证足够大的阻抗,以确保到地的二 极管承受的高频功率最小,一般在满足匹配的前提下尽量使电感的取值偏大

AD603程控增益调整放大器

AD603程控增益调整放大器 AGC电路常用于RF/IF电路系统中,AGC电路的优劣直接影响着系统的性能。因此设计了AD603和AD590构成的3~75dBAGC电路,并用于低压载波扩频通信系统中的数据集中器。 在很多信号采集系统中,信号变化的幅度都比较大,那么放大以后的信号幅值有可能超过A/D转换的量程,所以必须根据信号的变化相应调整放大器的增益。在自动化程度要求较高的系统中,希望能够在程序中用软件控制放大器的增益,或者放大器本身能自动将增益调整到适当的范围。AD603正是这样一种具有程控增益调整功能的芯片。它是美国ADI公司的专利产品,是一个低噪、90MHz带宽增益可调的集成运放,如增益用分贝表示,则增益与控制电压成线性关系,压摆率为275V/μs。管脚间的连接方式决定了可编程的增益范围,增益在-11~+30dB时的带宽为90Mhz,增益在+9~+41dB时具有9MHz带宽,改变管脚间的连接电阻,可使增益处在上述范围内。该集成电路可应用于射频自动增益放大器、视频增益控制、A/D转换量程扩展和信号测量系统。 AD603的特点、内部结构和工作原理 (1)AD603的特点 AD603是美国AD公司继AD600后推出的宽频带、低噪声、低畸变、高增益精度的压控VGA芯片。可用于RF/IF系统中的AGC电路、视频增益控制、A/D范围扩展和信号测量等系统中。 (2)ad603引脚排列是、功能及极限参数 AD603的引脚排列如图1所示,表1所列为其引脚功能。 引脚1 增益控制输入“高”电压端(正电压控制) 引脚2 增益控制输入“低”电压端(负电压控制) 引脚3 运放输入 引脚4 运放公共端 引脚5 反馈端 引脚6 负电源输入 引脚7 运放输出 引脚8 正电源输入 ●电源电压Vs:±7.5V; ●输入信号幅度VINP:+2V; ●增益控制端电压GNEG和GPOS:±Vs; ●功耗:400mW; ●工作温度范围; AD603A:-40℃~85℃; AD603S:-55℃~+125℃; ●存储温度:-65℃~150℃ (3)AD603内部结构及原理 AD603内部结构图如图2所示。AD603由一个可通过外部反馈电路设置固定增益GF(31.07~51.07)的放大器、0~-42.14dB的宽带压控精密无源衰减器和40dB/V的线性增益控制电路构成。

高速PCB设计指南

高速PCB设计指南之一 第一篇PCB布线 在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大。PCB布线有单面布线、双面布线及多层布线。布线的方式也有两种:自动布线及交互式布线,在自动布线之前,可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。自动布线的布通率,依赖于良好的布局,布线规则可以预先设定,包括走线的弯曲次数、导通孔的数目、步进的数目等。一般先进行探索式布经线,快速地把短线连通,然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要断开已布的线。并试着重新再布线,以改进总体效果。 对目前高密度的PCB设计已感觉到贯通孔不太适应了,它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用,还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB 板的设计过程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中的真谛。 1 电源、地线的处理 既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。 对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述: (1)、众所周知的是在电源、地线之间加上去耦电容。 (2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm 对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用) (3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。 2 数字电路与模拟电路的共地处理 现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和

模拟电路课程设计..

模拟电子技术课程设计任务书 一、课程设计的任务 通过理论设计和实物制作解决相应的实际问题,巩固和运用在《模拟电子技术》中所学的理论知识和实验技能,掌握常用模拟电路的一般设计方法,提高设计能力和实践动手能力,为以后从事电子电路设计、研发电子产品打下良好的基础。 二、课程设计的基本要求 1、掌握电子电路分析和设计的基本方法。包括:根据设计任务和指标初选电路;调查研究和设计计算确定电路方案;选择元件、安装电路、调试改进;分析实验结果、写出设计总结报告。 2、培养一定的自学能力、独立分析问题的能力和解决问题的能力。包括:学会自己分析解决问题的方;对设计中遇到的问题,能通过独立思考、查询工具书和参考文献来寻找解决方案,掌握电路测试的一般规律;能通过观察、判断、实验、再判断的基本方法解决实验中出现的一般故障;能对实验结果独立地进行分析,进而做出恰当的评价。 3、掌握普通电子电路的生产流程及安装、布线、焊接等基本技能。 4、巩固常用电子仪器的正确使用方法,掌握常用电子器件的测试技能。 5、通过严格的科学训练和设计实践,逐步树立严肃认真、一丝不苟、实事求是的科学作风,并逐步建立正确的生产观、经济观和全局观。

