微流控技术

微流控芯片分析法

微流控芯片分析法 一、概述 微流控分析是指利用微流控芯片或系统对物质的组成、含量、结构和功能进行测定和研究的一类分析方法。它起源于20世纪90年代初由瑞士的ManZ和Widmer提出的以微机电系统(microelectromechanical systems,MEMS)技术为基础的“微全分析系统”(miniaturized total analysis systems,或micro total analysis systems,μTAS)概念[1],其目的是通过化学分析设备的微型化与集成化,最大限度地把分析实验室的功能转移到便携的分析设备中,甚至集成到方寸大小的芯片上。由于这种特征,该领域还有一个更为形象的名称“芯片实验室”(lab a chip)。上述系统的核心是微流控芯片(microfluidic chips),其结构特征是在方寸大小的散芯片上加工微通道网络,通过对通道内微流体的操纵和控制,实现整个化学和生物实验室区功能[2]。 二、微流控分析的基本技术 1.微流控芯片加工技术 微流控芯片的基本结构单元是具有微米级深度和宽度的微通道,由其构成微通道网络,并根据不同的需要集成微结构、微阀、微泵、微储液器、微电极、微检测器、微控制和微处理等单元,组成完整的微流控芯片系统。因此,加工微流控芯片需采用特殊的微细加工技术,该技术起源于微电子工业中的微机电加工技术,目前已发展出多种适合不同芯片材质的芯片微加工技术[2-4]。 微流控芯片所使用的材料包括无机和有机材料两大类。常用的无机材料包括单晶硅、无定型硅、玻璃、石英、金属等。利用硅材料加工微流控芯片的优点是芯片表面光洁度好,图形复制精准度高,具备三维结构加工能力,工艺成熟,可批量生产。其缺点是材料易碎、不透光、电绝缘性不好。通常被用于加工微泵、微阀和控制元器件,或制作高分子聚合物芯片的模具。玻璃和石英是目前加工微流控芯片中使用较多的材料,其优点是透光性好,机械强度高,微加工工艺较成熟;其表面的电渗和亲水性质适于进行毛细管电泳分析。石英材料可透过紫外光,但其成本是玻璃的十倍。 目前,用于制作微流控芯片的高分子聚合物主要有三类:热塑性聚合物、固化型聚合物和溶剂挥发型聚合物。热塑性聚合物包括聚酰胺、聚甲基丙烯酸甲酯

微流控技术平台在IVD中的运用

一、微流控平台的定义和特点 微流控是一项融合了微电子学、材料科学、生物科学、制药以及临床医学等众多领域的综合性技术,需要跨领域跨学科的深入交流和合作。什么是微流控芯片?微型+集成+自动化。微流控芯片顺应分析仪器的发展趋势(微型化/集成化与便携化),很大程度缩短样本处理时间,并通过精密控制液体流动,实现试剂耗材的最大利用效率,把整个化验室的功能,包括采样、稀释、加试剂、反应、分离、检测等集成在微芯片上,且可以多次使用。 微流控芯片的发展正呈现三个基本特征:1)平台研究多学科交叉,2)应用研究多领域渗透,3)产业迅速崛起将成为新一代即时诊断(POCT)的主流技术;微流控反应筛选芯片在高通量药物筛选、材料合成、模拟和单细胞测序等领域显示了巨大潜力;而微流控细胞/器官芯片则有望应用于药物毒理和药理作用研究,部分替代医药研究试验动物,是细胞及微环境操控最重要的技术平台。 微流控芯片的最大特点是在一个芯片上可以形成多功能集成体系和数目众多的复合体系的微全分析系统。微流控芯片内部集成的单元部件越来越多,且集成的规模也归来越大,使着微流控芯片有着强大的集成性。同时可以大量平行处理样品,具有高通量的特点,分析速度快、耗低,物耗少,污染小,分析样品所需要的试剂量仅几微升至几十个微升,被分析的物质的体积甚至在纳升级或皮升级。 原则上,微流控芯片作为一种“微全分析技术平台可以应用于各个分析领域,如生化医疗诊断、食品和商品检验、环境监测、刑事科学、军事科学和航天科学等重要应用领域,其中生物医学分析是热点。目前来看,体外诊断是微流控技术的最大的应用场景,而在体外诊断中,微流控技术应用的重点在于化学发光(免疫诊断)和分子诊断中。 二、微流控的研究及产业化 微流控的理论研究兴起于20多年前,目前,理论研究准备已经非常成熟,在此,不再赘述。下面我们主要看看产业化之路 对比国内外商业化的微流控产品,国外在生化免疫、分子领域均有相对成熟的产品,其中不乏重磅级代表品种(雅培的i-STAT、Illumina的测序仪系列等);国内微流控产品的商业化相对落后,最早上市的微点生物mlabs系列等。 在产业化中,微流控一般分为以下几大类型:气压推动式微流控,离心力推动式微流控,液滴微流控,数字化微流控,纸质微流控等。 气压推动式微流控主要利用气压来推动流体在芯片中的运动,在微流控产业化中出现的最多,像生物梅里埃的filmarray, 罗氏诊断的cobas Liat PCR System,Atlas Genetics的io,博晖创新的HPV分子诊断全自动分析仪,华迈兴微的M2微型化学发光分析系统等等都是。 离心微流控是利用离心力来实现微流控芯片中的芯片的推动,在微流控产业中也占据着重要地位,比如美国爱贝斯(Abaxis)Piccolo Xpress?即时生化检测仪,天津微纳芯科技的pointcare M,杭州霆科生物的微流控芯片农残速测仪等等。

