论影响催化剂活性的因素

论影响催化剂活性的因素
论影响催化剂活性的因素

龙源期刊网 https://www.360docs.net/doc/aa2010498.html,

论影响催化剂活性的因素

作者:江迎宝

来源:《中国化工贸易·下旬刊》2018年第11期

摘要:虽然说我国化学工业起步比较晚,但是现阶段下我国化学工业呈现蓬勃发展的状态,催化剂在化学工业生产活动当中占据基础地位,化学产品在生产过程当中都离不开催化剂,根据调查资料显示催化剂在化学生产活动中的使用率高达80%,本文所探讨的内容就是现代化化学工业发展当中对催化剂活性影响的因素进行探讨、分析。

关键词:催化剂的现状;主要类型;影响因素

随着我国现代化化学工业体系的不断完善,催化剂在化学用品的生产活动当中的地位越来越重要,它可以提高被加工物体的化学反应速度,从而提高产品的生产效率,提高厂家的利润。目前影响催化剂活性的主要有两个方面:第一个是铜的含量,如果铜含量在60wt%之间波动,那么这时催化剂性能力比较高;第二是在焙烧温度方面,催化剂的活性将会随着焙烧温度的升高而升高,催化剂活性最好时是在温度高达500摄氏度的时候。因此,为了促进我国化学工业的不断发展而前进,就必须紧紧抓住催化剂活性探究这一中心内容,不断提高催化剂的反应速度,提高整个行业的生产率。

1 目前催化剂活性探究在目前的发展状况

1.1 针对贵金属一类的催化剂研究

目前我國贵金属行业的发展比较迅速,贵金属主要包括铂、铑、银等,而贵金属催化剂几乎所有的金属催化作用,与此同时,金属冶炼过程当中使用催化剂可以耐高温,耐腐蚀延长贵金属的寿命,提高贵金属抗氧化能力。虽然说催化剂在贵金属应用当中有着优良的性能,但是它的使用成本比较高,因此在整个贵金属生产活动当中的使用率并不高。

1.2 针对无铜贵金属一类的催化剂研究

无铜贵金属贵金属的催化剂应用与贵金属不同,就比如针对镍的催化剂,由于催化剂的反应效率受到温度的制约,而镍系催化剂的反应温度不高,而且很容易产生一些其他额外物质,因此,在反应过程当中需要提高催化剂的温度,温度一定要高于300摄氏度,这样镍化学产品这质量也比较高。随着很多贵金属化学系的开发,在镍系催化剂的使用率会越来越低,但是如果在其他类型的催化剂当中投入一定量的镍,就可以提高催化剂的反应速度,提高被催化者产品的纯度。

1.3 针对铜金属一类的催化剂研究

探究影响酶活性的因素实验报告 ()

探究影响酶活性的因素 一、探究温度对酶活性的影响 (一)实验原理(注:市售a-淀粉酶的最适温度约600C): 1.淀粉遇碘后,形成紫蓝色的复合物。 2.淀粉酶可以使淀粉逐步水解成麦芽糖和葡萄糖,麦芽糖和葡萄糖遇碘后不显色。 (二)方法步骤: 1、取3支试管,编上号(A、B、C),然后分别注入2mL可溶性淀粉溶液。 2、另取3支试管,编上号(a、b、c),然后分别注入1mL新鲜淀粉酶溶液。 3、将装有淀粉溶液和酶溶液的试管分成3组,A和a试管放入热水(约600C)、B和b放 入沸水,C和c放入冰块中,维持各自的温度5min。 思考题1、不能只用不同温度处理淀粉溶液或酶溶液,这是为什么? 4、分别将淀粉酶溶液注入相同温度下的淀粉溶液中,摇匀后,维持各自的温度5min。 5、在3支试管中各滴入1-2滴碘液,摇匀后观察这3支试管中溶液颜色变化并记录。 思考题2、在试管A、B、C中分别能观察到什么现象? 思考题3、通过上述实验,你能得出什么结论? 思考题4、在上述实验中,自变量是什么?无关变量是什么? 思考题5、探究温度对酶活性的影响实验中是否可以用斐林试剂来检验实验结果? 为什么? 二、探究PH值对酶活性的影响 (一)实验原理:思考题6、请依据下面所列实验操作步骤,写出该实验的实验原理。

(二)操作步骤:用表格显示实验步骤:(注意操作顺序不能错) 思考题7、请在上表中填入你所观察到的实验现象。 思考题8、通过上述实验,你能得出什么结论? 思考题9、在上述实验中,自变量是什么?无关变量是什么? 思考题10、在设计“影响酶活性的条件”实验中最关键的一步是什么? 附加实验:思考题11、能否用淀粉酶探究PH对酶活性的影响? 课堂练习: 1.(多选)在证明酶的催化作用受温度影响的实验时,有学生取两支试管分别将淀粉溶液与唾

影响纳米材料光催化性能的因素教学文案

影响纳米材料光催化性能的因素

二、影响纳米材料光催化活性的因素。 1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值λg与Eg有关,其关系式为:λg=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比H+/H2O(-0.41eV)的氧化还原势负,才能产生H2,价带顶必须比 O2/H2O(+0.82eV)的氧化还原势正,才能产生O2,。因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半导体禁带宽度Eg应至少大于1.8eV。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH-基团或水分子,可能生成活性物种·OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性。TiO2是目前认为最好的光催化剂之一。TiO2主要有两种晶型—锐钛矿和金红石,两种晶型结构均可由相互连接的TiO6八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙(3.2eV)略大于金红石(3.1eV),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。当有微量杂质元素掺入晶体时,也可能形成杂质置换缺陷。这些缺陷的存在对光催化活性可能起着非常重要的影响。有的缺陷可能会成为电子或空