三、课程设计任务 课题4 逻辑信号电平测试器的设计 (一)设计目的 1、学习逻辑信号电平测试器的设计方法; 2、掌握其各单元电路的设计与测试方法; 3、进一步熟悉电子线路系统的装调技术。 (二)设计要求和技术指标 在检修数字集成电路组成的设备时,经常需要使用万用表和示波器对电路中的故障部位的高低电平进行测量,以便分析故障原因。使用这些仪器能较准确地测出被测点信号电平的高低和被测信号的周期,但使用者必须一面用眼睛看着万用表的表盘或者示波器的屏幕,一面寻找测试点,因此使用起来很不方便。 本课题所设计的仪器采用声音来表示被测信号的逻辑状态,高电平和低电平分别用不同声调的声音来表示,使用者无须分神去看万用表的表盘或示波器的荧光屏。 1、技术指标: (1)测量范围:低电平<1V,高电平>3V; (2)用1.5KH Z的音响表示被测信号为高电平; (3)用500H Z的音响表示被测信号为低电平;

程控增益放大器_电子技术基础课程设计

辽宁工业大学 模拟电子技术基础课程设计(论文) 题目:程控增益放大器 院(系):电子与信息工程学院 专业班级:通信101班 学号: 学生姓名 指导教师: 教师职称: 起止时间:

课程设计(论文)任务及评语

目录 第一章程增益放大器设计方案论证 (1) 1.1程控增益放大器的应用意义 (1) 1.2程控增益放大器设计的要求及技术指标 (1) 1.3 设计方案论证 (1) 1.4 总体设计方案框图及分析 (2) 第二章程控增益放大器各单元电路设计 (2) 2.1 编码开关的设计 (2) 2.2 集成电路运算放大器的设计 (5) 2.3增益调整电路设计 (8) 第三章程控增益放大器整体电路设计 (8) 3.1 整体电路图及工作原理 (8) 3.2 电路参数计算 (9) 3.3 整机电路的仿真 (9) 第四章课程设计的总结 (9) 参考文献 (10) 附录:器件清单 (11)

第一章程控增益放大器设计方案论证 1.1程控增益放大器的应用意义 程控增益放大器按输出信号的特点分类,可分为模拟式和数字式可编程放大器。可以通过数字电路控制模拟放大电路的放大倍数。可以自己设计电路,或者使用一些公司的现成的集成芯片实现。具体实行的电路很多。比如DAC+OP运放;OP运放+模拟开关;电阻分压网络+模拟开关+OP运放;集成芯片PGA102;PGA103;AD621;等等。利用拨码开关的数码代替电位器刻度,具有线性度好、精度高、直观,可直接或间接取代一般线性电位器或多圈线性电位器。放大器的增益的变化是由数字信号控制其反馈电阻完成的。程控增益放大器是一种在多通道多参数空间一个测量放大器,多通道放大器的信号的大小并不相同,都是放大至A/D交换器输入要求的标准是电压,因此对各个通路要求测量放大器的增益也不同。 1.2程控增益放大器设计的要求及技术指标 1.2.1设计要求: 1 .分析设计要求,明确性能指标。必须仔细分析课题要求、性能、指标及应用环境等,广开思路,构思出各种总体方案,绘制结构框图。 2 .确定合理的总体方案。对各种方案进行比较,以电路的先进性、结构的繁简、成本的高低及制作的难易等方面作综合比较,并考虑器件的来源,敲定可行方案。 3 .设计各单元电路。总体方案化整为零,分解成若干子系统或单元电路,逐个设计。 4.组成系统。在一定幅面的图纸上合理布局,通常是按信号的流向,采用左进右出的规律摆放各电路,并标出必要的说明。 1.2.2技术指标 1.电压放大倍数N由拨码开关控制,199 ≤N。 ≤ 2.输出电压绝对值在1—10V范围。输入电阻Ω ≤20 Ro。 Ri8,输出电阻Ω ≥M 1.3设计方案论证 程控增益放大器通用的方法: 1)运放+模拟开关+电阻分压网络。 2)拨码开关+数字电位器+运放。 其中,第一种方法利用模拟开关切换电阻反馈网络,从而改变放大电路的闭环增益。这种方法的电路比较复杂,。第二种方案采用固态数字电位器来控制放大电路的增益,线路较为简单。而精度较为高,所以我们采用的是第二种方法设计的放大电路。

