实验五 线性系统的根轨迹分析方法

实验五 线性系统的根轨迹分析方法
实验五 线性系统的根轨迹分析方法

实验报告

实验名称线性系统的根轨迹分析方法课程名称

然后加入开环零点:

图中依次加入的开环零点为: -0.8 -0.6 -0.3 -0.1 0.1 0.3 0.6 0.8 1

上图为未增加零点是的根轨迹图,下图为增加了开环零点的根轨迹图

上图在原系统的基础上加入了开环零点-0.7,下图在增加了开环零点

从之前的实验可以知道,加入开环极点可能会使主导极点发生改变系统造成影响。所用程序如下:

clc;clear all;

z=[-0.7];p=[-0.2 -0.5 -1];k=[1];sys=zpk(z,p,k);

rlocus(sys);znew=[-1.5 -0.4 0 0.3 ];figure;

新增极点为-0.8 -0.6 -0.3 -0.1 0.1 0.3 0.6 0.8 1

代码如下:

clc;clear all;

zp=[-0.8 -0.6 -0.3 -0.1 0.1 0.3 0.6 0.8 1];

i=1:9

可以得到如下结论:

a)随着增加的开环极点不断往右移动的过程中,系统的根轨迹图总体上也在

往右移动,这会使系统的稳定性变差。当加入极点在虚轴左边时,系统的根轨迹未进入不稳定区域。可以认为加入一个极点对系统稳定性影响不大。

b)增加开环极点可能使系统的主导极点改变,从而影响系统的动态性能。

可以发现矫正环节使根轨迹发生变化,达到了要求。

查看工作空间可看出误差:

22

13sin(10+arctan 3)+8.02

,其大于,不满足要求。4,重复上述过程40.08sin(4arctan ≈+

自控实验报告实验三 线性系统的根轨迹

实验三 线性系统的根轨迹 一、实验目的 1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。 2. 利用MATLAB 语句绘制系统的根轨迹。 3. 掌握用根轨迹分析系统性能的图解方法。 4. 掌握系统参数变化对特征根位置的影响。 二、实验报告 1.根据内容要求,写出调试好的MATLAB 语言程序,及对应的结果。 2. 记录显示的根轨迹图形,根据实验结果分析根轨迹的绘制规则。 3. 根据实验结果分析闭环系统的性能,观察根轨迹上一些特殊点对应的K 值,确定闭环系统稳定的范围。 4.写出实验的心得与体会。 三、实验内容 请绘制下面系统的根轨迹曲线同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的范围。 一、 ) 136)(22()(2 2 ++++=s s s s s K s G 1、程序代码: G=tf([1],[1,8,27,38,26]); rlocus (G); [k,r]=rlocfind(G) G_c=feedback(G,1); step(G_c) 2、实验结果:

-8-6 -4 -2 24 6 8 Root Locus Real Axis I m a g i n a r y A x i s selected_point = -8.8815 + 9.4658i k = 1.8560e+04 r = -10.2089 + 8.3108i -10.2089 - 8.3108i 6.2089 + 8.2888i 6.2089 - 8.2888i Time (seconds) A m p l i t u d e selected_point = -9.5640 - 7.6273i k = 1.3262e+04 r = -9.5400 + 7.6518i -9.5400 - 7.6518i 5.5400 + 7.6258i 5.5400 - 7.6258i Time (seconds) A m p l i t u d e

自动控制原理 题库 第四章 线性系统根轨迹 习题

4-1将下述特征方程化为适合于用根轨迹法进行分析的形式,写出等价的系统开环传递函数。 (1)210s cs c +++=,以c 为可变参数。 (2)3(1)(1)0s A Ts +++=,分别以A 和T 为可变参数。 (3)1()01I D P k k s k G s s s τ?? ++ + =? ?+? ? ,分别以P k 、I K 、T 和τ为可变参数。 4-2设单位反馈控制系统的开环传递函数为 (31)()(21) K s G s s s += + 试用解析法绘出开环增益K 从0→+∞变化时的闭环根轨迹图。 4-2已知开环零极点分布如下图所示,试概略绘出相应的闭环根轨迹图。 4-3设单位反馈控制系统的开环传递函数如下,试概略绘出相应的闭环根轨迹图(要求确定分离点坐标)。 (1)()(0.21)(0.51)K G s s s s = ++ (2)(1)()(21) K s G s s s +=+ (3)(5)()(2)(3) K s G s s s s += ++ 4-4已知单位反馈控制系统的开环传递函数如下,试概略绘出相应的闭环根轨迹图(要求算出起始角)。 (1)(2) ()(12)(12) K s G s s s j s j += +++- (2)(20) ()(1010)(1010) K s G s s s j s j +=+++-

4-5设单位反馈控制系统开环传递函数如为 * 2 ()()(10)(20) K s z G s s s s += ++ 试确定闭环产生纯虚根1j ±的z 值和*K 值。 4-6已知系统的开环传递函数为 * 2 2 (2)()()(49) K s G s H s s s += ++ 试概略绘出闭环根轨迹图。 4-7设反馈控制系统中 * 2 ()(2)(5) K G s s s s = ++ (1)设()1H s =,概略绘出系统根轨迹图,判断闭环系统的稳定性 (2)设()12H s s =+,试判断()H s 改变后的系统稳定性,研究由于()H s 改变所产生的影响。 4-8试绘出下列多项式的根轨迹 (1)322320s s s Ks K ++++= (2)323(2)100s s K s K ++++= 4-9两控制系统如下图所示,试问: (1)两系统的根轨迹是否相同?如不同,指出不同之处。 (2)两系统的闭环传递函数是否相同?如不同,指出不同之处。 (3)两系统的阶跃响应是否相同?如不同,指出不同之处。 4-10设系统的开环传递函数为 12 (1)(1) ()K s T s G s s ++= (1)绘出10T =,K 从0→+∞变化时系统的根轨迹图。 (2)在(1)的根轨迹图上,求出满足闭环极点阻尼比0.707ξ=的K 的值。 (3)固定K 等于(2)中得到的数值,绘制1T 从0→+∞变化时的根轨迹图。 (4)从(3)的根轨迹中,求出临界阻尼的闭环极点及相应的1T 的值。 4-11系统如下图所示,试 (1)绘制0β=的根轨迹图。 (2)绘制15K =,22K =时,β从0→+∞变化时的根轨迹图。 (3)应用根轨迹的幅值条件,求(2)中闭环极点为临界阻尼时的β的值。