微流控芯片的发展及制造工艺介绍

微流控芯片的发展及制造工艺介绍 微流控芯片的发展微全分析系统的概念是在1990年首欠由瑞士Ciba2Geigy 公司的Manz与Widmer提出的,当时主要强调了分析系统的“微”与“全”,及微管道网络的MEMS加工方法,而并未明确其外型特征。次年Manz等即在平板微芯片上实现了毛细管电泳与流动。微型全分析系统当前的发展前沿。微流控分析系统从以毛细管电泳分离为核心分析技术发展到液液萃取、过滤、无膜扩散等多种分离手段。其中多相层流分离微流控系统结构简单,有多种分离功能,具有广泛的应用前景。已有多篇文献报道采用多相层流技术实现芯片上对试样的无膜过滤、无膜参析和萃取分离。同时也有采用微加工有膜微渗析器完成质谱分析前试样前处理操作的报道。流控分析系统从以电渗流为主要液流驱动手段发展到流体动力气压、重动、离心力、剪切力等多种手段。 直至今日,各国科学家在这一领域做出更加显着地成绩。微流控技术作为当前分析科学的重要发展前沿,在研究与应用方面都取得了飞速的发展。 微流控芯片的原理 微流控芯片采用类似半导体的微机电加工技术在芯片上构建微流路系统,将实验与分析过程转载到由彼此联系的路径和液相小室组成的芯片结构上,加载生物样品和反应液后,采用微机械泵。电水力泵和电渗流等方法驱动芯片中缓冲液的流动,形成微流路,于芯片上进行一种或连续多种的反应。激光诱导荧光、电化学和化学等多种检测系统以及与质谱等分析手段结合的很多检测手段已经被用在微流控芯片中,对样品进行快速、准确和高通量分析。微流控芯片的最大特点是在一个芯片上可以形成多功能集成体系和数目众多的复合体系的微全分析系统?微型反应器是芯片实验室中常用的用于生物化学反应的结构,如毛细管电泳、聚合酶链反应、酶反应和DNA 杂交反应的微型反应器等。其中电压驱动的毛细管电泳(Capillary Electrophoresis ,CE)比较容易在微流控芯片上实现,因而成为其中发展最快的技术。它是在芯片上蚀刻毛细管通道,在电渗流的作用下样品液在通道中泳动,完成对样品的检测分析,如果在芯片上构建毛细管阵列,可在数分钟内完成对数百

微流控技术

微流控技术及其应用 摘要:微流控技术广泛应用于生化分析、疾病诊断、微创外科手术、环境检测等领域。微通道结构设计与制造、微纳尺度流体的驱动与控制、微流控器件及系统的集成与封装是该领域的3大关键技术。本文综述了微流控技术在这3个方面的发展现状及在不同领域中的应用,展望了微流控技术的发展前景,指出多相微流体的介观传输理论及跨尺度流体的性质将是今后研究的重点与热点。 1、微流控技术简介: 微流控技术是指在至少有一维为微米甚至纳米尺度的低维通道结构中控制体积为皮升至纳升的流体进行流动并传质、传热的技术,可广泛应用于生化分析、免疫分析、微创外科手术、环境监测等众多领域。根据美国两院院士、哈佛大学乔治·怀特塞兹(George Whitesides)教授2006年刊登在国际顶级科学期刊《科学》上的文章中的定义,微流控(Microfluidics)是指针对极微量体积流体(10-9L~10-18L)进行操控的科学与技术。实现微流体操控的主要方法就是将流体限制在一个微米甚至纳米尺度的通道中,而这些通道的制作手段起源于制作微电子处理芯片的半导体工艺流程。最早提出微流控这个概念的是1990年在瑞士Ciba-Geigy公司做研究的Andreas Manz教授,他最初的设想是将微机电(MEMS)与分析化学相结合,从而做出一个类似芯片能将各种功能集成在一起的微型分析仪器。当时,这样的系统被称为微全分析系统,英文是Miniaturized totalanalysis systems,简称为MicroTAS或μTAS。1998年,微流控技术被评为世界十大科技进展之一,发展至今,微流控已经演变成一个十分独特的前沿科学领域。微流控技术还有另一个十分形象化的名字,芯片实验室(Labonachip),就好比将实验室里对样品的各种操作流程都集成在一块小芯片上。 2001年,英国皇家化学学会为此专门推出了《芯片实验室》(LabonChip)期刊,如今该期刊已经成为国际微流控领域的顶级期刊。 2、微流控技术应用 微流控芯片的显著特点:所需样品试剂量很小,分析速度快,易于阵列化从而能够实现高通量检测、系统集成化、微型化、自动化和便携式;在单细胞或单分子研究领域,微流控芯片有着明显的优势。此外,由于样品在微纳尺度下的特殊效应,使用微流控芯片也能够开展一些独特的前沿研究。其被用于航空航天、医学、农业、生物工程、材料加工、化工工业等众多领域。 2.1 生物医学领域的应用 微纳尺度下,流体间的传质、传热和反应过程高效、易控,主要是因为: 1)短程分子扩散有利于控制化学反应进程并且能够快速达到平衡状态; 2)相对较大的界面有利于促进界面反应; 3)反应发生时只需要少量热能,散热和加热过程都容易实现,能精确控制反应温度; 4)待分析的溶液或物质需求量极微小,可以节省贵重药品消耗或有毒物质的挥发。这些特点使微流控技术应用于萃取提纯口“、病毒及细胞或大分子的分离与检测以及疾病的快速诊断口方面具有显著的优势。 2.2层流微加工技术 层流微加工是利用微流体的层流特性,通过精确地控制化学反应试剂在微通道中的传输过程,在微通道中特定区域加工或合成化学物质的新型微加工技术。

