自动控制原理习题1(含答案)

《自动控制原理》习题解答

第一章习题及答案

1-1 根据题1-1图所示的电动机速度控制系统工作原理图

(1) 将a ,b 与c ,d 用线连接成负反馈状态;

(2) 画出系统方框图。

解 (1)负反馈连接方式为:d a ↔,c b ↔;

(2)系统方框图如图解1—1 所示.

1-2 题1—2图是仓库大门自动控制系统原理示意图。试说明系统自动控制大门开闭的工作原理,并画出系统方框图。

题1—2图 仓库大门自动开闭控制系统

解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。与此同时,和大门连

在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置.反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。系统方框图如图解1—2所示。

1—3 题1—3图为工业炉温自动控制系统的工作原理图。分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图.

题1—3图 炉温自动控制系统原理图

解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。炉子的实际温度用热电偶测量,输出电压f u 。f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压.

在正常情况下,炉温等于某个期望值T °C,热电偶的输出电压f u 正好等于给定电压r u .此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值。这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。

当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程:

控制的结果是使炉膛温度回升,直至T °C 的实际值等于期望值为止。

︒→T C ︒→↑→↑→↑→↑→↑→↓→↓T u u u u u c a e f θ1C ↑

系统中,加热炉是被控对象,炉温是被控量,给定量是由给定电位器设定的电压r u (表征炉温的希望值)。系统方框图见图解1-3.

1-4 题1-4图是控制导弹发射架方位的电位器式随动系统原理图。图中电位器1P 、2P 并联后跨接到同一电源0E 的两端,其滑臂分别与输入轴和输出轴相联结,组成方位角的给定元件和测量反馈元件.输入轴由手轮操纵;输出轴则由直流电动机经减速后带动,电动机采用电枢控制的方式工作.

试分析系统的工作原理,指出系统的被控对象、被控量和给定量,画出系统的方框图。

题1-4图 导弹发射架方位角控制系统原理图

解 当导弹发射架的方位角与输入轴方位角一致时,系统处于相对静止状态.

当摇动手轮使电位器1P 的滑臂转过一个输入角i θ的瞬间,由于输出轴的转角i o θθ≠,

于是出现一个误差角o i e θθθ-=,该误差角通过电位器1P 、

2P 转换成偏差电压o i e u u u -=,e u 经放大后驱动电动机转动,在驱动导弹发射架转动的同时,通过输出轴带动电位器2P 的滑臂转过一定的角度o θ,直至i o θθ=时,o i u u =,偏差电压0=e u ,电动机停止转动。这时,导弹发射架停留在相应的方位角上。只要o i θθ≠,偏差就会产生调节作用,控制的结果是消除偏差e θ,使输出量o θ严格地跟随输入量i θ的变化而变化。

系统方框图如图解1-4所示.

1—5采用离心调速器的蒸汽机转速控制系统如题1—5图所示。其工作原理是:当蒸汽机带动负载转动的同时,通过圆锥齿轮带动一对飞锤作水平旋转。飞锤通过铰链可带动套筒上下滑动,套筒内装有平衡弹簧,套筒上下滑动时可拨动杠杆,杠杆另一端通过连杆调节供汽阀门的开度。在蒸汽机正常运行时,飞锤旋转所产生的离心力与弹簧的反弹力相平衡,套筒保持某个高度,使阀门处于一个平衡位置.如果由于负载增大使蒸汽机转速ω下降,则飞锤因离心力减小而使套筒向下滑动,并通过杠杆增大供汽阀门的开度,从而使蒸汽机的转速回升。同理,如果由于负载减小使蒸汽机的转速ω增加,则飞锤因离心力增加而使套筒上滑,并通过杠杆减小供汽阀门的开度,迫使蒸汽机转速回落。这样,离心调速器就能自动地抵制负载变化对转速的影响,使蒸汽机的转速ω保持在某个期望值附近。

指出系统中的被控对象、被控量和给定量,画出系统的方框图。

题1-5图蒸汽机转速自动控制系统

解在本系统中,蒸汽机是被控对象,蒸汽机的转速ω是被控量,给定量是设定的蒸汽机希望转速。离心调速器感受转速大小并转换成套筒的位移量,经杠杆传调节供汽阀门,控制蒸汽机的转速,从而构成闭环控制系统.

系统方框图如图解1—5所示。 1-6 摄像机角位置自动跟踪系统如题1—6图所示。当光点显示器对准某个方向时,摄像机会自动跟踪并对准这个方向。试分析系统的工作原理,指出被控对象、被控量及给定量,画出系统方框图。

题1-6图 摄像机角位置随动系统原理图

解 控制系统的任务是使摄像机自动跟踪光点显示器指示的方向。

当摄像机方向角与光点显示器指示的方向一致时,12θθ=,自整角机输出0=e ,交流放大器输出电压0=u ,电动机静止,摄像机保持原来的协调方向。当光点显示器转过一个角度,12θθ≠时,自整角机输出与失谐角21θθθ-=∆成比例的电压信号(其大小、极性反映了失谐角的幅值和方向),经电位器后变成e ,经放大器放大后驱动伺服电动机旋转,并通过减速器带动摄像机跟踪光点显示器的指向,使偏差减小,直到摄像机与光点显示器指向重新达到一致时为止.测速发电机测量电动机转速,进行速度反馈,用以改善系统性能。

系统中,摄像机是被控对象,摄像机的方向角2θ是被控量,给定量是光点显示器指示的方向角1θ.系统方框图如图解1-6所示。

1—7题1-7图(a),(b)所示的系统均为电压调节系统。假设空载时两系统发电机端电压均为110V,试问带上负载后,图(a),(b)中哪个能保持110V不变,哪个电压会低于110V,为什么?

