超燃冲压发动机总体化性能分析_张旭

超燃冲压发动机总体化性能分析_张旭
超燃冲压发动机总体化性能分析_张旭

航空发动机研制难点

航空发动机研制难点 目前,在各行各业众多工业产品中,能够称得上是“工业王冠”的大概只有喷气航空发动机和微电子芯片了。“工业王冠”不单单反应的是喷气式航空发动机在技术层面的研制难度,也不仅仅说明了航空发动机在飞机设计中属于“心脏”一样的核心地位,更说明了在国家发展过程中航空发动机如同“王权”一般高端的战略位置。但是我国偏偏在航空发动机研制过程中,长期处于“慢性心脏病”的状态,在追求“工业王权”的过程中,长期处于“知其然,不知其所以然”的境地。不过,在对航空发动机研制客观规律进行总结和对于国家发展有了更深层次的认识之后,我国在当今航空发动机技术发展的战略机遇期,不仅可以与航空强国齐头并进,还要创立属于中华民族的“动力王朝”。 现代涡扇发动机结构极其复杂,图为GE90大涵道比涡扇发动机结构剖视图 采用三维气动算法进行理论计算的压气机叶片 如何组织燃料高效的燃烧而又不伤及自身,是燃烧室设计的核心问题 带有冷却孔的涡轮叶片,采用了激光熔接技术,号称是世界上最难制造的零件之一。 我国直到上世纪八十年代才开始的高推比核心机预研计划F119-PW-100堪称是世界第一发动机,可是只是美国第四代核心机的衍生产品而已,后面还有三代…… 用于民航的大涵道比涡扇发动机,我国目前在这个领域没有自己的发动机型号。 精心雕琢的工业王冠 喷气式航空发动机的性能优势是建立在精巧的连续回旋转子结构上的,其研制难点也基本围绕这一个核心展开。现代飞机不断提高的战术技术指标对航空发动机提出了非常高的要求。高温、高压、高转速而又要求高可靠性、耐久性和维护性是其基本特点。在这些高而又相互矛盾的要求的推动促进下,航空发动机经过长时间的发展已经成为人类有史以来最复杂最精密的工业产品。 压气机的作用是利用来自涡轮的能量对发动机进气进行压缩和增温。一方面提高了进气分子活跃程度,更有利于提高燃烧效率。另外一方面,增加了单位体积内的氧气含量,因为大气尤其是高空大气的单位体积含氧量太低,远小于燃烧室中的燃油充分燃烧所需的耗氧量。压气机的主要设计难点在于要保证效率、增压比和喘振裕度这三大主要性能参数满足发动机的设计要求。一个世纪以来,伴随着气动热力学、计算流体力学的发展.压气机的设计水平在逐年提高。20世纪初采用螺旋桨理论设计压气机叶片,二十年代开始采用孤立叶形理论,三十年代中期开始采用叶栅设计理论,五十年代开始用二维设计技术,七十年代开始建立准三维设计体系,九十年代以来,航空界开始使用三维粘性流场分析设计体系对压气机进行设计。压气机设计理论、计算模型和设计系统在基础理论科研推动下不断进步跨越。即便是有先进的计算机辅助设计手段,如果基础科研理论没有进步,也无法在高性能压气机领域取得突破。由于压气机的逆压梯度相当大、需要对空气流场、温度场和压力场进行详尽的

航空发动机试验测试技术

航空发动机试验测试技术 航空发动机是当代最精密的机械产品之一,由于航空发动机涉及气动、热工、结构与 强度、控制、测试、计算机、制造技术和材料等多种学科,一台发动机内有十几个部件和 系统以及数以万计的零件,其应力、温度、转速、压力、振动、间隙等工作条件远比飞机 其它分系统复杂和苛刻,而且对性能、重量、适用性、可靠性、耐久性和环境特性又有很 高的要求,因此发动机的研制过程是一个设计、制造、试验、修改设计的多次迭代性过程。在有良好技术储备的基础上,研制一种新的发动机尚要做一万小时的整机试验和十万小时 的部件及系统试验,需要庞大而精密的试验设备。试验测试技术是发展先进航空发动机的 关键技术之一,试验测试结果既是验证和修改发动机设计的重要依据,也是评价发动机部 件和整机性能的重要判定条件。因此“航空发动机是试出来的”已成为行业共识。 从航空发动机各组成部分的试验来分类,可分为部件试验和全台发动机的整机试验, 一般也将全台发动机的试验称为试车。部件试验主要有:进气道试验、压气机试验、平面 叶栅试验、燃烧室试验、涡轮试验、加力燃烧室试验、尾喷管试验、附件试验以及零、组 件的强度、振动试验等。整机试验有:整机地面试验、高空模拟试验、环境试验和飞行试 验等。下面详细介绍几种试验。 1进气道试验 研究飞行器进气道性能的风洞试验。一般先进行小缩比尺寸模型的风洞试验,主 要是验证和修改初步设计的进气道静特性。然后还需在较大的风洞上进行l/6或l/5的 缩尺模型试验,以便验证进气道全部设计要求。进气道与发动机是共同工作的,在不同状 态下都要求进气道与发动机的流量匹配和流场匹配,相容性要好。实现相容目前主要依靠 进气道与发动机联合试验。 2,压气机试验 对压气机性能进行的试验。压气机性能试验主要是在不同的转速下,测取压气机特性 参数(空气流量、增压比、效率和喘振点等),以便验证设计、计算是否正确、合理,找出 不足之处,便于修改、完善设计。压气机试验可分为: (1)压气机模型试验:用满足几何相似的缩小或放大的压气机模型件,在压气机试验台上按任务要求进行的试验。 (2)全尺寸压气机试验:用全尺寸的压气机试验件在压气机试验台上测取压气机特性,确定稳定工作边界,研究流动损失及检查压气机调节系统可靠性等所进行的试验。 (3)在发动机上进行的全尺寸压气机试验:在发动机上试验压气机,主要包括部件间的匹配和进行一些特种试验,如侧风试验、叶片应力测量试验和压气机防喘系统试验等。 3,燃烧室试验 在专门的燃烧室试验设备上,模拟发动机燃烧室的进口气流条件(压力、温度、流量) 所进行的各种试验。主要试验内容有:燃烧效率、流体阻力、稳定工作范围、加速性、出 口温度分布、火焰筒壁温与寿命、喷嘴积炭、排气污染、点火范围等。 由于燃烧室中发生的物理化学过程十分复杂,目前还没有一套精确的设计计算方法。因此,燃烧室的研制和发展主要靠大量试验来完成。根据试验目的,在不同试验器上,采 用不同的模拟准则,进行多次反复试验并进行修改调整,以满足设计要求,因此燃烧室试 验对新机研制或改进改型是必不可少的关键性试验。

