有粘结预应力钢绞线与无粘结预应力钢绞线

有粘结预应力钢绞线与无粘结预应力钢绞线
有粘结预应力钢绞线与无粘结预应力钢绞线

有粘结预应力钢绞线与无粘结预应力钢绞线

★★★定额中预应力筋按直径5毫米的碳素钢丝或直径15~15.24毫米的钢绞线编制的,采

用其他规格时另行调整。

1、钢绞线与钢丝束区别?

钢绞线在出厂时,通过机械拧在一起,钢丝束则是钢丝并在一起.如果选用夹片式锚具选用钢绞线较好;如果选用BBRV式锚具只能用钢丝束.

2、有粘接与无粘接预应力钢绞线区别?

后张法

后张法分为①有粘结预应力混凝土②无粘结预应力混凝土

无粘结钢绞线是在有粘接钢绞线的基础上做了涂包层,不与砼土直接接触。

有粘结钢绞线在施工过程中外套波纹管,一般待张拉完毕之后以P425水泥灌浆,其钢绞线与水泥直接接触,故称为有粘接。(具体看相关定额含量就可以分辨出来)

先张法

先张法是在浇筑混凝土前张拉预应力筋,并将张拉的预应力筋临时锚固在台座或钢模上,然后浇筑混凝土,待混凝土养护达到不低于混凝土设计强度值的75%,保证预应力筋与混凝土有足够的粘结时,放松预应力筋,借助于混凝土与预应力筋的粘结,对混凝土施加预应力的施工工艺。先张法一般仅适用于生产中小型构件,在固定的预制厂生产。

3、定额中24 ФS5表示:由24根ΦS5的钢丝(碳素钢丝)组成的钢丝束

以下A4-355~A4-361均表示为有粘接预应力钢丝束。A4-362表示无粘接预应力钢丝束。A4-363表示有粘接钢绞线A4-364表示无粘接钢绞线。

(摘自06SG429后张法预应力结构图集)

4、应力混凝土构件中受力钢筋必须都是预应力钢筋吗?

答:不一定。预应力构件中,除配置预应力纵筋外,往往还需配置部分非预应力筋,特别是在无粘结预应力构件中,更有此必要。有粘结预应力构件中由于粘结力的存在,挠度较小,开裂荷载较高,裂缝细而密;而无粘结构件则恰好相反,且卸载后裂缝常不能完全闭合。所以,在无粘结预应力构件中,应设置一定数量的非预应力筋,以改善其抗震性能。非预应力筋的数量、长度及位置需视具体情况而定。

5、为什么预应力混凝土构件采用先张法施工时,不需要增加锚具呢?先张法的施工工艺里面有用锚具临时固定这一项啊。

答:先张法预应力混凝土施工时,所用锚具为工具锚,在预应力钢筋张拉时,用来将预应力钢筋临时锚固在台座或模型上。在混凝土强度达到放张强度放张后,就可以拆卸下来,再次周转使用。先张法预应力混凝土构件的预应力的施加是通过混凝土对预应力钢筋的握裹而建立的,所以不需要像后张法预应力构件施加预应力而使用的工作锚。

6、预应力构件可以预制也可以现浇么

①由于先张法的工艺和技术条件的限制,一般是不可能在结构上现场实施的,都是事先在其它场地上制作好后再进行装配,(所以定额就没有编制先张法预应力钢筋定额,因为预制构件价格直接包括了预应力钢筋及所有工艺价格)

②后张法都可以(定额没有编制后张法预应力钢筋定额,因为预制构件价格直接包括了预应力钢筋及所有工艺价格,所以只编制了现浇后张法预应力钢筋定额)

7、现浇后张法预应力钢丝束及钢绞线理论重量怎么计算?

①钢丝束的理论重量就是算出一根钢丝重量再乘以钢丝根数。一根计算0.006165*d2(和钢筋计算一样)

②钢绞线的理论重量计算要查表,因为钢绞线是拧麻花而成的所以,单根长度实际大与钢绞线长度。

钢绞线公称直径、公称截面面积及理论重量

预应力钢绞线要求规范

预应力钢绞线规 预应力钢绞线规 预应力砼连续梁结构整体性好、大跨度,减少桥面伸缩缝个数,在高速公路和城市快速路工程中得到广泛应用。本文就几座预应力砼连续梁桥谈一下长束预应力质量控制的几个关键因素。 一、预应力钢绞线安装 预应力钢束的孔道位置、钢绞线是否发生缠绞现象是质量控制的关键。孔道位置不准确,改变了结构受力状态,如果曲线孔道标高变化段不圆顺还会增大预应力孔道摩阻损失,因此孔道位置准确与否直接关系到施工的预应力度能否与设计的预应力度相吻合,对结构安全和工程使用阶段是否会产生裂缝都有很深的影响。多根钢绞线如果缠绞在一起,拉时各根钢绞线受力不均匀,增大了钢绞线之间的摩阻,造成预应力损失加大。 实际施工中很多施工单位并不重视这些细部工作,固定钢束的井字架位置不准确或不按照规和设计规定的间距布设,必然造成钢束位置与设计不符、有的还会在曲线变化段产生急弯(半径太小)或孔道局部偏差过大。目前仍有小部分队伍使用人工进行穿束,尤其对多根钢绞线的长束重量很大,人工穿束费时费力,容易造成工人转动钢束穿进,使钢绞线互相缠绞在一起。市某快速干道(高架桥)工程四标段共有九联连续梁,施工时固定钢束用的井字架间距为1米,梁高1.6米,因此竖弯变化量不大,间距满足要求,但是施工时由于工人工作不认

真使井子架坐标不准确,并且采用人工穿束,束长在100米到120米不等。拉时发现大部分钢束的伸长值与理论伸长值不符(有的比理论值少11%),拉过程中经常听到部钢束缠绞在一起后被拉开的声音,当时立即对设备进行检定,在设备没有问题的情况下设计单位、监理单位和施工单位开始对问题进行分析,其中钢绞线计算伸长值时采用实测弹性模量,μ、κ取值按规推荐值。设计单位对结构进行重新验算,最后确定在保证拉力的情况下,伸长值误差保证在12%以,无疑降低了结构安全系数。 二、预应力钢绞线拉 1、拉控制应力与伸长值 拉控制应力能否达到设计规定值直接影响预应力效果,因此拉控制应力是拉中质量控制的重点,拉控制应力必须达到设计规定值,但是不能超过设计规定的最大拉控制应力。预应力值过大,超过设计值过多,虽然结构抗裂性较好,但因抗裂度过高,预应力筋在承受使用荷载时经常处于过高的应力状态,与结构出现裂缝时的荷载接近,往往在破坏前没有明显的预兆,将严重危害结构的使用安全。因此为了准确把握预应力的施加情况,以应力控制方法拉时必须以伸长值进行校核。因此能够提供准确的理论伸长值显得尤为重要,必须对《公路桥涵施工技术规》(JTJ041-2000)中理论伸长值的计算有个正确理解:①预应力孔道坐标符合设计要求、曲线孔道圆顺的情况下,孔道局部偏差和预应力筋与孔道壁间的摩擦系数对理论伸长值大小的影响不大,均可按照规取中值。②钢绞线的弹性模量Ep取值对理论伸长值大小