题1-7图电压调节系统工作原理图

解带上负载后,开始由于负载的影响,(a)与(b)的端电压都要下降,但图(a)中所示系统能恢复到110伏而图(b)系统却不能。理由如下:

图(a)系统,当u低于给定电压时,其偏差电压经放大器K放大后,驱动电机D转动,

I增大,发电机的输出电压会升高,从而使偏差电经减速器带动电刷,使发电机F的激磁电流

j

压减小,直至偏差电压为零时,电机才停止转动。因此,图(a)系统能保持110伏不变。

图(b)系统,当u低于给定电压时,其偏差电压经放大器K后,直接使发电机激磁电流增大,提高发电机的端电压,使发电机G 的端电压回升,偏差电压减小,但不可能等于零,

i=0,发电机就不能工作。即图(b)所示系统的稳态电压会低于110因为当偏差电压为0时,

f

伏。

1-8题1-8图为水温控制系统示意图.冷水在热交换器中由通入的蒸汽加热,从而得到一定温度的热水。冷水流量变化用流量计测量.试绘制系统方块图,并说明为了保持热水温度为期望值,系统是如何工作的?系统的被控对象和控制装置各是什么?

解工作原理:温度传感器不断测量交换器出口处的实际水温,并在温度控制器中与给定温度相比较,若低于给定温度,其偏差值使蒸汽阀门开大,进入热交换器的蒸汽量加大,热水温度升高,直至偏差为零。如果由于某种原因,冷水流量加大,则流量值由流量计测得,通过温度控制器,开大阀门,使蒸汽量增加,提前进行控制,实现按冷水流量进行顺馈补偿,保证热交换器出口的水温不发生大的波动.

其中,热交换器是被控对象,实际热水温度为被控量,给定量(希望温度)在控制器中设定;冷水流量是干扰量。

题1—8图水温控制系统原理图

系统方块图如图解1—8所示。这是一个按干扰补偿的复合控制系统。

1—9许多机器,像车床、铣床和磨床,都配有跟随器,用来复现模板的外形。题1—9图就是这样一种跟随系统的原理图.在此系统中,刀具能在原料上复制模板的外形.试说明其工作原理,画出系统方框图.

解模板与原料同时固定在工作台上。X、Y轴直流伺服马达接受控制器的指令,按输入命令带动工作台做X、Y方向运动。模板随工作台移动时,触针会在模板表面滑动,跟随刀具中的位移传感器将触针感应到的反映模板表面形状的位移信号送到跟随控制器,控制器的输出驱动Z轴直流伺服马达带动切削刀具连同刀具架跟随触针运动,当刀具位置与触针位置一致时,两者位置偏差为零,Z轴伺服马达停止.系统中,刀具是被控对象,刀具位置是被控量,

给定量是由模板确定的触针位置。系统方框图如图解1-9所示.最终原料被切割加工成模板的形状。

1—10题1-10图(a),(b)所示均为调速系统.

(1) 分别画出图(a)、图(b)对应系统的方框图.给出图(a)正确的反馈连线方式。

(2)在恒值输入条件下,图(a)、图(b)中哪个是有差系统,哪个是无差系统,说明其道理。

题1—10图调速系统工作原理图

解(1)系统方框图如图解1—10所示。

题1—10图(a)正确的反馈连接方式如题1—10图(a)中虚线所示.

(2)题1-10图(a)的系统是有差系统,题1—10图(b)的系统是无差系统。

题1-10图(a)中,当给定恒值电压信号,系统运行达到稳态时,电动机转速的恒定是以发电机提供恒定电压为条件,对应发电机激磁绕组中电流一定是恒定值。这意味着放大器前端电压是非零的常值.因此,常值偏差电压存在是系统稳定工作的前提,故系统有差。

题1-10图(b)中,给定恒定电压,电动机达到稳定转速时,对应发电机激磁绕组中的励磁电流恒定,这意味着执行电动机处于停转状态,放大器前端电压必然为0,故系统无差。

1-11题1-11图为谷物湿度控制系统示意图.在谷物磨粉的生产过程中,有一个出粉最多的湿度,因此磨粉之前要给谷物加水以得到给定的湿度。图中,谷物用传送装置按一定流量通过加水点,加水量由自动阀门控制。加水过程中,谷物流量、加水前谷物湿度以及水压都是对谷物湿度控制的扰动作用。为了提高控制精度,系统中采用了谷物湿度的顺馈控制,试画出系统方块图。

题1-11图谷物湿度控制系统示意图

解系统中,传送装置是被控对象;输出谷物湿度是被控量;希望的谷物湿度是给定量。

系统方框图如图解1—11 所示。这是一个按干扰补偿的复合控制系统.

自动控制原理习题

【练习1】系统的闭环传递函数为 )13()3(3)(2 3++++++= ΦK s K s s K s s ,其中,K >0 试绘制系统根轨迹,并求出s=-2时的闭环极点和零点。 解: ,得根轨迹方程:由0)13()3(32 3 =+++++K s K s s 0) 1()3(13 =+++ s s K 0)2)(2(2 =+++s s s 272 1,23,21j s s ±- =-=? 【练习2】一单位负反馈系统,其开环传递函数为: ] 4)1[()1(4)(++-= s K s s K s G (1) 试绘制K 从0→+∞时的系统根轨迹; (2) 求系统阶跃响应中含有分量)cos(βωα+-t e t 时的K 值范围,其中 0,0>>ωα; (3) 求系统有一个闭环极点为-2时的闭环传递函数。 解:(1)根轨迹方程为: ) 4()2(12 =+-+ s s s K 等效开环传递函数为: )4() 2()(2 +-= s s s K s G

实轴上的根轨迹:[-4,0] 分离点:12 24 11-=-= ++ d d d d ,得:由 与虚轴交点:劳斯表如下 K s K s K K s 40 44410 12-+ 显然,K=1时,系统处于临界稳定,由辅助方程可解出交点处 21,± ==ωK 由模值条件得分离点处根轨迹增益:31 3*33 *1==d K 系统根轨迹如下图所示:

(2)求K值范围 尼状态,分量时,系统处于欠阻 当系统含有)cos(βωα+-t e t 系统有一对具有负实部的共轭极点,K值的范围为:131 <

(完整版)自动控制原理课后习题答案

第一章引论 1-1 试描述自动控制系统基本组成,并比较开环控制系统和闭环控制系统的特点。答: 自动控制系统一般都是反馈控制系统,主要由控制装置、被控部分、测量元件组成。控制装置是由具有一定职能的各种基本元件组成的,按其职能分,主要有给定元件、比较元件、校正元件和放大元件。如下图所示为自动控制系统的基本组成。 开环控制系统是指控制器与被控对象之间只有顺向作用,而没有反向联系的控制过程。此时,系统构成没有传感器对输出信号的检测部分。开环控制的特点是:输出不影响输入,结构简单,通常容易实现;系统的精度与组成的元器件精度密切相关;系统的稳定性不是主要问题;系统的控制精度取决于系统事先的调整精度,对于工作过程中受到的扰动或特性参数的变化无法自动补偿。 闭环控制的特点是:输出影响输入,即通过传感器检测输出信号,然后将此信号与输入信号比较,再将其偏差送入控制器,所以能削弱或抑制干扰;可由低精度元件组成高精度系统。 闭环系统与开环系统比较的关键,是在于其结构有无反馈环节。 1-2 请说明自动控制系统的基本性能要求。 答: 自动控制系统的基本要求概括来讲,就是要求系统具有稳定性、快速性和准确性。 稳定性是对系统的基本要求,不稳定的系统不能实现预定任务。稳定性通常由系统的结构决定与外界因素无关。对恒值系统,要求当系统受到扰动后,经过一定时间的调整能够回到原来的期望值(例如恒温控制系统)。对随动系统,被控制量始终跟踪参量的变化(例如炮轰飞机装置)。 快速性是对过渡过程的形式和快慢提出要求,因此快速性一般也称为动态特性。在系统稳定的前提下,希望过渡过程进行得越快越好,但如果要求过渡过程时间很短,可能使动态误差过大,合理的设计应该兼顾这两方面的要求。 准确性用稳态误差来衡量。在给定输入信号作用下,当系统达到稳态后,其实际输出与所期望的输出之差叫做给定稳态误差。显然,这种误差越小,表示系统的精度越高,准确性越好。当准确性与快速性有矛盾时,应兼顾这两方面的要求。 1-3 请给出图1-4炉温控制系统的方框图。 答:

自动控制原理题目(含答案)

《自动控制原理》复习参考资料 一、基本知识 1 1、反馈控制又称偏差控制,其控制作用是通过输入量与反馈量的差值进行的。 2、闭环控制系统又称为反馈控制系统。 3、在经典控制理论中主要采用的数学模型是微分方程、传递函数、结构框图和信号流图。 4、自动控制系统按输入量的变化规律可分为恒值控制系统、随动控制系统与程序控制系统。 5、对自动控制系统的基本要求可以概括为三个方面,即:稳定性、快速性和准确性。 6、控制系统的数学模型,取决于系统结构和参数, 与外作用及初始条件无关。 7、两个传递函数分别为 G1(s)与 G2(s)的环节,以并联方式连接,其等效传递函数为G (s)+G2(s),以串联方式连接,其等效传递函数为G1(s)*G2(s)。 1 8、系统前向通道传递函数为 G (s),其正反馈的传递函数为 H (s),则其闭环传递函数为G(s) /(1-G(s) H(s) )。 9、单位负反馈系统的前向通道传递函数为 G (s),则闭环传递函数为G(s) /(1+ G(s) )。 10 、典型二阶系统中,ξ=0.707 时,称该系统处于二阶工程最佳状态,此时超调量为 4.3%。 11、应用劳斯判据判断系统稳定性,劳斯表中第一列数据全部为正数,则系统稳定。 12、线性系统稳定的充要条件是所有闭环特征方程的根的实部均为负,即都分布在S平面的左平面。 13、随动系统的稳态误差主要来源于给定信号,恒值系统的稳态误差主要来源于扰动信号。 14、对于有稳态误差的系统,在前向通道中串联比例积分环节,系统误差将变为零。

15、系统稳态误差分为给定稳态误差和扰动稳态误差两种。 16 、对于一个有稳态误差的系统,增大系统增益则稳态误差将减小。 17 、对于典型二阶系统,惯性时间常数 T 愈大则系统的快速性愈差。 18 、应用频域分析法,穿越频率越大,则对应时域指标 t s 越小,即快速性越好 19 最小相位系统是指 S 右半平面不存在系统的开环极点及开环零点。 20、按照校正装置在系统中的不同位置,系统校正可分为串联校正、反馈校正、补偿校正与复合校正四种。 21 、对于线性系统,相位裕量愈大则系统的相对稳定性越好。 22、根据校正装置的相位特性,比例微分调节器属于相位超前校正装置,比例积分调节器属于相位滞后校正装置, PID 调节器属于相位滞后 -超前校正装置。 23 、PID 调节中的P指的是比例控制器,I是积分控制器,D是微分控制器。 24 、离散系统中信号的最高频谱为ωmax,则采样频率ω s 应保证ωs>=2ωmax 条件。 26、在离散控制系统分析方法中,把差分方程变为代数方程的数学方法为 Z 变换。 27、离散系统中,两个传递函数分别为 G1(s)与 G2(s)的环节,以串联方式连接, 连接点有采样开关,其等效传递脉冲函数为G 1(z)G 2 (z);连接点没有采样开关, 其等效传递脉冲函数为G 1G 2 (z)。 28、根据系统的输出量是否反馈至输入端,可分为开环控制系统与闭环控制系统。 29、家用空调温度控制、电梯速度控制等系统属于闭环控制系统; 30、经典控制理论的分析方法主要有时域分析法、根轨迹分析法、频域分析法。 二、基本知识 2 1、开环控制系统的的特征是没有( ) A.执行环节C.反馈环节 B.给定环节D.放大环节 2、闭环系统的动态性能主要取决于开环对数幅频特性的( ) A、低频段 B、中频段 C、高频段 D、均无关 50 3、若系统的开环传递函数为,则它的开环增益为() s(5s + 10) A.5 B.10 C.50 D. 100