影响纳米材料光催化性能的因素

二、影响纳米材料光催化活性的因素。 1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值λg与Eg有关,其关系式为:λg=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比H+/H 2 O的氧化 还原势负,才能产生H 2,价带顶必须比O 2 /H 2 O(+的氧化还原势正,才能产生O 2 ,。 因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半 导体禁带宽度Eg应至少大于。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH-基团或水分子,可能生成活性物种·OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性。TiO 2 是目前认为最 好的光催化剂之一。TiO 2 主要有两种晶型—锐钛矿和金红石,两种晶型结构均可 由相互连接的TiO 6 八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙()略大于金红石(),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。当有微量杂质元素掺入晶体时,也可能形成杂质置换缺陷。这些缺陷的存在对光催化活性可能起着非常重要的影响。有的缺陷可能会成为电子或空穴的捕获中心,抑制了两者的复合,以至于光催化活性有所提高,但也有的缺陷可能成为

催化剂试卷答案

一选择题 1.催化活性与吸附的关系是( C )。 A吸附越强活性越强B吸附越弱活性越强 C吸附适中时活性最强D吸附很弱或很强活性最强2.氧化反应常用具有( B )型半导体的氧化物为催化剂。An型半导体Bp型半导体 C本征半导体Dp和n半导体都可以 3.对催化剂描述正确的是( A ) A催化剂能同时加快正逆反应的速度 B催化剂改变化学反应的平衡常数 C催化剂不能改变化学反应的途径 D催化剂能降低控诉步骤的活化能 4.催化剂的活化方式不包括( D ) A氧化活化B还原活化C硫化活化D煅烧活化5.对于金属氧化物,下列条件中( C )不能形成n型半导体。 A掺杂低价金属离子B氧缺位 C引入电负性大的原子D高价离子同晶取代 6.催化剂的转化率越大,其选择性( D ) A 越好 B 越差 C 不变 D 无一定的规律 7.铂碳催化剂中( B ) A铂和碳都是活性组分B铂是活性组分碳是载

体 C铂是活性组分碳是助催化剂 D 碳是活性组分铂是助催化剂 8.在O2,CO,H2,N2中,金属最易吸附( A ) A O2 B CO C H2 D N2 9.下列影响催化剂活性衰退的原因中,可逆的是( D ) A 活性组分的烧结 B 活性组分剥落 C 催化剂的化学组成发生变化 D 吸附了其他物质 10.SO2被氧化成SO3的机理为: NO+O2→NO2SO2+NO2→SO3+NO 其中NO是( C ) A总反应的反应物B中间产物 C催化剂D最终产物 11.以下符合兰格缪尔吸附理论基本假定的是( A ) A.固体表面是均匀的,各处的吸附能力相同 B.吸附分子层可以是单分子层或者多分子层 C.被吸附分子间有作用,相互影响 D.吸附热和吸附的位置和覆盖度有关 二填空题 1.催化剂的一般组成包括主催化剂,助催化剂,共催化剂和载体。 2.Ea,Ed,Qc之间的关系为Ed=Ea+Qc 。

催化剂活性的测定实验思考题

催化剂活性的测定实验思考题 1.为什么氮气的流速要始终控制不变? 答:(1)当氮气的流速为0.1L/min左右时,催化剂的活性较高;(2)V(CO+H2)是通过测有无催化剂时气体的流量差来测定的,因此氮气的流速应始终保持不变。 2.冰盐冷却器的作用是什么?是否盐加得越多越好? 答:(1)冰盐冷却器的作用是将未反应的甲醇蒸气冷凝从而将其截留在捕集器内,使之不影响V(CO+H2)的测量。(2)盐并非加得越多越好。如果盐加的过多,会使冷却器内温度过低,从而使经过的N2、CO及H2温度太低,从而低于湿式流量计上温度计测得的温度,在用理想气体状态方程是会存在一定误差。 3.试评论本实验评价催化剂的方法有什么优缺点。 答:优点: (1)原理巧妙,运用理想气体状态方程及道尔顿分压定律,仅通过测量有无催化剂气体流量的变化便可间接求得甲醇的进入量及反应量;(2)操作简单,只涉及一些基础的操作,如钢瓶、毛细管流量计及湿式流量计的使用等;(3)可以比较不同温度下催化剂的活性;ZnO 可重复利用。 缺点: (1)实验设备较复杂;(2)反应温度较高,存在一定危险性;(3)350℃与420℃催化剂活性差别不大,比较效果不明显;(3)将体系压强近似为大气压,存在一定误差。 4. 毛细管流速计与湿式流量计两者有何异同。 答:相同点:都能通过测量以表征待测气体的流速。 不同点:(1)毛细管流速计与待测气体“并联”,它根据气体在U型管进出口的压力不同而设计,通过U型管两端液面差来显示气体流速大小;湿式流量计待测气体“串联,它是通过直接测量一定时间内通过流量计的气体体积来表征气体流速大小,通过表盘上指针表征转速大小;(2)毛细管流速计只能表示气体瞬时流速大小,而湿式流量计可以准确测量气体在一段时间内的总流量。

冲刺2020高考生物实验突破专题:影响酶活性的条件(附答案及解析)

