锅炉过热器爆管原因分析及预防措施

锅炉过热器爆管原因分析及预防措施
锅炉过热器爆管原因分析及预防措施

龙源期刊网 https://www.360docs.net/doc/aa6920444.html,

锅炉过热器爆管原因分析及预防措施

作者:黄金土

来源:《城市建设理论研究》2013年第28期

摘要:本文主要针对电厂锅炉高温过热器管连续出现爆管进行了简单的探讨,分析其爆管原因,并提出预防锅炉过热器爆管的措施,为锅炉的安全稳定运行提供保障,对其它电厂出现类似问题有借鉴作用。

关键词:电厂锅炉过热器爆管预防措施

中图分类号:U261.1文献标识码:A

现时期,随着我国经济、社会的发展,工业化进程的加快,对能源行业的要求越来越高,鉴于电厂锅炉设备对工业安全建设的重要意义,尤其是电能的需求量增大以及需求质量逐年增加,工业安全建设问题越来越被人们关注。锅炉作为电厂生产中重要的能源设备,其高效、有序运行对电厂安全、稳定生产起着重要的作用。然而,电厂锅炉因设计缺陷、安装遗留问题、运行时数增加、维护不到位等情况,往往存在诸多的安全隐患,导致事故的发生。本文针对广州市旺隆热电有限公司#1锅炉过热器爆管原因进行了详细分析,为电厂锅炉今后的运行维护

提供参考,具有重要意义。

1 过热器爆管事件经过

旺隆电厂#1、2锅炉是东方锅炉实业公司提供的DG420/9.82-Ⅱ型锅炉,额定蒸发量

420t/h,出口蒸汽压力9.82Mpa,过热蒸汽温度540℃,机组于2005年9月投产。

2010年6月15日旺隆电厂#1锅炉高温过热器B侧第25排第3条管(靠炉后)发生爆管,并

吹穿第25排第4条管,当时累计运行时数约为30000小时。经抢修,更换爆裂管段和吹穿管段。随后委托华南理工大学材料科学与工程学院对高过管爆裂原因进行测试分析。2010年8

月22日旺隆电厂#1锅炉高温过热器B侧第25排第3条管(靠炉后)又发生爆管,分析过热器管有异物堵塞,扩大检查范围至联箱,采用内窥和拍片结合的方法,在该管与联箱接管座第一个对接焊缝位置发现“钻孔底片”(俗称眼镜片),并在联箱接管座其它位置发现了5个眼镜片。

2 过热器弯管爆管原因分析

2.1 爆口宏观形貌观察

高温过热器管规格为Φ42×5,材质为12Cr1MoV,从爆裂管取爆口位置进行宏观形貌分析,如图1所示。

图1爆裂管的宏观照片

锅炉过热器爆管原因分析及对策(正式)

编订:__________________ 审核:__________________ 单位:__________________ 锅炉过热器爆管原因分析及对策(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8363-82 锅炉过热器爆管原因分析及对策(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 摘要:锅炉承压部件的安全运行对整个电厂的安全至关重要。文章结合微水电厂实际,分析了过热器爆管泄漏的机理、原因及实际采取的一些对策,以求对锅炉过热器设备的完好运行有所裨益。 关键词:锅炉过热器爆管电网 1 前言 据统计,河北省南部电网锅炉各种事故约占发电厂事故的63.2%,而承压部件泄漏事故又占锅炉事故的86.7%。因此迫切需要大幅度降低锅炉临修次数。下面结合微水电厂实际,分析过热器爆管泄漏的机理、原因及采取的一些对策。 微水发电厂锅炉型号为HG-220/100-4,露天布置,固态排渣煤粉炉,四角切圆燃烧,过热器由辐

射式炉顶过热器、半辐射屏式过热器、对流过热器和包墙管4部分组成。减温水采用给水直接喷入,分两级减温。炉顶管、包墙管和第二级过热器管用?38×4.5的20号碳钢管组成。第一级过热器和屏过热器用?42×5的12Cr1 MoV钢管组成。 2 过热器爆管的主要原因 2.1 超温、过热和错用钢材 2.2 珠光体球化及碳化物聚集 针对12Cr1 MoV钢分析,试验表明当12Cr1 MoV 钢严重球化到5级时,钢的室温强度极限下降约11kg /mm2。微水发电厂1993年4月过热器爆管的统计资料表明:因局部长期过热,珠光体耐热钢已达到了5级球化现象,而它的塑性水平仍然比较高。发生球化现象以后,钢的蠕变极限和持久强度下降。通过580℃下对12Cr1 MoV钢的持久爆管试验,可以看出到了球化4级的钢管,其持久强度降低1/3。影响珠光体耐热钢发生球化的因素主要有温度、时间、应力和钢材的化学成份等。在钢中掺入“V”这种强碳化物元素,

锅炉过热器爆管原因分析及对策

锅炉过热器爆管原因分 析及对策 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

锅炉过热器爆管原因分析及对策摘要:锅炉承压部件的安全运行对整个电厂的安全至关重要。文章结合微水电厂实际,分析了过热器爆管泄漏的机理、原因及实际采取的一些对策,以求对锅炉过热器设备的完好运行有所裨益。 关键词:锅炉过热器爆管电网 1 前言 据统计,河北省南部电网锅炉各种事故约占发电厂事故的63.2%,而承压部件泄漏事故又占锅炉事故的86.7%。因此迫切需要大幅度降低锅炉临修次数。下面结合微水电厂实际,分析过热器爆管泄漏的机理、原因及采取的一些对策。 微水发电厂锅炉型号为HG-220/100-4,露天布置,固态排渣煤粉炉,四角切圆燃烧,过热器由辐射式炉顶过热器、半辐射屏式过热器、对流过热器和包墙管4部分组成。减温水采用给水直接喷入,分两级减温。炉顶管、包墙管和第二级过热器管用38×4.5的20号碳钢管组成。第一级过热器和屏过热器用42×5的12Cr1MoV钢管组成。 2 过热器爆管的主要原因 2.1 超温、过热和错用钢材 2.2 珠光体球化及碳化物聚集