自动控制原理 第1章习题参考答案

第1章习题参考答案 1-1 自动控制系统通常由哪些环节组成?它们在控制过程中担负什么功能? 解:见教材P 4- 1-2 试比较开环控制系统和闭环控制系统的优缺点。 解:见教材P 4-6 1-7 题1-7图是仓库大门自动控制系统原理示意图。试说明系统自动控制大门开闭的工作原理 并画出系统原理方框 解: 当合上开门开关时,电桥会测量出开门位置与开门实际位置间的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起,与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控 制,系统原理方框如下图所示。 仓库大门控制系统原理方框图 1-8 电冰箱制冷系统工作原理如题1-8图所示。试简述系统的工作原理,指出系统的被控对象、被控量和给定量,画出系统原理方框图。 题1-8图 电冰箱制冷系统工作原理 题1-7图 仓库大门自动开闭控制系统原

解: 电冰箱制冷系统结构如下图 电冰箱制冷系统结构图 系统的控制任务是保持冰箱内温度c T 等于给定温度r T 。冰箱体是被控对象;箱内温度是被控量,希望的温度r T 为给定量(由电位器的输出电压r U 对应给出);继电器、压缩机、蒸发器、冷却器所组成制冷循环系统起执行元件的作用。 温度控制器中的双金属温度传感器(测量元件)感受冰箱内的温度并转换为电压信号c U ,与控制器旋钮设定的电位器输出电压r U (对应于希望温度r T )相比较,构成偏差电压c r U U U -=?(表征希望温度与实际温度的偏差),控制继电器K 。当U ?大到一定值时,继电器接通,压缩机启动,将蒸发器中的高温低压制冷剂送往冷却器散热,降温后的低温低压制冷剂被压缩成低温高压液态进入蒸发器,急速降压扩展成气体,吸收箱体内的热量,使箱体的温度下降;而高温低压制冷剂又被吸入冷却器。如此循环,使冰箱达到制冷的效果。电冰箱控制系统的原理方框图如下图所示。 电冰箱控制系统的原理方框图

自动控制原理随堂练习答案

第一章绪论 1.开环、闭环系统的最主要区别是()。 A.反馈 B.输入信号 C.被控对象 D.干扰 参考答案:A 2.下图所示系统属于()。 A.恒值控制系统 B.开环系统 C.程序控制系统 D.随动系统 参考答案:D 3.系统采用负反馈形式连接后,则 ( )。 A.一定能使闭环系统稳定 B.系统动态性能一定会提高 C.一定能使干扰引起的误差逐渐减小,最后完全消除 D.需要调整系统的结构参数,才能改善系统性能 参考答案:D 4.直接对对象进行操作的元件称为()。 A.比较元件 B.给定元件 C.执行元件 D.放大元件 参考答案:C 5.如果被调量随着给定量的变化而变化,这种控制系统叫()。 A.恒值调节系统 B.随动系统 C.连续控制系统 D.数字控制系统参考答案:B 6.随动系统对()要求较高。 A.快速性 B.稳定性 C.准确性 D.振荡次数 参考答案:A 7.主要用于产生输入信号的元件称为() A.比较元件 B.给定元件 C.反馈元件 D.放大元件 参考答案:B 8.自动控制系统的主要特征是()。 A.在结构上具有反馈装置并按负反馈组成系统,以求得偏差信号

B.由偏差产生控制作用以便纠正偏差 C.控制的目的是减少或消除偏差 D.系统开环 参考答案:ABC 9.自动控制系统按输入信号特征可分为()。 A.恒值控制系统 B.程序控制系统 C.线性系统 D.随动系统 参考答案:ABD 10.自动控制系统按描述元件的动态方程分()。 A.随动系统 B.恒值控制系统 C.线性系统 D.非线性系统 参考答案:CD 11.自动控制系统的基本要求()。 A.稳定性 B.快速性 C.准确性 D.安全性 参考答案:ABC 12.人工控制与自动控制系统最大的区别在于控制过程中是否有人参与。() 参考答案:√ 第二章控制系统的教学模型 1.下图所示电路的微分方程是()。

(完整版)自动控制原理_第一章课后习题解答

第一章 1.1 图1.18是液位自动控制系统原理示意图。在任意情况下,希望液面高度c维持不变,试说明系统工作原理并画出系统方块图。 c + - SM ___ 1 Q 浮浮 浮浮浮浮 2 Q 浮浮浮 浮浮浮 浮浮浮 浮浮浮 f i - + 解:系统的控制任务是保持液面高度不变。水箱是被控对象,水箱液位是被控变量。电位器用来设置期望液位高度*c(通常点位器的上下位移来实现) 。 当电位器电刷位于中点位置时,电动机不动,控制阀门有一定的开度,使水箱的流入水量与流出水量相等,从而使液面保持在希望高度*c上。一旦流出水量发生变化(相当于扰动), 例如当流出水量减小时,液面升高,浮子位置也相应升高,通过杠杆作用使电位器电刷从中点位置下移,从而给电动机提供一定的控制电压,驱动电动机通过减速器减小阀门开度,使进入水箱的液体流量减少。这时,水箱液位下降.浮子位置相应下降,直到电位器电刷回到中点位置为止,系统重新处于平衡状态,液位恢复给定高度。反之,当流出水量在平衡状态基础上增大时,水箱液位下降,系统会自动增大阀门开度,加大流入水量,使液位升到给定 高度*c。 系统方框图如图解1. 4.1所示。

