软启动器的作用与维护保养

软启动器的作用与维护保养
软启动器的作用与维护保养

软启动器的作用与维护保养

软起动主要由串接于电源与被控电动机之间三对反并联晶闸管调压电路构成。现代软启动器基本上都采用了电力电子技术和微机控制技术,以单片微机作为中央控制器控制核心来完成测量及各种控制算法。

因此,软启动器具备了很强的功能和灵活性。整个起动过程是数字化程序软件控制下自动进行。利用三对晶闸管的电子开关特性,通过MCU或单片机控制其触发脉冲的迟早来改变触发角的大小。而改变触发导通角的大小,又改变了晶闸管的导通时间,最终改变定子绕组的三相电压的大小。

软起动器的作用

1、降低电机的起动电流,减少配电容量,避免增容投资;

2、减小起动应力,延长电动机及相关设备的使用寿命;

3、平稳的起动和软停车避免了传统起动设备的喘振问题、水锤效应;

4、多种起动模式及宽范围的电流、电压等设定,可适应多种负载情况;

5、完善可靠的保护功能,更有效地保护电机及相关设备的安全;

6、它能无阶跃地平稳起动/停止电机,避免因采用直接起动、星三角起动、自耦减压起动等传统起动方式起动电机而引起的机械与电气冲击等问题

7、能有效地降低起动电流及配电容量,避免增容投资。

软启动器维护保养

软启动器是一种拥有电机软启动,软停车以及轻载节能的多功能的新型电机控制装置。在实际的使用中,软启动器也是需要更多的维护与保养。

1.多多注意以及检查软启动器所处的环境,不要把软启动放在不适合它使用的环境下运行。并仔细看一下周围有没有妨碍软启动器正常通风散热的一些物体,如果有马上移开,并且确保软启动器的周围有大于150m毫米的足够空间。

2.每隔一段时间检查一下软启动器的配电线端子有没有松动的情况,检查柜内元器件有没有呈现过热,变色以及焦臭味等异常现象。

3.定期的清扫软启动器的灰尘,保证其能够正常散热,并防止晶闸管会因为温度过于高而被损坏,同时这样也可以防止因为灰尘的堆积而引起的漏电以及短路的事故。

4.清扫灰尘的时候可以用皮老虎吹或者吸尘器吸。如果污垢过大的话。可以使用绝缘棒去除。如果有条件的话,用0.6MPa左右的压缩空气吹除是再好不过了。

5.多多注意风机的运行情况,如果风机出现转速慢或者异常时,应该及时进行修理。如果风机有一定程度的损坏,那么就马上更换。如果没有风机时就随意使用软启动器,后果将是损坏晶闸管。

6.软启动器如果使用时周围的环境过于潮湿或者容易结露,那么应该经常使用红外灯泡或者电吹风烘干,将潮气彻底祛除,这样才不会有漏电以及短路的事故发生。

软启动器的作用

软启动器的作用

电机直接启动的时候,电流可能会达到额定电流的6-7倍,会给工厂的其他用电设备带来问题。采用软启动时启动电流大概是额定电流的2-3倍。对于水泵来说,还有软停止,让水慢慢回落,消除水锤效果。简单的说就是缓缓启动,缓缓停止。这个缓缓的时间可以调节,大概是1-60秒。 软启动器以体积小,转矩可以调节、启动平稳冲击小并具有软停机功能等优点得到了越来越多的应用,大有取代传统的自耦减压、星-角等启动器的趋势。由于软启动器是近年来新发展起来的启动设备,在设计、安装、调试和使用方面还缺少指导性的规范与规程。我们在软启动器的安装、调试工作中也遇到了一些实际技术问题。例如:不同启动负载软启动器的选型、软启动冲击电流与过流保护定值的配合、软启动设备容量与变压器容量的关系等问题。 1、软启动器简介 目前,市场上常见的软启动器主要有电子式、磁控式和自动液体电阻式等类型。电子式以晶闸管调压式为多数。变频器在某种意义上也是一种软启动器,而且是能够真正地实现软启动的启动器,只是造价要高些。 晶闸管式软启动器是串接在电源与电动机之间的三组正反向并联的晶闸管,通过微电脑控制触发导通角实现交流调压。晶闸管式软启动器的启动方式有斜坡电压型、突跳加斜坡电压型和限流型等可供选择。

磁控式软启动器是利用磁放大器原理制造的串联在电源和电动机之间的三相饱和电抗器构成的软启动装置。启动时通过数字控制板调节磁放大器控制绕组的激磁电流,改变饱和电抗器的电抗值调节启动电压降,实现电动机软启动。不论晶闸管式软启动器还是磁控式软启动器在启动时只能调节输出电压,达到控制启动时的电压降、限制启动电流的目的。一般的软启动器不能调节电源频率,也就不能象变频器那样从零频零压开始启动电动机,实现无冲击启动。实际上软启动器在启动设备时还是要产生一定的冲击电流的;斜坡电压型控制软启动器的启动时的电压、电流变化曲线见图1所示。晶闸管式软启动器采用斜坡电压启动时,开始时要使软启动器输出一个初始电压(初始电压在80~280V之间可以调节),使电 动机产生足以克服机械设备的静摩擦的初始转矩,拖动设备开始转动,启动电流为Is。在微电脑的控制下,继续增加输出电压使电动机加速。当软启动器的输出电压接近额定电压时,电动机就已达到额定转速,Is降为负荷电流In。启动时间t1结束时,软启动器输出额定电压并发出旁路信号,使旁路接触器闭合,软启动器停止输出电压,电动机转入正常运行。软启动的初始转矩可以通过给定初始电压和启动时间进行调节,控制启动电流在2--4.5倍电动机额定电流以内。 低压软启动器的停车方式主要有自由停车,软停车,制动停车三种。传统的电动机停车方式常用自由停车,但有许多应用场合,自由停车会产生很大问题,如高层建筑的水泵系统,如果采用自由