预应力钢绞线发展现状及分析

Metallurgical Engineering 冶金工程, 2020, 7(1), 22-27 Published Online March 2020 in Hans. https://www.360docs.net/doc/a92332216.html,/journal/meng https://https://www.360docs.net/doc/a92332216.html,/10.12677/meng.2020.71004 Status Quo and Development Trend of Prestressed Steel Strand Dong Liu, Jiyuan Wang, Wenzhong Wang, Shanglin Lv National Construction Steel Quality Supervision and Test Centre, Central Research Institute of Building and Construction Co., Ltd., MCC, Beijing Received: Feb. 13th, 2020; accepted: Feb. 27th, 2020; published: Mar. 5th, 2020 Abstract With the rapid development of prestressed concrete engineering technology in China, the pre-stressed steel strand industry has continued to progress. This article introduces the development present situation of prestressed steel strand industry, elaborates the related question combining with the domestic situation, and analyzes its trend. Keywords Prestressed Steel Strand, Status Quo, Development Trend 预应力钢绞线发展现状及分析 刘冬,王纪元,王文中,吕尚霖 中冶建筑研究总院有限公司,国家建筑钢材质量监督检验中心,北京 Email: liudong@https://www.360docs.net/doc/a92332216.html, 收稿日期:2020年2月13日;录用日期:2020年2月27日;发布日期:2020年3月5日 摘要 随着我国预应力混凝土工程技术的快速发展,预应力钢绞线行业持续进步,本文介绍了预应力钢绞线行业的发展现状,并结合国内情况阐述了相关问题,进行了趋势分析。 关键词 预应力钢绞线,现状,发展趋势

钢绞线理论伸长值怎样计算

钢绞线理论伸长值计算时遇到问题 钢绞线理论伸长值计算时是用设计的锚下控制应力还是用实际的张拉控制应力,也就是计算理论伸长值时考不考虑锚口损失应力。经验者请指教,谢谢。 Fle_Flo 2008-8-31 20:57:40 预应力锚索实测伸长量探讨李永宝 隧道网https://www.360docs.net/doc/a92332216.html,(2006-11-1) 来源:岩土工程界 摘要:通过对预应力锚索张拉工艺的阐述和分析,总结引起预应力锚索实测伸长量偏差的主要因素。 关键词:预应力锚索伸长量 预廊力铺索加固技术已广泛应用于建筑结构物加固边坡治理、大型地下洞室及深基坑支护等工程。由于受施工没备、场地环境以及人员操作等因豢的影响,作为预应力锚索评价指标之一的张拉实测伸长量,往往与理论伸长量有较大偏差。 1 预应力锚索张拉工艺 (1)张拉设备装配方法:张拉设备装配如图1。 (2)张拉操作程序:张拉时,油泵开启,张拉缸进油,千斤顶活塞推动工具锚板,工具锚板同时带动工具夹片,工具夹片在工具锚板上锥型锚孔的作用下收缩并一苦紧钢绞线,此时工具锚板、工具夹片、钢绞线跟于斤顶活塞同时位移。在此过程中,工作夹片受摩擦力的作用跟钢绞线同时移动,但其受限位饭的限制位移很小。当需要倒顶或达到终应力时,油泵回油,钢绞线在自身弹性作用下带动工作夹片回缩,工作夹片与工作锚板上锥型锚孔相互作用将钢绞线锚定。完成一个循环预应力的施加。预应力锚索张拉要分级进行,逐级加载,每级荷载之问稳定时间小少于2min。一般按下列加载顺序进行操作:式中m—超张拉系数。 2 理论伸长量的计算方法 锚索理论弹性伸长量按下列公式汁算:伸长量△L=NL[1 - e - (kl+θμ)]/EA(KL+0) 式中:Ⅳ—施加荷载(kN);£—自由段长(m):θ—自由段孔道曲线部分切线夹角之和(rad);K—孔道偏差影响系数;肛—钢绞线对孔道的摩擦系数;E—钢绞线弹性模量(kPa);A—钢绞线截面积/mm2。 3 工程实例实测伸长量偏差分析 某高速公路路堑防护工程,设汁锚索孔径ф130mm,预应力锚索采用7束ф15.24nlHl的钢绞线编制,锚长32.0~37.0m,锚固段9.0m,设计锚固力为1000kN,采用OVM锚具。张拉采用YCW250A型千斤顶。千斤顶主要技术参数见表1。 1.jpg 施工采用油压表控制应力读数,张拉前将油压表和千斤顶进行配套标定,并根据油压表一千斤顶配套标定曲线,将油压表读数换算成张拉应力,从而消除了千斤顶内摩阻的影响。张拉按6级进行,超张拉系数为1.1。现以Ms~10号锚索(长37.0m)为例探讨,张拉成果见表2。 在预应力施工时,实测伸长量一般是用钢直尺量得的千斤顶活塞行程。由表2和图2可以清楚地看出,千斤顶活塞行程与理论伸长量之间最终偏差为34mm,如果将千斤顶活塞行程直接作为实测伸长量,显然不符合相关规范规定,应进行修正。根据张拉成果记录表绘制锚索张拉Q—S曲线图(图2)。 2.jpg

无粘结预应力钢绞线

无粘结预应力钢绞线 1范围 本标准规定了无粘结预应力钢绞线产品的标记、要求、测试方法、检测规则以及标志、包装、运输、贮存。 2规范性引用文件 下列文件中的条款通过本标准的引用而称为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T5224-2003 预应力混凝土用钢绞线 GB11116 高密度聚乙烯树脂 GB/T1040 塑料拉伸试验方法 GB/T9341 塑料弯曲试验方法 JG3007-1993 无粘结预应力筋专用防腐润滑脂 3术语、定义和符号 3.1术语和定义 下列术语和定义适用于本标准。 3.1.1无粘结预应力钢绞线 Unbonded prestressing steel strand 用防腐润滑脂和护套涂包的钢绞线。 3.1.2 无粘结预应力筋 Unbonded tendons 采用无粘结预应力钢绞线的预应力筋,这种预应力筋与其周围混凝土之间可永久地相