1.2恒温箱的温度自动控制系统如图1.19所示。 (1) 画出系统的方框图; (2) 简述保持恒温箱温度恒定的工作原理; (3) 指出该控制系统的被控对象和被控变量分别是什么。 M 放大器 电机 减速器 调压器 220~ 热电偶电阻丝 - + - + 图1.19 恒温箱的温度自动控制系统 解:恒温箱采用电加热的方式运行,电阻丝产生的热量与调压器电压平方成正比,电压增高,炉温就上升。调压器电压由其滑动触点位置所控制,滑臂则由伺服电动机驱动.炉子的实际温度用热电偶测量,输出电压作为反馈电压与给定电压进行比较,得出的偏差电压经放大器放大后,驱动电动机经减速器调节调压器的电压。 在正常情况下,炉温等于期望温度T ,热电偶的输出电压等于给定电压。此时偏差为零,电动机不动,调压器的滑动触点停留在某个合适的位置上。这时,炉子散失的热量正好等于从电阻丝获取的热量,形成稳定的热平衡状态,温度保持恒定。 当炉温由于某种原因突然下降(例如炉门打开造成热量流失)时,热电偶输出电压下降,与给定电压比较后出现正偏差,经放大器放大后,驱动电动机使调压器电压升高,炉温回升,直至温度值等于期望值为止。当炉温受扰动后高于希望温度时,调节的过程正好相反。最终达到稳定时,系统温度可以保持在要求的温度值上。 系统中,加热炉是被控对象,炉温是被控变量,给定量是给定电位器设定的电压(表征炉温的希望值)。给定电位计是给定元件,放大器完成放大元件的功能,电动机、减速器和调压器组成执行机构,热电偶是测量元件。 系统方框如图解1.4.5所示。 放大器 实际温 电动机减速器调压器恒温箱 热电偶 给定电压 - 图解1.4.5 恒温箱温度控制系统框图 1.3 解:当负载(与接收自整角机TR 的转子固联)的角位置o θ与发送机Tx 转子的输入角位置6一致时,系统处于相对豫止状态,自整角机输出电压(即偏差电压)为0,放大器输出为0,电动机不动,系统保持在平衡状态。当i θ改变时,o θ与i θ失谐,自整角接收机输出与失谐

自动控制原理完整版课后习题答案

1 请解释下列名字术语:自动控制系统、受控对象、扰动、给定值、参考输入、反馈。解:自动控制系统:能够实现自动控制任务的系统,由控制装置与被控对象组成; 受控对象:要求实现自动控制的机器、设备或生产过程 扰动:扰动是一种对系统的输出产生不利影响的信号。如果扰动产生在系统内部称为内扰;扰动产生在系统外部,则称为外扰。外扰是系统的输入量。 给定值:受控对象的物理量在控制系统中应保持的期望值 参考输入即为给定值。 反馈:将系统的输出量馈送到参考输入端,并与参考输入进行比较的过程。 2 请说明自动控制系统的基本组成部分。 解:作为一个完整的控制系统,应该由如下几个部分组成: ①被控对象:所谓被控对象就是整个控制系统的控制对象; ②执行部件:根据所接收到的相关信号,使得被控对象产生相应的动作;常用的执行元 件有阀、电动机、液压马达等。 ③给定元件:给定元件的职能就是给出与期望的被控量相对应的系统输入量(即参考量); ④比较元件:把测量元件检测到的被控量的实际值与给定元件给出的参考值进行比较, 求出它们之间的偏差。常用的比较元件有差动放大器、机械差动装置和电 桥等。 ⑤测量反馈元件:该元部件的职能就是测量被控制的物理量,如果这个物理量是非电量, 一般需要将其转换成为电量。常用的测量元部件有测速发电机、热电偶、 各种传感器等; ⑥放大元件:将比较元件给出的偏差进行放大,用来推动执行元件去控制被控对象。如 电压偏差信号,可用电子管、晶体管、集成电路、晶闸管等组成的电压放 大器和功率放大级加以放大。 ⑦校正元件:亦称补偿元件,它是结构或参数便于调整的元件,用串联或反馈的方式连 接在系统中,用以改善系统的性能。常用的校正元件有电阻、电容组成的 无源或有源网络,它们与原系统串联或与原系统构成一个内反馈系统。 3 请说出什么是反馈控制系统,开环控制系统和闭环控制系统各有什么优缺点? 解:反馈控制系统即闭环控制系统,在一个控制系统,将系统的输出量通过某测量机构对其进行实时测量,并将该测量值与输入量进行比较,形成一个反馈通道,从而形成一个封闭的

自动控制原理习题及答案

1. 采样系统结构如图所示,求该系统的脉冲传递函数。 答案:该系统可用简便计算方法求出脉冲传递函数。去掉采样开关后的连续系统输出表达式为 对闭环系统的输出信号加脉冲采样得 再对上式进行变量替换得 2. 已知采样系统的结构如图所示,,采样周期=0.1s。试求系统稳定时K的取值范围。 答案:首先求出系统的闭环传递函数。由 求得,已知T=0.1s, e-1=0.368,故

系统闭环传递函数为,特征方程为 D(z)=1+G(z)=z2+(0.632K-1.368)z+0.368=0 将双线性变换代入上式得 +1 4 +( 7 -0.632K)=0 要使二阶系统稳定,则有 K>0,2.736-0.632K>0 故得到K的取值范围为0<K<4.32。 3. 求下列函数的z变换。 (1). e(t)=te-at 答案:e(t)=te-at 该函数采样后所得的脉冲序列为 e(nT)=nTe-anT n=0,1,2,… 代入z变换的定义式可得 E(z)=e(0)+P(T)z-1+e(2T)z-2+…+e(n )z-n+…= + e-aT z-1+2Te-2aT z-2+…+n e-naT z-n+…= (e-aT z-1+2e -2aT z-2+…+ne-naT z-n+…) 两边同时乘以e-aT z-1,得 e-aT z-1E(z)=T(e-2aT z-2+2e-3aT z-3+…+ne-a(n+1)T z-(n+1)+…) 两式相减,若|e-aT z-1|<1,该级数收敛,同样利用等比级数求和公式,可得 最后该z变换的闭合形式为 (2). e( )= 答案 e( )= 对e( )= 取拉普拉斯变换.得 展开为部分分式,即 可以得到 化简后得

自动控制原理典型习题(含答案)