一文解析微流控技术原理及起源

一文解析微流控技术原理及起源 微流控技术的起源微型化、集成化和智能化,是现代科技发展的一个重要趋势。伴随着微机电加工系统(MEMS )技术的发展,电子计算机已由当年的”庞然大物”演变成由一个个微小的电路集成芯片组成的便携系统,甚至是一部微型的智能手机。MEMS技术全称Micro Electromechanical System ,MEMS设想是由诺贝尔物理学奖获得者Richard Feynman教授于1959年提出,其基本概念是用半导体技术,将现实生活中的机械系统微型化,形成微型电子机械系统,简称微机电系统。 1962年全球第一款微型压力传感器面世,这一创新产品后来被应用于汽车安全(轮胎压力检测)和医疗(有创血压计),开启了MEMS时代。今天MEMS技术在军事、航天航空,生物医药、工业交通及消费领域扮演核心技术的角色,智能手机中就嵌入了多个MEMS 芯片,如麦克风,加速度计,GPS定位等。 微流控技术原理微流控(microfluidics )是一种精确控制和操控微尺度流体,以在微纳米尺度空间中对流体进行操控为主要特征的科学技术,具有将生物、化学等实验室的基本功能诸如样品制备、反应、分离和检测等缩微到一个几平方厘米芯片上的能力,其基本特征和最大优势是多种单元技术在整体可控的微小平台上灵活组合、规模集成。是一个涉及了工程学、物理学、化学、微加工和生物工程等领域的交叉学科。 微流控是系统的科学技术,它使用几十到几百微米尺度的管道,处理或操控很少量的(10*至10~18升,1立方毫米至1立方微米)流体。最初的微流控技术被用于分析。微流控为分析提供了许多有用的功能:使用非常少的样本和试剂做出高精度和高敏感度的分离和检测,费用低,分析时间短,分析设备的印记小。微流控既利用了它最明显的特征一一尺寸小,也利用了不太明显的微通道流体的特点,比如层流。它本质上提供了在空间和时间上集中控制分子的能力。 基于微流控芯片的代表性关键技术1、微流控分析芯片是新一代床旁诊断(Point of care

微流控技术的起源和展望

微流控技术的起源和展望 George M. Whitesides 摘要:微流控技术用在几十微米尺度的管道中操控流体。它已逐渐发展成为全新的领域,其影响延伸到化学合成、生物分析、光学、甚至信息技术。但是,微流控领域依然处在早期发展阶段。即使作为基础科学和技术示范,有些问题也必须得到解决:选择和关注最初的应用,制定循环发展的策略,也包括商业化。这些问题的解决还需要想象和创新。 什么是微流控?微流控是系统的科学技术,它使用几十到几百微米尺度的管道,处理或操控很少量的(10-9至10-18升,1立方毫米至l立方微米)流体。最初的微流控技术被用于分析。微流控为分析提供了许多有用的功能:使用非常少的样本和试剂做出高精度和高敏感度的分离和检测,费用低,分析时间短,分析设备的印记小[1]。微流控既利用了它最明显的特征——尺寸小,也利用了不太明显的微通道流体的特点,比如层流。它本质上提供了在空间和时间上集中控制分子的能力。 作为一项技术,微流控似乎好的不真实:至少在分析领域的主要应用中,它表现出太多的优点和太少的缺点。但是微流控还没有发展成为广泛使用的技术。为什么呢?为什么不是每个生物化学实验室都贴上“芯片实验室”的标签呢?为什么不是每个病人都用微流控家用检测系统监测自己的病情呢?答案还不明确。微流控的优势令人信服难以错过,我相信微流控技术将成为分子分析的主流方式,也许分子合成也是这样。话虽如此,微流控发展成为一项主流的新技术还需要时间和大环境的支持,这个问题的解答不仅对微流控领域是重要的,对那些正在努力去争取成功的新技术也同样重要。 微流控技术从四个领域发展而来:分子分析、生物防御、分子生物学和微电子学。首先来看分子分析。微流控技术最早起源于微量分析方法——气相色谱法,高压液相色谱法,以及用毛细管形式彻底革新了化学分析的毛细电泳法。这些方

微流控光学及其应用_梁忠诚

微流控光学及其应用 OptofluidicsandItsPotentialApplications 梁忠诚赵瑞 (南京邮电大学微流控光学技术研究中心,江苏南京210003) LiangZhongchengZhaoRui (CenterofOptofluidicTechnology,NanjingUniversityofPosts&Telecommunications,NanjingJiangsu210003,China) 1引言 采用液体作为光学器件结构元素的概念可以追溯到18世纪,那时人们曾将旋转汞池产生的球面反射镜用于天文观察[1],至今液体材料光学器件在光学技术中仍占有一席之地,例如油浸透镜、液晶显示等。但是,由于液体材料外型不定,难以操控,传统光学系统主要采用玻璃、金属和半导体等固体材料。随着光学技术的蓬勃发展,光学器件的微型化、集成化、可调化已成为光技术的重要发展方向,这时固态器件体积大、成本高、可调性差等问题日显突出,液体光学器件重又引起了研究者的兴趣[2]。现今,随着微流控光学(optofluidics)这一新学科的诞生和新技术的发展,流体器件将会在未来的光学技术领域扮演更加重要的角色。 微流控光学是现代光学、光电子学与微流控技术相结合而形成的新型交叉前沿学科与技术[3]。不同于20世纪60年代的射流技术(fluidics)以宏观机械控制为目标,微流控技术(microfluidics)意图实现微量化学或生物样品的合成与分析[4],而微流控光学技术则是在微观尺度上通过操控流体达到调节系统的光学 摘要微流控光学(optofluidics)通过融合微流控学和光学、光电子学技术合成新颖的功能器件和系统,微流控光学系统的主要特点在于结构的可调化、功能的集成化和系统的微型化。结构可调性为自适应光学提供 了新的技术途径,光学检测与微流分析功能的集成将促进微型全分析系统技术的应用和发展,光学与微 流控技术的融合则为传统光学器件的可调化和微型化提供了可能。介绍微流控光学这一前沿交叉学科 的基本概念和应用前景。叙述了微流控自适应光学、微流控光学检测、微流控激光器以及微流控光学集 成器件的近期研究成果和应用前景。 关键词微流控光学;微流控技术;自适应光学;微型激光器;光学集成器件 AbstractOptofluidicsisanewfrontierandinterdisciplinaryfieldwhichdevelopsdevicesandsystemsthroughthefusionofoptics,optoelectronicsandmicrofluidics.Thereconfigurability,integrationand minaturizationarethreemajoradvantagesassociatedwithoptofluidicsystems.Thestructural reconfigurabilityprovidesanewtechniquesolutiontoadaptiveoptics.Thefunctionalintegrationof opticaldetectionwithmicrofluidicanalysispromotestheapplicationsofmicrototalanalysissystem (MTAS).Thefusionofopticsandmicrofluidicsprovidesthepossibilityofminiaturizationof conventionalopticaldevices.Thebasicconceptandsomepotentialapplicationsofoptofluidicsare introduced.Therecentresearchandapplicationsofoptofluidicsaredescribedinthecategoriesof adaptiveoptics,microfluidicdetection,micro-laserandopticalintegrationdevices. Keywordsoptofluidics;microfluidics;adaptiveoptics;micro-laser;opticalintegrationdevice 中图分类号TN2;O43