板式换热器选型参数表

选择板式换热器要注意以下三个事项 1、板式换热器板型的选择板片型式或波纹式应根据换热场合的实际需要而定。对流量大允许压降小的情况,应选用阻力小的板型,反之选用阻力大的板型。根据流体压力和温度的情况,确定选择可拆卸式,还是钎焊式。确定板型时不宜选择单板面积太小的板片,以免板片数量过多,板间流速偏小,传热系数过低,对较大的换热器更应注意这个问题。艾瑞德每种规格的板片,均具有至少两个板型,采用热混合技术,可以综合换热器的传热和压降,使其运行在最佳工作点。内旁通,双流道技术和不等流通截面积装配为两侧介质流量相差较大的工况提供了完美的解决方案。ARD艾瑞德板式换热器(江阴)有限公司板式换热器有AB系列、AM系列、AL系列、AP系列、AS系列等几大系列百余种板型。各种型号都有深波纹、浅波纹、大角度、小角度等,完全确保满足不同用户的需要,特殊工况可按用户需要专门设计制造。 2、流程和流道的选择流程指板式换热器内一种介质同一流动方向的一组并联流道,而流道指板式换热器内,相邻两板片组成的介质流动通道。一般情况下,将若干个流道按并联或串联的费那个是连接起来,以形成冷、热介质通道的不同组合。流程组合形式应根据换热和流体阻力计算,在满足工艺条件要求下确定。尽量使冷、热水流道内的对流换热系数相等或接近,从而得到最佳的传热效果。因为在传热表面两侧对流换热系数相等或接近时传热系数获得较大值。虽然板式换热器各板间流速不等,但在换热和流体阻力计算时,仍以平均流速进行计算。由于“U”形单流程的接管都固定在压紧板上,拆装方便。 3、压降校核在板式换热器的设计选型使,一般对压降有一定的要求,所以应对其进行校核。如果校核压降超过允许压降,需重新进行设计选型计算,直到满足工艺要求为止。 艾瑞德板式换热器(江阴)有限公司是专业生产可拆式板式换热器(PHE)、换热器密封垫(PHE GASKET)、换热器板片(PHE PLATE)并提供板式

几种常用软启动方式的性能效果分析

几种常用软启动方式的性能效果分析 深圳市中传电气技术有限公司 摘要:对电机常见几种启动工具如:变频器,软启动器,液力耦合器在性能和价格上进行比较。 关键词:变频器;软启动器;液力耦合器;性能比较 Abstract:Compare several tool what is propitious to motor startup at capability and value,for example inverter,soft-starter,coupler Keywords:inverter;soft-starter;coupler. 1 引言 由于电动机直接启动电流大,缩短了电动机的使用寿命,所以人们想出各种办法减小电机启动电流,从耦合器到软启动器,从软启动器到功能强大的变频器。本文主要对变频器和其他启动工具做全面的比较,方便用户根据自己实际需要选择适合自己的变频器。 2变频器与液力耦合器特性比较 液力耦合器是通过控制工作腔内工作油液的动量矩变化,来传递电动机能量并改变输出转速的,电动机通过液力耦合器的输入轴拖动其主动工作轮,对工作油进行加速,被加速的工作油再带动液力耦合器的从动工作涡轮,把能量传递到输出轴和负载,这样,可以通过控制工作腔内参与能量传递的工作油多少来控制输出轴的力矩,达到控制负载的转速的目地。因此液力耦合器也可以实现负载转速无级调节。同现在占主导地位的变频器相比较主要有下列特点: 2.1节能效果 1000KW高压风机电动机降速70%时液力耦合器和变频调速节能比较如下表1所示。 表1 液力耦合器和变频调速节能比较 序号项目变频器液力耦合器 1 电网总输入功率447.1KW 638.7KW 2 调速装置效率0.95 0.665