针对12Cr1MoV钢分析,试验表明当12Cr1MoV钢严重球化到5级时,钢的室温强度极限下降约11kg/mm2。微水发电厂1993年4月过热器爆管的统计资料表明:因局部长期过热,珠光体耐热钢已达到了5级球化现象,而它的塑性水平仍然比较高。发生球化现象以后,钢的蠕变极限和持久强度下降。通过580℃下对12Cr1MoV钢的持久爆管试验,可以看出到了球化4级的钢管,其持久强度降低1/3。影响珠光体耐热钢发生球化的因素主要有温度、时间、应力和钢材的化学成份等。在钢中掺入“V”这种强碳化物元素,可以阻碍珠光体的球化过程,只要能形成稳定的碳化物,则球化过程减速。 通过对12Cr1MoV管试验发现,温度在540℃时,随着运行时间的增加,钢的工作温度下蠕变极限和持久强度也相应降低。随着运行温度的提高、时间的延长、应力的变化都会加速合金元素的固溶体和碳化物间的重新分配现象。 2.3 焊接质量 钢材焊接质量也是影响安全的重要因素之一。焊接的缺陷一般指焊接接头裂纹未熔合、根部未焊透、气孔、夹渣、咬边,焊缝外形尺寸不合格以及焊接接头的金属组织异常等现象。 2.4 金属在高温下的氧化和腐蚀

600MW机组锅炉省煤器爆管事件分析及对策

600MW机组锅炉省煤器爆管事件分析及对策 文章根据南方某电厂600MW机组锅炉省煤器爆管事件进行分析,得出机组运行时发生受热面泄漏相关处理措施及注意事项。为后续的机组安全运行提供科学指导及依据。 标签:600MW机组;省煤器;爆管;分析;对策 Abstract:Based on the analysis of the tube burst of economizer of a 600MW boiler in a power plant in South China,this paper concludes the relevant measures and cautions as regards the leakage of the heating surface when the unit is in operation. It provides scientific guidance and basis for the safe operation of the following units. Keywords:600MW unit;economizer;tube burst;analysis;countermeasure 简介 南方某电厂#7锅炉型号为DG1920/25.4-Ⅱ6型。本型号锅炉系国产600MW 超临界参数变压直流本生锅炉,一次再热、单炉膛、尾部双烟道结构、采用烟气挡板调节再热汽温,固态排渣,全钢构架、全悬吊结构,平衡通风、露天布置,前后墙对冲燃烧。炉膛水平切面积为22162.4×15456.8mm2(宽×深)。锅炉深度为43000mm,锅炉宽度为49000mm,顶棚拐点标高为69500mm。 1 事件经过 7月10日22:40,#7机组负荷562MW,主汽压力24.8MPa,主汽温度564/563℃,再热汽压3.7MPa,再热汽温570/569℃,给煤量256t/h,中间点温度404℃、过热度15.6℃,值班人员发现锅炉各主参数突变,锅炉给水流量突然从1602t/h突升至2057t/h,蒸汽流量由1624t/h降低至1450t/h,炉膛压力突升至1508Pa,引风机开度由74%、76%突升至96.8%、97.3%,机组负荷降低至492MW,主汽压力由24.8MPa降低至21.6MPa,给煤量升至284t/h,固定端省煤器入口烟气温度1/2由477/496℃降低至86/92℃;扩建端省煤器入口烟气温度1/2由501/494℃降低至462/462℃;两侧烟温偏差大。中间点温度由404℃升至475℃(480℃触发锅炉MFT)、过热度由15.6℃最高升至136.2℃。判断为锅炉省煤器泄漏,但锅炉炉管泄漏系统未报警,当值主控立即下令将机组运行方式由AGC 方式切至基本方式手动控制,同时投入等离子助燃,紧急停运A、D制粉系统,减负荷至208MW,同时切换DCS所有画面分析事故点,调节好各主参数,同时派巡检就地全面仔细检查机组各部,联系化学值班员提高除盐水压力及汇报值长申请故障停炉处理。 2 原因分析

电厂锅炉省煤器爆管的原因分析与处理措施实用版

YF-ED-J4851 可按资料类型定义编号 电厂锅炉省煤器爆管的原因分析与处理措施实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

电厂锅炉省煤器爆管的原因分析与处理措施实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 摘要:针对省煤器结构特点以及布置方 式,着重分析了磨损、腐蚀以及振动等因素引 起省煤器超温爆管的内在机理。并且根据磨 损、腐蚀、振动的机理提出了一些解决省煤器 超温爆管的具有实用价值和借鉴意义的措施。 关键词:电站锅炉;省煤器;超温爆管; 解决措施 1 省煤器超温爆管机理分析 省煤器超温爆管的原因非常复杂,主要由 磨损、腐蚀以及振动引起。以下主要就这三方

面探讨省煤器超温爆管的机理。 1.1 磨损 由磨损导致的爆管中,飞灰磨损是主要原因,影响的因素包括飞灰浓度、烟气流速、飞灰的磨损性能等方面;另外,省煤器的结构也会磨损。 1.1.1 飞灰浓度 飞灰浓度大,表明烟气中含灰量多,灰粒撞击受热面的次数增多,引起磨损加剧。我国煤种的多样性和电厂用煤的不确定性,使当前许多电厂的燃煤含灰量大天设计值。有的燃料灰分高达40。煤质变差,灰分增加,燃煤量也增加,造成烟气中飞灰浓度剧增,增加了省煤器的磨损。 1.1.2烟气流速