基于微流控技术的功能型量子点的合成及应用

目录 摘要 ABSTRACT 目录 第一章绪论 (1) 1.1微流控芯片的简介 (1) 1.2微流控芯片的国内外研究进展概述 (1) 1.3微流控芯片在纳米合成上的应用研究发展现状 (2) 1.4量子点纳米材料简介 (8) 1.5量子点在生物光子学中的应用 (11) 1.5.1 与生物分子连接 (11) 1.5.2 量子点生物标记应用 (13) 1.5.3 量子点生物成像应用 (14) 1.5.4 在免疫学中的应用 (15) 1.5.5 其他应用 (15) 1.5.6 前景展望 (16) 第二章量子点的相关理论 (18) 2.1量子点的常用制备方法 (18) 2.1.1 有机相合成 (18) 2.1.2 水相合成 (18) 2.2微流控制备量子点方法的相关理论 (19) 2.3量子点的表征 (21) 2.3.1 透射电子显微镜 (21) 2.3.2 吸收光谱 (22) 2.3.3 荧光光谱 (22) 2.3.4动态光散射粒径分析 (23) 2.4量子点物化特性 (23) 2.4.1量子点的物理效应 (23) 2.4.2量子点的光学特性 (25) 2.4.3量子点的发光原理 (26) 2.4.4量子点的能级结构 (27) 第三章应用于量子点合成的微流控芯片的设计与制作 (29) 3.1引言 (29) 3.2微流控芯片的制作技术概述 (29) 3.2.1 微流控芯片的结构及特点介绍 (29) 3.2.2 微流控芯片的材料选取 (30) 3.2.3微流控芯片的成型方法 (31) 3.3微流控芯片的模拟仿真理论概述 (32) 3.4应用于合成量子点的微流控芯片的制作 (35) I

微流控技术在人体器官芯片的应用(上篇)

微流控技术在人体器官芯片的应用是一个比较前沿的的研究领域,上篇主要谈药物研发过程和面临的困难,微流控技术特点和人体芯片的基本概念,下篇主要聊人体芯片目前的研究成果。 药物研发的历史 人在一生中不可避免会生病。有些疾病不需要干涉便会自我恢复,而有些疾病则必须通过外界的治疗达到缓解或痊愈的目的。在各类外界治疗的手段中,服用药物进行治疗是最常见的一种。 使用药物的历史可以追溯到千年前人类早期的文明中。在那个时候,药物不单单是用来治病,更多的则是被宗教或部落用来进行心理上的治愈。这些药物的成分通常来自于植物。 由于当时缺少科学的研发步骤,药物的效用需要通过不停的试错和观察人和动物服用后的反应来决定。典型的例子就是我们熟知的,神农氏尝百草后写出的《神农本草经》。尽管在不同文化中传统药物具有很长的历史和很高的流传度,但这些药物很难被大规模开发出来,而且其真正的医疗价值尚值得商榷。 到了十九世纪末期,随着科学技术的提升,药物的发明开始从依靠口口相传的经验走向基于科学技术系统地研发。 第一次世界大战结束后,现代的制药产业开始形成,以规范的科学研究为指导进行的药物研发最终获得了广泛共识。 现代的药物研发过程 今天,每一款药物从实验室到用户手中都要经历长达数年之久且耗资巨大的研发过程。 一个标准的研发过程包括三个阶段: 基础研究(Basic Research & Drug Discovery)

临床前期试验(Preclinical Trials) 临床试验(Clinical Trials)。 基础研究包括对疾病和症状的研究,选择治疗目标和选择最优治疗方案。新药的研发成功与否取决于我们对目标疾病的了解程度。在具备了一定的背景知识后,实验人员会根据疾病的发生原理选择一个治疗目标(Drug target)。药物会和治疗目标发生反应,产生治疗效果。通常,研究人员会在体外细胞、组织或者动物身上进行研究,选择出最有希望的治疗目标进行下一步测试。在得到治疗目标之后,研究人员会使用不同的方式进行高通量的药物测试及筛选,选择出有潜力的候选药物。 临床前期试验是承前启后的一个阶段。其试验结果可以决定一款候选药物是否有价值进入之后的临床试验(概率为五千分之一)。 为了尽可能预测药物在人体内的各项指标,研究人员通常使用两种模型来模拟人体内的环境: 一)生物体模型,动物活体比如小白鼠; 二)生物体外模型,培养在玻璃试管中的活细胞。 一般来说,两种模型都会被使用。为了确保药物在人体实验中的安全性,药监局对临床前期试验这一步骤的要求是最严格的。研究人员需在此步骤评估和预测药物在人体中的多项指标,包括药物效应动力学(既药物对人体的作用),药物代谢动力学(既人体对药物的反作用)和毒性(包括短期和长期)。预测的结果可以帮助研究人员决定临床测试时使用的药物剂量。 临床试验是新药得到药监局批准前的最后一步,也是最艰难且最昂贵的一步(成功率为百分之五)。 临床试验分为三期,分别在不同类别和数量的人群中测试:

【CN109894171A】一种可逆键合微流控芯片的方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910265003.0 (22)申请日 2019.04.03 (71)申请人 大连理工大学 地址 116024 辽宁省大连市甘井子区凌工 路2号 (72)发明人 李经民 王堃 李扬 徐朋朋  李名扬  (74)专利代理机构 大连理工大学专利中心 21200 代理人 温福雪 侯明远 (51)Int.Cl. B01L 3/00(2006.01) (54)发明名称一种可逆键合微流控芯片的方法(57)摘要本发明公开了一种可逆键合微流控芯片的方法,可用于微流控芯片的制造技术领域。该方法设计了一种由微流控芯片、夹具和防滑层组成的器件,其中微流控芯片包括盖片、基片和密封层,可以形成完整封闭的微流控芯片,保证通道进样无漏液,同时实现了PMMA、PC、玻璃、硅片等硬质材料之间的可逆键合。相比于传统的热压键合、等离子体键合等方式,该方法无需热压机、紫外臭氧清洗机、等离子键合机等辅助设备,同时避免了键合过程中微结构变形和微通道堵塞等问题、提高了微流控芯片键合的成品率、缩短了芯片生产时间、简化了微流控芯片键合的工艺流程、成本低廉并且可以实现夹具的重复利用。该 器件为微流控领域提供了一个新的技术平台。权利要求书1页 说明书3页 附图1页CN 109894171 A 2019.06.18 C N 109894171 A

权 利 要 求 书1/1页CN 109894171 A 1.一种可逆键合微流控芯片的方法,对于硬质材料的微流控芯片之间的键合,不采取直接键合方式,其特征在于,操作方式如下: (1)在带有进样口的盖片(1)上旋涂一层PDMS涂层a(2),根据基片(3)上的微通道结构,在PDMS涂层a(2)上开窗; (2)在两片尺寸相同的透明硬质材料(6)上加工均布通孔,其中一片加工进样口(4)作为顶层夹具,另一片作为底层夹具;在两片夹具的夹持面上分别旋涂一层PDMS层b(5),将带有微通道的基片(3)放于底层夹具(6)上,将旋涂有PDMS涂层a(2)的盖片(1)与基片(3)对准贴合,PDMS涂层a(2)位于盖片(1)与基片(3)之间;最后将顶层夹具置于盖片(1)上,螺栓拧紧。 2.根据权利要求1所述的方法,其特征在于,所述的螺栓拧紧力矩计算过程如下:参照非金属类密封器件查表,得到的预紧力标准得PDMS涂层作为密封器件的单位密封面积压紧力,乘以旋涂面积得到有效压紧力;根据微通道结构、液体的密度与流速,计算出液体流动时对内壁的压力;螺栓预紧力大于等于有效压紧力与内壁压力之和,所需拧紧力矩等于预紧力乘以距离,距离即为螺栓的公称直径,再根据螺栓所连接的材料性质乘以拧紧力系数,即得到螺栓拧紧力矩。 2

一文了解微流控芯片技术的发展和未来

一文了解微流控芯片技术的发展和未来 从1990年Manz等人首次提出了微型全分析系统的概念,到2003年Forbes 杂志将微流控技术评为影响人类未来15件最重要的发明之一,微流控技术得到了飞速的发展,其中的微流控芯片技术作为当前分析科学的重要发展前沿,在生物、化学、医药等领域都发挥着巨大的作用,成为科学家手中流动的“芯”。 微流控芯片技术 微流控,是一种精确控制和操控微尺度流体,尤其特指亚微米结构的技术。通过在微尺度下流体的控制,在20世纪80年代,微流控技术开始兴起,并在DNA芯片,芯片实验室,微进样技术,微热力学技术等方向得到了发展。 微流控分析芯片最初在美国被称为“芯片实验室”(lab-on-a-chip),在欧洲被称为“微整合分析芯片”(micrototal analytical systems),它是微流控技术(Microfluidics)实现的主要平台,可以把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,自动完成分析全过程。有着体积轻巧、使用样品及试剂量少,且反应速度快、可大量平行处理及可即用即弃等优点的微流控芯片,在生物、化学、医学等领域有着的巨大潜力,近年来已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究领域。 微流控芯片的原理 微流控芯片采用类似半导体的微机电加工技术在芯片上构建微流路系统,将实验与分析过程转载到由彼此联系的路径和液相小室组成的芯片结构上,加载生物样品和反应液后,采用微机械泵。电水力泵和电渗流等方法驱动芯片中缓冲液的流动,形成微流路,于芯片上进行一种或连续多种的反应。激光诱导荧光、电化学和化学等多种检测系统以及与质谱等分析手段结合的很多检测手段已经被用在微流控芯片中,对样品进行快速、准确和高通量分析。微流控芯片的最大特点是在一个芯片上可以形成多功能集成体系和数目众多的复合体系的微全分析系统?微型反应器是芯片实验室中常用的用于生物化学反应的结构,如毛