软启动器应用基础知识

简介:软启动器是一种集电机软启动、软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,国外称为Soft Starter。它的主要构成是串接于电源与被控电机之间的三相反并联晶闸管及其电子控制电路。 关键字:电动机软启动基础 1.什么是软启动器?它与变频器有什么区别? 软启动器是一种集电机软启动、软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,国外称为Soft Starter。它的主要构成是串接于电源与被控电机之间的三相反并联晶闸管及其电子控制电路。 运用不同的方法,控制三相反并联晶闸管的导通角,使被控电机的输入电压按不同的要求而变化,就可实现不同的功能。 软启动器和变频器是两种完全不同用途的产品。变频器是用于需要调速的地方,其输出不但改变电压而且同时改变频率;软起动器实际上是个调压器,用于电机启动时,输出只改变电压并没有改变频率。变频器具备所有软启动器功能,但它的价格比软起动器贵得多,结构也复杂得多。 2.什么是电动机的软启动?有哪几种起动方式? 运用串接于电源与被控电机之间的软启动器,控制其内部晶闸管的导通角,使电机输入电压从零以预设函数关系逐渐上升,直至启动结束,赋予电机全电压,即为软起动,在软起动过程中,电机启动转矩逐渐增加,转速也逐渐增加。软启动一般有下面几种起动方式。 (1)斜坡升压软启动。这种起动方式最简单,不具备电流闭环控制,仅调整晶闸管导通角,使之与时间成一定函数关系增加。其缺点是,由于不限流,在电机起动过程中,有时要产生较大的冲击电流使晶闸管损坏,对电网影响较大,实际很少应用。 (2)斜坡恒流软启动。这种启动方式是在电动机启动的初始阶段启动电流逐渐增加,当电流达到预先所设定的值后保持恒定(t1至t2阶段),直至启动完毕。启动过程中,电流上升变化的速率是可以根据电动机负载调整设定。电流上升速率大,则启动转矩大,启动时间短。 该起动方式是应用最多的启动方式,尤其适用于风机、泵类负载的启动。 (3)阶跃启动。开机,即以最短时间,使启动电流迅速达到设定值,即为阶跃启动。通过调节启动电流设定值,可以达到快速启动效果。 (4)脉冲冲击启动。在启动开始阶段,让晶闸管在级短时间内,以较大电流导通一段时间后回落,再按原设定值线性上升,进入恒流启动。

螺旋板式换热器结构及性能

螺旋板式换热器结构及性能 1、本设备由两张卷制而成,形成了两个均匀的螺旋通道,两种传热介质可进行全逆流流动,大大增强了换热效果,即使两种小温差介质,也能达到理想的换热效果。 2、在壳体上的接管采用切向结构,局部阻力小,由于螺旋通道的曲率是均匀的,液体在设备内流动没有大的转向,总的阻力小,因而可提高设计流速使之具备较高的传热能力。 3、I型不可拆式螺旋板式换热器螺旋通道的端面采用焊接密封,因而具有较高的密封性。 4、II型可拆式螺旋板换热器结构原理与不可拆式换热器基本相同,但其中一个通道可拆开清洗,特别适用有粘性、有沉淀液体的热交换。 5、III型可拆式螺旋板换热器结构原理与不可拆式换热器基本相同,但其两个通道可拆开清洗,适用范围较广。 6、单台设备不能满足使用要求时,可以多台组合使用,但组合时必须符合下列规定:并联组合、串联组合、设备和通道间距相同。混合组合:一个通道并联,一个通道串联。 螺旋板式换热器的基本参数: 1.螺旋板式换热器的公称压力PN规定为0.6,1,1.6、 2.5Mpa(即原6、10、16、25kg/cm)(系指单通道的最大工作压力)试验压力为工作压力的1.25倍。 2.螺旋板式换热器与介质接触部分的材质,碳素钢为Q235A、Q235B、不锈钢酸港为SUS321、SUS304、3161。其它材质可根据用户要求选定。 3.允许工作温度:碳素钢的t=0-+350℃。不锈钢酸钢的t=-40-500℃。升温降压范围按压力容器的有关规定,选用本设备时,应通过恰当的工艺计算,使设备通道内的流体达到湍流状态。(一般液体流速1m/Sec气体流速10m/Sec).设备可卧放或立放,但用于蒸气冷凝时只能立放;用于烧碱行业必须进行整体热处理,以消除应力。 螺旋板式换热器防堵塞原理 螺旋板式换热器与一般列管式换热器相比是不容易堵塞的,尤其是泥沙、小贝壳等悬浮颗粒杂质不易在螺旋通道内沉积,主要体现在: 1.因为它是单通道杂质在通道内的沉积一形成周转的流还就会提高至把它冲掉; 2.因为螺旋通道内没有死角,杂质容易被冲出。 螺旋板换热器的分类 螺旋板换热器分为可拆分螺旋板换热器和不可拆分螺旋板换热器。不可拆式螺旋板换热器的结构比较简单,螺旋通道的两端全部焊死。可拆式螺旋板换热器.除螺旋通道两端的密封结构以外,其他与不可拆式完全相同。为达到机械清洗的目的,可拆式螺旋通道,一端敞开,用平板盖和垫片密封,以防止流体漏到大气中或同一通道内的流体短路。为了提高螺旋板的承压能力,在板与板之间用定距柱支撑。筒体上的流体进出口有法向接管和切向接管两种。中国普遍使用切向接管,它的流体阻力小,杂质容易被冲出。使用回转支座比较方便,可使换热器立放或卧放。换热的A、B流体分别流过螺旋板的两侧,其中的一种流体沿螺旋通道由外向内,至中心出口流出;而另一种流体则沿螺旋通道由中心进口,由内向外流出。两种流体呈纯逆流方式流动。螺旋板换热器最大结构尺寸为:板宽1800毫米,外径1700毫米,传热面积250米,板与板之间的距离20毫米。允许最高操作压力可达 2.5兆帕。工作温度由选用的材料而定,材料大多用碳钢、不锈钢、铝、铜和钛。