太行航空发动机总体设计方案

一·本型航空发动机的应用领域 舰载机是以航空母舰或其他军舰为基地的海军飞机。用于攻击空中、水面、水下和地面目标,并遂行预警、侦察、巡逻、护航、布雷、扫雷和垂直登陆等任务。它是海军航空兵的主要作战手段之一,是在海洋战场上夺取和保持制空权、制海权的重要力量。舰载机能适应海洋环境。普通舰载机一般在6级风、4~5级浪的海况下,仍能在航空母舰上起落。舰载机能远在舰炮和战术导弹射程以外进行活动;借助母舰的续航力,可远离本国领土,进入各海洋活动。舰载歼击机多兼有攻击水面、地面目标的能力,舰载强击机(攻击机)多兼有空战能力,以充分发挥有限数量舰载机的最大效能。舰载飞机的起落和飞行条件比陆上飞机恶劣,因此舰载飞机应有良好的起飞性能、较低的着陆速度、良好的低速操纵性。驾驶舱的视野开阔,在母舰和飞机上还装有特殊的导航设备,便于驾驶员对准甲板跑道。为了少占甲板面积和便于在舰上机库存储器放,多数舰载飞机的机翼在停放时可以向上折叠,有的垂尾和机头也可以折转。此外,海水和潮湿的环境容易使飞机机体、发动机和机载设备严重腐蚀,飞机要有较好的防腐蚀措施。

二·航空发动机的性能设计指标 推力:15000daN 单位推力:20daN·s/kg 重量:150kg 推重比:10 耗油率:0.4kg/(h·N) 总压比:36 涡轮前温度:1800K 整机效率:50% 设计寿命:24000h 三·航空发动机的结构形式 3.1压气机 采用传统的小涵道比涡轮风扇发动机。涡轮风扇发动机有内外两

个涵道,它的外涵风扇处于飞机进气道内,可以在跨声速或超声速飞行时工作,较之于螺浆发动机具有效率高的优点。涡扇发动机与涡喷发动机相比,它具有较高的推进效率与较大的推力。而且采用涡轮风扇发动机后,为提高热效率而提高涡轮前温度不会给推进效率带来不利影响。而且外涵道的冷空气可以在涡轮部位形成冷空气薄膜,降低涡轮前高温燃气对涡轮的损害。而且外涵道空气与涡轮后燃气相掺混,有利于增加推力并降低噪音。下面对主要部件进行阐述。 压气机依然选用轴流式压气机。空气在轴流式是压气机中的流动方向大致平行工作轮轴,采用此中压气机的优点是其流动使其在结构上容易组织多级压缩,以没一级都较低的整压压力比获得较高的压气机总增压压力比。每级的增压压力i1.15-1.35之间,使得空气流经每级叶片通道时无需急剧的改变方向,减少流动损失,因而压气机效率高。特别在大流量是,轴流式压气机较其他种类的压气机更容易获得较高的压气机效率,可达90%左右,多级轴流式压气机还具有大流量,高效率,小迎风面的优点。 采用鼓盘式转子,兼顾鼓式转子的抗弯刚性和盘式转子的承受大离心载荷的能力,具体为混合式鼓盘转子,采用这种形式的转

先进航空发动机关键制造技术研究

ARTICLES 学术论文 引言 航空发动机的设计、材料与制造技术对于航空工业的发展起着关键性的作用,先进的航空动力是体现一个国家科技水平、军事实力和综合国力的重要标志之一。随着航空科技的迅速发展,面对不断提高的国防建设要求,航空发动机必须满足超高速、高空、长航时、超远航程的新一代飞机的需求。 近年来,航空工业发达国家都在研制高性能航空发动机上投入了大量的资金和人力,实施一系列技术开发和验证计划,如“先进战术战斗机发动机计划(ATFE )”、“综合高性能涡轮发动机技术(IHPTET )计划”及后续的VAATE 计划、英法合作军用发动机技术计划(AMET )等。在这些计划的支持下,美国的F119、欧洲的 EJ200、法国的M88和俄罗斯的AL-41F 等推重比10 一级发动机陆续问世。 为了提高发动机的可靠性和推力,先进高性能发动机采用了大量新材料,且结构越来越复杂,加工精度要求越来越高,对制造工艺提出了更高的要求。而且,在新一代航空发动机性能的提高中,制造技术与材料的贡献率为 50%~70%,在发动机减重方面,制造技术和材料的贡献率占70%~80%,这也充分表明先进的材料和工艺是航空发动机实现减重、增效、改善性能的关键。 1 航空发动机的材料、结构及工艺特点 在提高发动机可靠性和维护性的同时,为了提高发动机的推力和推重比,航空发动机普遍采用轻量化、整体化结构,如整体叶盘、叶环结构。钛合金、镍基高温合金,以及比强度高、比模量大、抗疲劳性能好的树脂基复合材 先进航空发动机关键制造技术研究 黄维,黄春峰,王永明,陈建民 (中国燃气涡轮研究院,四川 江油 621703) Key manufacturing technology research of advanced aero-engine HUANG Wei ,HUANG Chun-feng ,WANG Yong-ming ,CHEN Jian-min (China Gas Turbine Establishment ,Jiangyou 621703,China ) Abstract :This paper describes the features of aero-engine material ,structure and technology ,and then ,development status and trend of key manufacturing technology for advanced aero-engine was analyzed. Finally ,the development of advanced aero-engine manufacturing technology in China is introduced and some proposals are put forward. Key Words : aero-engine ,manufacturing ,summarization 作者简介: 黄维(1982—),男,四川仁寿人,中国燃气涡轮研究院助理工程师,主要从事工艺技术研究。E-mail :huangwei611@https://www.360docs.net/doc/ab11954794.html,