对滑动。 3.1.3防腐润滑脂 corrosion-reistant and lubricating grease 适用于无粘结预应力筋的专用防腐润滑脂,该润滑脂是用脂肪酸混合金属皂将深度精制的矿物润滑稠化而成,并加入了多种添加剂,具有防锈防蚀性能。 3.1.4护套 sheathing 包裹在钢绞线和防腐润滑脂外的塑料套管。用以保护预应力钢绞线不受腐蚀,并防止与周围混凝土之间发生粘结。 3.2符号 下列符号适用于本标准。 W1-每米长无粘结预应力钢绞线的质量,单位为克每米(g/m); W2-每米长无粘结预应力钢绞线去除油脂后的钢绞线和护套的质量,单位为克每米(g/m); W3-每米长无粘结预应力钢绞线中油脂的质量,单位为克每米(g/m), μ-无粘结预应力筋中钢绞线与护套内壁之间的摩擦系数; k-无粘结预应力筋每米长度局部偏差的摩擦系数; F1-张拉端拉力,单位千牛(KN); F2-固定端拉力,单位千牛(KN); θ-从张拉端至计算截面无粘结预应力筋曲线段所包的圆心角,单位为弧度(rad); χ-从张拉端至计算截面无粘结预应力筋的长度,单位为米(m)。 4标记 4.1标记内容

预应力施工工艺及注意事项

桥面负弯矩张拉施工工艺 一、桥面负弯矩后张法张拉工艺原理 在混凝土结构施工时,按设计要求预留出相应的预应力孔道,待构件混凝土的强度、弹性模量、龄期达到设计规定的要求时,穿入预应力钢绞线,用张拉机具进行张拉,并用锚具把张拉后的预应力钢绞线锚固在构件的端部。预应力筋的张拉力主要靠构件端部的锚具传给混凝土,使其产生压应力。张拉锚固后,在预留孔道内注入水泥浆,使预应力钢绞线不被锈蚀,并与构件形成整体,增加了构件刚度,有效的控制了构件的抗裂度。 二、施工准备 (1)钢绞线的准备 预应力钢束采用标准强度为fpk=1860MPa的φ低松驰高强度预应力钢绞线,弹性模量Ep=×105MPa,钢绞线运至现场后须底部垫方木,上面覆盖雨布,防止钢绞线锈蚀,降低钢绞线强度与延伸率。 (2)锚具的准备 桥面负弯矩张拉采用夹片式圆形锚具,锚具与夹片须配套使用。25m梁板锚具型号为M15-5,30m梁板锚具型号为M15-6。施工前对进场锚具按规范要求进行进场检验,未经检验或者检验不合格者不得用于施工现场。 ①工作锚具:张拉时与锚垫板产生反作用力,承载工作夹片对抗钢绞线拉力,张拉完毕后永久性留在梁体中。工具锚:比工作锚具半径要大,厚实。张拉时承载工具夹片对钢绞线进行张拉,张拉完毕后可以取下,重复使用。 ②工作夹片:一般由两片夹片组成,张拉时与工作锚具共同受力,张拉完毕便留在锚具上,为永久性使用材料。工具夹片:一般由三片夹片组成,张拉时与工具锚共同受力,张拉完毕后可以取下,可重复使用。 (3)张拉机具的准备 桥面负弯矩张拉采用27t液压式千斤顶及其配套的油泵、油表,完全能够满足计算的控制吨位的要求。张拉用的千斤顶与压力表应配套标定、配套使用。根据油顶、油表的校准证书,计算所需张拉力对应的油表读数,作为张拉力控制依

预应力钢绞线参数及计算公式汇总

预应力钢绞线参数及计算公式汇总 参数:钢绞线抗拉强度标准值fpk=1860Mpa,弹性模量:Ep=1.95*105Mpa,松弛率为2.5%,公称直径¢s=15.2mm,钢绞线面积A=140mm2,管道采用预埋金属波纹管成孔且壁厚不小于0.3mm。预应力筋平均张拉力按下式计算: p p=(p(1-e-(kx+μ?)))/kx+μ? 式中:p p---预应力筋平均张力(N)。 p-----预应力筋张拉端的张拉力(N)。 X-----从张拉端至计算截面的孔道长度(m)。 ?-----从张拉端至计算截面曲线孔道部分切线的夹角之和(rad)。 K-----孔道每米局部偏差对摩擦的影响系数,参见附表G-8。 μ-----预应力筋与孔道比壁的摩擦系数,参见附表G-8。 注:e=2.71828,当预应力筋为直线时p p= p。 预应力筋的理论伸长值△L(mm)可按下式计算; △L =(p p *L)/A p*Ep 式中:p p-----预应力筋的平均张拉力(N),直线筋取张拉端的拉力,两端张拉的曲线筋,计算方法见上式。 L-------预应力筋的长度(mm)。

A p-----预应力筋的截面面积(mm2)。 Ep------预应力筋的弹性模量(N/ mm2)。 附表G-8 系数K及μ值表 注意事项: 预应力筋张拉时,应先调整到初应力σ0该初应力宜为张拉控制应力σcom的10%~15%。伸长值应从初应力时开始量测。力筋的实际伸长值除量测的伸长值外,必须加上初应力以下的推算伸长值。对后张法构件,在张拉过程中产生的弹性压缩值一般可省略。 预应力张拉实际伸长值△L(mm)=△L1+△L2 式中:△L1-从预应力至最大张拉应力间的实测伸长值(mm)△L2-初应力以下的推算伸长值(MM),可采用相邻级的伸长值。

预应力钢绞线伸长量计算

预应力钢绞线实际伸长量计算方法 1、以钢绞线在预应力管道内的长度计算理论伸长量ΔL理为基准时: (1)当采用“行程法”测量伸长量: L实=[(L100%-L10%)+(L20%-L10%)] –ΔL工作长度-ΔL工具锚–ΔL工作锚⑺ L实——钢绞线实际伸长量; L20%——张拉应力为20%б0时,梁段两端千斤顶活塞行程之和;L100%——张拉应力为100%б0时,梁段两端千斤顶活塞行程之和; L10%——张拉应力为10%б0时(即初张应力,规范推荐可取10%-25%),梁段两端千斤顶活塞行程之和;ΔL工作长度——梁段两端千斤顶内钢绞线的无阻伸长量;取理论计算值; ΔL工作锚——梁段两端锚具压缩及钢绞线回缩量;取工艺试验实测值; ΔL工具锚——梁段两端锚具压缩及钢绞线回缩量;取实测值;(2)当采用“直接法”测量伸长量: L实=[(L100%-L10%)+(L20%-L10%)] –ΔL工作长度–ΔL 工作锚 控制应力*钢绞线截面积*钢绞线的根数=张拉力 根据千斤顶和油表的检测报告中的校正方程计算出油表读数即可。 注意:有的需要超张拉来抵消预应力损失,在控制应力中乘以系