软启动基本知识

软启动基本知识 1.软起动器是一种集软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,国外称为Soft Starter。它的主要构成是串接于电源与被控电机之间的三相反并联闸管及其电子控制电路。 运用不同的方法,控制三相反并联闸管的导通角,使被控电机的输入电压按不同的要求而变化,就可实现不同的功能。 软起动器和变频器是两种完全不同用途的产品。变频器是用于需要调速的地方,其输出不但改变电压而且同时改变频率;软起动器实际上是个调压器,用于电机起动时,输出只改变电压并没有改变频率。变频器具备所有软起动器功能,但它的价格比软起动器贵得多,结构也复杂得多。 2.什么是电动机的软起动?有哪几种起动方式? 运用串接于电源与被控电机之间的软起动器,控制其内部晶闸管的导通角,使电机输入电压从零以预设函数关系逐渐上升,直至起动结束,赋予电机全电压,即为软起动,在软起动过程中,电机起动转矩逐渐增加,转速也逐渐增加。软起动一般有下面几种起动方式。 (1)斜坡升压软起动。这种起动方式最简单,不

具备电流闭环控制,仅调整晶闸管导通角,使之与时间成一定函数关系增加。其缺点是,由于不限流,在电机起动过程中,有时要产生较大的冲击电流使晶闸管损坏,对电网影响较大,实际很少应用。 (2)斜坡恒流软起动。这种起动方式是在电动机起动的初始阶段起动电流逐渐增加,当电流达到预先所设定的值后保持恒定(t1至t2阶段),直至起动完毕。起动过程中,电流上升变化的速率是可以根据电动机负载调整设定。电流上升速率大,则起动转矩大,起动时间短。 该起动方式是应用最多的起动方式,尤其适用于风机、泵类负载的起动。 (3)阶跃起动。开机,即以最短时间,使起动电流迅速达到设定值,即为阶跃起动。通过调节起动电流设定值,可以达到快速起动效果。 (4)脉冲冲击起动。在起动开始阶段,让晶闸管在级短时间内,以较大电流导通一段时间后回落,再按原设定值线性上升,连入恒流起动。 该起动方法,在一般负载中较少应用,适用于重载并需克服较大静摩擦的起动场合。 3.软起动与传统减压起动方式的不同之处在哪里?

软启动器的作用

电机直接启动的时候,电流可能会达到额定电流的6-7倍,会给工厂的其他用电设备带来问题。采用软启动时启动电流大概是额定电流的2-3倍。对于水泵来说,还有软停止,让水慢慢回落,消除水锤效果。简单的说就是缓缓启动,缓缓停止。这个缓缓的时间可以调节,大概是1-60秒。 软启动器以体积小,转矩可以调节、启动平稳冲击小并具有软停机功能等优点得到了越来越多的应用,大有取代传统的自耦减压、星-角等启动器的趋势。由于软启动器是近年来新发展起来的启动设备,在设计、安装、调试和使用方面还缺少指导性的规范与规程。我们在软启动器的安装、调试工作中也遇到了一些实际技术问题。例如:不同启动负载软启动器的选型、软启动冲击电流与过流保护定值的配合、软启动设备容量与变压器容量的关系等问题。 1、软启动器简介 目前,市场上常见的软启动器主要有电子式、磁控式和自动液体电阻式等类型。电子式以晶闸管调压式为多数。变频器在某种意义上也是一种软启动器,而且是能够真正地实现软启动的启动器,只是造价要高些。 晶闸管式软启动器是串接在电源与电动机之间的三组正反向并联的晶闸管,通过微电脑控制触发导通角实现交流调压。晶闸管式软启动器的启动方式有斜坡电压型、突跳加斜坡电压型和限流型等可供选择。

磁控式软启动器是利用磁放大器原理制造的串联在电源和电动机之间的三相饱和电抗器构成的软启动装置。启动时通过数字控制板调节磁放大器控制绕组的激磁电流,改变饱和电抗器的电抗值调节启动电压降,实现电动机软启动。不论晶闸管式软启动器还是磁控式软启动器在启动时只能调节输出电压,达到控制启动时的电压降、限制启动电流的目的。一般的软启动器不能调节电源频率,也就不能象变频器那样从零频零压开始启动电动机,实现无冲击启动。实际上软启动器在启动设备时还是要产生一定的冲击电流的;斜坡电压型控制软启动器的启动时的电压、电流变化曲线见图1所示。晶闸管式软启动器采用斜坡电压启动时,开始时要使软启动器输出一个初始电压(初始电压在80~280V之间可以调节),使电 动机产生足以克服机械设备的静摩擦的初始转矩,拖动设备开始转动,启动电流为Is。在微电脑的控制下,继续增加输出电压使电动机加速。当软启动器的输出电压接近额定电压时,电动机就已达到额定转速,Is降为负荷电流In。启动时间t1结束时,软启动器输出额定电压并发出旁路信号,使旁路接触器闭合,软启动器停止输出电压,电动机转入正常运行。软启动的初始转矩可以通过给定初始电压和启动时间进行调节,控制启动电流在2--4.5倍电动机额定电流以内。 低压软启动器的停车方式主要有自由停车,软停车,制动停车三种。传统的电动机停车方式常用自由停车,但有许多应用场合,自由停车会产生很大问题,如高层建筑的水泵系统,如果采用自由