微流控芯片加工技术解析

微流控芯片加工技术解析 微流控芯片的发展微全分析系统的概念是在1990年首欠由瑞士Ciba2Geigy 公司的Manz与Widmer提出的,当时主要强调了分析系统的微与全,及微管道网络的MEMS加工方法,而并未明确其外型特征。次年Manz等即在平板微芯片上实现了毛细管电泳与流动。微型全分析系统当前的发展前沿。微流控分析系统从以毛细管电泳分离为核心分析技术发展到液液萃取、过滤、无膜扩散等多种分离手段。其中多相层流分离微流控系统结构简单,有多种分离功能,具有广泛的应用前景。已有多篇文献报道采用多相层流技术实现芯片上对试样的无膜过滤、无膜参析和萃取分离。同时也有采用微加工有膜微渗析器完成质谱分析前试样前处理操作的报道。流控分析系统从以电渗流为主要液流驱动手段发展到流体动力气压、重動、离心力、剪切力等多种手段。 直至今日,各国科学家在这一领域做出更加显著地成绩。微流控技术作为当前分析科学的重要发展前沿,在研究与应用方面都取得了飞速的发展。 微流控芯片的原理微流控芯片采用类似半导体的微机电加工技术在芯片上构建微流路系统,将实验与分析过程转载到由彼此联系的路径和液相小室组成的芯片结构上,加载生物样品和反应液后,采用微机械泵。电水力泵和电渗流等方法驱动芯片中缓冲液的流动,形成微流路,于芯片上进行一种或连续多种的反应。激光诱导荧光、电化学和化学等多种检测系统以及与质谱等分析手段结合的很多检测手段已经被用在微流控芯片中,对样品进行快速、准确和高通量分析。微流控芯片的最大特点是在一个芯片上可以形成多功能集成体系和数目众多的复合体系的微全分析系统?微型反应器是芯片实验室中常用的用于生物化学反应的结构,如毛细管电泳、聚合酶链反应、酶反应和DNA 杂交反应的微型反应器等。其中电压驱动的毛细管电泳(Capillary Electrophoresis ,CE)比较容易在微流控芯片上实现,因而成为其中发展最快的技术。它是在芯片上蚀刻毛细管通道,在电渗流的作用下样品液在通道中泳动,完成对样品的检测分析,如果在芯片上构建毛细管阵列,可在数分钟内完成对数百种样品的平行分析。自1992 年微流控芯片CE 首次报道以来,进展很快?首台商品仪器是微流控芯片CE (生化分析仪,Aglient),可提供用于核酸及

微流控芯片技术详解_微流控技术在生物医学上的应用

微流控芯片技术详解_微流控技术在生物医学上的应用 微流控芯片技术(Microfluidics)是把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,自动完成分析全过程。由于它在生物、化学、医学等领域的巨大潜力,已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究领域。 本文首先介绍了微流控技术原理及微流控芯片的工作原理,其次详细的阐述了微流控芯片技术,最后介绍了微流控技术在生物医学上的应用,具体的跟随小编一起来了解一下。 微流控技术原理微流控(microfluidics )是一种精确控制和操控微尺度流体,以在微纳米尺度空间中对流体进行操控为主要特征的科学技术,具有将生物、化学等实验室的基本功能诸如样品制备、反应、分离和检测等缩微到一个几平方厘米芯片上的能力,其基本特征和最大优势是多种单元技术在整体可控的微小平台上灵活组合、规模集成。是一个涉及了工程学、物理学、化学、微加工和生物工程等领域的交叉学科。 微流控是系统的科学技术,它使用几十到几百微米尺度的管道,处理或操控很少量的(10*至10~18升,1立方毫米至1立方微米)流体。最初的微流控技术被用于分析。微流控为分析提供了许多有用的功能:使用非常少的样本和试剂做出高精度和高敏感度的分离和检测,费用低,分析时间短,分析设备的印记小。微流控既利用了它最明显的特征一一尺寸小,也利用了不太明显的微通道流体的特点,比如层流。它本质上提供了在空间和时间上集中控制分子的能力。 微流控芯片的工作原理微流控芯片采用类似半导体的微机电加工技术在芯片上构建微流路系统,将实验与分析过程转载到由彼此联系的路径和液相小室组成的芯片结构上,加载生物样品和反应液后,采用微机械泵。电水力泵和电渗流等方法驱动芯片中缓冲液的流动,形成微流路,于芯片上进行一种或连续多种的反应。激光诱导荧光、电化学和化学等多种检测系统以及与质谱等分析手段结合的很多检测手段已经被用在微流控芯片中,对样品进行快速、准确和高通量分析。微流控芯片的最大特点是在一个芯片上可以形成多功能集成

微流控芯片的加工方法

微流控芯片的加工方法 MEMS技术是u-TAS发展的基础,也是微流控芯片加工中最广泛采用的方法。MEMS加工技术包括了常规平面工艺中的光刻、氧化、扩散、化学气相沉积(chemical vapor deposition,CVD)生长、镀膜、压焊等,又增加了三维体加工工艺,如双面光刻、各向异性和各向同性化学腐蚀、等离子或离子束深刻蚀、LIGA技术、硅—硅键合、硅—玻璃键合等。 目前,国际上应用较为广泛的MEMS制造技术有牺牲层硅工艺、体微切削加工技术和LIGA工艺等,新的微型机械加工方法还在不断涌现,这些方法包括多晶硅的熔炼和声激光刻蚀等。结合微流控芯片的具体功能要求与芯片选用的材料特性,微流控芯片的加工工艺在MEMS加工工艺基础上有所发展,主要包括光刻和蚀刻等常规工艺,以及模塑法、软光刻、激光切蚀法、LIGA技术等特殊工艺。 1、硅质材料加工工艺 在硅材料的加工中,光刻(lithography)和湿法刻蚀(wetetching)技术是2种常规工艺。由于硅材料具有良好的光洁度和很成熟的加工工艺,主要用于加工微泵、微阀等液流驱动和控制器件,或者在热压法和模塑法中作为高分子聚合物材料加工的阳模。光刻是用光胶、掩模和紫外光进行微制造。光刻和湿法蚀刻技术通常由薄膜沉淀、光刻、刻蚀3个工序组成。