过热器爆管的根本原因及对策

过热器爆管的根本原因及对策 二十世纪八十年代初,美国电力研究院经过长期大量研究,把锅炉爆管机理分成六大类,共22种。在22种锅炉爆管机理中,有7种受到循环化学剂的影响,12种受到动力装置维护行为的影响。我国学者结合我国电站锅炉过热器爆管事故做了大量研究,把电站锅炉过热器爆管归纳为以下九种不同的机理。 1、长期过热 1.1失效机理 长期过热是指管壁温度长期处于设计温度以上而低于材料的下临界温度,超温幅度不大但时间较长,锅炉管子发生碳化物球化,管壁氧化减薄,持久强度下降,蠕变速度加快,使管径均匀胀粗,最后在管子的最薄弱部位导致脆裂的爆管现象。这样,管子的使用寿命便短于设计使用寿命。超温程度越高,寿命越短。在正常状态下,长期超温爆管主要发生在高温过热器的外圈和高温再热器的向火面。在不正常运行状态下,低温过热器、低温再热器的向火面均可能发生长期超温爆管。长时超温爆管根据工作应力水平可分为三种:高温蠕变型、应力氧化裂纹型、氧化减薄型。 1.2产生失效的原因 (1)管内汽水流量分配不均; (2)炉内局部热负荷偏高; (3)管子内部结垢; (4)异物堵塞管子; (5)错用材料; (6)最初设计不合理。 1.3故障位置 (1)高温蠕变型和应力氧化裂纹型主要发生在高温过热器的外圈的向火面;在不正常的情况下,低温过热器也可能发生; (2)氧化减薄型主要发生在再热器中。 1.4爆口特征 长期过热爆管的破口形貌,具有蠕变断裂的一般特性。管子破口呈脆性断口特征。爆口粗糙,边缘为不平整的钝边,爆口处管壁厚度减薄不多。管壁发生蠕胀,管

径胀粗情况与管子材料有关,碳钢管径胀粗较大。20号钢高压锅炉低温过热器管破裂,最大胀粗值达管径的15%,而12CrMoV钢高温过热器管破裂只有管径5%左右的胀粗。 (1)高温蠕变型 a.管子的蠕胀量明显超过金属监督的规定值,爆口边缘较钝; b.爆口周围氧化皮有密集的纵向裂纹,内外壁氧化皮比短时超温爆管厚,超温程度越低,时间越长,则氧化皮越厚和氧化皮的纵向裂纹分布的范围也越广; c.在爆口周围的较大范围内存在着蠕变空洞和微裂纹; d.向火侧管子表面已完全球化; e.弯头处的组织可能发生再结晶; f.向火侧和背火侧的碳化物球化程度差别较大,一般向火侧的碳化物己完全球化。 (2)应力氧化裂纹型 a.管子的蠕胀量接近或低于金属监督的规定值,爆口边缘较钝,呈典型的厚唇状; b.靠近爆口的向火侧外壁氧化层上存在着多条纵向裂纹,分布范围可达整个向火侧。内外壁氧化皮比短时超温爆管时的氧化皮厚; c.纵向应力氧化裂纹从外壁向内壁扩展,裂纹尖端可能有少量空洞; d.向火侧和背火侧均发生严重球化现象,并且管材的强度和硬度下降; e.管子内壁和外壁的氧化皮发生分层; f.燃烧产物中的S、Cl、Mn、Ca等元素在外壁氧化层沉积和富集。 (3)氧化减薄型 a.管子向火侧、背火侧的内外壁均产生厚度可达1.0~1.5mm的氧化皮; b.管壁严重减薄,仅为原壁厚的1/3~l/8 ; c.内、外壁氧化皮均分层,为均匀氧化。内壁氧化皮的内层呈环状条纹; d.向火侧组织己经完全球化,背火侧组织球化严重,并且强度和硬度下降; e.燃烧产物中的S、Cl、Mn、Ca等元素在外壁氧化层沉积和富集,促进外壁氧化。

锅炉过热器爆管原因及对策

锅炉过热器爆管原因及对策 前言 随着我国电力工业建设的迅猛发展,各种类型的大容量火力发电机组不断涌现,锅炉结构及运行更加趋于复杂,不可避免地导致并联各管内的流量与吸热量发生差异。当工作在恶劣条件下的承压受热部件的工作条件与设计工况偏离时,就容易造成锅炉爆管。 事实上,当爆管发生时常采用所谓快速维修的方法,如喷涂或衬垫焊接来修复,一段时间后又再爆管。爆管在同一根管子、同一种材料或锅炉的同一区域的相同断面上反复发生,这一现象说明锅炉爆管的根本问题还未被解决。因此,了解过热器爆管事故的直接原因和根本原因,搞清管子失效的机理,并提出预防措施,减少过热器爆管的发生是当前的首要问题。 1过热器爆管的直接原因 造成过热器、再热器爆管的直接原因有很多,主要可以从以下几个方面来进行分析。 1.1设计因素 1.热力计算结果与实际不符 热力计算不准的焦点在于炉膛的传热计算,即如何从理论计算上较合理的确定炉膛出口烟温和屏式过热器的传热系数缺乏经验,致使过热器受热面的面积布置不够恰当,造成一、二次汽温偏离设计值或受热面超温。 2.设计时选用系数不合理 如华能上安电厂由B&W公司设计、制造的“W”型锅炉,选用了不合理的受热面系数,使炉膛出口烟温实测值比设计值高80~100℃;又如富拉尔基发电总厂2号炉(HG-670/140-6型)选用的锅炉高宽比不合理,使炉膛出口实测烟温高于设计值160℃。 3.炉膛选型不当 我国大容量锅炉的早期产品,除计算方法上存在问题外,缺乏根据燃料特性选择炉膛尺寸的可靠依据,使设计出的炉膛不能适应煤种多变的运行条件。 炉膛结构不合理,导致过热器超温爆管。炉膛高度偏高,引起汽温偏低。相反,炉膛高度偏低则引起超温。 4.过热器系统结构设计及受热面布置不合理 调研结果表明,对于大容量电站锅炉,过热器结构设计及受热面布置不合理,是导致一、二次汽温偏离设计值或受热面超温爆管的主要原因之一。 过热器系统结构设计及受热面布置的不合理性体现在以下几个方面: (1)过热器管组的进出口集箱的引入、引出方式布置不当,使蒸汽在集箱中流动时静压变化过大而造成较大的流量偏差。 (2)对于蒸汽由径向引入进口集箱的并联管组,因进口集箱与引入管的三通处形成局部涡流,使得该涡流区附近管组的流量较小,从而引起较大的流量偏差。引进美国CE公司技术设计的配300MW和600MW机组的控制循环锅炉屏再与末再之间不设中间混合集箱,屏再的各种偏差被带到末级去,导致末级再热器产生过大的热偏差。如宝钢自备电厂、华能福州和大连电厂配350MW机组锅炉,石横电厂配300MW机组锅炉以及平坪电厂配600MW机组锅炉再热器超温均与此有关。 (3)因同屏(片)并联各管的结构(如管长、内径、弯头数)差异,引起各管的阻力系数相差较大,造成较大的同屏(片)流量偏差、结构偏差和热偏差,如陡河电厂日立850t/h锅炉高温过热器超温就是如此。 (4)过热器或再热器的前后级之间没有布置中间混合联箱而直接连接,或者未进行左右交叉,这样使得前后级的热偏差相互叠加。 在实际运行过程中,上述结构设计和布置的不合理性往往是几种方式同时存在,这样加剧了