线性系统理论Matlab实践仿真报告

线性系统理论Matlab实验报告 1、本题目是在已知状态空间描述的情况下要求设计一个状态反馈控制器,从而使得系统具 有实数特征根,并要求要有一个根的模值要大于5,而特征根是正数是系统不稳定,这样的设计是无意义的,故而不妨设采用状态反馈后的两个期望特征根为-7,-9,这样满足题目中所需的要求。 (1)要对系统进行状态反馈的设计首先要判断其是否能控,即求出该系统的能控性判别矩阵,然后判断其秩,从而得出其是否可控; 判断能控程序设计如下: >> A=[-0.8 0.02;-0.02 0]; B=[0.05 1;0.001 0]; Qc=ctrb(A,B) Qc = 0.0500 1.0000 -0.0400 -0.8000 0.0010 0 -0.0010 -0.0200 Rc=rank(Qc) Rc =2 Qc = 0.0500 1.0000 -0.0400 -0.8000 0.0010 0 -0.0010 -0.0200 得出结果能控型判别矩阵的秩为2,故而该系统是完全可控的,故可以对其进行状态反馈设计。 (2)求取状态反馈器中的K,设的期望特征根为-7,-9; 其设计程序如下: >> A=[-0.8 0.02;-0.02 0]; B=[0.05 1;0.001 0]; P=[-7 -9]; k=place(A,B,P) k = 1.0e+003 * -0.0200 9.0000 0.0072 -0.4500 程序中所求出的k即为所求状态反馈控制器的状态反馈矩阵,即由该状态反馈矩阵所构成的状态反馈控制器能够满足题目要求。 2、(a)要求求该系统的能控型矩阵,并验证该系统是不能控的。

第四章 线性系统的根轨迹法(下)

116 4-23 在带钢热轧过程中,用于保持恒定张力的控制系统称为“环轮”,其典型结构图如图4-47所示。环轮有一个0.6m ~0.9m 长的臂,其末端有一卷轴,通过电机可将环轮升起,以便挤压带钢。带钢通过环轮的典型速度为10.16m 。假设环轮位移变化与带钢张力的变化成正比,且设滤波器时间常数T 可略去不计。要求: (1) 概略绘出0a K <<∞时系统的根轨迹图; (2) 确定增益a K 的取值,使系统闭环极点的阻尼比0.707ζ≥。 (b) 图4-47 轧钢机控制系统 解 本题主要研究根轨迹的绘制及系统参数选择。 (1) 绘系统根轨迹图 电机与轧辊内回路的传递函数 ()()()12 0.250.25 10.250.5G s s s s = = +++ 令0T =,系统开环传递函数为 ()()()() ()() 2 2 2 0.50.50.510.51a K s K G s s s s s s s * += = ++++ 式中,0.5a K K *=。概略绘制根轨迹图的特征数据为: 渐近线:交点与交角 2.5 0.6254 a σ-= =- 45,135a ?=±± 分离点:由 11200.51 d d d ++=++ 解出 0.212d =-。 根轨迹与虚轴交点:闭环特征方程 ()()2 0.51s s s K *+++ 4322.520.50s s s s K *=++++= 列劳思表

117 4s 1 2 K * 3s 2.5 0.5 2s 1.8 K * 1s 0.9 2.51.8 K * - 0s K * 令0.9 2.50K *-=,得0.36K *=。令 21.80s K *+= 代入s j ω=及0.36K *=,解出0.447ω=。交点处 20.72a K K *== 系统概略根轨迹图如图(a)所示。 图(a) 概略根轨迹图 (2) 确定使系统0.707ζ≥的a K 在根轨迹图上,作0.707ζ=阻尼比线,得系统主导极点 1,20.1550.155s j =-± 利用模值条件,得1s 处的0.0612K * =;分离点d 处的0.0387K *=。由于2a K K *=,故取0.07740.1224a K <≤,可使0.7071ζ≤<;取0.0774a K ≤,可使1ζ≥。 ()()20.51010.5a K s s s +=++

线性系统的根轨迹法

第四章线性系统的根轨迹法 一、教学目的与要求: 本章讲述用闭环系统的特征根随系统参数变化的轨迹,来分析控制系统的特性,因此要求学生要掌握根轨迹作图方法的规则,并熟练运用这些规则绘制控制系统的根轨迹图。要让学生会利用根轨迹图分析系统的稳定性、动态特性、稳态特性。掌握怎样改善系统性能的方法。着重讨论根轨迹图的绘制,明确闭环传递函数极点与瞬态响应的关系,了解改变开环增益,增加开环传递函数零、极点对系统质量的影响。 二、授课主要内容: 1.根轨迹法的基本概念 1)闭环零、极点与开环零、极点之间的关系 2)根轨迹方程 2.根轨迹绘制的基本法则 3.广义根轨迹 1)参数根轨迹 2)零度根轨迹 4.系统性能的分析 (详细内容见讲稿) 三、重点、难点及对学生的要求(掌握、熟悉、了解、自学)(1)重点掌握的内容 1)熟练运用常规根轨迹的绘制法则。 2)熟练运用零度根轨迹的绘制法则。 3)正确理解单输入-单输出系统闭环零、极点和开环零极点与常规根轨迹的关系。 (2)一般掌握的内容 1)根轨迹上估计控制系统的性能。 2)广义根轨迹的概念。 3)偶极子、可略零极点的概念,主导极点的概念。