首先在基片上覆盖一层薄膜,在薄膜表面用甩胶机均匀地附上一层光胶。然后将掩模上的图像转移到光胶层上,此步骤为光刻。再将光刻上的图像,转移到薄膜,并在基片上加工一定深度的微结构,此步骤完成了蚀刻。 在石英和玻璃的加工中,常常利用不同化学方法对其表面改性,然后可以使用光刻和蚀刻技术将微通道等微结构加工在上面。玻璃材料的加工步骤与硅材料加工稍有差异,主要步骤有:1)在玻璃基片表面镀一层Cr,再用甩胶机均匀的覆盖一层光胶;2)利用光刻掩模遮挡,用紫外光照射,光胶发生化学反应;3)用显影法去掉已曝光的光胶,用化学腐蚀的方法在铬层上腐蚀出与掩模上平面二维图形一致的图案;4)用适当的刻蚀剂在基片上刻蚀通道;5)刻蚀结束后,除去光胶和牺牲层,打孔后和玻璃盖片键合。标准光刻和湿法刻蚀需要昂贵的仪器和超净的工作环境,无法实现快速批量生产, 2、高聚物材料加工工艺 以高聚物材料为基片加工微流控芯片的方法主要有:模塑法、热压法、LIGA技术、激光刻蚀法和软光刻等。模塑法是先利用光刻和蚀刻的方法制作出通道部分突起的阳模,然后在阳模上浇注液体的高分子材料,将固化后的高分子材料与阳模剥离后就得到了具有微结构的基片,之后与盖片(多为玻璃)封接后就制得高聚物微流控芯片。这一方法简单易行,不需要高技术设备,是大量生产廉价芯片的方法。热压法也需要事先获得适当的阳模。热压法的具体步骤为:在热压装置中将高聚物基片与阳模紧贴在一起,当基片加热到软化温度后,对阳模施加压力,可在基片上印制出相应的微结构,将阳模和基片一起冷却后脱模,就得到所需的微结构。此法比较适用于PMMA和PC等聚合物材料。LIGA技术适合高深宽比的聚合物芯片的制作,其加工流程是由X光深层光刻,微电铸和微复制3个环节构成。X光深层光刻可以在光胶中得到高深宽比的微通道;微电铸是在显影后的光胶图像间隙(微通道)中沉积金属,去掉光胶后得到所需微通道的阳模;微复制是在阳模上通过复制模塑方法在高聚物材料上形成所需的微通道结构。除了可制作较大高宽比的结构,与其它微细加工方法相比,LIGA技术还具有应用材料广泛,可以是金属、陶瓷、聚合物、玻璃等;可制作任意截面形状图形结构,加工精度高,可重复复制,符合工业上大批量生产要求,制造成本相对较低。激光刻蚀法是一种不同于以往方法的新加工方法,它可直接根据计算机CAD数据在金属、塑料等材料上加工微结构,是一种非接触式的加工手段。它利用紫外激光使高分子材料曝光,把二维图形复制下来,通过控制曝光的强度控制材料的刻蚀深度,最终用压力吹去降解产物,得到有通道的微流控基片,该方法加工简便快捷,但是对技术设备要求较高 3、软光刻加工工艺

基于微流控的细胞操纵技术

基于微流控的细胞操纵技术 专业:集成电路工程 课程:微型电子机械系统 学号: 2014021628 姓名: 老师:秦水介 中国﹒贵州﹒贵阳 2015年 4月

基于微流控的细胞操纵技术 摘要:细胞操纵技术是目前细胞生物学、微系统科学及药物筛选等学科交叉领域的一个研究热点,能够对不同种类的细胞进行有效的操纵,一直是学术界所面临的重要问题。随着微流体技术的不断发展,微流体芯片正在越来越广泛地应用在细胞操纵的领域。本文从微流体的技术特点出发,结合现有的传统细胞操纵技术,以及其与微流体技术的对比,对微流体在细胞操纵领域的应用和发展作综述性介绍 关键词:细胞操纵;微流控芯片;介电泳;免疫磁珠;光镊 引言 细胞是生物体和生命活动的基本单位,细胞操纵对于细胞结构和功能的研究、生命活动规律和本质的探索、疾病的诊断与治疗、药物的筛选与设计等都具有十分重要的意义。针对细胞研究应用而生的细胞操纵技术一直是国内外研究的热点,其中包括诸如介电泳法、电阻抗法、免疫磁珠法、力学特性法等一系列有效方法。然而,现存的方法或仪器中,或多或少都存在着各种各样的缺点。 随着微纳米技术和微流体技术的发展,细胞操纵技术正在朝着更精细的操作方式发展。微流体是一种可以操作微量级至10-9到10-18升液体的微小器件,在微流体芯片上往往集成有许多细小的流道,以便液体通过以及进行操作。由于在微流控芯片中对于细胞的研究更接近细胞在体内的真实状态;同时,微流控芯片具有分离效率高、分析速度快、分离模式多、所需样品少、应用范围广、自动化程度高等优点。这一系列的优点都使得它在时间和空间上为分子和细胞的分离、纯化、分析提供了更好的方法。 1 细胞操纵技术难点及要求: 归纳起来,对细胞操纵主要有如下要求: 1) 对细胞本身的伤害比较小,确保细胞的原生性状; 2) 对细胞的分离精确,分离识别率高; 3) 所需要的细胞数目少,或者是在一种较大量的细胞中分离出较小量的细胞; 4) 成本低,操作简便,易于临床使用。

Dolomite微流控应用简介

Dolomite微流控系统的应用 应用一:细胞包裹 ●可将单细胞、DNA或功能性磁珠包裹在单 分散性液滴中 ●能够做到在15分钟内将300,000个细胞包 裹于3百万个液滴中 例1:高通量单细胞捕获与制备/RNA-Seq序列标定 例2:FACS分选前单细胞乳液包裹(高通量细胞筛选HTS) 采用微流控细胞包埋技术,使细胞存在于一个液滴微反应器(micro-reactor)环境,从而保 护细胞免受FACS破坏,提高细胞存活率。如CHO、大肠、酵母等细胞株筛选。