超燃冲压发动机的热防护技术

中国矿业大学电力工程学院 制冷设备技术进展报告 姓名: 班级: 学号:

超燃冲压发动机的热防护技术 摘要热防护技术是发展高超音速的关键技术之一。本文综合近年来高超音速飞行器中发动机的冷却方式的进展,对超燃冲压发动机的热防护技术进行简单介绍,并对未来有应用趋势的技术简述。 关键字:超燃冲压再生冷却闭式循环 飞行速度超过5倍声音速度的叫做“高超声速飞行器”[1]。高超声速飞行器有两大类,一类是在稠密大气层中较长时间飞行的“高超声速巡航飞行器”,主要有目前尚在研究发展阶段的,以超声速燃烧冲压发动机为动力的“空天飞机”和“高超声速巡航导弹”等;另一类是由火箭发动机发射到外层空间再返回地球的“再入航天器”(包括弹道式中远程导弹弹头,返回式卫星,宇宙飞船和航天飞机等)。 超燃冲压发动机是高超声速飞行的理想动力装置,结构简单、质量轻、成本低、易维护、超声速飞行时性能好,具有高比冲、高速度和大巡航推力的特性,适宜在大气层或跨大气层中长时间超声速或高超声速动力续航飞行[2]。但是由于其工作环境极其恶劣,一般在高马赫数下飞行,飞行过程中高温空气不断向壁面传热,为了保证发动机长时间安全正常运行,维持适宜的电子元器件工作环境,所以研究超燃冲压发动机的热防护技术十分必要[3]。 超燃冲压发动机的热防护技术按原理和冷却方式分为三种:被动式、半被动式和主动式。被动式是指采用轻质的耐烧蚀隔热材料对冷却结构进行热防护,热量被吸收或者是直接辐射出去;主动式是指利用低温冷却介质进行防护,全部热量或绝大部分被工作介质带走,主要包括发散冷却、对流冷却和气膜冷却;半被动式是指大部分热量由工作流体带走,主要有两种结构方式,热管理结构和烧蚀结构。 被动式涉及的防护与材料联系及其密切,局限性就是防护时间不宜过长,不涉及我们制冷原理。半被动式适用于高热流长时间使用要求,有图1,热量被工作介质由高温区传至低温区,通过对流和辐射进行冷却放热。 图1 1.主动式: 主动式中对流冷却方式应用于主体发动机喷管,如图2所示,主要是通过热量传递给冷却介质、冷却介质受热带走热量而达到冷却效果的。

航空发动机整机的性能方案设计

航空发动机整机的性能方案设计 对于一款民用航空发动机来说,最重要的是什么?安全!省油!安!全!省!油!重要的话说三遍!正如有国外专家说的那样:民用发动机必须足够安全、足够省油,否则就是白给航空公司,人家也不要。 “丈母娘择婿指南” 那么大家说了,你就造个最安全、最省油的,很难吗?我们先不涉及制造、装配,仅谈一谈整机的性能设计问题。一款民用航空发动机要想和心目中的飞机搭伙过日子,就得首先被航空公司挑中。与中国大妈挑女婿的标准类似,能被选中的发动机也要满足以下几点要求:力气大(高推力)、吃得少(省油)、不要动不动就撂挑子(安全性高),最好全年无休(可靠性高),有病不去医院吃个药片就能好(维修成本低),同时还要足够沉稳内敛(低噪声)、讲究卫生(污染物排放少)。下面,就让我们一起走近民用航空发动机,看看它是怎样从整机性能上勤修内功征服丈母娘的吧。

事情是这样的,在我们周围的空气里面,住着无数调皮的空气分子。根据脾气秉性的不同,又分为氮气分子、氧气分子、水分子等各种类型。这些分子就像被一杆子打散的桌球,时时刻刻处于不停的运动和相互碰撞中。当它们前进的方向上有东西挡路时,就狠狠地撞上去。遇上其它空气分子还好,大不了大家都改个方向继续往前跑。若遇到列队迎敌的固体分子们,那就是一个被立刻反射回来的下场。当然,此时铜墙铁壁的固体分子也被狠狠地撞了一下腰。 分子们个体太小,碰撞一下的力量当然也是不值一提的。但架不住数量太多,每时每刻都有数以亿亿亿计的分子撞上来。所以宏观来看,空气中的任何物体都会持续受到一个压力的作用,即气压P。“咦?我就算初中毕业也知道这个P 应该叫压强吧?!”没错,说起这个名称,那还真有个原因:发动机内部各个部件的表面积和各流道截面的面积一般是固定不变的,如果每次计算压力都用压强乘以面积那也太傻了,所以直接扔掉面积不管,压力就是压强了! 显然,这个压力的大小与单位时间内撞上来的分子个数成正比。同样数量的空气分子被塞到大小不同的箱子中,它们对箱壁的压力也会不同。箱子越大,分子们越稀疏,撞到同一块地方的分子就越少,压力也就越小。具体说来就是,压力P