板式换热器板片设计的四大特性

板式换热器板片设计的四大特性 更新日期:2012-08-20 板式换热器是制冷主机上的重要配件,它是由一组波纹金属板组合而成,板上有四个角孔,供传热的两种液体通过,引导流体交替地流经各自的通道,进行热交换,它们排列紧密、精度高,体积小,换热效率高,节省空间,使用环境要求较高,适合在小型制冷机组上使用,广泛应用与冶金、石油、化工、食品、制药、船舶、纺织、造纸等行业,是加热、冷却、热回收、快速灭菌的优良设备。 特性 1、板片分流区设计:即使最宽的板片,也能使流体充分均匀地分布在板片的各个角落,使分流区压力损失最小.板片所有的换热面积都参与高效换热,板片的所有物理面积都转化为有效的换热面积,无换热死区,不存在流动死角,不容易发生积垢,不易出现积垢引起的氯离子腐蚀,可以充分利用允许的压力降,提高对流换热部分的流速,提高整体的换热效率。 2、板片单边流设计:整台板式换热器仅用一种板片,更易配管,更易安装和设备维护,减少板片和胶垫的备品种类和数量。 3、板片有H和L两种波纹角度:通过换热器板片优化组合,最大限度提高传热系数,降低设备造价 4、板片一次冲压成型:在同一板片上,板片波纹深度相同,从而保证板间每一接触点完好衔接,板片上无过度冲压区.不会产隐性裂纹,板片上金属纹路高度同一,板片最薄可达0.3mm.这样使得板片承压能力增强,避免热应力疲劳,避免振荡和高频颤抖引起的机械疲劳腐蚀,板片机械性能更佳,避免了隐性裂纹造成的泄漏,接触点分布均匀,介质流过板片时,湍流加强,最大限度提高传热效率,减轻设备重量,在保证承压要求下,获得更高的传热系数。 ARD艾瑞德是全球领先的板式换热器板片生产商和销售商,拥有国内品种最全,型号最多的板式换热器板片!能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、日阪/HISAKA、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的全部常用型号的板式换热器板片。

软启动器在风机上的应用汇总

软启动器是用于电动机启动的产品。它的核心部件是可控硅以及相关功能的软、硬件。软启动器由三对反并联的晶闸管串接组合而成,通过控制其触发角改变输入电压,以达到控制电动机的启动特性。在启动离心风机和水泵等负载时,与传统的接触器、星/三角和自耦降压启动等相比有很多优点。其启动和运行参数可调节,因此在安装、调试和使用环境上都与传统的电机启动器有很大区别。 一、软启动基本参数 1.软启动与其它启动方式的比较 直接启动也称全压启动,启动电流一般为额定电流的4~7倍,对电网及用电设备造成很大冲击,小容量的电机一般采用直接启动。 对于大、中容量的电机,当其容量超过供电变压器的5%~25%时,一般应采用降压启动,降压启动方式有Y-△降压启动、自耦降压启动等。虽然降压启动电流较低,但也存在冲击电流,会对电网及设备造成危害。 为此研制了电机软启动器,它能实现无级加速的启动,对电网及设备的冲击相对较弱。软启动与其它启动方式的比较如图所示。

2.软启动(西安西驰电气CMC-M系列数码智能型电机软起动器)常见启动方式 软起\软停电压(电流)特性曲线

CMC-M 软起动器有多种起动方式:限流起动、电压斜坡起动、电流斜坡起动;多种停车方式:自由停车、软停车、制动刹车、软停+制动刹车。用户可根据负载不同及具体使用条件选择不同的起动方式和停车方式。 (1)、限流软起动 使用限流起动模式时,斜坡时间设置为零,软起动器得到起动指令后,其输出电压迅速增加,直至输出电流达到设定电流限幅值Im ,输出电流不再增大,电动机运转加速持续一段时间后电流开始下降,输出电压迅速增加,直至全压输出,起动过程完成。 注: “---”表示用户自己根据需要进行设定(下同)。 (2)、电压斜坡起动

板式换热器的技术参数

板式换热器的技术参数 更新日期:2012-12-12 进出口管径进出口管径的大小以介质在管道内的活动速度小于3m/S为宜来确定,最大流速宜小于4m/s。现海内板式板式换热器板片厚度一股为0.5~1.0mm,考虑到厂家制造工艺、现场操纵水平及侵蚀、除垢等因素,板式换热器板片厚度宜选择0.7~0.9ram。 板式换热器软水侧压力损失 软化水进出板式换热器温度根据现有高炉软水供给的经验,软水供给温度在3 5~40℃之间时,对高炉稳产高产、安全出产最有利,同时考虑到夏季冷媒水及冷却塔的冷却能力,软化水进高炉温度在夏季最不利工况时宜小于40℃,软化水出高炉温度宜小于4 5℃,即软化水进板式换热器温度宜为4 5℃,出板式换热器温度宜为40℃。 板式换热器板片材质板式板式换热器板片材质基本上采用不锈钢、钛合金两种。 板式板式换热器数目根据中小高炉的特点,其炉体冷却软水系统采用板式板式换热器的数目宜为3台并联,每台流量为最大流量的5O%,正常运行开二备一。 冷却水进、出板式换热器温度根据夏季冷却水供水温度及冷却塔工作能力,冷却水进板式换热器温度宜小于32℃,出板式换热器温度宜小于3 7℃。 流量根据水在冷却壁的公道流速,并重点考虑高炉后期内壁耐热层减薄、传热量急剧增加的情况,按后期最大传热量来确定软化水流量。因为钛材料价格为不锈钢的4~6倍,且高炉冷却系统板式板式换热器板片材质采用不锈钢即可知足要求,为此板式板式换热器板片材质选用不锈钢。 板式换热器正常工作压力根据软水系统闭路轮回的特点,板式换热器正常工作压力最小值应为软水系统轮回水泵出口压力与高炉高位膨胀水箱水位高度之和。原有空冷器软水侧压力损失小于0.05MPa,因此板式板式换热器软水侧压力损失必需小于’0.05M Pa。 密封垫材质考虑现场实际情况及板式板式换热器工作温度、软化水成分等诸多因素,密封垫材质宜选用三元乙丙橡胶。 因为软水系统除停开空冷器、并入板武板式换热器外,其它部门不变,因此,板式板式换热器软水侧压力损失须小于原有空冷器软水侧压力损失。 板式换热器板片厚度板式换热器板片厚度与传热系数成反比关系,板片厚度越小,传热效果越好,但同时也轻易侵蚀泄漏。 ARD拥有世界上最先进的设计和生产技术以及最全面的换热器专业知识,有专门的选型软件根据用户不同工况测算出最适合的板式换热器。