应用二:水凝胶的合成 琼脂糖微粒合成:基于液滴微流控系统可合成一个具有明确大小、形状及形态的水凝胶颗粒, 可用于生物分子的分离、组织工程支架、药物载体(微粒形式)、光学和流体执行器、细胞 外基质模型的生物学研究。 应用三:液滴制备(应用于生化筛选与药物发现) 液滴的制备与分裂液滴的制备与合并试剂库的建立液滴的制备及研究的综合平台

应用四:双重乳化W-O-W/O-W-O 双重乳化:主要应用于化妆品研究、药 物输送、酶固定化、掩味技术、体外包装等。 应用五:微气泡或泡沫的制备(应用于R&D 、医疗诊断、材料科学及化工) 单分散性N2气泡的制备单分散性微泡的制备 应用六:独特的微混合技术 独特的混合技术,可根据酚酞变色情况实时评估混合效果 (应用于反应动力学研究、样品稀释、纳米合成、细胞活 化、酶反应、免疫分析、DNA 杂交及蛋白质折叠)平行液滴的制备(可制备Φ20-60μm 的单分散极微液滴,最快速率为30000个/s )极微液滴的制备(可制备Φ5-30μm 的单分散极微液滴,市场上最小芯片尺寸)高通量液滴生产系统(单分散液滴产量达1吨/月,最多可连接10块芯片,配置70个液滴生成节点)

微流控芯片五大优点及四大缺点分析

微流控芯片五大优点及四大缺点分析 微流控的五大优点(一)集成小型化与自动化微流控技术能够把样本检测的多个步骤集中在一张小小的芯片上,通过流道的尺寸和曲度、微阀门、腔体设计的搭配组合来集成这些操作步康,最终使整个检测集成小型化和自动化。 (二)高通量由于微流控可以设计成为多流道,通过微流道网络可以同时将待检测样本分流到多个反应单位,同时反应单元之间相互隔离,使各个反应互不相干扰,因此可以根据需要对同一个样本平行进行多个项目的检测。与常规逐个项目检测相比,大大缩短了检测的时间,提高了检测效率,具有高通量的特点。 (三)检测试剂消耗少由于集成检测的小型化,使微流控芯片上的反应单元腔体非常小,虽然试剂配方的浓度可能有一定比例的提高,但是试剂使用量远远低于常规试剂,大大降低了试剂的消耗量。 (四)样本量需求少由于只在小小的芯片上完成检测,因此需要被检测的样本量需求非常少,往往只需要微升甚至纳升级别。此外还可以直接用全血进行检测,对于婴儿、老人、残疾人这些血量少、静脉采集困难的人群,使其检测更加方便;或者是非常珍贵稀少的样本,使其多项指标检测成为可能。 (五)污染少由于微流控芯片的集成功能,原先在实验室里需要人工完成的各项操作全部集成到芯片上自动完成,使人工操作时样本对环境的污染降低到最低程度。例如在分子核酸类检测中,无论是样本本身,还是制备后准备用于检测的核酸,均会对实验室造成污染,气溶胶的扩散使得后续样本检测容易出现假阳性。这也是为什么常规分子核酸类检测需要至少在3个房间分别进行不同的操作。微流控技术的使用很好的解决了这一问题。 正因为微流控具有以上几个重要的优势和优点,使其成为了POCT的首选。而我们判断这类产品在市场上有没有需求和竞争力,可以从这几个方面上进行判断。 微流控的四大缺点(一)核心技术缺乏规范和标准一个成熟的微流控产品,往往需要配套使用的试剂,核心的微流控芯片,芯片驱动平台,光电检测模块,信号处理模块以及人机

什么是微流控合成技术及其诸多优点简析

什么是微流控合成技术及其诸多优点简析 20世纪90年代初Manz等首次提出了微全分析系统的概念,并于1995年首次报道了微流控技术用于化学合成,此后,又成功地将其用于多种重要的有机反应,取得了优于宏观规模反应的效果,展示了其广泛而独特的应用前景。随着材料、制造和微混合技术的发展,微流控技术已经成为有机化学领域的研究热点之一。 根据广泛接受的微系统定义,微反应器一般是指通过微加工和精密加工技术制造的小型反应系统,微反应器内微通道尺寸在毫米量级以下,一般在10~300 μm。利用微反应器进行的化学合成我们称之为微流控合成。相比于常规反应器,微流控合成技术具有诸多优点:传热、传质效率高常规反应器比表面积只有 1.0×10 ~1.0×10 m 2?m-3;微反应器尺寸小,可达1.0×10 ~5.0×10 m2?m-3,热传导率可达1.0×10 W?m-2?K-1,远高于常规反应器。微反应器小尺寸的特点使得物质的扩散距离非常短,由于扩散系数和扩散距离的平方成反比,因此微反应器中物质的混合速度极快。 反应参数更易精确控制、操作更加安全由于传热快,反应温度和有效反应时间等反应条件可精确控制。通过调节流速大小,可调节反应时间。反应物量少,可减少有毒试剂使用量和降低高温、高压、易爆炸反应的危险性。因此,微反应器特别适用于研究危险反应。 反应效率增加由于传热效率高,高温或低温反应其温度可分别降低或升高;反应时间也可大大缩短。对于急剧放热反应,反应热可以很快散去,消除了热斑;减少了副反应,且提高了产物的选择性、产率和纯度。 环境危害性小反应物量甚微,有毒、昂贵的反应物和溶剂使用量小,产生的污染小。因此,微流控合成为发展环境友好化学提供了技术平台。 易于实现在线检测微反应器生成物的量接近现代分析仪器的进样量,可用现代分析仪器直接在线监测反应进行的程度。 缩短科研探索的周期微反应器在单位体积和单位时间内得到的信息量较大;微反应器自身的并联集成技术以及与其他仪器的串联集成技术,使得新化合物合成、新药的筛选成本降低,效率提高,缩短了科研的成本和时间。

相关文档
最新文档