中国超燃冲压发动机研究回顾

2008年8月第29卷 第4期 推 进 技 术 J OURNAL OF PRO PUL SI ON TECHNOLOGY Aug 2008 V ol 29 No 4 中国超燃冲压发动机研究回顾 * 刘兴洲 (北京动力机械研究所,北京100074) 摘 要:回顾了中国近年来在超燃冲压发动机领域的研究进展。首先是高超声速进气道的研究进展,包括高超声速进气道中激波与附面层干扰、起动和再起动、隔离段、进气道附面层抽吸、进气道通道内外压缩比、侧压式进气道、Buse m ann 进气道等。其次是超声速燃烧方面的研究及模型超燃冲压发动机研究。最后对研究工作进行了评述。 关键词:超燃冲压发动机;高超声速进气道;超声速燃烧;超燃冲压发动机试验 中图分类号:V 235 21 文献标识码:A 文章编号:1001 4055(2008)04 0385 11 * 收稿日期: 2008 01 09;修订日期:2008 03 06。 作者简介:刘兴洲(1933 ),男,工程院院士,研究领域为冲压发动机设计。 Revie w of scra m jet researc h i n Chi na LI U X i n g zhou (Be iji ng P o w er M ach i nery R esearch Inst .,Be iji ng 100074,China) Abstrac t : The scra m j e t research i n Chi na i n recent years i s rev ie w ed .F irstl y , stud i es for hyperson ic i n lets are re v ie w ed ,i nc l udi ng i ssues re lated to i nteracti on bet w een boundary and sho ck w av e i n hype rson i c i n l et ,unstarting /restarti ng phenom ena ,iso l a t o r ,boundary b l eeding f o r hypersonic inlet ,interna l/ex terna l compression rati o for inlet ,inlets w i th si dewa ll compression ,etc ..Second l y ,supe rson i c co m bustion research i s rev ie w ed .T hen ,i nvestigati on for scra m j e t eng i ne mode l is su mm ar i zed .F i na lly ,so m e co mments on the research wo rks a re g i ven . K ey word s : Scra m jet ;H yperson ic inlet ;Supersonic co m bustion ;Scra m jet test . 1 引 言 在中国的一些研究机构和高等学校进行了超燃冲压发动机的基础研究和模型超燃冲压发动机的研究。本文对中国在高超声速进气道、超声速燃烧和模型超燃冲压发动机研究等方面的工作作一简要回顾。 2 高超声速进气道的研究 2 1 激波/附面层干扰 通过求解二维N S 方程[1,2] ,对高超声速流中的激波/附面层干扰进行了数值研究,给出了入射斜激波在平直壁面引起湍流附面层分离的流动特征、分离点的反射激波、分离包引起的膨胀扇以及再附点的反射激波.计算的壁面压力分布与试验值吻合较好(见图1、图2)。 在三维管内激波/湍流附面层干扰流场的数值模拟中,对两方程湍流模型进行了可压缩性修正,计 F i g .1 M ach nu m ber d istribution in shock / boundary layer in teract i on area 算和试验结果比较表明,这一方法可以较准确地预测三维激波/湍流附面层干扰流动中激波结构和流动分离的基本特征。这些工作加深了对复杂流动现象的理解。 2 2 进气道的起动和再起动 对高超声速侧压式进气道模型不起动特性和再

航空发动机设计的总体强度

航空发动机设计的总体强度 众所周知,航空发动机是一种高温、高压、高转速的精密机械,那强度,必须刚刚的!!上一期的总体结构想必大家还念念不忘,本期借着结构的东风讲讲发动机的总体强度。 第一个问题,强度专业是干啥滴?通俗地讲,“大发”作为一个干得多吃得少的新时代好青年,没有一个强健的身体可不行呢,这个强健,既体现在普通意义的强度上面(抗拉抗弯还要抗扭),还体现在抗疲劳能力(怎么折腾都不坏)和抗打击能力(无知的小鸟呼啦啦地撞上来)等方方面面,总的来说,生活在 航空发动机这样一个地狱般的工作环境里,没有一副打不坏、耐力好、贼扛揍 的好身板是不行的。为了确保发动机方方面面的零组件都能符合这样变态的标准,我们的强度攻城狮们可谓是殚精竭虑。 今天,我们首先为大家介绍的是总体强度专业。 在国内,很少有总体强度这样一个概念,那总体强度是干什么的呢?其主要有三个方面:用洋文来说分别为Load, WEM and Rotor Dynamics。发动机行业内有句名言,载荷先行活看结构,这个载荷呢就是这里的Load;WEM作为一个 洋小伙,其全称为Whole Engine Model,凡是和整机模型相关的各种任务都 找他;最后一位就是本期的主角,RotorDynamics,转子动力学。 下面客官请听我娓娓道来。 1转子动力学的前生后世 为满足航空器日益增长的舒适性、经济性、高效率等要求,现代民用航空发动机被设计为带涡轮和压气机的旋转机械。为保障不同涡轮和压气机的工作性能,发动机主要采用双轴和三轴的结构布局,而转速往往达到每分钟几千(低压部件)或几万转(高压部件)。在这种严酷的工作条件下,发动机转子动力学设计就显得尤为重要了。 发动机转子动力学设计的优劣,直接影响着发动机整机振动的好坏与否。 如果将航空发动机拟化为一个人,涡轮、压气机、燃烧室等部件结构代表 着发动机的骨骼与肌肉,燃油和空气代表着食物与血液,性能等代表着物理特

航空发动机结构分析思考题答案

《航空发动机结构分析》 课后思考题答案 第一章概论 1.航空燃气涡轮发动机有哪些基本类型?指出它们的共同点、区别和应用。 答: 2.涡喷、涡扇、军用涡扇分别是在何年代问世的? 答:涡喷二十世纪三十年代(1937年WU;1937年HeS3B); 涡扇 1960~1962 军用涡扇 1966~1967 3.简述涡轮风扇发动机的基本类型。 答:不带加力,带加力,分排,混排,高涵道比,低涵道比。 4.什么是涵道比?涡扇发动机如何按涵道比分类? 答:(一)B/T,外涵与内涵空气流量比; (二)高涵道比涡扇(GE90),低涵道比涡扇(Al-37fn) 5.按前后次序写出带加力的燃气涡轮发动机的主要部件。 答:压气机、燃烧室、涡轮、加力燃烧室、喷管。 6.从发动机结构剖面图上,可以得到哪些结构信息? 答: a)发动机类型 b)轴数 c)压气机级数 d)燃烧室类型 e)支点位置 f)支点类型 第二章典型发动机 1.根据总增压比、推重比、涡轮前燃气温度、耗油率、涵道比等重要性能指标,指出各代涡喷、涡扇、军用涡扇发动机的性能指 标。 答:涡喷表2.1 涡扇表2.3 军用涡扇表2.2 2.al-31f发动机的主要结构特点是什么?在该机上采用了哪些先进技术? 答:AL31-F结构特点:全钛进气机匣,23个导流叶片;钛合金风扇,高压压气机,转子级间电子束焊接;高压压气机三级可调静