数即可。 预应力钢绞线伸长量计算方法 预应力钢绞线张拉理论伸长量计算公式 ΔL=(PpL)/(ApEp) 式中:Pp――预应力筋的平均张拉力(N) L――预应力筋的长度(mm) Ap――预应力筋的截面面积(mm2) Ep――预应力筋的弹性模量(N/mm2) Pp=P(1-e-(kx+μθ))/(kx+μθ) 式中:Pp――预应力筋平均张拉力(N) P――预应力筋张拉端的张拉力(N) x――从张拉端至计算截面的孔道长度(m) θ――从张拉端至计算截面曲线孔道部分切线的夹角之和(rad)k――孔道每米局部偏差对摩擦的影响系数 μ――预应力筋与孔道壁的摩擦系数 1、预应力钢绞线张拉实际伸长量ΔL,应建立在初应力后开台量测,测得伸长值还应加上初应力的推算值。 ΔL=ΔL1+ΔL2 式中ΔL1从初应力到最大张拉力间的最大伸长值 ΔL2初应力以下的推算值 关于初应力的取值一般可取张拉控制应力的10—25%。初应力钢筋的实际伸长值应以实际伸长值与实测应力关系线为依据,

年预应力钢绞线张拉施工方案

箱梁预应力施工方案 一、工程概况 (一)目的 编制箱梁预应力施工作业指导书的目的就是为了更好的指导施工生产,使现场作业人员能够规范施工。 (二)编制依据 《客运专线铁路桥涵工程施工质量验收暂行标准》 《客运专线铁路桥涵工程施工技术指南》 《京沪铁路客运专线施工图设计文件》 (三)适用范围 本施工方案适用于罗而庄特大桥、玉符河特大桥、红石岭特大桥、井字坡特大桥的连续箱梁后张法预应力工程施工。 二、施工部署及施工方案 (一)、施工材料 1、材料检验及张拉设备校验 1).预应力钢绞线检验:采用高强度低松驰绞线¢15.24mm,标准强度fpk=1860MPa。表面质量、直径检查:从每批中抽取3盘进行外观检查,表面不得有润滑剂,允许有轻微浮锈但不得锈蚀成可见麻坑。钢绞线内不得有折断、横裂和相互交叉的钢丝。 2).钢绞线力学性能检验:抽取外观检查合格的钢绞

线进行钢绞线极限应力、破断拉力、弹性模量等力学性能检验。 3).张拉设备校验:千斤顶与压力表配套校验,确定张拉力与压力表读数之间关系曲线。考虑到可能出现压力表损坏情况,千斤顶与压力表进行交叉检验,每台千斤顶均有与4只压力表相关的张拉力与表读数关系曲线。 4).锚具及夹具检验:抽取10%进行外观检查,不得有裂纹、伤痕。抽取3%的锚具夹具,进行磁力探伤、洛氏硬度、锚固性能等试验。 2 预应力筋施工 1).钢绞线的下料与编束 钢绞线采用(GB/T 5224)Φ15.24mm低松弛高强预应力钢绞线。钢绞线的下料用砂轮切割机切割,不得采用电弧切割。钢绞线切割时,在每端离切口30~50mm处用铁丝绑扎。 钢绞线的盘重大、盘卷小、弹力大、为了防止在下料过程中钢绞线紊乱并弹出伤人,事先制作一个简易的铁笼,下料时,将钢绞线盘卷在铁笼内,从盘卷中央逐步抽出,以策安全。 钢绞线编束用20号铁丝绑扎,铁丝扣向里,间距1~1.5m。编束时应先将钢绞线理顺,并使各根钢绞线松紧一致。绑好后的钢绞线束编号挂牌堆放。 2).预应力筋穿入孔道

14-16缓粘结预应力技术及其工程应用定稿

14 产品与技术 Building Structure We learn we go 缓粘结预应力技术及其工程应用(一) 吴转琴,李佩勋,尚仁杰,范蕴蕴,张利军/中冶建筑研究总院有限公司 [摘要] 缓粘结预应力技术是在克服有粘结和无粘结预应力的缺点,并继承其优点的基础上发展起来的一项预应力技术。介绍了缓粘结预应力的技术特点和技术关键、我国的发展现状以及相关规范编制情况等,通过8个典型工程介绍了该项技术在混凝土结构工程中的应用情况。 [关键词] 缓粘结预应力;有粘结预应力;无粘结预应力;预应力混凝土;胶粘结 0 引言 缓粘结预应力技术是在有粘结和无粘结之后发展起来的一种新的预应力技术[1],具有无粘结预应力技术施工方便、造价低和有粘结预应力技术结构延性好、抗震性能优等特点。日本在1987年开始研制缓粘结预应力筋,并于1996年开始应用于桥梁的横向预应力部位,2001年应用在桥梁的纵向预应力部位。我国铁路桥梁也在20世纪90年代中期开始研究采用缓凝砂浆作为胶粘剂[2-4]的缓粘结预应力技术。2002年前后,中冶集团建筑研究总院[5-7]和天津市建筑科学研究院[8] 独自开始用环氧树脂作为胶粘剂研制缓粘结预应力筋。2006年中冶集团建筑研究总院缓粘结预应力钢绞线生产线研制成功[9],并在工程中应用,2008年相关行业标准立项并开始编制,2009年被列为住房和城乡建设部新技术推广项目。 1 缓粘结预应力技术特点 缓粘结预应力筋构造见图1,在预应力筋的外侧、外包护套内部包裹一定厚度的特殊胶凝材料,其前期相当于无粘结的防腐油脂,具有一定流动性及对钢材有良好的附着性。经挤压涂包工艺将预应力筋及外包护套内的空隙填充并紧密封裹,随时间推移胶凝材料逐渐固化,与预应力筋、外包护套之间产生粘结力。外包高强护套材料表面通过机械压成如波纹管状的波纹,当胶凝材料完全固化后,通过缓粘结粘合剂凹凸不平的压痕与周围混凝土咬合,预应力筋不能在混凝土中自由滑动,缓粘结预应力便产生有粘结预应力筋的力学效果。同时,它具有无粘结预应力技术简便宜行的施工优点,克服有粘结施工工艺复杂、预应力节点使用条件受限的弊端,因此,缓粘结预应力技术具有广泛的应用前景。从缓粘结预应力混凝土的咬合锚固原理可以看出,缓粘结预应力技术的关键有2点:首先是可以控制固化时间的缓粘结粘合剂,使预应力筋前期像无粘结筋一样可以自由滑动和张拉;其次是缓粘结钢绞线外包护套的压痕,只有通过压痕才可以使钢绞线与混凝土紧密咬合,可靠粘结,达到有粘结预应力的粘结效果和力学性能。 《混凝土结构设计规范》(GB50010—2002)对预应力 混凝土框架梁抗震提出要求:宜采用有粘结预应力技术,主要是为了提高结构延性和抗震能力,缓粘结预应力混凝土结构如果可以达到有粘结预应力混凝土结构的粘结能力和延性,就可在许多情况下替代有粘结预应力技术,避免有粘结预应力混凝土框架梁施工和构造的困难。 B-B 图1 缓粘结预应力筋示意图(A-A 凹痕断面;B-B 凸肋断面) 2 缓粘结预应力技术相关标准 随着国内缓粘结预应力技术研究的不断深入,该项技术已趋向成熟,国内已有多项工程采用,工程各方迫切需要规范缓粘结预应力筋的产品技术参数以及缓粘结预应力混凝土结构设计、施工和验收的标准。结合缓粘结预应力技术的研发和推广应用,中冶建筑研究总院和中国京冶工程技术有限公司先后于2007年和2008年在住房和城乡建设部申请了缓粘结预应力技术的三项标准《缓粘结预应力混凝土结构技术规程》、《缓粘结预应力钢绞线用胶粘剂》及《缓粘结预应力钢绞线》主编工作。目前,2项产品标准已经完成了征求意见稿,技术规程完成了初稿。 《缓粘结预应力钢绞线用胶粘剂》规定了缓粘结预应力钢绞线专用粘合剂的术语定义、型号及标记、技术要求、试验方法、检验规定、标志、包装、贮存和运输。特别对粘合剂的张拉适用期和固化时间给出了明确的定义,对固化后粘合剂的弯折强度、抗压强度和拉剪强度给出了规定,根据目前研究成果,粘合剂的弯折强度可以达到20MPa ,抗压强度可以达到50MPa ,拉剪强度可以达到10MPa 。 《缓粘结预应力钢绞线》规定了缓粘结预应力钢绞线的术语与定义、产品标记、技术要求、生产工艺、试验方法、检验规则以及包装、标志、运输、贮存等。特别是给出了缓粘结预应力钢绞线外包护套肋痕深度的要求、缓粘结胶粘剂涂层的数量要求等,目前生产的缓粘结钢绞线肋痕深度达到1.5mm ,缓粘结粘合剂在涂塑前的外径达到19.5mm ,最薄