软启动工作原理

软启动工作原理 软启动器电动机的应用 1、软启动器工作原理与主电路图 软启动器采用三相反并联晶闸管作为调压器,将其接入电源和电动机定子之间。这种电路如三相全控桥式整流电路,主电路图见图1。使用软启动器启动电动机时,晶闸管的输出电压逐渐增加,电动机逐渐加速,直到晶闸管全导通,电动机工作在额定电压的机械特性上,实现平滑启动,降低启动电流,避免启动过流跳闸。待电机达到额定转数时,启动过程结束,软启动器自动用旁路接触器取代已完成任务的晶闸管,为电动机正常运转提供额定电压,以降低晶闸管的热损耗,延长软启动器的使用寿命,提高其工作效率,又使电网避免了谐波污染。软启动器同时还提供软停车功能,软停车与软启动过程相反,电压逐渐降低,转数逐渐下降到零,避免自由停车引起的转矩冲击。软启动与软停车的电压曲线见图2,3。 2 软启动器的选用 (1)选型:目前市场上常见的软启动器有旁路型、无旁路型、节能型等。根据负载性质选择不同型号的软启动器。 旁路型:在电动机达到额定转数时,用旁路接触器取代已完成任务的软启动器,降低晶闸管的热损耗,提高其工作效率。也可以用一台软启动器去启动多台电动机。 无旁路型:晶闸管处于全导通状态,电动机工作于全压方式,忽略电压谐波分量,经常用于短时重复工作的电动机。 节能型:当电动机负荷较轻时,软启动器自动降低施加于电动机定子上的电压,减少电动机电流励磁分量,提高电动机功率因数。 (2)选规格:根据电动机的标称功率,电流负载性质选择启动器,一般软启动器容量稍大于电动机工作电流,还应考虑保护功能是否完备,例如:缺相保护、短路保护、过载保护、逆序保护、过压保护、欠压保护等。 3、Alt48软启动器的特点 Alt48软启动器启动时采用专利技术的转矩控制。转矩斜坡上升更快速,损耗更低。具有电动机和软启动器综合保护功能,能全时连续检测电机电流,提供电机可靠和完整保护,这种保护功能在启动结束后旁路仍能起作用,这是其它软启动器都不具备的。 Alt48在保持加速力矩的同时,实时计算定子和转子的功率。在整个加速周期连续计算电机功率因数和定子损耗,通过检测电压和电流来计算功率因数,并扣除定子损耗,得到实际的转子功率和电机力矩。 4 Alt48软启动器的应用 设计采用一拖二方案,见图4,即一台软启动器带两台水泵,可以依次启动,停止两台水泵。一拖二方案主要特点是节约一台软启动器,减少了投资,充分体现了方案的经济性,实用性。

软启动器的性能及特点

软启动器的性能及特点 软启动器对电机电流的检测,控制输出电压按一定线性加至全压,限制励磁启动电流,实现电机的软启动,它具有很强的抗干扰能力和控制能力,能避免在工作中受高电压和强电子的扰动。软启动器采用数字控制触发,在软启动过程中是恒电流平滑加速,避免了对电网的冲击,启动电流可根据现场负载的需要在30%~70%Ue (Ue为额定电压) 范围内连续可调。可以对软启动器参数进行调整,以最小电流获得最佳转矩,软启动器对机械方面的优点是可减少机械应力,延长电动机及附属机械使用寿命。启动时间可以根据不同的负载进行设定,对启动时间进行最佳优化,在该时间范围内,电动机转速缓慢上升,具有缺相,三相不平衡,过载,过流等电机的全方位保护。性价比高,操作简单,体积小,重量轻,安装调试方便, 具有可控硅过热和过电压保护。 2. 1没采用软启动器之前设备存在的问题?连轧厂冷剪机采用(星/ 三角)转换启动装置.连轧厂冷剪机所带的飞轮重负载、大直径,在启动和停车过程中惯性大,切换瞬间出现高电流尖峰,电动机在启动时的冲击电流对电网电压波动也带来很大的影响,同时对控制设备产生很大的损害,经常烧接触器,需要经常进行更换,严重影响生产。连轧厂的冷剪机在启动时出现故障会造成全线停产。如果仅仅为启动电机而增大配电容量,显然不可取。传统的降压启动没有从根本上解决问题. 2. 2 改造后采用的软启动器启动

软启动器是一种集软启动、软停车、轻载节能和多功能保护于一体的电机控制装备。实现在整个启动过程中无冲击而平滑的启动电机,而且可根据电动机负载的特性来调节启动过程中的各种参数,如限流值、启动时间等。 软启动工作原理与运行特点?三相交流异步电动机的启动转矩Ma 直接与所加电压的二次方有关,也就是说,只要降低电机接线端子上的电压就会影响这些值(见图1) 。软启动的工作原理是通过控制串接于电源与被控电机之间的三相反并联晶闸管的导通角使电机的端子电压从预先设定的值上升到额定电压(见图2)。