锅炉水冷壁泄漏爆管现象原因及处理

锅炉水冷壁泄漏、爆管现象、原因及处理 一、现象: 1:汽包水位降低,严重时汽包水位急剧下降,给水流量不正常的大于蒸汽流量 2:炉膛负压瞬时偏正且不稳定 3:炉管泄漏检测装置报警 4:从检查孔、门、炉墙等不严密处可能向外喷烟气和水蒸汽,并有明显泄漏声 5:主蒸汽流量、主蒸汽压力下降 6:泄漏后各段烟气温度下降,排烟温度降低 7:锅炉燃烧不稳火焰发暗,严重时引起锅炉灭火 8:引风机投自动时,静叶开度不正常增大,电流增加 二、原因: 1:给水、炉水质量不合格,使管内壁腐蚀或结垢超温 2:炉水泵工作失常、造成炉水循环不良 3:燃烧调整不当,火焰偏斜,造成水冷壁管被煤粉冲刷磨损4:节流圈安装不当,管内有异物造成水循环不良 5:管壁长期超温运行 6:吹灰器内漏或未正常退出,蒸汽吹破炉管 7:管材质量不合格,焊接质量不良 8:水冷壁结焦

9:大块焦砸坏水冷壁管 10:锅炉长期超压运行 11:锅炉启动升温、升压过快 12:管材老化失效 13:锅炉严重减水处理不当,继续上水使管子急剧冷却或锅炉严重减水使管子过热爆破 14:水冷壁膨胀受阻 三、处理: 1:当水冷壁管泄漏不严重能维持汽包正常水位时,可适当降低参数运行,降负荷运行,密切监视泄漏部位的发展趋势,做好事故预想,汇报值长,请示尽快停炉 2:当水冷壁管爆破不能维持正常水位时,立即停炉。停炉后继续加强上水,水位不能回升时停止上水,省煤器再循环门不应开启 3:水冷壁管爆破严重减水时,应进行下列处理 (1):立即停炉,维持引风机运行,排除炉内蒸汽 (2):停炉后继续上水,维持汽包水位 (3):若无法维持水位,应停止炉水循环泵及给水泵运行(4):停炉后,电除尘应立即停电

锅炉省煤器爆管的原因分析与处理措施通用版

解决方案编号:YTO-FS-PD801 锅炉省煤器爆管的原因分析与处理措 施通用版 The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

锅炉省煤器爆管的原因分析与处理 措施通用版 使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。文件下载后可定制修改,请根据实际需要进行调整和使用。 1 省煤器超温爆管机理分析 省煤器超温爆管的原因非常复杂,主要由磨损、腐蚀以及振动引起。以下主要就这三方面探讨省煤器超温爆管的机理。 1.1 磨损 由磨损导致的爆管中,飞灰磨损是主要原因,影响的因素包括飞灰浓度、烟气流速、飞灰的磨损性能等方面;另外,省煤器的结构也会磨损。 1.1.1 飞灰浓度 飞灰浓度大,表明烟气中含灰量多,灰粒撞击受热面的次数增多,引起磨损加剧。我国煤种的多样性和电厂用煤的不确定性,使当前许多电厂的燃煤含灰量大于设计值。有的燃料灰分高达40。煤质变差,灰分增加,燃煤量也增加,造成烟气中飞灰浓度剧增,增加了省煤器的磨损。 1.1.2 烟气流速

锅炉爆管典型事故案例及分析

锅炉典型事故案例及分析 第一节锅炉承压部件泄露或爆破事故大型火力发电机组的非停事故大部分是由锅炉引起的。随着锅炉机组容量增大,“四管”爆泄事故呈现增多趋势,严重影响锅炉的安全性,对机组运行的经济性影响也很大。有的电厂因过热器、再热器管壁长期超温爆管,不得不降低汽温5~10℃运行;而主汽温度和再热汽温度每降低10℃,机组的供电煤耗将增加0.7~1.1g/kWh;主蒸汽压力每降低1MPa,将影响供电煤耗2g/kWh。为了防止锅炉承压部件爆泄事故,必须严格执行《实施细则》中关于防止承压部件爆泄的措施及相关规程制度。 一.锅炉承压部件泄露或爆破的现象及原因 (一)“四管”爆泄的现象 水冷壁、过热器、再热器、省煤器在承受压力条件下破损,称为爆管。 受热面泄露时,炉膛或烟道内有爆破或泄露声,烟气温度降低、两侧烟温偏差增大,排烟温度降低,引风机出力增大,炉膛负压指示偏正。 省煤器泄露时,在省煤器灰斗中可以看到湿灰甚至灰水渗出,给水流量不正常地大于蒸汽流量,泄露侧空预器热风温度降低;过热