预应力钢绞线束数的计算方法

预应力钢绞线束数计算方法 更多工程造价知识关注微信公众号:吾同子 钢绞线的束数计算调整对于新手来说一直是个难题,但只要理解了,实际是非常简单的事情,至于调整可以直接借助造价软件进行。 1、相关术语的解释:

根(或丝):指一根钢丝; 股:指由几根钢丝组成一股钢绞线; 束:预应力构件截面中见到的钢绞线束数量,两段张拉一束配两个锚具,单端张拉一束配一个锚具; 束长:一次张拉的长度,含工作长度; 每吨XX束:指在标准张拉长度内,每吨钢绞线折合成多少束。 孔:锚具型号的孔指的是锚固单元,3孔即3个锚固单元。 2、钢绞线每吨所含束数的计算方法 (1)常用方法可按下列公式计算取定: 或 式中:K—每t钢绞线时间含的束数; N—设计锚具的总数,个; Q—设计钢绞线的总重量(含张拉工程长度的重量),t;

2—常数,当为单端张拉(如边坡锚索)时,常数为1(省略)。 如某30m桥梁的计算见下表: 边梁N1钢绞线每吨所含束数计算如下: K=16/(4.952×2)=1.616(束/t) 此种方法比较适合锚孔单一的钢绞线,如锚索边坡;因桥梁设计图给的钢绞线是总质量,未按不同型号分开统计,所以要计算桥梁不同孔数钢绞线每t束数,需自行计算不同孔数钢绞线的质量。 (2)下面介绍一种相对简单的方法,可以直接采用标准图数据进行计算每t束数: K=1000/(L×Q1)=1000/(L×N1×Q2), 式中:1000—常数,1t=1000kg; L—束长,含工作长度,m; Q1—每束钢绞线延米质量,kg; N1—每束钢绞线的股数,锚具为多少孔,即为多少股; Q2—每股钢绞线延米质量,kg,如直径15.2的钢绞线延米质量为1.101kg/m; 如某标准30m简支T梁材料明细及主要参数如下表:

现浇混凝土后张法缓粘结预应力施工工法

缓粘结预应力施工工法 XX建设集团有限公司 1.前言 缓粘结预应力是继有粘结预应力、无粘结预应力后的第三代预应力技术,她摒弃了有粘结预应力施工复杂、孔道灌浆质量难以保证、张拉端做法困难的缺点,以及无粘结预应力在抗震及主要承受动荷载的结构体系中的不足,经过材料、结构、机械等多种专业的科学工作者研发数年推出的最新的预应力技术。本文通过对鄂尔多斯机场改扩建工程新航站楼工程大跨度缓粘结预应力梁和大平台大跨度缓粘结预应力梁板施工经验进行总结,形成了现浇混凝土后张法缓粘结预应力施工工法。 2.特点 2.1施工简便。 2.2与混凝土粘结锚固性能良好、质量容易保证,从而可以替代有粘结及无粘结预应力产品。 2.3缓粘结预应力技术是处在无粘结预应力技术与有粘结预应力技术间的一种新的预应力技术,它既具有无粘结预应力的布索自由、使用方便、无需孔道的设置和压浆的优点,又具有有粘结预应力技术在后期使用上的特点和安全性的一种新预应力工艺。 2.4预应力钢绞线和护套之间填充有需经过一定期限才可以凝固的粘结剂层,护套外表面具有竹节状凸起。缓粘结预应力筋在布筋和张拉阶段预应力筋与混凝土间可以滑动,当时间到达一定期限,如根据需要,时间可以在2个月到1年之间,粘结剂层开始凝固,从而将预应力筋和混凝土之间完全粘结,受力过程中具有有粘结预应力结构的优点,能够限制裂缝宽度、提高延性。 2.5由于无需灌浆因而也显著减少污染物(砂浆)的排放。 3.适用范围 适用于大跨度、大空间的建筑工程,如大跨度的混凝土梁、大偏心的框架柱、大柱网的混凝土楼板、大悬臂梁、转换梁或转换板、抗拔桩、基础地梁、地下室