Ansoft HFSS在设计对数周期天线时的仿真方法

ANSYS 2011中国用户大会优秀论文 Ansoft HFSS在设计对数周期天线时的仿真方法 孙凤林黄克猛 中国西南电子技术研究所,成都,610036 [ 摘要 ] 本文通过ANSOFT HFSS设计了一个对数周期天线,在仿真分析时,发现随着求解频率的不同,天线的求解结果差别较大,求解误差较大。通过在HFSS中尝试不同的求解设置方法, 最终通过将天线模型剖分网格最大长度限定在1/50λ的方法,使的求解结果在不同频率求解 时的一致性较好,提高了仿真的准确性。为设计者在仿真类似问题时,提供了一种提高求解准 确性的方法。 [ 关键词]HFSS;网格设置;对数周期天线 The Simulation Method on designing of a Log-Periodic Dipole Antenna on Ansoft HFSS Sun Feng-lin,Huang Ke-meng Southwest China Institute of Electronic Technology, Chengdu, 610036, China [ Abstract ] A method of simulating Log-Periodic Dipole Antenna on Ansoft HFSS is introduced in this paper. When simulating the Log-periodic antenna model, it was found that the simulation results are difference with different Solution Frequency on HFSS, The solution error is high. The accuracy of the solution depends on the size of each of the individual elements, to generate a precise simulation result, applying mesh operations ,assigning Maximum length of Elements mesh to 1/50λ, the results shows that the difference is reduced obviously, the simulation accuracy is improved. [ Keyword ] HFSS; mesh operations; log-periodic dipole antenna 1前言 对数周期偶极子天线(log-periodic dipole antenna),由于其工作频带宽、增益高、前后比好、结构简单、成本低等众多优点,在短波、超短波、微波等波段的通信、侧向、侦察、电子对抗等方面得到了广泛的应用。本文利用Ansoft HFSS软件对这种传统的对数周期天线进行了设计,在软件中直接建立了天线的仿真模型,并进行了相应的端口和边界设置,然而在仿真求解时却发现,随着求解频率的不同,得到的求解结果差别较大,为了获得一个较可信的分析结果,提高仿真的准确性,对HFSS一些参数设置进行了分析和验证。

模拟电子技术课程设计报告

课程设计报告 题目方波、三角波、正弦波信号 发生器设计 课程名称模拟电子技术课程设计 院部名称机电工程学院 专业10自动化 班级10自动化 学生姓名吉钰源 学号1004104001 课程设计地点 C206 课程设计学时 1周 指导教师赵国树 金陵科技学院教务处制成绩

目录 1、绪论 (3) 1.1相关背景知识 (3) 1.2课程设计目的 (3) 1.3课程设计的任务 (3) 1.4课程设计的技术指标 (3) 2、信号发生器的基本原理 (4) 2.1总体设计思路 (4) 2.2原理框图 (4) 3、各组成部分的工作原理 (5) 3.1 正弦波产生电路 (5) 3.1.1正弦波产生电路 (5) 3.1.2正弦波产生电路的工作原理 (6) 3.2 正弦波到方波转换电路 (7) 3.2.1正弦波到方波转换电路图 (7) 3.2.2正弦波到方波转换电路的工作原理 (8) 3.3 方波到三角波转换电路 (9) 3.3.1方波到三角波转换电路图 (9) 3.3.2方波到三角波转换电路的工作原理 (10) 4、电路仿真结果 (11) 4.1正弦波产生电路的仿真结果 (11) 4.2 正弦波到方波转换电路的仿真结果 (11) 4.3方波到三角波转换电路的仿真结果 (13) 5、电路调试结果 (13) 5.1正弦波产生电路的调试结果 (13) 5.2正弦波到方波转换电路的调试结果 (14) 5.3方波到三角波转换电路的调试结果 (14) 6、设计结果分析与总结 (15)

1、绪论 1.1相关背景知识 由于物理学的重大突破,电子技术在20世纪取得了惊人的进步。特别是近50年来,微电子技术和其他高技术的飞速发展,致使农业、工业、科技和国防等领域发生了令人瞩目的变革。与此同时,电子技术也正在改变着人们日常生活。在电子技术中,信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。函数信号发生器在电路实验和设备检测中具有十分广泛的用途,可以用于生产测试、仪器维修和实验室,还广泛使用在其它科技领域,如医学、教育、化学、通讯、地球物理学、工业控制、军事和宇航等。它是一种不可缺少的通用信号源。 1.2课程设计目的 通过本次课程设计所要达到的目的是:增进自己对模拟集成电路方面所学知识的理解,提高自己在模拟集成电路应用方面的技能,树立严谨的科学作风,培养自身综合运用理论知识解决实际问题的能力。通过电路设计初步掌握工程设计方法,逐步熟悉开展科学实践的程序和方法,为后续课程的学习和今后从事的实际工作提供引导性的背景知识,打下必要的基础。 1.3课程设计的任务 ①设计一个方波、三角波、正弦波函数发生器; ②能同时输出一定频率一定幅度的三种波形:正弦波、方波和三角波; ③用±12V电源供电; 先对课程设计任务进行分析,及根据参数的确定选择出一种最适合本课题的方案。在达到课题要求的前提下保证最经济、最方便、最优化的设计策略。然后运用仿真软件Multisim对电路进行仿真,观察效果并与课题要求的性能指标作对比。仿真成功后,用实物搭建电路,进行调试,观测示波器输出的波形。 1.4课程设计的技术指标 ①设计、组装、调试信号发生器; ②输出波形:正弦波、方波、三角波; ③频率范围在10Hz~10000Hz范围内可调; ④比较器用LM339,运算放大器用LM324,双向稳压管用两个稳压管代替。

相关文档
最新文档