器和再热器泄露时蒸汽压力下降,蒸汽温度不稳定,泄露处由明显泄露声;水冷壁爆破时,炉膛内发出强烈响声,炉膛向外冒烟、冒火和冒汽,燃烧不稳定甚至发生锅炉灭火,锅炉炉膛出口温度降低,主汽压、主汽温下降较快,给水量大量增加。 受热面炉管泄露后,发现或停炉不及时往往会冲刷其他管段,造成事故扩大。 (二)锅炉爆管原因 (1)锅炉运行中操作不当,炉管受热或冷却不均匀,产生较大的应力。 1)冷炉进水时,水温或上水速度不符合规定;启动时,升温升压 或升负荷速度过快;停炉时冷却过快。 2)机组在启停或变工况运行时,工作压力周期性变化导致机械应 力周期性变化;同时,高温蒸汽管道和部件由于温度交变产生热应力,两者共同作用造成承压部件发生疲劳破坏。 (2)运行中汽温超限,使管子过热,蠕变速度加快 1)超温与过热。超温是指金属超过额定温度运行。超温分为长期 超温和短期超温,长期超温和短期超温是一个相对概念,没有严格时间限定。超温是指运行而言,过热是针对爆管而言。过热可分为长期过热和短期过热两大类,长期过热爆管是指金属在应力和超温温度的长期作用下导致爆破,其温度水平要比短期过热的水平低很多,通常不超过钢的临界点温度。短期过热爆管是指,在短期内由于管子温度升高在应力作用下爆破,其

分隔屏过热器爆管分析及处理

分隔屏过热器爆管分析及处理 翟德双 (田集发电厂232098) 摘要:分析田集发电厂1号锅炉分隔屏过热器超温爆管的原因,介绍所采取的针对性运行调整措施及实施结果。关键词:超临界;直流锅炉;分隔屏过热器;爆管;原因分析 1 概述 田集发电厂一期工程装有2台600MW超临界燃煤机组,2台机组分别于2007年7月26日和10月15日投产。该机组锅炉为超临界压力螺旋管圈直流炉,炉膛四角布置直流式喷燃器,配置6台中速磨煤机直吹式制粉系统,锅炉采用等离子方式点火(四角A层布置),启动系统采用容量为30%BMCR的不带循环泵的内置式启动系统,汽轮机设高低压两级串联旁路系统,旁路容量为35%BMCR。 2 锅炉爆管经过 2007年5月30日,机组首次整套启动,顺利进行锅炉点火、汽机冲转、发电机并网,机组带10%初始负荷4小时进行暖机,机组与系统解列后,做汽轮机超速试验,做汽机主汽门及调速汽门严密性试验。 2007年5月31日,机组再次启动,6月1日1时53分发电机并网,逐渐加负荷,14时22分向调度申请机组加负荷,进行锅炉安全门校验, 17时30分左右,锅炉转干态运行,发现机组补给水量异常,各系统进行全面检查,未发现明显异常情况,在对给水和疏放水系统进行全面检查和隔离后,机组补给水量有所下降,于是按计划带负荷进行锅炉安全门校验,23时20分发现捞渣机卡涩现象,发现内部有疑似受热面钢管。即向调度申请停炉,当时机组负荷330MW,分离器压力22MPa,过热器出口温度正常,给水量860~920t,燃煤量178t。确定锅炉爆管,经调度同意,于6月2日1时42分锅炉停炉。 3 爆管检查及分析 3.1 爆管情况检查和试验 (1)停炉后进入炉膛检查发现分隔屏过热器爆管断裂,部分管屏及定位管变形严重。 (2)光谱分析检查:分隔屏管进口段材质为T12,出口段材质为T23,下部外三圈为T91,T91与T12间用T23短管过渡,通过对现场管光谱分析检查,材质与设计图纸相符。 (3)硬度检查:对爆管管子和现场管子进行硬度检查,T91管子HB基本在170左右,T23管子HB基本在140~150左右,T12管子HB基本在120~130左右,参考ASTM SA213标准,T12 114

锅炉过热器爆管原因分析及对策(通用版)

Enhance the initiative and predictability of work safety, take precautions, and comprehensively solve the problems of work safety. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 锅炉过热器爆管原因分析及对策 (通用版)

锅炉过热器爆管原因分析及对策(通用版)导语:根据时代发展的要求,转变观念,开拓创新,统筹规划,增强对安全生产工作的主动性和预见性,做到未雨绸缪,综合解决安全生产问题。文档可用作电子存档或实体印刷,使用时请详细阅读条款。 摘要:锅炉承压部件的安全运行对整个电厂的安全至关重要。文章结合微水电厂实际,分析了过热器爆管泄漏的机理、原因及实际采取的一些对策,以求对锅炉过热器设备的完好运行有所裨益。 关键词:锅炉过热器爆管电网 1前言 据统计,河北省南部电网锅炉各种事故约占发电厂事故的63.2%,而承压部件泄漏事故又占锅炉事故的86.7%。因此迫切需要大幅度降低锅炉临修次数。下面结合微水电厂实际,分析过热器爆管泄漏的机理、原因及采取的一些对策。 微水发电厂锅炉型号为HG-220/100-4,露天布置,固态排渣煤粉炉,四角切圆燃烧,过热器由辐射式炉顶过热器、半辐射屏式过热器、对流过热器和包墙管4部分组成。减温水采用给水直接喷入,分两级减温。炉顶管、包墙管和第二级过热器管用?38×4.5的20号碳钢管组成。第一级过热器和屏过热器用?42×5的12Cr1MoV钢管组成。