子叶片九级环形燕尾榫头的工作叶片;环形燃烧室有28个双路离心式喷嘴,两个点火器,采用半导体电嘴;高压涡轮叶片不带冠,榫头处有减振器,低压涡轮叶片带冠;涡轮冷却系统采用了设置在外涵道中的空气-空气换热器,可使冷却空气降温125-210*c;加力燃烧室采用射流式点火方式,单晶体的涡轮工作叶片为此提供了强度保障;收敛-扩张型喷管由亚声速、超声速调节片及蜜蜂片各16式组成;排气方式为内、外涵道混合排气。 3.ALF502发动机是什么类型的发动机?它有哪些有点? 答:ALF502,涡轮风扇。优点: ●单元体设计,易维修 ●长寿命、低成本 ●B/T高耗油率低 ●噪声小,排气中NOx量低于规定 第三章压气机 1.航空燃气涡轮发动机中,两种基本类型压气机的优缺点有哪些? 答:(一)轴流压气机增压比高、效率高单位面积空气质量流量大,迎风阻力小,但是单级压比小,结构复杂; (二)离心式压气机结构简单、工作可靠、稳定工作范围较宽、单级压比高;但是迎风面积大,难于获得更高的总增压比。 2.轴流式压气机转子结构的三种基本类型是什么?指出各种转子结构的优缺点。 答 3.在盘鼓式转子中,恰当半径是什么?在什么情况下是盘加强鼓? 答:(一)某一中间半径处,两者自由变形相等联成一体后相互没有约束,即无力的作用,这个半径称为恰当半径;(二)当轮盘的自由变形大于鼓筒的自由变形;实际变形处于两者自由变形之间,具体的数值视两者受力大小而定,对轮盘来说,变形减少了,周向应力也减小了;至于鼓筒来说,变形增大了,周向应力增大了。 4.对压气机转子结构设计的基本要求是什么? 答:基本要求:在保证尺寸小、重量轻、结构简单、工艺性好的前提下,转子零、组件及其连接处应保证可靠的承受载荷和传力,具有良好的定心和平衡性、足够的刚性。 5.转子级间联结方法有哪些 答:转子间:1>不可拆卸,2>可拆卸,3>部分不可拆部分可拆的混合式。 6.转子结构的传扭方法有几种?答: a)不可拆卸:例,wp7靠径向销钉和配合摩擦力传递扭矩; b)可拆卸:例,D30ky端面圆弧齿传扭; c)混合式:al31f占全了;cfm56精制短螺栓。 7.如何区分盘鼓式转子和加强的盘式转子? 答:P40 图3.6 _c\d 8.工作叶片主要由哪两部分组成 答:叶身、榫头(有些有凸台) 9.风扇叶片叶身凸台的作用是什么? 答:减振凸台,通过摩擦减少振动,避免发生危险的共振或颤振。 10.叶片的榫头有哪几种基本形式?压气机常用哪一种?答: a)销钉式榫头; b)枞树型榫头;

超燃冲压发动机

超燃冲压发动机科技名词定义 中文名称:超燃冲压发动机英文名称:scramjet engine 定义:燃料在超声速气流中进行燃烧的冲压发动机。应用学科:航空科技(一级学科);推进技术与航空动力装置(二级学科)以上内容由全国科学技术名词审定委员会审定公布 百科名片超燃冲压发动机超声速燃烧冲压式发动机,它简称超燃冲压发动机,可以在攀升过程中从大气里攫取氧气。放弃携带氧化剂,从飞行中获取氧气,节省重量,就意味着在消耗相同质量推进剂的条件下,超燃冲压发动机能够产生4倍于火箭的推力。 目录 概况简介 发展历史 主要特点 航空航天中的运用 主要类型双模态冲压发动机 双燃烧室冲压发动机 超燃组合发动机 超燃冲压发动机关健技术燃料的喷射、掺混、点火 燃烧室的设计 一体化设计 耐高温材料和吸热燃料 火焰保持器 热平衡 燃料的喷射 火焰特性描述 国内外研究现状及发展趋势俄罗斯 美国 法国 其他国家 发展趋势 发动机原理及工作过程超燃冲压发动机原理 展开概况简介 超燃冲压发动机是指燃料在超声速气流中进行燃烧的冲压发动机。在采用碳氢燃料时,超燃冲压发动机的飞行M数在8以下,当使用液氢燃料时,其飞行M数可达到6~25。超声速或高超声速气流在进气道扩压到位置4的较低超声速,然后燃料从壁面和/或气流中的突出物喷入,在超声速燃烧室中与空气混合并燃烧,最后,燃烧后的气体经扩张型的喷管排出。美国超然发动机 高超声速飞行器(飞行M数超过声速5倍的有翼和无翼飞行器)是未来军民用航空器的战略发展方向,被称为继螺旋桨、涡轮喷气推进飞行器之后航空史上的第三次革命。超燃冲压发动机是实现高超声速飞行器的首要关键技术,是目前世界各国竞相发展的热点领域之一。目前,国外发展较多的超燃冲压发动机包括亚燃/超燃双模态冲压发动机和亚燃/超燃双燃烧室冲压发动机。亚燃/超燃双模态冲压发动机是指发动机可以亚燃和超燃冲压两种模式工作的发动机。当发动机飞行M数大于6时,实现超音速燃烧,当马赫数低于6时。