底板等混凝土结构中的各种构件。 4.工艺原理 缓粘结预应力是在预应力筋的外侧、外包护套内部包裹一定厚度的特殊胶凝材料,其前期相当于无粘结的防腐油脂,具有一定流动性及对钢材良好的附着性,经挤压涂包工艺将预应力筋及外包护套内的空隙填充并紧密封裹,随时间推移胶凝材料逐渐固化,与预应力筋、外包护套之间产生粘结力。外包高强护套材料表面通过机械压有如波纹管状的波纹,当胶凝材料完全固化后,缓粘结预应力便产生有粘结预应力筋的力学效果。缓粘结预应力筋结构示意图: 5.施工工艺流程及施工要点 5.1施工工艺流程:缓粘结预应力梁的施工步骤与无粘结预应力梁基本相同。以梁内缓粘结预应力筋为例,整个过程如下:加工缓粘结预应力筋、锚具、承压板、螺旋筋、定位筋→支设梁底模板→绑扎梁普通钢筋→在梁箍筋上定好缓粘结钢绞线的分布间距及高度→布置定位筋→铺设缓粘结预应力筋→安装张拉端穴模、承压板及螺旋筋,并用绑丝将张拉端组合件同模板固定→调整缓粘结预应力筋曲线→检查缓粘结预应力筋有无破损、如有修补→浇筑混凝土→清理张拉端承压板前砼→安装锚具,砼达到设计强度时且在缓粘结剂合理的施工周期内进行张拉→张拉完毕后进行切筋、张拉端锚具防腐处理。详见下图:

无粘结钢绞线体外预应力加固法

8 无粘结钢绞线体外预应力加固法(征求意见稿) 8.1 设计规定 8.1.1 本方法适用于对钢筋混凝土受弯、受拉和偏心受拉构件的加固,不适用于素混凝土构件的加固。 8.1.2 被加固的混凝土结构构件,其现场实测混凝土强度等级不得低于C10。 8.1.3 采用本方法加固的混凝土结构,其长期使用的环境温度不应高于60℃。 8.1.4 当被加固构件的表面有防火要求时,应按现行国家标准《建筑防火设计规范》GBJ 16规定的耐火等级及耐火极限要求,对加固材料进行防护。 8.1.5 在预应力钢绞线端部锚具的支承垫板不小于100×100mm的情况下,当端部锚固区的砼强度不低于C15时,端部锚固区混凝土的局部承压强度可不作验算。 8.2 无粘结钢绞线体外预应力加固钢筋混凝土梁 8.2.1 当采用无粘结钢绞线体外预应力对梁进行加固时,应按下列规定计算: 1 梁的正截面强度按偏心受压构件进行计算; 2 在作构件强度计算时,应先确定构件达到极限状态时钢绞线的应力值;该应力值等于钢绞线的有效预应力值加钢绞线在构件达到极限状态时的应力增量值。计算中,可假定达到极限状态时钢绞线的应力即为施加预应力时的张拉控制应力,即假定钢绞线的应力增量值与预应力损失值相等。 当采用一端张拉,而连续跨的跨数超过二跨;或当采用两端张拉,而连续跨的跨数超过四跨时,距张拉端二跨以上的梁,其由摩擦力引起的预应力损失有可能大于钢绞线的应力增量。此时可采用以下二种方法加以弥补:方法一:在跨中设置拉紧螺栓,采用手工横向张拉的方法补足预应力损失值; 方法二:将钢绞线的张拉预应力提高至0.75fptk,计算时仍按0.70fptk取值。

预应力钢绞线规范

预应力钢绞线规范 预应力钢绞线规范 预应力砼连续梁结构整体性好、大跨度,减少桥面伸缩缝个数,在高速公路和城市快速路工程中得到广泛应用。本文就几座预应力砼连续梁桥谈一下长束预应力质量控制的几个关键因素。 一、预应力钢绞线安装 预应力钢束的孔道位置、钢绞线是否发生缠绞现象是质量控制的关键。孔道位置不准确,改变了结构受力状态,如果曲线孔道标高变化段不圆顺还会增大预应力孔道摩阻损失,因此孔道位置准确与否直接关系到施工的预应力度能否与设计的预应力度相吻合,对结构安全和工程使用阶段是否会产生裂缝都有很深的影响。多根钢绞线如果缠绞在一起,张拉时各根钢绞线受力不均匀,增大了钢绞线之间的摩阻,造成预应力损失加大。 实际施工中很多施工单位并不重视这些细部工作,固定钢束的井字架位置不准确或不按照规范和设计规定的间距布设,必然造成钢束位置与设计不符、有的还会在曲线变化段产生急弯(半径太小)或孔道局部偏差过大。目前仍有小部分队伍使用人工进行穿束,尤其对多根钢绞线的长束重量很大,人工穿束费时费力,容易造成工人转动钢束穿进,使钢绞线互相缠绞在一起。沈阳市某快速干道(高架桥)工程四标段共有九联连续梁,施工时固定钢束用的井字架间距为1米,梁高1.6米,因此竖弯变化量不大,间距满足要求,但是施工时由于工人

工作不认真使井子架坐标不准确,并且采用人工穿束,束长在100米到120米不等。张拉时发现大部分钢束的伸长值与理论伸长值不符(有的比理论值少11%),张拉过程中经常听到内部钢束缠绞在一起后被拉开的声音,当时立即对设备进行检定,在设备没有问题的情况下设计单位、监理单位和施工单位开始对问题进行分析,其中钢绞线计算伸长值时采用实测弹性模量,μ、κ取值按规范推荐值。设计单位对结构进行重新验算,最后确定在保证张拉力的情况下,伸长值误差保证在12%以内,无疑降低了结构安全系数。 二、预应力钢绞线张拉 1、张拉控制应力与伸长值 张拉控制应力能否达到设计规定值直接影响预应力效果,因此张拉控制应力是张拉中质量控制的重点,张拉控制应力必须达到设计规定值,但是不能超过设计规定的最大张拉控制应力。预应力值过大,超过设计值过多,虽然结构抗裂性较好,但因抗裂度过高,预应力筋在承受使用荷载时经常处于过高的应力状态,与结构出现裂缝时的荷载接近,往往在破坏前没有明显的预兆,将严重危害结构的使用安全。因此为了准确把握预应力的施加情况,以应力控制方法张拉时必须以伸长值进行校核。因此能够提供准确的理论伸长值显得尤为重要,必须对《公路桥涵施工技术规范》(JTJ041-2000)中理论伸长值的计算有个正确理解:①预应力孔道坐标符合设计要求、曲线孔道圆顺的情况下,孔道局部偏差和预应力筋与孔道壁间的摩擦系数对理论伸长值大小的影响不大,均可按照规范取中值。②钢绞线的弹性模量Ep取