锅炉过热器爆管原因分析及对策参考文本

锅炉过热器爆管原因分析及对策参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

锅炉过热器爆管原因分析及对策参考文 本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 摘要:锅炉承压部件的安全运行对整个电厂的安全至 关重要。文章结合微水电厂实际,分析了过热器爆管泄漏 的机理、原因及实际采取的一些对策,以求对锅炉过热器 设备的完好运行有所裨益。 关键词:锅炉过热器爆管电网 1 前言 据统计,河北省南部电网锅炉各种事故约占发电厂事 故的63.2%,而承压部件泄漏事故又占锅炉事故的 86.7%。因此迫切需要大幅度降低锅炉临修次数。下面结 合微水电厂实际,分析过热器爆管泄漏的机理、原因及采 取的一些对策。

微水发电厂锅炉型号为HG-220/100-4,露天布置,固态排渣煤粉炉,四角切圆燃烧,过热器由辐射式炉顶过热器、半辐射屏式过热器、对流过热器和包墙管4部分组成。减温水采用给水直接喷入,分两级减温。炉顶管、包墙管和第二级过热器管用?38×4.5的20号碳钢管组成。第一级过热器和屏过热器用?42×5的12Cr1 MoV 钢管组成。 2 过热器爆管的主要原因 2.1 超温、过热和错用钢材 2.2 珠光体球化及碳化物聚集 针对12Cr1 MoV钢分析,试验表明当12Cr1 MoV钢严重球化到5级时,钢的室温强度极限下降约11kg/mm2。微水发电厂1993年4月过热器爆管的统计资料表明:因局部长期过热,珠光体耐热钢已达到了5级球化现象,而它的塑性水平仍然比较高。发生球化现象以后,钢

过热器爆管原因

过热器爆管的原因 1过热器爆管的直接原因 造成过热器、再热器爆管的直接原因有很多,主要可以从以下几个方面来进行分析。 1.1设计因素 1.热力计算结果与实际不符 热力计算不准的焦点在于炉膛的传热计算,即如何从理论计算上较合理的确定炉膛出口烟温和屏式过热器的传热系数缺乏经验,致使过热器受热面的面积布置不够恰当,造成 一、二次汽温偏离设计值或受热面超温。 2.设计时选用系数不合理 如华能上安电厂由B&W公司设计、制造的“W”型锅炉,选用了不合理的受热面系数,使炉膛出口烟温实测值比设计值高80~100℃;又如富拉尔基发电总厂2号炉(HG-670/140-6型)选用的锅炉高宽比不合理,使炉膛出口实测烟温高于设计值160℃。 3.炉膛选型不当 我国大容量锅炉的早期产品,除计算方法上存在问题外,缺乏根据燃料特性选择炉膛尺寸的可靠依据,使设计出的炉膛不能适应煤种多变的运行条件。 炉膛结构不合理,导致过热器超温爆管。炉膛高度偏高,引起汽温偏低。相反,炉膛高度偏低则引起超温。 4.过热器系统结构设计及受热面布置不合理 调研结果表明,对于大容量电站锅炉,过热器结构设计及受热面布置不合理,是导致一、二次汽温偏离设计值或受热面超温爆管的主要原因之一。 过热器系统结构设计及受热面布置的不合理性体现在以下几个方面: (1)过热器管组的进出口集箱的引入、引出方式布置不当,使蒸汽在集箱中流动时静压变化过大而造成较大的流量偏差。 (2)对于蒸汽由径向引入进口集箱的并联管组,因进口集箱与引入管的三通处形成局部涡流,使得该涡流区附近管组的流量较小,从而引起较大的流量偏差。引进美国CE公司技术设计的配300MW和600MW机组的控制循环锅炉屏再与末再之间不设中间混合集箱,屏再的各种偏差被带到末级去,导致末级再热器产生过大的热偏差。如宝钢自备电厂、华能福州和大连电厂配350MW机组锅炉,石横电厂配300MW机组锅炉以及平坪电厂配600MW机组锅炉再热器超温均与此有关。 (3)因同屏(片)并联各管的结构(如管长、内径、弯头数)差异,引起各管的阻力系数相差较大,造成较大的同屏(片)流量偏差、结构偏差和热偏差,如陡河电厂日立850t/h 锅炉高温过热器超温就是如此。 (4)过热器或再热器的前后级之间没有布置中间混合联箱而直接连接,或者未进行左右交叉,这样使得前后级的热偏差相互叠加。 在实际运行过程中,上述结构设计和布置的不合理性往往是几种方式同时存在,这样