2004 国外超燃冲压发动机技术的发展-胡晓煜

国外超燃冲压发动机技术的发展 2004-10-25 高超声速飞行器(飞行M数超过声速5倍的有翼和无翼飞行器)是未来军民用航空器的战略发展方向,被称为继螺旋桨、涡轮喷气推进飞行器之后航空史上的第三次革命。超燃冲压发动机是实现高超声速飞行器的首要关键技术,是目前世界各国竞相发展的热点领域之一。 国外超燃冲压发动机技术的发展已有50多年的历史。20世纪90年代,超燃冲压发动机技术取得了重大突破,目前已从概念和原理探索阶段进入了以飞行器为应用背景的先期技术开发阶段。预计,到2010年,以超燃冲压发动机为动力的高超声速巡航导弹将问世。到2025年,以超燃冲压发动机为动力的高超声速轰炸机和空天飞机将有可能投入使用。 本文将首先介绍超燃冲压发动机的基本概念、主要类型和性能特点,然后对各国超燃冲压发动机技术的研究进展和研究计划进行介绍,最后指出发展超燃冲压发动机的关键技术。 超燃冲压发动机的基本概念与主要特点 超燃冲压发动机是指燃料在超声速气流中进行燃烧的冲压发动机。在采用碳氢燃料时,超燃冲压发动机的飞 行M数在8以下,当使用液氢燃料时,其飞行M数可达到6~25。超声速或高超声速气流在进气道被扩压到较低超声速,然后燃料从壁面和/或气流中的突出物喷入,在超声速燃烧室中与空气混合并燃烧,最后,燃烧后的气体经扩张型的喷管排出。 超燃冲压发动机具有结构简单、重量轻、成本低、比冲(单位质量流量推进剂产生的推力)高和速度快的优点。与火箭发动机相比,超燃冲压发动机无需携带氧化剂,因此,有效载荷更大,适用于高超声速巡航导弹、高超声速航空器、跨大气层飞行器、可重复使用的空间发射器和单级入轨空天飞机的动力。 超燃冲压发动机的主要类型 经过多年的发展,国外已研究设计过多种超燃冲压发动机的方案。主要包括普通超燃冲压发动机、亚燃/超燃双模态冲压发动机、亚燃/超燃双燃烧室冲压发动机、吸气式预燃室超燃冲压发动机、引射超燃冲压发动机、整体式火箭液体超燃冲压发动机、固体双模态冲压发动机和超燃组合发动机等。其中,双模态冲压发动机和双燃烧室冲压发动机是研究最多的两种类型。 (1)亚燃/超燃双模态冲压发动机 亚燃/超燃双模态冲压发动机是指发动机可以亚燃和超燃冲压两种模式工作的发动机。当发动机的飞行M数低于6时,在超燃冲压发动机的进气道内产生正激波,实现亚声速燃烧;当M数大于6时,实现超声速燃烧,使超燃冲压发动机的M数下限降到3,扩展了超燃冲压发动机的工作范围。 目前,美国、俄罗斯都研究了这种类型的发动机,俄罗斯多次飞行试验的超燃冲压发动机就是这种类型的发动机。NASA即将进行飞行试验的也是这种类型的发动机。这种超燃冲压发动机可用于高超声速的巡航导弹、无人驾驶飞机和有人驾驶飞机。 (2)亚燃/超燃双燃烧室冲压发动机 对于采用碳氢燃料的超燃冲压发动机来说,当发动机在M3~4.5范围工作时,会发生燃料不易着火的问题。为解决这一问题,人们提出了亚燃/超燃双燃烧室冲压发动机概念。这种发动机的进气道分为两部分:一部分引导部分来流进入亚声速燃烧室,另一部分引导其余来流进入超声速燃烧室。突扩的亚声速燃烧室起超燃燃烧室点火源的作用,使低M数下燃料的热量得以有效释放。由于亚燃预燃室以富油方式工作,不存在亚燃冲压在贫油条件下的燃烧室-进气道不稳定性。这种方案技术风险小,发展费用较低,较适合巡航导弹这样的一次性使用的飞行器。目前,掌握该技术的主要是美国霍布金斯大学的应用物理实验室。 (3)超燃组合发动机

超燃冲压发动机燃烧效率评价方法

超燃冲压发动机燃烧效率评价方法 摘要:超燃冲压发动机是未来快速飞行器的心脏,是目前世界各国正投入巨大精力研究的科研制高点。在评估发动机和燃烧室的各项性能时,燃烧效率是评价的重要性能指标之一。本文针对这一性能指标,将介绍几种评价超燃冲压发动机燃烧效率的方法:氢燃料特征原子团光谱辐射强度测量换算氢燃料燃烧效率的方法,探针取样组份分析方法、一维流动参数评估方法。在这些燃烧效率计算方法中涉及燃烧学的基本知识。在介绍这些评价燃烧效率的方法时,本文还将对这种方法做简单评价,并学习它们解决问题的思路。 关键词:超燃冲压发动机、燃烧效率、一维评价方法 超燃冲压发动机简单地说就是燃料在超声速气流中进行燃烧的冲压发动机。 ,其飞行速度一般都在马赫5以上,以美国X-51高超声速飞行器为例,其飞行速度达到马赫数6。但从速度来讲,高超声速飞行器在国防和军事领域将有很好的发展前景,可以应用于高超声速导弹和空天飞机,这也是为什么如今有实力的世界大国都在争先发展这种 飞 行 器的 主 要原 因 。 图 1高超声速导弹 超燃冲压发动机属于冲压发动机范畴。与一般的冲压发动机不同的是发动机进气前与进气后其气流都维持在5马赫的高超音速以上。而一般的冲压发动机则需要把气流减速增压。但气流速度一旦达到了5马赫的高超音速以上时, 气流减速增压所带来的高压强高温度会超过发动机材料承受极限。所以解决最好的办法就是以高超音速吸气后经过燃烧后马上高超音速喷出。这样发动机内滞留的静压静温就不会威胁发动机正常运作。当然要在这种速度下正常飞行,也是有很大的难度的,目前而言,困难主要集中在两个方面:一是点火困难,在高超音速中添加燃料并点火无异于在龙卷风中点燃一根火柴;二是飞行器热防护问题,在Ma>5时,飞行器将受到空气急剧地加热效应,这种加热是一般材料承受不了的,因此,高温条件下的主动热防护成为研究的关键之一。 对于超燃冲压发动机的研究,前人已经做了很多工作。在对超燃冲压发动机及其燃烧室的研究过程中,对其性能的评价是非常重要的工作。在评估发动机和燃烧室的各项性能时,燃烧效率是评价的重要性能指标之一。在这方面,人们也做了很多研究,取得了丰硕的成果。燃烧效率不能直接测量,需要通过一些测量的参数经过处理换算求出。经过多年研究,燃烧效率的评估方法不断得到完善,目前,各国研究中常