影响酶活性的条件 1.实验原理 (1)探究温度对酶活性的影响 ①反应原理 ②鉴定原理:温度影响酶的活性,从而影响淀粉的水解,滴加碘液,根据是否出现蓝色及蓝色的深浅来判断酶的活性。 (2)探究pH 对酶活性的影响 ①反应原理(用反应式表示):2H 2O 2――――→过氧化氢酶 2H 2O +O 2。 ②鉴定原理:pH 影响酶的活性,从而影响氧气的生成速率,可用带火星的卫生香燃烧的情况来检验O 2的生成速率。 2.实验步骤和结果 (1)探究温度对酶活性的影响

(2)探究pH对酶活性的影响 考点一:“梯度法”探究酶的最适pH (1)设计思路 (2)设计方案 例一、为了探究某种淀粉酶的最适温度,某同学进行了如图所示的实验操作。实验步骤如下:

步骤①:取10支试管,分为五组。每组两支试管中分别加入1 mL某种淀粉酶溶液和2 mL 质量分数为5%的淀粉溶液。 步骤②:将每组淀粉酶溶液和淀粉溶液混合并摇匀。 步骤③:将装有混合溶液的五支试管(编号1、2、3、4、5)分别置于15 ℃、25 ℃、35 ℃、45 ℃、55 ℃水浴中。反应过程中每隔1分钟从各支试管中取出一滴反应液,滴在比色板上,加1滴碘液显色。 回答下列问题: (1)实验原理:淀粉在淀粉酶的催化作用下分解成还原糖;淀粉酶的活性受温度影响;用碘液可检测淀粉,因为淀粉遇碘液变蓝,根据蓝色深浅来推断淀粉酶的活性。 (2)该实验的设计存在一个明显的错误,即步骤②前应__________________________ ________________________________________________________________________。(3)在本实验中,各组溶液的pH要保证______________,该实验能否选用斐林试剂检测实验结果?__________,理由是________________________________________________ ________________________________________________________________________。(4)纠正实验步骤后,进行操作。一段时间后,当第3组试管中的反应物与碘液混合开始呈棕黄色时,各组实验现象如下表所示(“+”表示蓝色程度): 分析上述实验结果,可以得出该淀粉酶的最适温度在____________之间。某同学在进行本实验的过程中,发现反应时间过长。为缩短反应时间,请你提出合理的改进措施:________________________________________________________________________。 考点二:“梯度法”探究酶的最适温度 (1)设计思路 (2)设计方案 例一、下面的表格分别是某兴趣小组探究温度对酶活性影响的实验步骤和探究过氧化氢酶作用的最适pH的实验结果。据此回答下列问题:

加氢催化剂的预硫化及其影响因素

加氢催化剂的预硫化及其影响因素 张笑剑 摘要:加氢催化剂的预硫化是提高催化剂活性,优化加氢催化剂操作,获得理想经济效益的关键之一。为获得理想的硫化效果,必须严格控制各阶段的反应条件。本文介绍了加氢催化剂预硫化的反应原理,探讨了在预硫化过程中影响催化剂预硫化效果的因素。 关键词:加氢催化剂硫化技术操作条件影响因素 加氢催化剂硫化是提高催化剂活性,优化装置操作,延长装置运转周期,提 高经济效益的关键技术之一。加氢催化剂主要由金属组分(一般为W,Mo,Co, , Ni 等)和载体(氧化铝 ,二氧化硅,沸石,活性炭,黏土,渗铝水泥和硅藻土等)两部分组成,金属组分以氧化态的形式负载在多孔的载体上,促进加氢脱氮,加氢脱硫,加氢脱芳烃,加氢脱金属,加氢脱氧和加氢裂化等反应。生产经验和理论研究表明:氧化态催化剂的加氢活性,稳定性和选择性均低于硫化态催化剂。只有将催化剂进行硫化预处理,使金属组分从氧化态转变为硫化态,催化剂才具有较高的活性,稳定性和选择性,抗毒性强,寿命长,才能够最大限度地发挥加氢催化剂的作用。 1硫化原理 1.1 H 2 S的制备 H 2 S主要来自硫化剂的分解:硫化剂的分解均为放热反应,且理论分解温度与 实际操作条件下的分解温度有所差别,一般有机硫化物在催化剂和H 2 条件下分解温度通常比常温下分解温度低10~25o C。 CS 2+4H 2 =CH 4 +2H 2 S CH 3SSCH 3 +3H 2 =2CH 4 +2H 2 S 1.2金属氧化物的硫化 金属氧化物的硫化是放热反应。理想的硫化反应应为 MoO 3+2H 2 S+H 2 =MS 2 +3H 2 O 9CoO+8H 2S+H 2 =Co 9 S 8 +9H 2 O 3NiO+2H 2S+H 2 =NiS+3HO WO 3+2H 2 S+H 2 =WS 2 +3H 2 O