(3)一般了解的内容:根轨迹法则的证明推导过程。 四、主要外语词汇 根轨迹 root-locus 特征方程 characteristic equation 分离点 breakaway point 闭环极点 closed-loop poles 幅角条件 angle condition 模值条件 magnitude condition 实轴 real axis 虚轴 imaginary axis 五、辅助教学情况(见课件) 六、复习思考题 1.什么是根轨迹? 它有什么主要性质?如何把握根轨迹作图? 2.利用图解法绘制根轨迹的8个规则是什么? 3.在根轨迹作图中,确定渐近线和分离点附近的根轨迹很关键,如何理解 有关它们的计算公式? 4.如何绘制零度根轨迹? 5.如何绘制参数根轨迹? 6.控制系统的质量指标在根平面上该怎样表示? 7.什么是闭环主导极点?为什么可以用主导极点来估算闭环系统的质量? 8.闭环极点为实根时响应曲线的形状如何?有共轭复根时响应曲线的形状 如何? 9.开环零、极点的变化对控制系统的质量有什么影响? 10.增加系统的开环零点(开环极点)对系统的性能有何影响? 七、参考教材(资料) 1.《现代控制工程》绪方胜彦著(卢伯英佟明安罗维铭译)科学出版社参考该书第四章有关内容。 2.《自动控制原理》天津大学李光泉主编机械工业出版社

全维状态观测器的设计

实 验 报 告 课程 线性系统理论基础 实验日期 2016年 6月 6 日 专业班级 姓名 学号 同组人 实验名称全维状态观测器的设计 评分 批阅教师签字 一、实验目的 1、 学习用状态观测器获取系统状态估计值的方法,了解全维状态观测器的 极点对状态的估计误差的影响; 2、 掌握全维状态观测器的设计方法; 3、 掌握带有状态观测器的状态反馈系统设计方法。 二、实验内容 开环系统? ??=+=cx y bu Ax x &,其中 []0100001,0,10061161A b c ????????===????????--???? a) 用状态反馈配置系统的闭环极点:5,322-±-j ; b) 设计全维状态观测器,观测器的极点为:10,325-±-j ; c) 研究观测器极点位置对估计状态逼近被估计值的影响; d) 求系统的传递函数(带观测器及不带观测器时); 绘制系统的输出阶跃响应曲线。 三、实验环境 MATLAB6、5 四、实验原理(或程序框图)及步骤

利用状态反馈可以使闭环系统的极点配置在所希望的位置上,其条件就是必须对全部状态变量都能进行测量,但在实际系统中,并不就是所有状态变量都能测量的,这就给状态反馈的实现造成了困难。因此要设法利用已知的信息(输出量y 与输入量x),通过一个模型重新构造系统状态以对状态变量进行估计。该模型就称为状态观测器。若状态观测器的阶次与系统的阶次就是相同的,这样的状态观测器就称为全维状态观测器或全阶观测器。 设系统完全可观,则可构造如图4-1所示的状态观测器 图4-1 全维状态观测器 为求出状态观测器的反馈ke 增益,与极点配置类似,也可有两种方法: 方法一:构造变换矩阵Q,使系统变成标准能观型,然后根据特征方程求出k e ; 方法二:就是可 采用Ackermann 公式: []T o e Q A k 1000)(1Λ-Φ=,其中O Q 为可观性矩阵。 利用对偶原理,可使设计问题大为简化。首先构造对偶系统 ???=+=ξ ηξξT T T b v c A & 然后可由变换法或Ackermann 公式求出极点配置的反馈k 增益,这也可

实验三 线性系统的根轨迹

实验三 线性系统的根轨迹 一、实验目的 1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。 2. 利用MATLAB 语句绘制系统的根轨迹。 3. 掌握用根轨迹分析系统性能的图解方法。 4. 掌握系统参数变化对特征根位置的影响。 二、基础知识及MATLAB 函数 根轨迹是指系统的某一参数从零变到无穷大时,特征方程的根在s 平面上的变化轨迹。这个参数一般选为开环系统的增益K 。课本中介绍的手工绘制根轨迹的方法,只能绘制根轨迹草图。而用MATLAB 可以方便地绘制精确的根轨迹图,并可观测参数变化对特征根位置的影响。 假设系统的对象模型可以表示为 11210111()()m m m m n n n n b s b s b s b G s KG s K s a s b s a -+--++++==++++ 系统的闭环特征方程可以写成 01()0KG s += 对每一个K 的取值,我们可以得到一组系统的闭环极点。如果我们改变K 的数值,则可以得到一系列这样的极点集合。若将这些K 的取值下得出的极点位置按照各个分支连接起来,则可以得到一些描述系统闭环位置的曲线,这些曲线又称为系统的根轨迹。 绘制系统的根轨迹rlocus () MATLAB 中绘制根轨迹的函数调用格式为: rlocus(num,den) 开环增益k 的范围自动设定。 rlocus(num,den,k) 开环增益k 的范围人工设定。 rlocus(p,z) 依据开环零极点绘制根轨迹。 r=rlocus(num,den) 不作图,返回闭环根矩阵。 [r,k]=rlocus(num,den) 不作图,返回闭环根矩阵r 和对应的开环增益向量k 。 其中,num,den 分别为系统开环传递函数的分子、分母多项式系数,按s 的降幂排列。K 为根轨迹增益,可设定增益范围。 例3-1:已知系统的开环传递函数3 2(1)()429s G s K s s s *+=+++,绘制系统的根轨迹的matlab 的调用语句如下: num=[1 1]; %定义分子多项式 den=[1 4 2 9]; %定义分母多项式 rlocus (num,den) %绘制系统的根轨迹 grid %画网格标度线 xlabel(‘Real Axis ’); ylabel(‘Imaginary Axis ’); %给坐标轴加上说明 title(‘Root Locus ’) %给图形加上标题名 则该系统的根轨迹如图3-1(a )所示。 若上例要绘制K 在(1,10)的根轨迹图,则此时的matlab 的调用格式如下,对应的根轨迹如图3-1(b )所示。 num=[1 1]; den=[1 4 2 9];