预应力钢绞线伸长量的计算

后张法预应力钢绞线伸长量的计算 预应力钢绞线施工时,采用张拉应力和伸长值双控,实际伸长值与理论伸长值误差不得超过6%,后张预应力技术一般用于预制大跨径简支连续梁、简支板结构,各种现浇预应力结构或块体拼装结构。预应力施工是一项技术性很强的工作,预应力筋张拉是预应力砼结构的关键工序,施工质量关系到桥梁的安全和人身安全,因此必须慎重对待。一般现行常接触到的预应力钢材主要:有预应力混凝土用钢绞线、PC光面钢丝、刻痕钢丝、冷拔低碳钢丝、精轧螺纹钢等材料。对于后张法预应力施工时孔道成型方法主要有:金属螺旋管、胶管抽芯、钢管抽芯、充气充水胶管抽芯等方法。本人接触多的是混凝土预应力钢绞线(PCstrand、1×7 =1860Mpa,270级高强底松弛),成孔方法多采用金属公称直径15,24mm,f pk 螺旋管成孔,本文就以此两项先决条件进行论述。 1 施工准备: 1.1 熟悉图纸:拿到施工图纸应先查阅施工说明中关于预应力钢绞线的规格,一 =1860Mpa,般预应力钢束采用ASTMA416-270级低松弛钢绞线,其标准强度为f pk Mpa。 1×7公称直径15,24mm,锚下控制力为Δk=0.75 f pk 1.2 根据施工方法确定计算参数: 预应力管道成孔方法采用金属螺旋管成孔,查下表确定K、μ取 值:表1 注:摘自《公路桥涵施工技术规范》(JTJ 041-2000)附录G-8 根据钢绞线试验结果取得钢绞线实际弹性模量Ep(一般为1.9~2.04×105Mpa)1.3 材料检测:

金属螺旋管根据《公路桥涵施工技术规范》(JTJ 041-2000)附录G-7之要求检测; 锚具根据《公路桥梁预应力钢绞线用YM锚具、连接器规格系列》(JT/T 329.1-1997)及《公路桥梁预应力钢绞线用锚具、连接器试验方法及检验规则》(JT/T 329.2-1997)之要求检测; 钢绞线根据《预应力混凝土用钢绞线》GB/T5224-2003之要求检测 2 理论伸长量计算: 后张法预应力钢绞线在张拉过程中,主要受到以下两方面的因素影响:一是管道弯曲影响引起的摩擦力,二是管道偏差影响引起的摩擦力;两项因素导致钢绞线张拉时,锚下控制应力沿着管壁向跨中逐渐减小,因而每一段的钢绞线的伸长值也是不相同的。 2.1 计算公式: 《公路桥梁施工技术规范》(JTJ 041-2000)中关于预应筋伸长值ΔL的计算按照以下公式(1): ΔL= Pp×L Ap×Ep ΔL—各分段预应力筋的理论伸长值(mm); Pp—各分段预应力筋的平均张拉力(N); L—预应力筋的分段长度(mm); Ap—预应力筋的截面面积(mm2); Ep—预应力筋的弹性模量(Mpa); 《公路桥梁施工技术规范》(JTJ 041-2000)附录G-8中规定了Pp的计算公式(2): Pp=P×(1-e-(kx+μθ)) kx+μθ P—预应力筋张拉端的张拉力,将钢绞线分段计算后,为每分段的起点张拉力,即为前段的终点张拉力(N); θ—从张拉端至计算截面曲线孔道部分切线的夹角之和,分段后为每分段中每段曲线段的切线夹角(rad);

1.14 无粘结后张法预应力砼施工工艺

1.14 无粘结预应力施工工艺标准 1 适用范围 本工艺标准适用于工业与民用建筑现场后张法无粘结预应力混凝土结构工程施工。 2 施工准备 2.1 材料 2.1.1 制作无粘结筋采用的钢丝和钢绞线应符合国家标准《预应力混凝土用钢丝》 (GB/T5223—95)、《预应力混凝土用钢绞线》(GB/T5224—95)的规定。并通过专用设备涂包防腐润滑脂和塑料套管而构成的一种新型预应力筋。 2.1.2 无粘结筋用钢丝、钢绞线、不允许有死弯,有死弯必须切断。钢丝应为通长,严禁有接头。 2.1.3 无粘结筋钢材、涂料层、包裹层质量要求及检验方法见下表 2.1.4 无粘结筋的锚固体系宜采用夹片式锚具和镦头式锚具。 2.1.4.1 张拉端采用夹片式锚具时,可采用下列做法: (1)当锚具凸出混凝土表面时,其构造由锚环、夹片、承压板、螺旋筋组成见图1a; (2)当锚具凹进混凝土表面时,其构造由锚环、夹片、承压板、塑料塞、螺旋筋、钩螺丝和螺母组成,见图1b。 2.1.4.2夹片式锚具系统的固定端必须埋设在板或梁的混凝土中,可采用下列做法: (1)挤压锚具的构造由挤压锚具、承压板和螺旋筋组成见图2a。挤压锚具应将套筒等组装在钢绞线端部经专用设备挤压而成; (2)焊板夹片锚具的构造由夹片锚具、锚板与螺旋筋组成见图2b。该锚具应预先用开口式双缸千斤顶以预应力筋张拉力的0.75倍预紧力将夹片锚具组装在预应力筋的端部;

(3)压花锚具的构造由压花端及螺旋筋组成见图2c 。 2.1.4.3镦头锚具系统的张拉端和固定端可采用下列做法: (1)张拉端的构造由锚环、螺母、承压板、塑料保护套和螺旋筋组成见图3a 。 (2)固定端的构造由镦头锚板和螺旋筋组成见图3b 。 2 (a)夹片锚具凸出混凝土表面 3 4 (b)夹片锚具凹进混凝土表面 图1 夹片锚具系统张拉端构造 1—夹片;2—锚环;3—承压板;4—螺旋筋; 5—无粘结预应力筋;6—塑料塞;7—钩螺丝和螺母 (b )焊板夹片锚具 (a )挤压锚具 图2 夹片式锚具系统构造 1 - 夹片; 2 - 锚环; 3 - 承压板; 4 - 螺旋筋; 5 - 无粘结预应力筋; 6 - 压花端 (c )压花锚具