航空发动机性能仿真设计

航空发动机性能仿真 1、概述 发动机是飞行器的心脏,其性能对飞行器的发展有着至关重要的影响。传统的发动机总体设计,主要通过对原准机的研究和改进,并在详细设计中对各种部件性能试验和地面台架试车、高空模拟试验、飞行试验等整机试验来预测其性能,研制周期较长。 随着飞行器研制速度加快,传统设计模式已不能满足快速设计验证的要求。自上世纪80年代中后期,欧美航空行业开始推行数字化研发体系,分别推出NPSS和VIVACE计划,旨在通过建立航空发动机协同开发平台,来减少发动机的研发周期和成本。PROOSIS是2007年结束的VIVACE计划的重要成果之一。它是一款面向对象的飞行器动力系统性能仿真软件,具有完善的动力系统零部件模型库,可用于各类航空发动机系统的建模仿真分析。

2、PROOSIS的优点 丰富、开放并支持自定义的多学科模型库 PROOSIS包含多个领域的组件库,各组件的源代码完全开放,用户不仅可以修改这些代码,也可以自定义特殊组件;因此,用户既可以应用软件自带的组件构建发动机系统,也可以通过继承或重新定义的方式创建特殊的组件来构建发动机系统。

完美的多学科耦合分析 可以在同一个模型中综合分析控制、机械、电气、液压等耦合状况;从而使得用户可以将发动机的热力循环过程、控制系统、燃油和冷却系统的液力过程、电气系统等综合在同一个模型中进行综合分析,并能够将发动机模型嵌入到飞控模型中分析其性能对整个飞机的影响。 无需因果逻辑的面向对象编程语言EL 各变量之间不是赋值格式的关系,而是函数关系,模型的通用性、复用性都更好;模型可以实现信息隐藏、封装、单重继承或多重继承等;因此,同一个发动机模型,可以根据已知参数的不同,进行不同的分析。

超燃冲压发动机原理与技术分析

本科毕业论文(设计) 题目:超燃冲压发动机原理与技术分析 学院:机电工程学院 专业:热能与动力工程系2010级热能2班 姓名:王俊 指导教师:刘世俭 2014年 5 月28 日

超燃冲压发动机原理与技术分析 The Principle and Technical Analysis of Scramjet Engine

摘要 通过对超燃冲压发动机的基本原理与特点的介绍,比较了世界主要国家在超燃冲压理论研究与工程实际中的一些成果;结合高超音速空气动力学以及流体力学的一些基本原理,阐述进气道、隔离段、燃烧室、尾喷管的设计并进行性能分析;列举目前投入应用的几种主流构型及其选择依据;分析主要参数对超燃冲压发动机的影响;最后综合阐述超燃冲压发动机的发展趋势以及用途。 关键词:超燃冲压发动机性能分析一体化设计热循环分析

Abstract: Introduction the basic principle and features of scramjet engine, comparison of major powerful countries’ theoretical researches and practical achievements on this project. Expound and analyses the design and property programmes of air inlet、isolator、combustion chamber、tailpipe nozzle with theories of hypersonic aerodynamics and hydrodynamics; Its application in several mainstream configuration and its choice; analysis of the effect of main parameters on the scramjet. Finally, the developing trend of integrated scramjet paper and uses Key words: scramjet engine property analysis integrating design Thermal cycle analys