二阶倒立摆实验报告

. I 线性系统实验报告 : 院系:航天学院 学号: . .

2015年12月

1.实验目的 1)熟悉Matlab/Simulink仿真; 2)掌握LQR控制器设计和调节; 3)理解控制理论在实际中的应用。 倒立摆研究的意义是,作为一个实验装置,它形象直观,简单,而且参数和形状易于改变;但它又是一个高阶次、多变量、非线性、强耦合、不确定的绝对不稳定系统的被控系统,必须采用十分有效的控制手段才能使之稳定。因此,许多新的控制理论,都通过倒立摆试验对理论加以实物验证,然后在应用到实际工程中去。因此,倒立摆成为控制理论中经久不衰的研究课题,是验证各种控制算法的一个优秀平台,故通过设计倒立摆的控制器,可以对控制学科中的控制理论有一个学习和实践机会。 2.实验容 1)建立直线二级倒立摆数学模型 对直线二级倒立摆进行数学建模,并将非线性数学模型在一定条件下化简成线性数学模型。对于倒立摆系统,由于其本身是自不稳定的系统,实验建立模型存在一定的困难,但是经过小心的假设忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系应用经典力学理论建立系统的动

力学方程。对于直线二级倒立摆,由于其复杂程度,在这里利用拉格朗日方程推导运动学方程。 由于模型的动力学方程中存在三角函数,因此方程是非线性的,通过小角度线性化处理,将动力学非线性方程变成线性方程,便于后续的工作的进行。 2)系统的MATLAB仿真 依据建立的数学模型,通过MATLAB仿真得出系统的开环特性,采取相应的控制策略,设计控制器,再加入到系统的闭环中,验证控制器的作用,并进一步调试。控制系统设计过程中需要分析容主要包括得出原未加控制器时系统的极点分布,系统的能观性,能控性。 3)LQR控制器设计与调节实验 利用线性二次型最优(LQR)调节器MATLAB仿真设计的参数结果对平面二阶倒立摆进行实际控制实验,参数微调得到较好的控制效果,记录实验曲线。 4)改变控制对象的模型参数实验 调整摆杆位置,将摆杆1朝下,摆杆2朝上修改模型参数、起摆条件和控制参数,重复3的容。 3.实验步骤

自动控制原理-线性系统的根轨迹实验报告

线性系统的根轨迹 一、 实验目的 1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。 2. 利用MATLAB 语句绘制系统的根轨迹。 3. 掌握用根轨迹分析系统性能的图解方法。 4. 掌握系统参数变化对特征根位置的影响。 二、 实验容 1. 请绘制下面系统的根轨迹曲线。 ) 136)(22()(22++++=s s s s s K s G ) 10)(10012)(1()12()(2+++++=s s s s s K s G )11.0012.0)(10714.0()105.0()(2++++= s s s s K s G 同时得出在单位阶跃负反馈下使得闭环系统稳定的K 值的围。 2. 在系统设计工具rltool 界面中,通过添加零点和极点方法,试凑出上述系统,并 观察增加极、零点对系统的影响。 三、 实验结果及分析 1.(1) ) 136)(22()(22++++=s s s s s K s G 的根轨迹的绘制: MATLAB 语言程序: num=[1];

den=[1 8 27 38 26 0]; rlocus(num,den) [r,k]=rlocfind(num,den) grid xlabel('Real Axis'),ylabel('Imaginary Axis') title('Root Locus') 运行结果: 选定图中根轨迹与虚轴的交点,单击鼠标左键得: selected_point = 0.0021 + 0.9627i k = 28.7425 r = -2.8199 + 2.1667i -2.8199 - 2.1667i -2.3313 -0.0145 + 0.9873i

第五课 线性系统的根轨迹法

第五课 线性系统的根轨迹法 教学目的: 1.熟练掌握使用MATLAB 绘制根轨迹图形的方法。 2.进一步加深对根轨迹图的了解。 3.掌握利用所绘制根轨迹图形分析系统性能的方法。 教学内容: 1.用实验的方法求解根轨迹。 在Matlab 控制系统工具箱中提供了rlocus()函数,来绘制根轨迹,rlocus()的调用格式为: r=rlocus(g,k); 式中的g 为线性系统的数学模型;k 为用户自己选择的增益向量;返回的变量r 为根轨迹上对应向量k 的各个增益点的闭环系统的根。 如果用户不给出k 向量,则该函数会自动选择增益向量,在这种情况下,该函数的调用格式为: [r,k]=rlocus(g); 式中向量k 为自动生成的增益向量,r 仍为对应各个k 值的闭环系统的特征根。 例1 系统1的开环传递函数为:) 15.0)(12.0()(++=s s s K s G K 要求:(1)绘制并记录根轨迹; (2)确定根轨迹的分离点与相应的根轨迹增益; (3)确定临界稳定时的根轨迹增益。 (1)参考程序: K=1; z=[];

p=[0,-5,-2]; [num,den]=zp2tf(z,p,K); rlocus(num,den) Matlab运行时出现的根轨迹图形窗口中,可以用鼠标单击所关心的根轨迹上的点,就出现有关这一点的信息,包括相应增益、极点位置、阻尼参数、超调量、自然频率。