换热器主要参数及性能特点

换热器主要参数及性能特 点 The Standardization Office was revised on the afternoon of December 13, 2020

换热器主要参数及性能特点 主要控制参数 板水加热器的主要控制参数为水加热器的单板换热面积、总换热面积、热水产量、换热量、传热系数K、设计压力、工作压力、热媒参数等。 性能特点 (1)换热量高,传热系数K值在3000~8000W/(m22K)范围,高于其它换热器型式。 (2)板式换热器具有很高的传热系数,就决定了它具有结构紧凑、体积小的特点,在每立方米体积内可以布置250平方米的传热面积,大大优于其它种类的换热器。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。

ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD都能为您提供板式换热器领域的系统解决方案。

软启动器使用11个注意事项

软启动器使用11个注意事项 1、软启动器的安装和维护需由合格的专业人员进行。 2、严禁使用高压测试设备(如兆欧表)测试软启动器的绝缘。 4、如果要求电动机可逆运行,可以在进线侧装一个反转接触器,注意不要装在软起动器输出侧。 5、饶线型电动机转子串入适当的起动机电阻以提高起动转矩后,软起动器也可以用来起动饶线型电动机,当电动机达到全速并且稳定后,起动电阻应该被旁路,减小功率损耗。 6、严禁将功率因数补偿电容放在软起动器的输出侧,且在起动期间不能切换电容。 7、软起动器本身没有短路保护,为了保护其中的晶闸管,应该采用快速熔断器。快速熔断器应根据软起动器的额定电流来选择。须指出,由于低压断路器开断时间较长(约为0.1S)不宜用于晶闸管的保护。 8、当软起动器使用电动机制动停机时,只是由于晶闸管不导通,使用电动机的输入电压为0V,但在电动机与电源之间并没有形成电气隔离,因此在检修电动机或线路时,必须切断供电电源。为此,应在软起动器与电源之间增设断器路。 9、当软起动器功率较大或者台数较多时,产生的高次谐波会对电网造成不良影响,并对电子设备产生干扰。为此,可在电动机在起动线路中装设旁路接触器,当电动机平稳起动至正常转速时,旁路接触器闭合,把软起动器短接。即在起动完成之后,大功率晶闸管不再工作,从而消除高次谐波对电网及电子设备的干扰。 10、软起动器内置有多种保护功能(如失速及堵转测试、相间平衡、欠载保护、欠电压保护、过电压保护等),具体应用时应根据实际需要通过编辑来选择保护功能或使某些保护功能失效。比如,在突然断电比过负载造成的损失更大的场合,其过负载保护应作用玞信号而不应作用于切断电路。 11、软起动器的使用环境要求比较高,应做好通风散热工作,安装时应在其上、下方留出一定空间,使空气能流过其功率模块。当软起动器的额定电流较大时,要采用风机降温。

BR系列板式换热器板片参数

板式换热器板片参数 名称参数名称参数 波纹夹角90°角孔中心距1732、1447、1162、877×342 波纹节距13.44mm 板片通道截面积2132 mm2 波纹深度 3.8mm 板片换热面积 1.0,0.8,0.6,0.4 3.07t/h 板片当量直径7.6mm 下料尺寸2003、1718、1433、1148×613 角孔直径?200mm 板片外形尺寸1999、1714、1429、1144×609 名称参数名称参数 波纹夹角120°角孔中心距1358(1162/896)×285 波纹节距12mm 板片通道截面积1440mm2 波纹深度 3.2mm 板片换热面积0.65 0.55 0.45 2.07t/h 板片当量直径 6.4mm 下料尺寸1578(1385/1119)×500 角孔直径?145mm 板片外形尺寸1574(1381/1115)×497 名称参数名称参数 波纹夹角120°角孔中心距869×180 波纹节距11mm 板片通道截面积822.4 mm2 波纹深度 3.2mm 板片换热面积0.2 1.18t/h 板片当量直径 6.4mm 下料尺寸998×304 角孔直径?65mm 名称参数名称参数 波纹夹角100°角孔中心距1052×248 波纹节距13.6mm 板片通道截面积1335 mm2 波纹深度 3.7mm 板片换热面积0.35,0.28 1.9t/h 板片当量直径7.4mm 下料尺寸1215×405 角孔直径?100 名称参数名称参数 波纹夹角120°角孔中心距630×137 波纹节距10.7mm 板片通道截面积635 mm2 波纹深度 3.0mm 板片换热面积0.12 0.9t/h 板片当量直径 6.0mm 下料尺寸750×250 角孔直径?65

软启动基本知识

软启动基本知识 1.软起动器是一种集软停车、轻载节能和多种保护功能于一体的新颖电机控制装置,国外称为Soft Starter。它的主要构成是串接于电源与被控电机之间的三相反并联闸管及其电子控制电路。 运用不同的方法,控制三相反并联闸管的导通角,使被控电机的输入电压按不同的要求而变化,就可实现不同的功能。 软起动器和变频器是两种完全不同用途的产品。变频器是用于需要调速的地方,其输出不但改变电压而且同时改变频率;软起动器实际上是个调压器,用于电机起动时,输出只改变电压并没有改变频率。变频器具备所有软起动器功能,但它的价格比软起动器贵得多,结构也复杂得多。 2.什么是电动机的软起动?有哪几种起动方式? 运用串接于电源与被控电机之间的软起动器,控制其内部晶闸管的导通角,使电机输入电压从零以预设函数关系逐渐上升,直至起动结束,赋予电机全电压,即为软起动,在软起动过程中,电机起动转矩逐渐增加,转速也逐渐增加。软起动一般有下面几种起动方式。 (1)斜坡升压软起动。这种起动方式最简单,不