钢绞线张拉伸长量的计算

钢绞线张拉伸长量的计算 桥梁结构常用钢绞线的规格一般是ASTM A416 、270 级低松弛钢绞线,公称直径为 15.24mm ,标准强度为1860MPa ,弹性模量为195000MPa ,桥梁施工中张拉控制应力(本文中用Ycon 表示)一般为标准强度的75%即1395MPa 本文重点介绍曲线布置的钢绞线伸长量计算,并给出CASIO fx-4800P 计算器的计算程序,另外简要介绍千斤顶标定的一些注意问题。参照技术规范为《公路桥涵施工技术规范》( JTJ 041-2000 )(以下简称《桥规》)。一、预应力系统安装: 1、波纹管、锚垫板和连接器安装: (1) 、波纹管安装: 预应力用波纹管采用塑料波纹管,波纹管严格按设计图纸位置和要求安装,并要以定位筋将波纹管固定牢固,在直线段约为0.3 米一道“U”字形架立筋固定,曲线段加密,以免在混凝土浇筑过程中,波纹管产生移位,影响钢束对箱梁混凝土的压力,如果管道和钢筋发生冲突,应以管道位置不变为主。 (2) 、锚垫板安装:在固定端和张拉端分别安装对应型号和规格的锚垫板和螺旋筋,并将锚垫板喇叭口底端和波纹管连接牢固,锚垫板要牢固地安装在模板上。要使垫板与孔道严格对中,并与孔道端部垂直,不得错位。锚下螺旋筋及加强钢筋要严格按图纸设置,喇叭口与波纹管道要连接平顺,密封。对锚垫板上地的压浆孔要妥善封堵,防止浇注混凝土时漏浆堵孔。安装锚垫板时,对于两端张拉的锚具,需注意压浆端进浆孔向下,出

气孔向上,对于一端张拉的P锚、H 锚应把张拉端作为进浆孔,且向下,以保证压浆的密实。 (3) 、连接器安装: 从第二孔箱梁开始,在前一段已张拉完的群锚连接体上安装连接器,并进行钢绞线接长。 2、钢绞线安装: a. 钢绞线下料:钢绞线必须在平整、无水、清洁的场地下料,钢绞线下料长度要通过计算确定,计算应考虑孔道曲线长,锚夹具长度,千斤顶长度及外露工作长度等因素,预应力筋地切割宜用砂轮锯切割,下料过程中钢绞线切口端先用铁丝扎紧,采用砂轮切割机切割。 b. 编束:编束时必须使钢绞线相互平行,不得交叉,从中间向两端每隔1m 用铁丝绑紧,并给钢绞束编号。束成后,要统一编号、挂牌,按类堆放整齐,以备使用。 c. 穿束穿束前应检查管道是否畅通,如果出现堵塞孔道现象,必须采取措施疏通。钢绞线端头必须做成锥型并包裹,可利用人工或卷扬机进行牵引,并在浇砼之前穿束(跨大堤悬浇箱梁在浇筑后穿束)。 穿束时在管道内穿入一根引索,利用引索将钢丝引出,将钢丝另一端与钢束拖头连在一起,用卷扬机将钢束拉出。 3、横向预应力安装横向预应力钢绞线及波纹管在纵向预应力管道安装完毕后安装。采用人工穿束,把钢绞线一头用扎花锚锚固,另一头慢慢穿入扁型波纹管道内。 固定端挤压头:挤压器型号GYJA 型,配用油泵ZB4-500 型。二、预应力体系张拉:1、张拉前的准备工作:预应力筋要按设计及规范要求进行,对所用钢铰线应进行检查,保

无粘结预应力技术

无粘结预应力技术 1 工程概况 本工程二层结构采用预应力混凝土桁架结构营造大空间的使用要求, 桁架梁跨度 28.0m ,上、 下弦杆梁截面为 800*1400 ,腹杆截面为 500*1000 。腹杆采用无粘结预应力技术,预应力筋 符合《预应力混凝土用钢绞线》 GB/T5224-2003 和《预应力混凝土用钢丝》 GB5223-200 2 的 相关要求。 无粘结预应力筋用的钢绞线和钢丝不应有死弯, 当有死弯时必须切断。 无粘结预应力筋中的 每根钢丝应是通长的,严禁有接头。 2、无粘结预应力筋 本规程采用的无粘结预应力筋系指带有专用防腐油脂涂料层和外包层的无粘结预应力筋。 质 量要求应符合《无粘结预应力钢绞线》 JG161-2004 及《无粘结预应力筋专用防腐润滑脂》 JG3007-1993 的规定。 无粘结预应力筋外包层材料, 应采用聚乙烯或聚丙烯, 严禁使用聚氯乙烯。 其性能应符合下 列要求: 一、 在温度-20?+70C 范围内,低温不脆化,高温化学稳定性好; 二、 必须具有足够的韧性、抗破损性; 三、 对周围材料如混凝土钢材无侵蚀作用; 四、 防水性好。 无粘结预应力筋涂料层应采用专用防腐油脂,其性能应符合下列要求: 一、 在-20?+70C 温度范围内不流淌、不裂缝变脆,并有一定韧性; 二、 使用期内化学稳定性好; 三、 对周围材料如混凝土钢材和外包材料无侵蚀作用; 四、 不透水、不吸湿、防水性好; 五、 防腐性能好; 六、 润滑性能好,摩阻力小。 3、锚具系统 第 2.3.1 条 无粘结预应力筋 -锚具组装件的锚固性能应符合下列要求: 一、无粘结预应力筋必须采用 I 类锚具,锚具的静载锚固性能,应同时符合下列要求: 式中 预应力筋锚具组装件静载试验测得的锚具效率系数; 预应力筋锚具组装件达到实测极限拉力时的总应变。 锚具的效率系数可按下式计算: 式中 预应力筋锚具组装件的实测极限拉力; 预应力筋的效率系数,取; 预应力筋锚具组装件中各根预应力钢材计算极限拉力之和; 由预应力钢材中抽取的试件的实测抗拉强度平均值; 由预应力钢材中抽取的试件的截面面积平均值; 二、无粘结预应力筋 -锚具组装件的疲劳锚固性能,应通过试验应力上限取预应力钢材抗拉 强度标准值的 65%、应力幅度取 80N/mm2 、循环次数为 200 万次的疲劳性能试验。 注:当用于地震区时无粘结预应力筋锚具组装件应通过上限取预应力钢材抗拉强度标准值的 80%、下限取预应力钢材抗拉强度标准值的 40%、循环次数为 50 次的周期荷载试验。 无粘结预应力筋锚具的选用应根据无粘结预应力筋的品种、 张拉吨位以及工程使用情况选定。 对常用的直径为2 施工准备 1、材料及锚具系统 混凝土及钢筋 无粘结预应力混凝 土结构的混凝土强度等级, 低于 C40。 用于制作无 粘结预应力筋的钢绞线或碳素钢丝, 绞线》 GB5224-2003 和《预应力混凝土用钢丝》 钢丝的主 要力学性能应按下表采用。 常用钢绞线碳素钢丝主要 力学性能 对于板不应低于C30,对于梁及其它构件不宜 其性能应符合国家标准 《预应力混凝土用钢 GB5223-2002 的规定。常用的钢绞线和碳素

相关文档
最新文档