例2系统开环传递函数)2()(2 n n s s K s G ?ωω+=中引入一个附加的极点s=-a ,即系统的 开环传递函数变为) )(2()(2 a s s s Ka s G n n ++=?ωω 给出5.0,/2==?ωs rad n ,a 分别为1,3,5时系统的根轨迹变化曲线。 参考程序: clear clc wn=2; xita=0.5; a=[1,3,5]; for i=1:length(a) G=tf(a(i)*wn^2,conv([1,2*xita*wn,0],[1,a(i)])); rlocus(G); axis([-8,5,-5,5]) hold on disp('press any key to continue.') pause%系统暂停,按任意键继续 end

线性系统的根轨迹分析

实验二 线性系统的根轨迹分析 一、实验目的 1、掌握使用MATLAB 绘制控制系统根轨迹图的方法; 2、掌握根据根轨迹法对控制系统进行性能分析方法。 二、实验仪器设备 Pc 机一台,MATLAB 软件。 三、实验内容 1、已知一负反馈系统的开环传递函数为: ()()(0.11)(0.51) K G s H s s s s = ++求: (1)绘制根轨迹。 (2)选取根轨迹与徐州的交点,并确定系统稳定的根轨迹增益K 的范围。 (3)确定分离点的超调量p M 及开环增益K 。 (4)用时域响应曲线验证系统稳定的根轨迹增益K 的范围。 (5)分析根轨迹的一般规律。 2、已知系统的开环传递函数为: 22(431) ()(351) K s s G s s s s ++= ++ 求: (1)绘制系统的根轨迹。 (2)选择系统当阻尼比ξ=0.7时系统闭环极点的坐标值及增益K 值。 (3)分析系统性能。 四、实验结果 负反馈系统的开环传递函数为: ()()(0.11)(0.51)K G s H s s s s = ++ 1、根轨迹

2、理论计算: 根轨迹的基本性质和绘制规则如下: 规则一 系统根轨迹的各条分支是连续的,而且对称于实轴。 规则二 当K=0时,根轨迹的各条分支从开环极点出发;当K→∞,有m 条分支趋向于开环零点,另外有n-m 条分支趋向无穷远处。 可知,K=0时,3条根轨迹分别从开环极点(0, j0)、(-10,j0)和(-2,j0)出发,由于无开环零点,3条根轨迹趋向于无穷远处。 规则三 在s 平面实轴的线段上存在根轨迹的条件是,在这些线段右边的开环零点和开环极点的数目之和为奇数。 可知,根轨迹在实轴上存在的部分为[-∞,-10]和[-2,0]。 规则四 根轨迹中趋向于无穷远处的n-m 条分支的渐近线的相角为: (21)180a q n m φ+?=± - 0,1,2,,q n m =-- 可知,两条根轨迹无穷远时趋向的渐近线斜率相角为±60°。 规则五 伸向无穷远处的根轨迹的渐近线与实轴交于一点,交点的坐标为: 11 ( ,0)n m i j i j p z j n m ==--∑∑。 可知,渐近线与实轴交点为1020 ( ,0)(6,0)2 j j ---=-

系统的能控性,能观测性,稳定性分析

实验报告 课程线性系统理论基础实验日期年月日 专业班级姓名学号同组人 实验名称系统的能控性、能观测性、稳定性分析及实现评分 批阅教师签字 一、实验目的 加深理解能观测性、能控性、稳定性、最小实现等观念。掌握如何使用MATLAB进行以下分析和实现。 1、系统的能观测性、能控性分析; 2、系统的稳定性分析; 3、系统的最小实现。 二、实验内容 (1)能控性、能观测性及系统实现 (a)了解以下命令的功能;自选对象模型,进行运算,并写出结

果。 gram, ctrb, obsv, lyap, ctrbf, obsvf, minreal ; (b )已知连续系统的传递函数模型,182710)(23++++=s s s a s s G ,当a 分别取-1,0,1时,判别系统的能控性与能观测性; (c )已知系统矩阵为???? ??????--=2101013333.06667.10666.6A ,??????????=110B ,[]201=C ,判别系统的能控性与能观测性; (d )求系统18 27101)(23++++= s s s s s G 的最小实现。 (2)稳定性 (a )代数法稳定性判据 已知单位反馈系统的开环传递函数为:) 20)(1()2(100)(+++=s s s s s G ,试对系统闭环判别其稳定性 (b )根轨迹法判断系统稳定性 已知一个单位负反馈系统开环传递函数为 ) 22)(6)(5()3()(2+++++=s s s s s s k s G ,试在系统的闭环根轨迹图上选择一点,求出该点的增益及其系统的闭环极点位置,并判断在该点系统闭环的稳定性。 (c )Bode 图法判断系统稳定性

自动控制原理(系统根轨迹分析)