催化剂评定指标

催化裂化催化剂的主要理化指标及其意义 一、化学指标 催化剂的化学组成表示催化剂中的主要成分及杂质的含量,通常包括: Al2O3、Na2O、Fe2O3、、灼烧减量五个主要指标,有时还包括Re2O3。 1、Al2O3含量:催化剂中Al2O3含量表示催化剂中Al2O3的总含量,是催化剂的主要化学成分。 2、Na2O含量:Na2O含量表示催化剂中含有的Na2O杂质含量。在催化裂化过程中,特别是在掺炼钒含量较高的渣油情况下, 3、Fe2O3含量:Fe2O3含量表示催化剂中含有的Fe2O3杂质含量。Fe2O3在高温下会分解并沉积在催化剂上,积累到一定程度就会引起催化剂中毒,其结果一是使催化剂活性降低。 4、SO42-含量:SO42-含量表示催化剂中含有的SO42-杂质含量。SO42-可与具有捕钒作用的金属氧化物(如氧化铝等)反应生成稳定的硫酸盐,从而使其失去捕钒能力。所以,在掺炼渣油的情况下,SO42-的危害性较大。 5、灼烧减量:灼烧减量是指催化剂中所含水份、铵盐及炭粒等挥发组份的含量。生产中控制其减量≤13%。 6、Re2O3含量:Re2O3含量是表示催化剂性能的指标之一。稀土通常来自催化剂中的分子筛,有时在催化剂制造工艺中也引入稀土离子达到改善性能的目的。通常Re2O3含量越高,催化剂活性越高,但焦炭产率也偏高。 对于平衡催化剂,有时还需知道其中的金属含量,如Ni、V、Na等,以便了解催化剂的污染程度。 二、物理性质 物理性质表示催化剂的外形、结构、密度、粒度等性能。通常包括:比表面积、孔体积、表观松密度、磨损指数、筛分组成五个主要项目。下面分别加以简述: 1、比表面积 催化剂的比表面积是内表面积和外表面积的总和。内表面积是指催化剂微孔内部的表面积,外表面积是指催化剂微孔外部的表面积,通常内表面积远远大于外表面积。单位重量的催化剂具有的表面积叫比表面积。

第二节 二氧化钛光催化影响因素

第二节TiO2光催化影响因素 目前主要针对TiO 2 进行增加表面缺陷结构、减小颗粒大小增大比表面、贵金 属表面沉积、过渡金属离子掺杂、半导体复合、表面光敏化、以及改变TiO 2 形貌和晶型等方法来提高其量子效率以及扩展其光谱响应范围。研制具有高量子产率,能被太阳光谱中的可见光激发的高效半导体光催化剂,探索适合的光催化剂负载技术,是当前解决光催化技术中难题的重点和热点。 表面缺陷结构 通过俘获载流子可以明显压制光生电子与空穴的再结合。在制备胶体和多晶光催化是和制备化学催化剂一样,一般很难制得理想的半导体晶格。在制备过程中,无论是半导体表面还是体内都会出现一些不规则结构,这种不规结构和表面电子态密切相关,可是后者在能量上不同于半导体主体能带上的。这样的电子态就会起到俘获载流子的阱的作用,从而有助于压制电子和空穴的再结合[7]。 颗粒大小与比表面积 研究表明,溶液中催化剂粒子颗粒越小,单位质量的粒子数就越多,体系的比表面积大,越有利于光催化反应在表面进行,因而反应速率和效率也越高。催化剂粒径的尺寸和比表面积的一一对应直接影响着二氧化钛光催化活性的高低。粒径越小,单位质量的粒子数目越多,比表面积也就越大。比表面积的大小是决定反应物的吸附量和活性点多少的重要因素。比表面积越大,吸附反应物的能力就越强,单位面积上的活性点也就越多,发生反应的几率也随之增大,从而提高其光催化活性。当粒子大小与第一激子的德布罗意半径大小相当,即在1-10 nm 时,量子尺寸效应就会变得明显,成为量子化粒子,导带和价带变成分立的能级,能隙变宽,生成光生电子和空穴能量更高,具有更高的氧化、还原能力,而粒径减小,可以减小电子和空穴的复合几率,提到光产率。再者,粒径尺寸的量子化使得光生电子和空穴获得更大的迁移速率,并伴随着比表面积的加大,也有利于提高光催化反应效率。 贵金属沉积的影响 电中性的并相互分开的贵金属的Fermi能级小于TiO 2 的费米(Fermi)能级, 即贵金属内部与TiO 2相应的能级上,电子密度小于TiO 2 导带的电子密度,因此 当两种材料连接在一起时,载流子重新分布,电子就会不断地从TiO 2 向贵金属

催化剂的指标及其意义

催化剂的各项指标及其意义 一、化学指标 催化剂的化学组成表示催化剂中的主要成分及杂质的含量,通常包括: Al2O3、Na2O、Fe2O3、、灼烧减量五个主要指标,有时还包括Re2O3。 1、Al2O3含量:催化剂中Al2O3含量表示催化剂中Al2O3的总含量,是催化剂的主要化学成分。 2、Na2O含量:Na2O含量表示催化剂中含有的Na2O杂质含量。在催化裂化过程中,特别是在掺炼钒含量较高的渣油情况下, 3、Fe2O3含量:Fe2O3含量表示催化剂中含有的Fe2O3杂质含量。Fe2O3在高温下会分解并沉积在催化剂上,积累到一定程度就会引起催化剂中毒,其结果一是使催化剂活性降低。 4、SO42-含量:SO42-含量表示催化剂中含有的SO42-杂质含量。SO42-可与具有捕钒作用的金属氧化物(如氧化铝等)反应生成稳定的硫酸盐,从而使其失去捕钒能力。所以,在掺炼渣油的情况下,SO42-的危害性较大。 5、灼烧减量:灼烧减量是指催化剂中所含水份、铵盐及炭粒等挥发组份的含量。生产中控制其减量≤13%。 6、Re2O3含量:Re2O3含量是表示催化剂性能的指标之一。稀土通常来自催化剂中的分子筛,有时在催化剂制造工艺中也引入稀土离子达到改善性能的目的。通常Re2O3含量越高,催化剂活性越高,但焦炭产率也偏高。 对于平衡催化剂,有时还需知道其中的金属含量,如Ni、V、Na等,以便了解催化剂的污染程度。 二、物理性质