火电厂超温爆管实例分析

超温爆管实例分析 锅炉承压部件的安全运行对整个电厂的安全至关重要。文章结合微水电厂实际,分析了过热器爆管泄漏的机理、原因及实际采取的一些对策,以求对锅炉过热器设备的完好运行有所裨益。 1 前言 据统计,河北省南部电网锅炉各种事故约占发电厂事故的63.2%,而承压部件泄漏事故又占锅炉事故的86.7%。因此迫切需要大幅度降低锅炉临修次数。下面结合微水电厂实际,分析过热器爆管泄漏的机理、原因及采取的一些对策。 微水发电厂锅炉型号为HG-220/100-4,露天布置,固态排渣煤粉炉,四角切圆燃烧,过热器由辐射式炉顶过热器、半辐射屏式过热器、对流过热器和包墙管4部分组成。减温水采用给水直接喷入,分两级减温。炉顶管、包墙管和第二级过热器管用φ38×4.5的20号碳钢管组成。第一级过热器和屏过热器用φ42×5的12Cr1 MoV钢管组成。 2 过热器爆管的主要原因 2.1 超温、过热和错用钢材 2.2 珠光体球化及碳化物聚集 针对12Cr1 MoV钢分析,试验表明当12Cr1 MoV钢严重球化到5级时,钢的室温强度极限下降约11kg/mm2。微水发电厂1993年4月过热器爆管的统计资料表明:因局部长期过热,珠光体耐热钢已达到了5级球化现象,而它的塑性水平仍然比较高。发生球化现象以后,钢的蠕变极限和持久强度下降。通过580℃下对12Cr1 MoV钢的持久爆管试验,可以看出到了球化4级的钢管,其持久强度降低1/3。影响珠光体耐热钢发生球化的因素主要有温度、时间、应力和钢材的化学成份等。在钢中掺入“V”这种强碳化物元素,可以阻碍珠光体的球化过程,只要能形成稳定的碳化物,则球化过程减速。 通过对12Cr1 MoV管试验发现,温度在540℃时,随着运行时间的增加,钢的工作温度下蠕变极限和持久强度也相应降低。随着运行温度的提高、时间的延长、应力的变化都会加速合金元素的固溶体和碳化物间的重新分配现象。 2.3 焊接质量

工业锅炉过热器过烧爆管原因及预防

工业锅炉过热器过烧爆管原因及预防 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

工业锅炉过热器过烧爆管原因及预防1前言 锅炉的过热器是较易出现故障的部位,而大部分故障是因为过热器过烧而引起的泄漏、爆管。 工业锅炉过热器蒸汽温度一般不大于400℃,所以过热器蛇形管一般布置在锅炉炉膛出口处,属对流换热式过热器,其材料为20g钢,应用合金钢的较小,20g钢在设计壁450℃范围之内,使用寿命在10万小时以上,但在实际运行中,因为多方面原因的影响引起过热器管壁温度超过设计值,使其预期寿命大大缩短,严重时不到一个月便使之过烧破坏,极大地影响锅炉安全经济运行。本文结合笔者多年实践探讨引起过热器过烧的原因并且提出预防措施。 2原因分析 2.1过热器管内积垢积盐是引起过热器管过烧的首要原因 大多数过热器管过烧都是由于管内积垢积盐引起。由于给水,锅水处理不当,排污不当,造成锅内水大量含盐、含碱;锅炉运行过程中锅炉负荷太大,汽压突降,水位控制过高,汽水分离器效果差,使锅水中大量

盐类物质随饱和汽进入过热器管中;或者煮炉过程特别是煮炉换水清洗时,大量高碱度煮炉药液进入过热器。在过热器管内温度环境下,所有进入过热器中的盐碱类物质,附着在管内壁形成较硬、大部分可溶解在盐垢混合物。这种高热阻的混合物,阻碍蒸汽吸收热量,对过热器管来说,蒸汽不能有效降低管壁温度,如果该混合物达到一定厚度,使管壁温度超过设计壁温,长时间超温,即可使管子遭到破坏。这种原因引起的爆管,通常使爆破管径变粗,外壁有明显纵向裂纹并且断口粗糙。 (1)给水、锅水处理不当,使过热器管内积盐积垢。工业锅炉给水或补给水一般采用软化水,即使用钠离子交换剂软化原水,降低入炉水硬度。如果钠离子交换树脂再生后,正洗不彻底,残余再生剂使软化水含盐大增,进入锅炉后使锅水大量含盐。或者锅内加药,排污不当使锅水含盐含碱过高。而锅水含盐含碱过高超过临界值时,汽包水容积中含汽增多,自由水面上泡沫增厚,减少了蒸汽空间的实际高度,飞溅的锅水被蒸汽大量带走。蒸汽通过过热器时,携带的锅水中的盐碱物质便附着在过热器管内壁上。 (2)锅炉水位控制不高,负荷太大或汽压突降使过热器管内积盐积垢。锅炉运行时,水位控制过高,便减小了汽包内蒸汽空间高度,当蒸汽空间较小时,大量飞溅的锅水被蒸汽带入过热器管中,锅炉负荷太大,超过临界负荷值(根据锅炉结构,运行工况每台炉都有其临界负荷值),汽包内汽水混合物质穿出水面时速度大大增加,锅水飞溅量增多,同时

省煤器中的问题

省煤器设计中的问题 一、省煤器的作用及种类 1.1省煤器的作用 省煤器是汽水系统中的承压部件,其任务是利用锅炉尾部烟气的热量加热锅炉给水。锅炉采用省煤器后,会带来以下好处: a.节省材料。 在现代锅炉中,燃料燃烧生成的高温烟气,虽经水冷壁,过热器和再热器的吸热,但其温度还很高,如直接排入大气,将造成很大的热损失。在锅炉尾部装设省煤器后,利用给水吸收烟气热量,可降低排烟温度,减少排烟热损失,提高锅炉效率,因而节省燃料。省煤器的名称也就由此而来。 b.改善了汽包的工作条件。 由于采用省煤器,提高了进入汽包的给水温度,减少了汽包壁与进水之间的温度差,也就减少了因温度差而引起的热应力。从而改善了汽包的工作条件,延长了使用寿命。c.降低了锅炉造价。 由于给水进入蒸发受热面之前,先在省煤器中加热,这样减少了水灾蒸发受热面中的吸热量。这就由管径较小、管壁较薄、价格较低的省煤器受热面代替了一部分管径较大、管壁较厚、价格较高的蒸发受热面,从而降低了锅炉造价。 因此,省煤器已是现代锅炉中不可缺少的部件。 1.2省煤器的种类 省煤器按使用材料可分为铸铁省煤器和钢管省煤器。铸铁省煤器强度低,不能承受高压,但耐磨耐腐蚀性较好,通常用在小容量锅炉上。目前,大容量锅炉广泛采用钢管省煤器,其优点是强度高,能承受冲击,工作可靠;同时传热性能好,重量轻,体积小,价格低廉。缺点是耐磨耐腐蚀性较差。 二、钢管式省煤器 1,钢管式省煤器的结构 钢管式省煤器结构是由许多并列的管径为42~51mm蛇形管与进、出口联箱组成。为使省煤器受热面结构紧凑,应力求减少管间距。省煤器管束的纵向节距s2受管子的最小弯曲半径的限制。当管子弯曲时,弯头的外侧管壁将变薄。弯曲半径愈小,外壁就愈薄,管壁强度降低的就愈多。通常,采用错列布置时,采用s1/d=2~2.5,s2/d=1~1.5;采用顺列布置时,s1/d=2~2.5,s2/d=2。 为便于检修,省煤器组的高度是有限制的。当管子为紧密布置(s2/d≤1.5)时,管组的高度不得大于1m;布置教稀时,则不得大于1.5m。如果省煤器受热面较多,沿烟气行程的高度较大时,就应将它分成几个管组。管组之间留有高度不小于600~800mm的空间。省煤器和其相邻的空气预热器间的空间高度应不小于800~1000mm,以便进行检修和清除受热面上