自动控制原理习题 一、(20分) 试用结构图等效化简求下图所示系统的传递函数 ) () (s R s C 。 解: 所以: 3 2132213211)() (G G G G G G G G G G s R s C +++= 二.(10分)已知系统特征方程为063632 3 4 =++++s s s s ,判断该系统的稳定性,若闭环系统不稳定,指出在s 平面右半部的极点个数。(要有劳斯计算表) 解:劳斯计算表首列系数变号2次,S 平面右半部有2个闭环极点,系统不稳定。 6 6.0650336610 1234 s s s s s - 三.(20分)如图所示的单位反馈随动系统,K=16s -1,T=0.25s,试求: (1)特征参数n ωξ,; (2)计算σ%和t s ; (3)若要求σ%=16%,当T 不变时K 应当取何值? 解:(1)求出系统的闭环传递函数为:

T K s T s T K K s Ts K s /1 /)(22++= ++= Φ 因此有: 25.021 2/1),(825.0161====== -KT T s T K n n ωζω (2) %44%100e %2 -1- =?=ζζπ σ %) 2)((2825.04 4 =?=?= ≈ s t n s ζω (3)为了使σ%=16%,由式 %16%100e %2 -1- =?=ζζπ σ 可得5.0=ζ,当T 不变时,有: ) (425.04)(425 .05.021212/11221--=?===??=== s T K s T T n n ωζζω 四.(15分)已知系统如下图所示, 1.画出系统根轨迹(关键点要标明)。 2.求使系统稳定的K 值范围,及临界状态下的振荡频率。 解 ① 3n =,1,2,30P =,1,22,1m Z j ==-±, 1n m -= ②渐进线1条π ③入射角 1?()18013513513590360135135=?+?+?+?-?=?+?=? 同理 2?2135sr α=-? ④与虚轴交点,特方 32 220s Ks Ks +++=,ωj s =代入

自动控制原理试题(1)

参考答案及评分标准 一、单项选择题(每小题1分,共20分) 1. 系统和输入已知,求输出并对动态特性进行研究,称为( ) A.系统综合 B.系统辨识 C.系统分析 D.系统设计 2. 惯性环节和积分环节的频率特性在( )上相等。 A.幅频特性的斜率 B.最小幅值 C.相位变化率 D.穿越频率 3. 通过测量输出量,产生一个与输出信号存在确定函数比例关系值的元件称为( ) A.比较元件 B.给定元件 C.反馈元件 D.放大元件 4. ω从0变化到+∞时,延迟环节频率特性极坐标图为( ) A.圆 B.半圆 C.椭圆 D.双曲线 5. 当忽略电动机的电枢电感后,以电动机的转速为输出变量,电枢电压为输入变量时,电动机可看 作一个( ) A.比例环节 B.微分环节 C.积分环节 D.惯性环节 6. 若系统的开环传 递函数为2) (5 10+s s ,则它的开环增益为( ) 7. 二阶系统的传递函数5 2 5)(2++=s s s G ,则该系统是( ) A.临界阻尼系统 B.欠阻尼系统 C.过阻尼系统 D.零阻尼系统 8. 若保持二阶系统的ζ不变,提高ωn ,则可以( ) A.提高上升时间和峰值时间 B.减少上升时间和峰值时间 C.提高上升时间和调整时间 D.减少上升时间和超调量 9. 一阶微分环节Ts s G +=1)(,当频率T 1=ω时,则相频特性)(ωj G ∠为( ) ° ° ° ° 10.最小相位系统的开环增益越大,其( ) A.振荡次数越多 B.稳定裕量越大 C.相位变化越小 D.稳态误差越小 11.设系统的特征方程为()0516178234=++++=s s s s s D ,则此系统 ( ) A.稳定 B.临界稳定 C.不稳定 D.稳定性不确定。 12.某单位反馈系统的开环传递函数为:()) 5)(1(++=s s s k s G ,当k =( )时,闭环系统临界稳定。 13.设系统的特征方程为()025103234=++++=s s s s s D ,则此系统中包含正实部特征的个数有( ) 14.单位反馈系统开环传递函数为()s s s s G ++=652,当输入为单位阶跃时,则其位置误差为( ) 若已知某串联校正装置的传递函数为

(完整版)自动控制原理课后习题答案

(完整版)自动控制原理课后习题答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第1章控制系统概述 【课后自测】 1-1 试列举几个日常生活中的开环控制和闭环控制系统,说明它们的工作原理并比较开环控制和闭环控制的优缺点。 解:开环控制——半自动、全自动洗衣机的洗衣过程。 工作原理:被控制量为衣服的干净度。洗衣人先观察衣服的脏污程度,根据自己的经验,设定洗涤、漂洗时间,洗衣机按照设定程序完成洗涤漂洗任务。系统输出量(即衣服的干净度)的信息没有通过任何装置反馈到输入端,对系统的控制不起作用,因此为开环控制。 闭环控制——卫生间蓄水箱的蓄水量控制系统和空调、冰箱的温度控制系统。 工作原理:以卫生间蓄水箱蓄水量控制为例,系统的被控制量(输出量)为蓄水箱水位(反应蓄水量)。水位由浮子测量,并通过杠杆作用于供水阀门(即反馈至输入端),控制供水量,形成闭环控制。当水位达到蓄水量上限高度时,阀门全关(按要求事先设计好杠杆比例),系统处于平衡状态。一旦用水,水位降低,浮子随之下沉,通过杠杆打开供水阀门,下沉越深,阀门开度越大,供水量越大,直到水位升至蓄水量上限高度,阀门全关,系统再次处于平衡状态。 1-2 自动控制系统通常有哪些环节组成各个环节分别的作用是什么 解:自动控制系统包括被控对象、给定元件、检测反馈元件、比较元件、放大元件和执行元件。各个基本单元的功能如下: (1)被控对象—又称受控对象或对象,指在控制过程中受到操纵控制的机器设备或过程。 (2)给定元件—可以设置系统控制指令的装置,可用于给出与期望输出量相对应的系统输入量。 (3)检测反馈元件—测量被控量的实际值并将其转换为与输入信号同类的物理量,再反馈到系统输入端作比较,一般为各类传感器。 (4)比较元件—把测量元件检测的被控量实际值与给定元件给出的给定值进行比较,分析计算并产生反应两者差值的偏差信号。常用的比较元件有差动放大器、机械差动装置和电桥等。 (5)放大元件—当比较元件产生的偏差信号比较微弱不足以驱动执行元件动作时,可通过放大元件将微弱信号作线性放大。如电压偏差信号,可用电子管、晶体管、集成电路、晶闸管等组成的电压放大器和功率放大级加以放大。