武汉工程大学自动控制原理实验报告 专业班级:指导老师: 姓名:学号: 实验名称:系统根轨迹分析 实验日期:2011-12-01 第三次试验 一、实验目的 1、掌握利用MATLAB精确绘制闭环系统根轨迹的方法; 2、了解系统参数或零极点位置变化对系统根轨迹的影响; 二、实验设备 1、硬件:个人计算机 2、软件:MATLAB仿真软件(版本6.5或以上) 实验内容

1.根轨迹的绘制 1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K ) () (s q s p =0, 其中,K 为我们所关心的参数。 2) 调用函数 r locus 生成根轨迹。 关于函数 rlocus 的说明见图 3.1。 不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。 图3.1 函数rlocus 的调用 例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。 图3.2 闭环系统一

图3.3 闭环系统一 的根轨迹及其绘制 程序 注意:在这里,构成系统s ys 时,K 不包括在其中,且要使分子和分母中s最高

次幂项的系数为1。 当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1); 当系统开环传达函数无零点时,[zero]写成空集[]。 对于图 3.2 所示系统, G(s)H(s)= )2()1(++s s s K *11+s =) 3)(2() 1(+++s s s s K . 可如下式调用函数 z pk 构成系统 s ys : sys=zpk([-1],[0 -2 -3],1) 若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 r locfind 。然后,将鼠标移至根轨迹图上会出现一个可移动的大十字。将该十字的 中心移至根轨迹上某点,再点击鼠标左键,就可在命令窗口看到该点对应的根值和 K 值了。另外一种 较为方便的做法是在调用了函数 rlocus 并得到了根轨迹后直接将鼠标移至根轨迹图中根轨迹上某点 并点击鼠标左键,这时图上会出现一个关于该点的信息框,其中包括该系统在此点的特征根的值及其 对应的 K 值、超调量和阻尼比等值。图 3.4 给出了函数 r locfind 的用法。 2.实验内容 图3.5 闭环系统二 1) 对于图 3.5 所示系统,编写程序分别绘制当 (1) G(s)= )2(+s s K , (2) G(s)= ) 4)(1(++s s s K ,

系统的能控性、能观测性、稳定性分析

实 验 报 告 课程 线性系统理论基础 实验日期 年 月 日 专业班级 学号 同组人 实验名称 系统的能控性、能观测性、稳定性分析及实现 评分 批阅教师签字 一、实验目的 加深理解能观测性、能控性、稳定性、最小实现等观念。掌 握如何使用MATLAB 进行以下分析和实现。 1、系统的能观测性、能控性分析; 2、系统的稳定性分析; 3、系统的最小实现。 二、实验内容 (1)能控性、能观测性及系统实现 (a )了解以下命令的功能;自选对象模型,进行运算,并写出结 果。 gram, ctrb, obsv, lyap, ctrbf, obsvf, minreal ; (b )已知连续系统的传递函数模型,18 2710)(23++++=s s s a s s G ,当a 分别取-1,0,1时,判别系统的能控性与能观测性;

(c )已知系统矩阵为???? ??????--=2101013333.06667.10666.6A ,??????????=110B ,[]201=C ,判别系统的能控性与能观测性; (d )求系统18 27101)(23++++= s s s s s G 的最小实现。 (2)稳定性 (a )代数法稳定性判据 已知单位反馈系统的开环传递函数为:) 20)(1()2(100)(+++=s s s s s G ,试对系统闭环判别其稳定性 (b )根轨迹法判断系统稳定性 已知一个单位负反馈系统开环传递函数为 ) 22)(6)(5()3()(2+++++=s s s s s s k s G ,试在系统的闭环根轨迹图上选择一点,求出该点的增益及其系统的闭环极点位置,并判断在该点系统闭环的稳定性。 (c )Bode 图法判断系统稳定性 已知两个单位负反馈系统的开环传递函数分别为 s s s s G s s s s G 457.2)(,457.2)(232231-+=++= 用Bode 图法判断系统闭环的稳定性。 (d )判断下列系统是否状态渐近稳定、是否BIBO 稳定。 []x y u x x 0525,100050250100010-=????? ?????+??????????-=

自动控制原理Matlab实验3(系统根轨迹分析)

《自动控制原理》课程实验报告 实验名称系统根轨迹分析 专业班级 *********** ********* 学 号 姓名** 指导教师李离 学院名称电气信息学院 2012 年 12 月 15 日

一、实验目的 1、掌握利用MATLAB 精确绘制闭环系统根轨迹的方法; 2、了解系统参数或零极点位置变化对系统根轨迹的影响; 二、实验设备 1、硬件:个人计算机 2、软件:MATLAB 仿真软件(版本6.5或以上) 三、实验内容和步骤 1.根轨迹的绘制 利用Matlab 绘制跟轨迹的步骤如下: 1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K ) () (s q s p =0, 其中,K 为我们所关心的参数。 2) 调用函数 r locus 生成根轨迹。 关于函数 rlocus 的说明见图 3.1。 不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。 图3.1 函数rlocus 的调用 例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。

图3.2 闭环系统一 图3.3 闭环系统一的根轨迹及其绘制程序

图 3.4 函数 rlocfind 的使用方法 注意:在这里,构成系统 s ys 时,K 不包括在其中,且要使分子和分母中 s 最高次幂项的系数为1。 当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1); 当系统开环传达函数无零点时,[zero]写成空集[]。 对于图 3.2 所示系统, G(s)H(s)= )2()1(++s s s K *11+s =) 3)(2() 1(+++s s s s K . 可如下式调用函数 z pk 构成系统 s ys : sys=zpk([-1],[0 -2 -3],1) 若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 rlocfind 。然后,将鼠标移至根轨迹图上会出现一个可移动的大十字。将该十字的 中心移至根轨迹上某点,再点击鼠标左键,就可在命令窗口看到该点对应的根值和 K 值了。另外一种 较为方便的做法是在调用了函数 rlocus 并得到了根轨迹后直接将鼠标移至根轨迹图中根轨迹上某