物理性质表示催化剂的外形、结构、密度、粒度等性能。通常包括:比表面积、孔体积、表观松密度、磨损指数、筛分组成五个主要项目。下面分别加以简述: 1、比表面积 催化剂的比表面积是内表面积和外表面积的总和。内表面积是指催化剂微孔内部的表面积,外表面积是指催化剂微孔外部的表面积,通常内表面积远远大于外表面积。单位重量的催化剂具有的表面积叫比表面积。 比表面积是衡量催化剂性能好坏的一个重要指标。不同的产品,因载体和制备工艺不同,比表面积与活性没有直接的对应关系。 测定比表面积采用的方法是氮吸附容量法。 2、孔体积 孔体积是描述催化剂孔结构的一个物理量。孔结构不仅影响催化剂的活性、选择性,而且还能影响催化剂的机械强度、寿命及耐热性能等。 孔体积是多孔性催化剂颗粒内微孔的体积总和,单位是毫升/克。孔体积的大小主要与催化剂中的载体密切相关。对同一类催化剂而言,在使用过程中孔体积会减小,而孔直径会变大。 孔体积测量采用的方法是水滴法。 3、磨损指数 一个优良的催化裂化催化剂,除了要具有活性高、选择性好等特点以外,还要具有一定的耐磨损机械强度。机械强度不好的催化剂,不但操作过程中跑损多、增大催化剂用量、污染环境,严重时会破坏催化剂在稀、密相的合理分布,甚至使生产装置无法运转。

影响酶活性的因素

影响酶活性的因素 a.温度: 温度(temperature)对酶促反应速度的影响很大,表现为双重作用:(1)与非酶的化学反应相同,当温度升高,活化分子数增多,酶促反应速度加快,对许多酶来说,温度系数(temperature coefficient)Q10多为1~2,也就是说每增高反应温度10℃,酶反应速度增加1~2倍。(2)由于酶是蛋白质,随着温度升高而使酶逐步变性,即通过酶活力的减少而降低酶的反应速度。以温度(T)为横坐标,酶促反应速度(V)为纵坐标作图,所得曲线为稍有倾斜的钟罩形。曲线顶峰处对应的温度,称为最适温度(optimum temperature)。最适温度是上述温度对酶反应的双重影响的结果,在低于最适温度时,前一种效应为主,在高于最适温度时,后一种效应为主,因而酶活性迅速丧失,反应速度很快下降。动物体内的酶最适温度一般在35~45℃,植物体内的酶最适温度为40~55℃。大部分酶在60℃以上即变性失活,少数酶能耐受较高的温度,如细菌淀粉酶在93℃下活力最高,又如牛胰核糖核酸酶加热到100℃仍不失活。 最适温度不是酶的特征性常数,它不是一个固定值,与酶作用时间的长短有关,酶可以在短时间内耐受较高的温度,然而当酶反应时间较长时,最适温度向温度降低的方向移动。因此,严格地讲,仅仅在酶反应时间已经规定了的情况下,才有最适温度。在实际应用中,将根据酶促反应作用时间的长短,选定不同的最适温度。如果反应时间比较短暂,反应温度可选定的略高一些,这样,反应可迅速完成;若反应进行的时间很长,反应温度就要略低一点,低温下,酶可长时间发挥作用。 各种酶在最适温度范围内,酶活性最强,酶促反应速度最大。在适宜的温度范围内,温度每升高10℃,酶促反应速度可以相应提高1~2倍。不同生物体内酶的最适温度不同。如,动物组织中各种酶的最适温度为37~40℃;微生物体内各种酶的最适温度为25~60℃,但也有例外,如黑曲糖化酶的最适温度为62~64℃;巨大芽孢杆菌、短乳酸杆菌、产气杆菌等体内的葡萄糖异构酶的最适温度为80℃;枯草杆菌的液化型淀粉酶的最适温度为85~94℃。可见,一些芽孢杆菌的酶的热稳定性较高。过高或过低的温度都会降低酶的催化效率,即降低酶促反应速度。 最适温度在60℃以下的酶,当温度达到60~80℃时,大部分酶被破坏,发生不可逆变性;当温度接近100℃时,酶的催化作用完全丧失。 一般而言,温度越高化学反应越快,但酶是蛋白质,若温度过高会发生变性而失去活性,因而酶促反应一般是随着温度升高反应加快,直至某一温度活性达到最大,超过这一最适温度,由于酶的变性,反应速度会迅速降低。 热对酶活性的影响对食品很重要,如,绿茶是通过把新鲜茶叶热蒸处理而得,经过热处理,使酚酶、脂氧化酶、抗坏血酸氧化酶等失活,以阻止儿茶酚的氧化来保持绿色。红茶的情况正相反,是利用这些酶进行发酵来制备的。