自动控制原理典型习题(含答案)

自动控制原理习题 一、(20分)试用结构图等效化简求下图所示系统的传递函数) () (s R s C 。 解: 所以: 3 2132213211)() (G G G G G G G G G G s R s C +++= 二.(10分)已知系统特征方程为063632 3 4 =++++s s s s ,判断该系统的稳定性,若闭环系统不稳定, 四.(12 1m -= 222 K K -0=1K ⇒=,s = 所以当1K >时系统稳定,临界状态下的震荡频率为ω 五.(20分)某最小相角系统的开环对数幅频特性如下图所示。要求 (1) 写出系统开环传递函数; (2) 利用相角裕度判断系统的稳定性; (3) 将其对数幅频特性向右平移十倍频程,试讨论对系统性能的影响。 解(1)由题图可以写出系统开环传递函数如下:

(2)系统的开环相频特性为 截止频率1101.0=⨯= c ω 相角裕度:︒=+︒=85.2)(180c ωϕγ 故系统稳定。 (3)将其对数幅频特性向右平移十倍频程后,可得系统新的开环传递函数 其截止频率10101==c c ωω 而相角裕度︒=+︒=85.2)(18011c ωϕγγ= 故系统稳定性不变。由时域指标估算公式可得 )11 (4.016.0-+=σ o o =o o 1σ (1(2(2)121)(= s G 2函数。1、的输出量不会对系统的控制量产生影响。开环控制结构简单、成本较低、系统控制精度取决于系统元部件、抗干扰能力较差。(2分) 2、根轨迹简称为根迹,它是开环系统某一参数从零变到无穷时,闭环特征方程式的根在s 平面上变化的轨迹。(3分)系统根轨迹起始于开环极点,终至于开环零点。(2分) 二、看图回答问题(每小题10分,共20分) 1、解:结论:稳定(2分) 理由:由题意知系统位于s 右半平面的开环极点数0=P ,且系统有一个积分环节,故补画半径为无穷大,圆心角为2 12 2π π π - =⨯- =- v 的圆弧,则奈奎斯特曲线如图1示,(3分)由图可知系统奈奎斯特曲线包围(-1,j0) 点的圈数为000=-=-=-+N N N ,(3分)由奈奎斯特稳定判据,则系统位于s 右半平面的闭环极点数02=-=N P Z , (2分)故闭环系统稳定。 判断正确2分,理由正确6分,曲线补画完整2分。

自动控制原理八套习题集-(含答案)

自动控制原理八套习题集-(含答案)

自动控制原理1 一、 单项选择题(每小题1分,共20分) 1. 系统和输入已知,求输出并对动态特性进行研究,称为( ) A.系统综合 B.系统辨识 C.系统分析 D.系统设计 2. 惯性环节和积分环节的频率特性在( )上相等。 A.幅频特性的斜率 B.最小幅值 C.相位变化率 D.穿越频率 3. 通过测量输出量,产生一个与输出信号存在确定函数比例关系值的元件称为( ) A.比较元件 B.给定元件 C.反馈元件 D.放大元件 4. ω从0变化到+∞时,延迟环节频率特性极坐标图为( ) A.圆 B.半圆 C.椭圆 D.双曲线 5. 当忽略电动机的电枢电感后,以电动机的转速为输出变量,电枢电压为输入变量时,电动机可看作一个( ) A.比例环节 B.微分环节 C.积分环节 D.惯性环节 6. 若系统的开环传 递函数为2) (5 10+s s ,则它的开环增益为( ) A.1 B.2 C.5 D.10 7. 二阶系统的传递函数5 2 5 )(2 ++=s s s G ,则该系统是( )

A.临界阻尼系统 B.欠阻尼系统 C.过阻尼系统 D.零阻尼系统 8. 若保持二阶系统的ζ不变,提高ωn ,则可以( ) A.提高上升时间和峰值时间 B.减少上升时间和峰值时间 C.提高上升时间和调整时间 D.减少上升时间和超调量 9. 一阶微分环节Ts s G +=1)(,当频率T 1 =ω时,则相频特性)(ωj G ∠为 ( ) A.45° B.-45° C.90° D.-90° 10.最小相位系统的开环增益越大,其( ) A.振荡次数越多 B.稳定裕量越大 C.相位变化越小 D.稳态误差越小 11.设系统的特征方程为()0 516178234 =++++=s s s s s D ,则此系统 ( ) A.稳定 B.临界稳定 C.不稳定 D.稳定性不确定。 12.某单位反馈系统的开环传递函数为:()) 5)(1(++=s s s k s G ,当k =( )时,闭环系统临界稳定。 A.10 B.20 C.30 D.40 13.设系统的特征方程为()0 25103234 =++++=s s s s s D ,则此系统中包含正实 部特征的个数有( )

自动控制原理典型习题含答案

自动控制原理习题一、(20分) 试用构造图等效化简求以下图所示系统的传递函数。 解: 所以: 32132213211)()(G G G G G G G G G G s R s C +++= 二.〔10分〕系统特征方程为06363234=++++s s s s ,判断该系统 的稳定性,假设闭环系统不稳定,指出在s 平面右半部的极点个数。(要有劳斯计算表) 解:劳斯计算表首列系数变号2次,S 平面右半部有2个闭环极点,系统不稳定。 三.〔20分〕如下图的单位反应随动系统,1610.25s,试求: 〔1〕特征参数n ωξ,;〔2〕计算σ%和; 〔3〕假设要求σ16%,当T 不变时K 应当取何值? 解:〔1〕求出系统的闭环传递函数为: 因此有: 〔2〕 %44%100e %2-1-=⨯=ζζπ σ 〔3〕为了使σ16%,由式 可得5.0=ζ,当T 不变时,有: 四.〔15分〕系统如以下图所示, 1.画出系统根轨迹〔关键点要标明〕。 2.求使系统稳定的K 值范围,及临界状态下的振荡频率。 解 ①3n =,1,2,30 P =,1,22,1m Z j ==-±,1n m -= ②渐进线1条π③入射角