状态观测器的设计——报告

东南大学自动化学院 实 验 报 告 课程名称: 自动控制基础 实验名称: 状态观测器的设计 院 (系): 自动化学院 专 业: 自动化 姓 名: 吴静 学 号: 08008419 实 验 室: 机械动力楼417室 实验组别: 同组人员: 实验时间:2011年05月13日 评定成绩: 审阅教师: 一、实验目的 1. 理解观测器在自动控制设计中的作用 2. 理解观测器的极点设置 3. 会设计实用的状态观测器 二、实验原理 如果控制系统采用极点配置的方法来设计,就必须要得到系统的各个状态,然后才能用状态反馈进行极点配置。然而,大多数被控系统的实际状态是不能直接得到的,尽管系统是可以控制的。怎么办?如果能搭试一种装置将原系统的各个状态较准确地取出来,就可以实现系统极点任意配置。于是提出了利用被控系统的输入量和输出量重构原系统的状态,并用反馈来消除原系统和重构系统状态的误差,这样原系统的状态就能被等价取出,从而进行状态反馈,达到极点配置改善系统的目的,这个重构的系统就叫状态观测器。 另外,状态观测器可以用来监测被控系统的各个参量。 观测器的设计线路不是唯一的,本实验采用较实用的设计。 给一个被控二阶系统,其开环传递函数是G (s )=12 (1)(1)K T s T s ++ ,12 K K K =观测器如图示。

设被控系统状态方程 构造开环观测器,X ∧ Y ∧ 为状态向量和输出向量估值 由于初态不同,估值X ∧ 状态不能替代被控系统状态X ,为了使两者初态跟随,采用输出误差反馈调节,加入反馈量H(Y-Y)∧ ,即构造闭环观测器,闭环观测器对重构造的参数误差也有收敛作用。 也可写成 X =(A-HC)X +Bu+HY Y CX ? ∧ ∧ ∧∧ = 只要(A-HC )的特征根具有负实部,状态向量误差就按指数规律衰减,且极点可任意配置,一般地,(A-HC )的收敛速度要比被控系统的响应速度要快。工程上,取小于被控系统最小时间的3至5倍,若响应太快,H 就要很大,容易产生噪声干扰。 实验采用X =A X +Bu+H(Y-Y)? ∧ ∧∧ 结构,即输出误差反馈,而不是输出反馈形式。 取:1212min 35 20,5,2,0.5,0.2K K T T t λ-= =====,求解12g g ?????? 三、实验设备: THBDC-1实验平台 THBDC-1虚拟示波器 Matlab/Simulink 软件 四、实验步骤 按要求设计状态观测器 (一) 在Matlab 环境下实现对象的实时控制 1. 将ZhuangTai_model.mdl 复制到E:\MATLAB6p5\work 子目录下,运行matlab ,打开ZhuangTai_model.mdl 注:‘实际对象’模块对应外部的实际被控对象,在simulink 下它代表计算机与外部接口: ● DA1对应实验面板上的DA1,代表对象输出,输出通过数据卡传送给计算机; ● AD1对应实验面板上的AD1,代表控制信号,计算机通过数据卡将控制信号送给实际对象;

控制系统的根轨迹分析

实验报告 课程名称:____ 自动控制理论实验_____指导老师:_____________成绩:__________ 实验名称:___控制系统的根轨迹分析___实验类型:___仿真实验___同组学生姓名:__无__ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验十一 控制系统的根轨迹分析 一、实验目的 1、用计算机辅助分析的办法,掌握系统的根轨迹分析方法。 2、熟练掌握 Simulink 仿真环境。 二、实验原理 1、根轨迹分析方法 所谓根轨迹,是指当开环系统的某一参数(一般来说,这一参数选作开环系统的增益 K ) 从零变到无穷大时,系统特征方程的根在 s 平面上的轨迹。在无零极点对消时,闭环系统特 征方程的根就是闭环传递函数的极点。 根轨迹分析方法是分析和设计线性定常控制系统的图解方法,使用十分简便。利用它可 以对系统进行各种性能分析: (1) 稳定性 当开环增益 K 从零到无穷大变化时,图中的根轨迹不会越过虚轴进入右半 s 平面,因 此这个系统对所有的 K 值都是稳定的。如果根轨迹越过虚轴进入右半 s 平面,则其交点的 K 值就是临界稳定开环增益。 (2) 稳态性能 开环系统在坐标原点有一个极点,因此根轨迹上的 K 值就是静态速度误差系数,如果 给定系统的稳态误差要求,则可由根轨迹确定闭环极点容许的范围。 (3) 动态性能 当 0 < K < 0.5 时,所有闭环极点位于实轴上,系统为过阻尼系统,单位阶跃响应为非周 期过程;当 K = 0.5 时,闭环两个极点重合,系统为临界阻尼系统,单位阶跃响应仍为非周 期过程,但速度更快;当 K > 0.5 时,闭环极点为复数极点,系统为欠阻尼系统,单位阶跃 响应为阻尼振荡过程,且超调量与 K 成正比。 同时,可通过修改系统的设计参数,使闭环系统具有期望的零极点分布,即根轨迹对系 统设计也具有指导意义。 2、根轨迹分析函数 在 MA TLAB 中,绘制根轨迹的有关函数有 rlocus 、rlocfind 、pzmap 等。 (1) pzmap :绘制线性系统的零极点图,极点用×表示,零点用 o 表示。 专业:_____________________ 姓名:____________________ 学号:___________________ 日期:____________________ 地点:____________________