催化剂活性测试

一.实验操作 1.调节恒温槽40℃,杜瓦瓶中放入冰盐水 2.开启钢瓶,调节流量为100ml/min,开启温控仪使炉温升至350℃,每5min记录一次流量,连续记录30min。 3.换上放有催化剂的管,待炉温恒定后每5min记录一次流量,连续30min。 4.升温至420℃,重复操作3。 二.数据记录(单位:时间min,流量L,流速mL/min) 空管催化剂350℃催化剂420℃ 时刻流量流速时刻流量流速时刻流量流速31:30 3.20 0:00 1.50 0:00 4.30 36:30 3.74 108 5:00 2.16 132 5:00 0.05 146 41:30 4.28 108 10:00 2.82 132 10:00 0.87 164 46:30 4.72 108 15:00 3.53 142 15:00 1.61 146 51:30 0.32 120 20:00 4.22 138 20:00 2.37 152 56:30 0.84 105 25:00 4.92 140 25:00 3.12 150 61:30 1.36 106 30:00 0.62 140 30:00 3.87 150 35:00 1.31 138 35:00 4.63 152 三.数据处理 1.(1)空管 Slope=105mL/min V N2=3.15L (2)有催化剂,350℃

Slope=139.5mL/min V H2+CO =30*139.5-V N2=1.03L (3)有催化剂,420℃ Slope=150.5mL/min V H2+CO =30*150.5-V N2=1.365L 2.p(CH 3OH)=35091Pa p(大气压)=101.55Kpa=p(CH 3OH)+p (N 2) p (N 2)=66459Pa mol RT V N N 0880.0p n 2 22N == CH3OH N2OH 3CH N2n n p p = n (CH 3OH )=0.0465mol m (CH 3OH )=1.488g

影响纳米材料光催化性能的因素

1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值λg与Eg有关,其关系式为:λg=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比H+/H 2 O的氧化 还原势负,才能产生H 2,价带顶必须比O 2 /H 2 O(+的氧化还原势正,才能产生O 2 ,。 因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半 导体禁带宽度Eg应至少大于。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH-基团或水分子,可能生成活性物种·OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性。TiO 2 是目前认为最 好的光催化剂之一。TiO 2 主要有两种晶型—锐钛矿和金红石,两种晶型结构均可 由相互连接的TiO 6 八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙()略大于金红石(),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。当有微量杂质元素掺入晶体时,也可能形成杂质置换缺陷。这些缺陷的存在

教案精选:高一生物《影响酶活性的因素》教学设计

教案精选:高一生物《影响酶活性的因素》 教学设计 教案精选:高一生物《影响酶活性的因素》教学设计 一、教学目标: 1、学会控制自变量,观察和检测因变量的变化及设置对照组和实验组。 2、学会用准确的语言阐明实验探究的结果。 3、概述温度和pH影响酶的活性。 4、体验科学探究过程,领悟科学探究方法,体现团队合作精神。 二、教学重点: 1、学会控制自变量,观察和检测因变量的变化及设置对照组和实验组。 2、学会用准确的语言阐明实验探究的结果。 三、教学难点: 确定和控制对照实验中的自变量和无关变量,观察和检测因变量的变化。 四、教学方法:实验探究法 五、实验原理:

六、材料用具: 质量分数为3%的可溶性淀粉溶液,质量分数为2%的α—淀粉酶溶液,新鲜的质量分数为20%的肝脏研磨液,体积分数为3%的过氧化氢溶液,碘液,5%的盐酸溶液,5%的NaOH 溶液,蒸馏水,冰块。 试管若干,量筒,大、小烧杯,滴管,试管夹,酒精灯,三脚架,石棉网,温度计,pH试纸,火柴。 七、教学过程: 教学内容教师组织与指导学生活动设计意图 新课导入拿出加酶洗衣粉一袋,请位同学阅读它使用的注意事项。 引导学生推测:温度对于洗衣粉里酶发挥它的作用是有影响的。 提问:唾液淀粉酶随食物进入胃内时,就不再发挥作用,如果它没有马上被胃蛋白酶分解掉,可能是什么条件变化导致它的活性降低? 举例解释酶的活性就是酶的催化效率的高低。 温度和pH对酶的活性究竟有何影响呢今天我们就通过实验来探究一下。一同学阅读之后提出加酶洗衣粉的使用要控制好温度。 学生应答。 学生思考回答。

学生认真倾听并理解。从学生熟悉的生活情境入手,引导学生思考可能影响酶活性的条件,激发学生进行探究的兴趣。 探究过程 ①实验分组和实验材料的选择 ②实验方案的设计和讨论 ③实施实验 ④实验结果的分析和讨论 ⑤实验 结论 将学生分组,两小组探究温度对酶活性的影响,另两组探究pH对酶活性的影响。 引导学生对酶材料进行选择。向学生展示α—淀粉酶(工业用酶,适宜温度60℃),还有新鲜的肝脏研磨液,提问:肝脏研磨液里主要包含那种酶? 问:如果选用过氧化氢酶来探究温度对酶的影响,合适不合适? 教师补充:如果我们在实验中设置高温条件,温度不仅会对酶的活性产生影响,还会对化学反应本身的速率产生影响。这样的实验设计就不够严密。建议用α—淀粉酶来探究温度对酶活性的影响,用过氧化氢酶来探究PH对酶活性的影响。