同理 2ϕ2 135sr α=-︒ ④与虚轴交点,特方 32220s Ks Ks +++=,ωj s =代入 所以当1K >时系统稳定,临界状态下的震荡频率为 ω 五.〔20分〕某最小相角系统的开环对数幅频特性如以下图所示。要求 (1) 写出系统开环传递函数; (2) 利用相角裕度判断系统的稳定性; (3) 将其对数幅频特性向右平移十倍频程,试讨论对系 统性能的影响。 解〔1〕由题图可以写出系统开环传递函数如下: 〔2〕系统的开环相频特性为 截止频率 1101.0=⨯=c ω 相角裕度:︒=+︒=85.2)(180c ωϕγ 故系统稳定。 〔3〕将其对数幅频特性向右平移十倍频程后,可得系统新的开环传递函数 其截止频率 10101==c c ωω 而相角裕度 ︒=+︒=85.2)(18011c ωϕγγ= 故系统稳定性不变。由时域指标估算公式可得 所以,系统的超调量不变,调节时间缩短,动态响应 加快。 六.〔15分〕设有单位反应的误差采样离散系统,连续局部传递函数 输入)(1)(t t r =,采样周期1=T s 。试求: 〔1〕输出z 变换)(z C ; 〔2〕采样瞬时的输出响应)(*t c ; 解:

自动控制原理课后习题答案第一章

1-1 图1-2是液位自动控制系统原理示意图。在任意情况下,希望液面高度c 维持不变,试说明系统工作原理并画出系统方块图。 图1-2 液位自动控制系统 解:被控对象:水箱;被控量:水箱的实际水位;给定量电位器设定水位 r u (表征液位的希望值 r c );比较元件:电位器;执行元件:电动机;控制任务:保持水箱液位高度不变。 工作原理:当电位电刷位于中点(对应r u )时,电动机静止不动,控制阀门有一定的 开度,流入水量与流出水量相等,从而使液面保持给定高度 r c ,一旦流入水量或流出水量发生变化时,液面高度就会偏离给定高度r c 。 当液面升高时,浮子也相应升高,通过杠杆作用,使电位器电刷由中点位置下移,从而给电动机提供一定的控制电压,驱动电动机,通过减速器带动进水阀门向减小开度的方向转动,从而减少流入的水量,使液面逐渐降低,浮子位置也相应下降,直到电位器电刷回到中点位置,电动机的控制电压为零,系统重新处于平衡状态,液面恢复给定高度r c 。 反之,若液面降低,则通过自动控制作用,增大进水阀门开度,加大流入水量,使液面升高到给定高度r c 。 系统方块图如图所示: 1-10 下列各式是描述系统的微分方程,其中c(t)为输出量,r (t)为输入量,试判断哪些是线性定常或时变系统,哪些是非线性系统? (1)222 )()(5)(dt t r d t t r t c ++=;

(2))()(8)(6)(3)(2233t r t c dt t dc dt t c d dt t c d =+++; (3) dt t dr t r t c dt t dc t )(3)()()(+=+; (4)5cos )()(+=t t r t c ω; (5)⎰∞-++=t d r dt t dr t r t c ττ)(5)(6)(3)(; (6))()(2t r t c =; (7)⎪⎩⎪⎨⎧≥<=.6),(6,0)(t t r t t c 解:(1)因为c(t)的表达式中包含变量的二次项2()r t ,所以该系统为非线性系统。 (2)因为该微分方程不含变量及其导数的高次幂或乘积项,且各项系数均为常数,所以该系统为线性定常系统。 (3)该微分方程不含变量及其导数的高次幂或乘积项,所以该系统为线性系统,但第一项() dc t t dt 的系数为t ,是随时间变化的变量,因此该系统为线性时变系统。 (4)因为c(t)的表达式中r(t)的系数为非线性函数cos t ω,所以该系统为非线性系统。 (5)因为该微分方程不含变量及其导数的高次幂或乘积项,且各项系数均为常数,所以该系统为线性定常系统。 (6)因为c(t)的表达式中包含变量的二次项2()r t ,表示二次曲线关系,所以该系统为非 线性系统。 (7)因为c(t)的表达式可写为()()c t a r t =⋅,其中 0(6)1(6)t a t ⎧<⎪=⎨≥⎪⎩,所以该系统可看作是线性时变系统。

自动控制原理习题1(含答案)

《自动控制原理》习题解答

第一章习题及答案 1—1 根据题1-1图所示的电动机速度控制系统工作原理图 (1) 将a ,b 与c ,d 用线连接成负反馈状态; (2) 画出系统方框图。 解 (1)负反馈连接方式为:d a ↔,c b ↔; (2)系统方框图如图解1—1 所示。 1—2 题1—2图是仓库大门自动控制系统原理示意图.试说明系统自动控制大门开闭的工作原理,并画出系统方框图. 题1-2图 仓库大门自动开闭控制系统 解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。与此同时,和大门连

在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。系统方框图如图解1-2所示。 1-3 题1—3图为工业炉温自动控制系统的工作原理图。分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图. 题1-3图 炉温自动控制系统原理图 解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。炉子的实际温度用热电偶测量,输出电压f u 。f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压. 在正常情况下,炉温等于某个期望值T °C ,热电偶的输出电压f u 正好等于给定电压r u .此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值。这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。 当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程: 控制的结果是使炉膛温度回升,直至T °C 的实际值等于期望值为止。

相关文档
最新文档