超燃冲压发动机的第一个40年_占云

推进技术 超燃冲压发动机的第一个40年 摘 要 对近40年超声速燃烧冲压发动机(简称超燃冲压发动机)技术的出现与成熟进行了综合的论述。根据对美国、俄罗斯、德国、日本、澳大利亚及其它国家已完成的或者正在进行的研究工作进行了论述,简单地叙述了超燃冲压发动机燃烧室研制的问题。鉴别了两种新出现的超燃冲压发动机的应用,即通向空间入口用碳氢燃料高速发动机和高超声速空射导弹用碳氢燃料发动机。 主题词 超燃冲压发动机 高超声速 导弹 前言 大约40年以前,各种高速导弹用的碳氢燃料常规冲压发动机(CRJ)处于持续发展中。美国洛克希德的X-7可重复使用的试飞器论证了Ma=3~4范围内的冲压发动机性能。国际上对冲压发动机进行了很好的研究,同时一直对高超声速的常规冲压发动机很感兴趣。 20世纪50年代后期,发表了很多论文,对常规冲压发动机的发展历史进行了评估,并提出了提高飞行速度的各种设计方法。可是,关于将常规冲压发动机性能扩大到Ma=5.0以上的速度的可行性存在很大的分歧。 同时,对超燃冲压发动机的可行性引起了注意。早在1946年,Roy就提出了借助于驻波直接将热量加入超声速流中的可能性。1959年, Nicholls等人又论证了超声速氢气流中稳定的爆燃波,随后Gross和Chinitz也报导了类似的研究,此外,在这段时间,关于向围绕机体的外气流中加热以产生升力与推力,还有各种各样的研究。1958年9月在马德里举行了第一届国际航空科学会议。在这次会议上,Ferri简略地概述了Brookly n Poly-technic研究院的一些工作进展,并证明在Ma= 3.0的超声速气流中实现了稳定燃烧,没有强激波。他报导了这个重要新闻之后,就作为美国超燃冲压发动机技术研究的主要领导者出现。 早在1958年,加拿大蒙特利尔的麦吉尔大学开始了超燃冲压发动机研究工作。Sw ithenbank报导了一些早期有关超燃冲压发动机的进气道、燃料喷射与燃烧及排气喷管方面的工作,重点是Ma=10~25高速范围内的工作。 Weber和M ackay于1958年发表了超燃冲压发动机的基本分析,此分析研究Ma=4~7范围内超燃冲压发动机和常规冲压发动机(采用氢燃料)的有关性能,并指出在Ma=7.0以上的速度下超燃冲压发动机的潜在优越性。分析中明确预测了超燃冲压发动机研究中所面临的某些主要技术障碍,包括没有严重激波损失的燃料喷射与混合、燃烧气体动力学现象、壁面冷却与摩擦损失,以及喷管性能等。此外还讨论了对扩散燃烧室形状的要求以避免由于热阻塞而引起等面积管道中加热的局限性,同时提出了一种积分方法来计算这种扩散管道的壁面压力。很显然,超燃冲压发动机研究中必须提出的同类问题大约在40年前已经提出了。 1957年约翰霍普金斯大学的应用物理实验室的Avery和Dueger开始了超燃冲压发动机及其潜力的分析研究与试验研究。紧接着,于1960年Dugger发表了煤油燃料常规冲压发动机和超燃冲压发动机的有关性能的研究,此项工作的结论与Weber和M ackay的类似,即:在Ma=6~8的速度范围内,超燃冲压发动机性能在某些方面超过常规冲压发动机的性能,而且在较高的速度下将占优势。文章着重说明常规冲压发动机喷管的不平衡流对发动机性能有不好的影响。令人感兴趣的是,文章中也提出了爆燃波超声速燃烧室可能得到的性能优于超燃冲压发动机的可能性。虽然,他们确实对常规发动机和超燃冲压发动机的相关性能很感兴趣,但是由于缺少验证的超燃冲压发动机部件性能,又缺少有关高超声速常规冲压发动机的试验数

国内与国外航空发动机性能对比分析

国内与国外航空发动机性能对比分析 一目了然:国产和国外航空发动机性能对比表!(精彩组图) 中国国产涡扇发动机与国外涡扇发动机对比表黑马乐园https://www.360docs.net/doc/ab11954794.html,% @; J4 c3 }4 u0 N- a+ G 黑马乐园https://www.360docs.net/doc/ab11954794.html,/ G/ l# P5 f- J [) x3 [ 发动机AL-31F AL-31FN M53-P2 M88-2 EJ200 F404-GE-400 F100-PW-229 F101-GE-102 F110-GE-129 F119-PW-100 WS10 WS10改WS13天山黑马乐园https://www.360docs.net/doc/ab11954794.html,8 B( d; C/ {7 x( e, O. S- N (仿RD33) WS9秦岭黑马乐园https://www.360docs.net/doc/ab11954794.html,' G# ~: d6 A& _6 h2 A! ^, @ (仿斯贝MK202) WS9改进型 (秦岭MK220)黑马乐园https://www.360docs.net/doc/ab11954794.html,& R& U, W' ?; N9 |1 s 国家俄罗斯俄罗斯法国法国英国美国美国美国美国美国中国中国中国中国中国 装机对象苏27系列歼10 幻影系列阵风系列EF2000 F/A-18E/F F15/16早期B-1B F15/16后期F22/35系列歼-10/11 歼-14* 枭龙飞豹飞豹改进型 加力推力(daN) 12850 12255 9500 7500 9000 7120 12890 13681 12899 15568 13240 15500 8637 9118.9 9800黑马乐园https://www.360docs.net/doc/ab11954794.html," k* a$ a8 a9 O+ O3 S7 S1 U2 b 中间推力(daN) 7620 7620 6330 4871 6000 4800 7918 7561 7562 9790 7900 5675 5445.9 6370黑马乐园https://www.360docs.net/doc/ab11954794.html,0 U+ l0 ]/ Q7 d: J 巡航推力(daN) 5120 4598.16 加力耗油率(kg/daN?h) 1.98 1.98 2.12 1.8 1.765 1.65 2 2.24 2.05 2.4 2.02 2.02 2 中间耗油率(kg/daN?h) 0.795 0.907 0.898 0.827 0.76 0.66 0.56 0.7 0.622 0.73 0.67 0.65 巡航耗油率(kg/daN?h) 0.683 0.695 0.65 黑马乐园https://www.360docs.net/doc/ab11954794.html,4 [6 e, f$ Q8 q6 Z7 l 推重比7.14 6.56 9 9.2 7.24 7.9 7.69 7.28 11.7 7.5 9.5 7.8 5.05 6.55 空气流量(kg/s) 112 112 94 65 75 64.4 112.4 159 118 126 80 92.5 96.9 总增压比23.8 23 9.8 24.5 26 25 32 26.5 32 26 32 23 20 21.5黑马乐园https://www.360docs.net/doc/ab11954794.html,: { F! d q- d/ w- z 涡轮前温度(K或℃) 1665K 1665K 1260℃1577℃1850K 1316℃1399℃1371℃1728K 1853K 1747K 1800K 1650K 1167℃1550K黑马乐园https://www.360docs.net/doc/ab11954794.html,1 R7 ]4 F3 a r# E 涵道比0.6 0.6 0.36 0.5 0.4 0.34 0.4 2.01 0.76 0.3 0.78 0.57 0.62 0.62黑马乐园https://www.360docs.net/doc/ab11954794.html,, Z+ a1 V( P8 ]$ \. n 发动机寿命(h) 1500 4000* 2200

相关文档
最新文档