一台锅炉过热器爆管事故的原因分析及改进措施(最新版)

一台锅炉过热器爆管事故的原因分析及改进措施(最新版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0672

一台锅炉过热器爆管事故的原因分析及改 进措施(最新版) 某厂1991年11月安装了两台SGL20—1.25/250—AⅡ型锅炉。投入运行后,其中一台2#炉在短短两年多的时间内发生了三次过热器爆管事故。 1事故经过 第1次爆管发生在1993年初。停炉检修时只是更换了全部38 根过热器管后,于1993年11月重新投入运行。 第2次爆管发生在1994年1月29日。当时有4根过热器管发生爆管,位置为右数第6、7、8、33根。累计运行时间为913小时。爆管后作了宏观检查。在更换了24根过热器管并清理了百页窗式汽水分离器后,于1994年2月23日恢复了运行使用。 第3次爆管发生1994年3月12日,右数第7根过热器管爆管,

累计运行时间仅400小时。事后作了宏观和金相检查。 对后两次爆管进行宏观和金相检查,发现存在以下两种典型破口: ①因管内被杂物堵塞而产生的短时超温爆管第二次爆管中右数第33根,爆破口位于弯管圆弧内侧。长21mm,宽4.5mm。破口边缘锋利呈刃状。破口附近产生鼓疱,尺寸为12×23.5×4(mm)。管子胀粗明显。具有典型的韧性断裂特征。为短时超温爆管。管内有深红色砖样异物,已将管子完全堵塞。 ②因管内集积盐垢而产生的长时超温爆管如:第二次爆和中右数第8根。破口距管子弯曲起点28mm,破口长27mm宽6mm。破口处鼓疱凸起8mm,破口边缘厚0.6mm左右。两侧有大量平行于爆破口的裂纹,分布于60~43mm范围内的管外壁上。管子直径由φ38mm胀粗至φ40mm。靠近破口附近有80mm长的一段胀粗至φ42mm。从管子横断面观察,管内附着盐垢,厚度为1.5~3mm不等。又如:第三次爆管的右数第7根,爆破口距管子弯曲起点56mm,长13mm、宽0.7mm。破口处鼓疱凸起1.5mm,管内存在大量黑色粉末。该粉末遇水后滑腻

一台锅炉过热器爆管事故的原因分析及改进措施(2020年)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 一台锅炉过热器爆管事故的原 因分析及改进措施(2020年) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

一台锅炉过热器爆管事故的原因分析及改 进措施(2020年) 某厂1991年11月安装了两台SGL20—1.25/250—AⅡ型锅炉。投入运行后,其中一台2#炉在短短两年多的时间内发生了三次过热器爆管事故。 1事故经过 第1次爆管发生在1993年初。停炉检修时只是更换了全部38根过热器管后,于1993年11月重新投入运行。 第2次爆管发生在1994年1月29日。当时有4根过热器管发生爆管,位置为右数第6、7、8、33根。累计运行时间为913小时。爆管后作了宏观检查。在更换了24根过热器管并清理了百页窗式汽水分离器后,于1994年2月23日恢复了运行使用。 第3次爆管发生1994年3月12日,右数第7根过热器管爆管,

累计运行时间仅400小时。事后作了宏观和金相检查。 对后两次爆管进行宏观和金相检查,发现存在以下两种典型破口: ①因管内被杂物堵塞而产生的短时超温爆管第二次爆管中右数第33根,爆破口位于弯管圆弧内侧。长21mm,宽4.5mm。破口边缘锋利呈刃状。破口附近产生鼓疱,尺寸为12×23.5×4(mm)。管子胀粗明显。具有典型的韧性断裂特征。为短时超温爆管。管内有深红色砖样异物,已将管子完全堵塞。 ②因管内集积盐垢而产生的长时超温爆管如:第二次爆和中右数第8根。破口距管子弯曲起点28mm,破口长27mm宽6mm。破口处鼓疱凸起8mm,破口边缘厚0.6mm左右。两侧有大量平行于爆破口的裂纹,分布于60~43mm范围内的管外壁上。管子直径由φ38mm胀粗至φ40mm。靠近破口附近有80mm长的一段胀粗至φ42mm。从管子横断面观察,管内附着盐垢,厚度为1.5~3mm不等。又如:第三次爆管的右数第7根,爆破口距管子弯曲起点56mm,长13mm、宽0.7mm。破口处鼓疱凸起1.5mm,管内存在大量黑色粉末。该粉末遇水后滑腻

相关文档
最新文档