过程控制系统综合设计报告

过程控制系统综合设计报告 班级: 姓名: 学号: 学期:

一、实验目的与要求 1.掌握DDC控制特点; 2.熟悉CS4100实验装置,掌握液位控制系统和温度控制系统构成; 3.熟悉智能仪表参数调整方法及各参数含义; 4.掌握由CS4100实验装置设计流量比值控制、液位串接控制、液位前馈反馈控制及四水箱解耦控制等设计方法; 5.掌握实验测定法建模,并以纯滞后水箱温度控制系统作为工程案例,掌握纯滞后水箱温度控制系统的建模,并用DDC控制方案完成控制算法的设计及系统调试。 以水箱流量比值控制、水箱液位串接控制、水箱液位前馈反馈控制及四水箱解耦控制为被被控对象,完成系统管路设计、电气线路设计、控制方案确定、系统调试、调试结果分析等过程的训练。以纯滞后水箱作为被控对象,以第二个水箱长滞后温度作为被控量,完成从实验测定法模型建立、管路设计、线路设计、控制方案确定、系统调试、结果分析等过程的训练。 具体要求为: 1)检索资料,熟悉传感器、执行器机械结构及工作原理。 2)熟悉CS4100过控实验装置的机械结构,进行管路设计及硬件接线; 3)掌握纯滞后水箱温度控制系统数学模型的建立方法,并建立数学模型; 4)掌握智能仪表参数调节方法; 5)进行控制方案设计,结合具体数学模型,计算系统所能达到性能指标,并通过仿真掌握控制参数的整定方法; 6)掌握系统联调的步骤方法,调试参数的记录方法,动态曲线的测定记录方法。记录实验数据,采用数值处理方法和相关软件对实验数据进行处理并加以分析,记录实验曲线,与理论分析结果对比,得出有意义的结论。 7)撰写实验设计报告、实验报告,具体要求见:(五)实践报告的内容与要求。 二、实验仪器设备与器件 1.CS4100过程控制实验装置 2.PC机(组态软件) 3.P909智能仪表若干

线性系统的根轨迹分析

自动控制原理课程实验报告 实验题目:线性系统的根轨迹分析 1.实验目的 1.根据对象的开环传函,做出根轨迹图。 2.掌握用根轨迹法分析系统的稳定性。 3.通过实际实验,来验证根轨迹方法。 2.实验设备 PC 机一台,TD-ACC+( 或TD-ACS)教学实验系统一套。3.1 实验原理及内容 1 .实验对象的结构框图:如图 2.1-1 所示。 2 .模拟电路构成:如图 2.1-2 所示

3 .绘制根轨迹 (1) 由开环传递函数分母多项式 S(S+1)(0.5S+1) 中最高阶次 n = 3 ,故根轨迹分支数为 3 。开环有 个极点: p1=0 ,p2=-1 ,p3=-2 (2) 实轴上的根轨迹: ① 起始于 0 、 - 1 、 - 2 ,其中 - 2 终止于无穷远处。 ②起始于 0 和 - 1 的两条根轨迹在实轴上相遇后分离,分离点为 显然 S2 不在根轨迹上,所以 S1 为系统的分离点,将 S1=- 0.422 代入特征方程 S(S+1)(0.5S+1)+K 中,得 K =0.193 (3) 根轨迹与虚轴的交点 将 S = j W 代入特征方程可得: 4 .根据根轨迹图分析系统的稳定性 根据图 2.1-3 所示根轨迹图,当开环增益 K 由零变化到无穷大时,可以获得系统的下 述性能: R = 500/K

(1)当K=3 ;即R=166 KΩ时,闭环极点有一对在虚轴上的根,系统等幅振荡, 临界稳定。 (2)当K > 3 ;即R < 166 KΩ时,两条根轨迹进入S 右半平面,系统不稳定。 (3)当0 < K < 3 ;即R >166 KΩ时,两条根轨迹进入S 左半平面,系统稳定。 上述分析表明,根轨迹与系统性能之间有密切的联系。利用根轨迹不仅能够分析闭环系统的动态性能以及参数变化对系统动态性能的影响,而且还可以根据对系统暂态特性的要求确定可变参数和调整开环零、极点位臵以及改变它们的个数。这就是说,根轨迹法可用来解决线性系统的分析和综合问题。由于它是一种图解求根的方法,比较直观,避免了求解高阶系统特征根的麻烦,所以,根轨迹在工程实践中获得了广泛的应用。 3.2实验步骤1.绘制根轨迹图:实验前根据对象传函画出对象的根轨迹图,对其稳定性及暂态性能做出理论上的判断。并确定各种状态下系统开环增益K 的取值及相应的电阻值R。2.将信号源单元的“ ST”端插针与“ S”端插针用“短路块”短接。由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。将开关设在“方波”档,分别调节调幅和调频电位器,使得“ OUT”端输出的方波幅值为1V ,周期为10s 左右。注意:实验过程中,由于“ ST ”端和“ S ”端短接,运放具有锁零功能。而该对象的响应时间较长,看不全整个响应过程,此时只需在响应过程中将信号源中的“ST ” 端和“S ”端之间的短路块拔掉即可。 3.按模拟电路图2.1-2 接线,并且要求对系统每个环节进行整定,详见附录一;将2 中的方波信号加至输入端。 4.改变对象的开环增益,即改变电阻R 的值,用示波器的“ CH1”和“CH2”表笔分别 测量输入端和输出端,观察对象的时域响应曲线,应该和理论分析吻合。注意:此次实验中对象须严格整定,否则可能会导致和理论值相差较大。

相关文档
最新文档