催化剂对异氰酸酯反应活性的影响

催化剂对异氰酸酯反应活性的影响 催化剂能降低反应活性能,使反应速率加快,缩短反应时间,控制副反应,因此在聚氨酯的制备中常常使用催化剂。对催化剂的要求一般是:催化活性高、选择性强。常用的催化剂为有机叔胺类及有... 催化剂能降低反应活性能,使反应速率加快,缩短反应时间,控制副反应,因此在聚氨酯的制备中常常使用催化剂。对催化剂的要求一般是:催化活性高、选择性强。常用的催化剂为有机叔胺类及有机金属化合物。 聚氨酯合成中所采用的催化剂,都是既能催化与羟基的反应,也能催化与水的反应,但所有催化剂对这二个反应的催化活性各不相同。一般,叔胺类催化剂对异氰酸酯与水的反应(即通常所说的“发泡反应”)的催化效率大于对异氰酸酯与羟基反应(即所谓所的“凝胶反应”)的催化效率,有机金属类催化剂对凝胶反应的催化效率更显著,即各催化剂都有其选择性。 2.2.1.1 异氰酸酯反应的催化机理 一般认为,异氰酸酯与羟基化合物反应的催化机理是,异氰酸酯或羟基化合物先与催化剂生成不稳定的络合物,然后发生反应,生成聚氨酯。但这种络合催化反应理论也有几种说法,至今还不是十分清楚。 一种公认的催化机理是基于异氰酸酯受亲核的催化剂进攻,生成中间络合物,再与羟基化合物反应。如二异氰酸酯与二元醇的反应机理如下:

另外,有人认为金属有机化合物的催化机理与叔胺类不同,是形成一种三元活化络合物。有人提出羟基化合物与催化剂形成四节环活化络合物,再与异氰酸酯反应生成氨基甲酸酯。 2.2.1.2 叔胺催化剂酸碱性对反应活性的影响 在聚氨酯制备反应中,一般很少用酸类催化剂,酸性催化剂(如苯甲酰氯、无机及有机酸)对氨基甲酸酯及脲基甲酸酯生成反应有较低的催化作用,但重要的是它们能抑制缩二脲的生成反应,因而抑制交联反应。若聚醚中尚有微量碱(开环聚合用的KOH)未被除去,则与二异氰酸酯反应时,碱金属化合物会催化交联副反应,发生凝胶。因而可加入酸中和,并且若酸稍过量,则抑制交联反应,可使预体能长期储存。 叔胺类催化剂对异氰酸酯与羟基化合物反应的影响,除了其碱性程度外,还有位阻效应等因素。一般来说,碱性大、位阻小,则催化能力强。叔胺对水与异氰酸酯反应的催化活性的影响比羟基与异氰酸酯反应的催化活性大(见图2-2),故叔胺催化剂一般用于聚氨酯泡沫制备。在所有叔胺类催化剂中,三亚乙基二胺是一种结构特殊的催化剂,由于它是杂环化合物,叔胺N原子上没有位阻,所以它对发泡反应及凝胶反应都具有较强的催化性能,是聚氨酯泡沫塑料常用的催化剂之一,也可用于聚氨酯胶粘剂、弹性体等的制备。据估计,在水/醇混合体系中,它对羟基催化能力占80%,对水占20%,对羟基与异氰酸酯反应的催化活性比水大,具有类似有机金属化合物的催化性能,不仅广泛用于泡沫,而且也用于聚氨酯弹性体、胶粘剂、涂料。 不同的异氰酸酯对各种反应有不同的催化活性。有人研究了两种催化剂对异氰酸酯-端伯羟基聚醚、异氰酸酯-端仲羟基聚醚及异氰酸酯-水反应速率常数及活化能进行了比较,实验结果见表2-7。表中K1、K2及K3分别为TDI与普通PPG聚醚(端基为仲羟基)、EO封端聚醚(伯羟基)和水的反应速率常数[单位L/(g·mol·h)]。 表2-7 氨基甲酸酯及脲生成反应的速率常数K及活化能E

实验报告-不同因素对酶的影响

实验报告-不同因素对酶的影响

成绩: 酶的基本性质实验一一底物专一性剂、激活剂和抑制、最适温度 实验名称: 实验类型: 分离鉴定实验 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 I .酶的基本性质——底物专一性 一、实验目的和要求 1. 了解酶的专一性。 2.掌握验证酶的专一性的基本原理及方法。 3.学会排除干扰因素,设计 酶学实验。二、实验基本原理 酶是一种具有催化功能的蛋白质。酶蛋白结构决定了酶的功能——酶的高效性,酶催化的 反应(酶促反应)要比相应的没有催化剂的反应快 103-1017倍。 酶催化作用的一个重要特 点是具有高度的底物专一性,即一种酶只能对某一种底物或一类底物起催化作用,对其他底物 无催化反应。根据各种酶对底物的选择程度不同,它们的专一性可以分为下列几种: 1. 相对专一性 一种酶能够催化一类具有相同化学键或基团的物质进行某种类型的反应。 2. 绝对专一性: 有些酶对底物的要求非常严格只作用于一种底物,而不作用于任何其他 物质。如脲酶只能催化尿素进行水解而生成二氧化碳和氨。如麦芽糖酶只作用于麦芽糖而不作 用其它双糖,淀粉酶只作用于淀粉,而不作用于纤维素。 3.立体异构专一性 有些酶只有 作用于底物的立体异构物中的一种,而对另一种则全无作用。如酵母中的糖酶类只作用于 D-型 糖而不能作用于 L-型的糖。 本实验以唾液淀粉酶、蔗糖酶对淀粉、蔗糖水解反应的催化作 用来观察酶的专一性。采用 Benedict 试剂检测反应产物。 Ben edict 试剂是碱性硫酸铜溶液,具有一定的氧化能力,能与还原性糖的半缩醛羟基 发生氧化还原反应,生成砖红色氧化亚铜沉淀。 Na 2CO+ 2H 2O 2NaOH + fCO CuSO+ 2NaOH Cu (OH ) ■ 2 + Na z SO 还原糖(一CHO or — C=O )+ 2Cu (OH ) 2 CU 2O (砖红色或黄色)+ 2H 2O +糖的氧化产物 在分子结构上,淀粉几乎没有,而蔗糖、棉子糖全无半俪基,它们均无还原性,因此它 们与Ben edict 试剂无呈色反应。 淀粉被淀粉酶水解,产物为葡萄糖;蔗糖和棉子糖被蔗糖 酶水解,其产物为果糖和葡萄糖,它们都为具有自由半缩醛羟基的还原糖,与 Ben edict 试剂共 热,即产生红棕色 Cu2 O 沉淀。本实验以此颜色反应观察淀粉酶、蔗糖酶对淀粉和蔗糖的水解作 用。三、实验材料与试剂 1、实验材料⑴ 蔗糖酶(样品W ):⑵新鲜唾液(含唾液淀粉酶);2、实验试剂⑴ 蔗糖酶液 沖门七穿实验报告 课 程名称:生物化学实验(甲) 专业: 姓名: 学号: 日期: 地点: 指导老师:

高中生物 探究“影响酶活性的条件”1

探究“影响酶活性的条件” 高考频度:★★★☆☆难易程度:★★☆☆☆ 某研究小组做了探究影响过氧化氢分解的因素的两个实验。相应的实验结果如图所示(实验1、实验2均在适宜条件下进行),请分析并回答下列问题: (1)实验1和实验2中的自变量分别为 ______________________________________________________。 (2)实验2结果反映,bc段O2产生速率不再增大的原因最可能是 _________________________________。 (3)实验1中,若温度再升高10 ℃,加过氧化氢酶的催化反应曲线斜率将_______(填“增大”或“减小”);加Fe3+的催化反应曲线斜率将_______(填“增大”或“减小”)。【参考答案】(1)催化剂的种类和过氧化氢的浓度 (2)酶的数量(浓度)有限 (3)减小增大 【试题解析】(1)观察题图可知实验1和实验2的自变量分别是催化剂的种类、过氧化氢的浓度。(2)实验2曲线中,bc段O2产生速率不再增大的原因最可能是酶的数量(浓度)有限。(3)已知实验都是在适宜条件下进行的,而酶的活性受温度等条件的影响,所以实验1中,若温度升高10 ℃,加过氧化氢酶的催化反应速率降低,曲线斜率将减小,加Fe3+的催化反应速率升高,曲线斜率将增大。

1.如图表示在某pH范围内酶A和酶B所催化的反应速率的变化情况,下列有关说法正确的是 A.酶B比酶A活跃 B.酶A存在于唾液中 C.酶B的最适pH是8 D.pH为5时,两种酶催化的反应速率相等 2.如图表示不同pH及温度对某反应产物生成量的影响,下列相关叙述正确的是 A.随着pH的升高,酶的活性先降低后增大 B.该酶的最适温度是35 ℃ C.酶的最适pH相对稳定,一般不随温度变化 D.随着温度的升高,酶的活性逐渐降低 3.如图表示酶活性与温度的关系。下列叙述正确的是 A.当反应温度由t1逐渐调到t2时,酶活性持续上升 B.当反应温度由t1调到最适温度时,酶活性上升 C.酶活性在t2时比t1高,故t2时更适合酶的保存 D.酶活性在t1时比t2低,表明t1时酶的空间结构破坏更严重

工业催化思考题

《工业催化》思考题 Chap 1 一.思考题 1.催化反应的反应热、活化能是否与非催化反应的相同?为什么? 2.催化剂能否改变化学平衡? 3.催化剂的活性、选择性的含义是什么? 4.影响催化剂的寿命的因素有哪些? 5.载体在催化剂中的作用是什么? 6.结构型助剂与调变型助剂有何区别? 7.一个好的工业催化剂应满足哪些条件? 8.何为转化率、收率和比活性?如何计算转化率、收率和选择性? 9.固体催化剂按导电性分为几类?每类催化剂的基本特征是什么? 二.习题 1.合成氨反应,450 C°下无催化剂时活化能为83Kcal/mol,使用铁催化剂后,活化能降为43Kcal/mol,求催化反应速度加快了多少倍? 2.丙烯氨氧化生产丙烯晴,原料气流量1.9NL/min ,内含丙烯76.85%,产物用水吸收,吸收液体积为9750mL/30min,其中丙烯晴浓度为0.65%,该溶液比重为1.00,尾气量为421.3 NL/30min ,内含丙烯0.7%,计算丙烯晴转化率、丙烯晴产率和丙烯晴选择性。 3.已知CH2=CH2+1/2O2 —k1→ +25.17 Kcal/mol, E1=12Kcal/mol CH2=CH2+3O2 —k2→ 2CO2 + 2H2O + 339.6 Kcal/mol, E2=15Kcal/mol 问当温度由200 C°升高到300 C°时,生成环氧乙烷和CO2 的速度常数之比k1/k2各为多少?设A1和A2相等。 4.正己烷裂化反应,达到规定的反应速率,用沸石催化剂反应温度为270 C°,用无定形SiO2-Al2O3催化剂需450 C°,设上述温度范围内反应活化能皆为125KJ/mol,求两种催化剂的活性比。 5.A→ (目的产物) 两个反应均为一级反应,若欲提高生成B1的相对选择性, ↘B2(副产物)所的用催化剂对两个反应的活化能E1和E2应有怎样的关系?这种情况下,低温还是高温对提高B1的选择性有利? 6.为使于400K进行的某非催化反应提高反应速度到原来的103倍,向此体系

相关文档
最新文档