具备电流闭环控制,仅调整晶闸管导通角,使之与时间成一定函数关系增加。其缺点是,由于不限流,在电机起动过程中,有时要产生较大的冲击电流使晶闸管损坏,对电网影响较大,实际很少应用。 (2)斜坡恒流软起动。这种起动方式是在电动机起动的初始阶段起动电流逐渐增加,当电流达到预先所设定的值后保持恒定(t1至t2阶段),直至起动完毕。起动过程中,电流上升变化的速率是可以根据电动机负载调整设定。电流上升速率大,则起动转矩大,起动时间短。 该起动方式是应用最多的起动方式,尤其适用于风机、泵类负载的起动。 (3)阶跃起动。开机,即以最短时间,使起动电流迅速达到设定值,即为阶跃起动。通过调节起动电流设定值,可以达到快速起动效果。 (4)脉冲冲击起动。在起动开始阶段,让晶闸管在级短时间内,以较大电流导通一段时间后回落,再按原设定值线性上升,连入恒流起动。 该起动方法,在一般负载中较少应用,适用于重载并需克服较大静摩擦的起动场合。 3.软起动与传统减压起动方式的不同之处在哪里?

板式换热器

板式换热器设计与分析 摘要 板式换热器的传热性能与版面的波纹形状、尺寸及版面组合方式都有密切关系。对于任何一种新型结构尺寸板片的传热及阻力特性,都只有通过实验计算测定。对于无相变传热,多数制造商都能提供关联式:对于相变传热,绝大多数的产品,尚不能提供相关的关联式。 板式换热器是一种高效紧凑的换热设备,它的应用几乎涉及到所有的工业领域,而且其类型、结构和使用范围还在不断发展。近年来,焊接型板式换热器的紧凑型,重量轻、换热性能好、初始成本低等优越性已越来越被人们所认识,因此人们纷纷对板式换热器内流动状态和换热机理展开研究。随着CFD(Computational Fluid Dynamics)技术发展日趋成熟,使对流体内部温度场、压力场以及速度场的分布研究变得可行,鉴于此,本文应用CFD软件对人字形波纹板换热器进行数值模拟,在此基础上又进行了实验研究及实验数据与数值模拟的对比分析。 基于简化模型的计算结果难以准确描述换热器内完整的流体流动和换热特性。为此,本文建立于人字形波纹板片完全相同的,含分配区和传热区冷热双流道换热的计算模型,用计算机流体力学软件Fluent6.3,数值模拟4组不同名义波纹高度下流体的流动和换热情况。分析流道内速度场和温度场发现,进口分配区对流体流动分布和换热都有显著影响,还将流体在流道内的流动情况详细描述。两侧流体的压降和进出口温差的计算值于实验值的误差小于6%,较准确地反映了换热器内整体的流动和换热特性,可直接用于研究板式换热器的性能,具有一定的工程实际意义。 关键词:板式换热器;热力计算;分析;数值模拟;传热性能;流道状态

Design and analysis of plate heat exchanger ABSTRACT Plate heat exchanger heat transfer performance of corrugated board shape, size and board composition are closely related. A new structure for any size of plate heat transfer and pressure drop characteristics only by experimental calculations. For the non-phase-change heat transfer, the vast majority of products, yet can not provide the corresponding correlation. Plate heat exchanger is a kind of high efficient compact heat transfer equipment , which involves the application of almost all the industrial fields , In recent years ,copper brazing plate heat exchanger with compact in size , light in weight , good heat transfer performance, and low operating cost advantages has increasingly been recognized. People also begin the research of flow and heat transfer in plate heat exchangers. With the development of CFD(Computational Fluid Dynamics)technology, we call obtain the temperature , pressure and velocity vectors distribution of internal fluid. In this thesis, the author uses commercial CFD software to simulate chevron corrugated plate heat exchangers. Simulation results based on the simplified model are difficult to predict hydrodynamics and thermal characteristics of plate heat exchanger accurately. Therefore, a model of the accurate size of actual chevron-type plate heat exchanger geometry is built in this paper. Using CFD software FLUENT6.3, the pressure drop and heat transfer coefficient for cross-corrugated plate heat exchangers at four different inlet velocities were investigated. By analyzing the simulation results of velocity and temperature fields, the structure of distribution area of inlet and outlet has significant influence on overall hydrodynamics and heat transfer performance of PHEs. The flow patterns in tow channels were described in detail. The simulation results of pressure drop and temperature difference between the inlet and outlet were compared with the exponential data, which shows a less than 6% error. From the simulation results , the hydrodynamics and thermal characteristics of chevron-type plate heat exchangers was properly reproduced and this method is feasible alternative of physical performance test of PHEs, which is of some practical significance. KEY WORDS : Plate heat exchangers; Heat calculate; Analysis; Numerical simulation; Fluid flow; Heat transfer.

相关文档
最新文档