齿轮泵毕业设计

齿轮泵毕业设计
齿轮泵毕业设计

(此文档为word格式,下载后您可任意编辑修改!) 苏州托普信息职业技术学院

毕业论文

论文题目齿轮泵的设计

指导教师吴小花

专业机械制造与自动化班级机械1201

摘要:在当今社会泵的应用是很广泛的,在国民经济的许多部门要用到它。在供给系统中几乎是不可缺少的一种设备。在泵的实际应用中损耗严重,特别是化工用泵在实际应用中损耗,主要是轴封部分,在输送过程中由于密封不当而出现泄漏造成重大损失和事故。轴封有填料密封和机械密封。填料密封使用周期短,损耗高,效率低。本设计中设计的齿轮泵排量较小安全性较高,轴封设计合理,精度较高,齿轮泵使用寿命较高。

关键词:泵填料密封机械密封

一、课程设计任务书………………………………………( 4 )

二、齿轮的设计与校核……………………………………( 5 )

三、卸荷槽的计算…………………………………………( 12 )

四、泵体的校核……………………………………………( 13 )

五、滑动轴承的计算………………………………………( 14 )

六、联轴器的选择及校核计算……………………………( 17 )

七、连接螺栓的选择与校核………………………………( 18 )

八、连接螺栓的选择与校核………………………………( 20 )

九、齿轮泵进出口大小确定………………………………( 21 )

十、齿轮泵的密封…………………………………………( 22 )

十一、法兰的选择…………………………………………( 23 ) 十二、键的选择……………………………………………( 24 ) 十三、键的选择……………………………………………( 25 ) 设计小结……………………………………………………( 27 )

参考文献……………………………………………………( 29 )

一、课程设计任务书

题目:齿轮泵设计

工作条件:使用年限10年(每年工作300天),工作为二班工作制。

原始数据:理论排量:125mlr;额定压力:6.3MPa;工作介质轴承油:220

注意事项:

课程设计任务书:

1)测绘一套相近部件或产品,完成测绘图;

2)根据给定要求设计齿轮泵,完成一套齿轮泵装配图和全部非标零件图;

3)完成全部零件三维实体造型,并进行数字装配;

4)完成齿轮泵标准件的计算选型

5)完成齿轮泵非标零件精度设计

第一章引言

1.1 本课题研究意义

齿轮泵是在工业应用中运用极其广泛的重要装置之一,尤其是在液压传动与控制技术中占有很大的比重,它具有结构简单、体积小、重量轻、自吸性能好、耐污染、使用可靠、寿命较长、制造容易、维修方便、价格便宜等特点〔L 一”。但同时齿轮泵也还存在一些不足,如困油现象比较严重、流量和压力脉动较大、径向力不平衡、泄漏大、噪声高及易产生气穴等缺点,这些特性和缺点都直接影响着齿轮泵的质量。随着齿轮泵在高温、高压、大排量、低流量脉动、低噪音等方面发展及应用,对齿轮泵的特性研究及提高齿轮泵的安全和效率已成为国内外深入研究的课题。

外啮合齿轮泵是应用最广泛的一种齿轮泵( 称为普通齿轮泵),其设计及生产技术水平也最成熟。多采用三片式结构、浮动轴套轴向间隙自动补偿措施,并采用平槽以减小齿轮( 轴承) 的径向不平衡力。目前,这种齿轮泵的额定压力可达25 MPa。但是, 由于这种齿轮泵的齿数较少,导致其流量脉动较大由于齿轮泵在液压传动系统中应用广泛,因此,吸引了大量学者对其进行研究。目前,国内外学者关于齿轮泵的研究主要集中在以下方面:齿轮参数及泵体结构的优化设计;齿轮泵间隙优化及补偿技术;困油冲击及卸荷措施;齿轮泵流量品质

研究;齿轮泵的噪声控制技术;轮齿表面涂覆技术;齿轮泵的变量方法研究;齿轮泵的寿命及其影响因素研究;齿轮泵液压力分析及其高压化的途径;水介质齿轮泵基础理论研究。综上所知,对齿轮泵的自主研发和设计对我国尤为重要。特别是在提高其效力和降低噪音和振动方面。

本次毕业设计的主要任务书是设计:设计外啮合容积式齿轮泵,适用于输送不含固体颗粒和纤维,工作介质轴承油:220

在输油系统中可用作传输、增压泵、润滑油泵。

1.2 齿轮泵的发展研究现状

早在二千多年前,人类就发明了齿轮传动装置。早期的齿轮采用木料或金属铸造成形,只能传递两轴间的回转运动,不能保证传动的平稳性,承载能力也很小。随着生产的发展,齿轮运转的平稳性受到重视。1674年丹麦天文学家罗默首次提出用外摆线作齿廓曲线,以得到运转平稳的齿轮。18世纪工业革命时期,齿轮技术得到高速发展,人们对齿轮进行了大量的研究。

江苏工业学院祝海林教授等人针对现有高粘度齿轮泵结构单一、径向力不平衡、轴承受力大造成磨损严重、流量及压力脉动大等问题,综合行星传动及齿轮泵原理,提出了将外啮合与内啮合两种结构相结合构成高粘度复合齿轮泵的设想,阐述了新型齿轮泵的结构及性能特点,得出了理论排量的计算公式。研究表明:新型齿轮泵的高低压腔对称、齿轮与轴受力平衡。它具有内泄漏小、轴承及泵的寿命长、输出排量成倍增加而流量脉动小等显著优点,具有良好的产业化前景。

齿轮泵可分为外啮合和内啮合两大类,国外某些工业发达国家齿轮泵的产量在液压泵中占有很大比重与外啮合齿轮泵相比内啮合齿轮泵以其体积小,重量轻、噪声低、自吸性能好、流量脉动小等优点而倍受重视,其产量在齿轮泵的总产量中占有很大比例。一些发达国家内啮合与外啮合齿轮泵的产量比接近于1:1。齿轮泵是我国最早生产的液压元件之一,压力从0.5MPa至25Mpa(最高压力达到31.SMpa),流量从3Umin至4OOLmin的齿轮泵均有生产;我国的内啮合齿轮泵产量不大,特别是内啮合摆线齿轮泵和其它非渐开线齿廓啮合齿轮泵,基本还处于初级阶段。目前,我国的齿轮泵产品性能还比较低,与国外同类产品相比,还有不小的差距。

第二章齿轮泵简介

2.1 齿轮泵的工作原理

外啮合齿轮泵的工作原理图如图2-1所示:

图2-1齿轮泵工作原理图

由图可见,这种泵的壳体内装有一对外啮合齿轮。由于齿轮端面与壳体端盖之间的缝隙很小,齿轮齿顶与壳体内表面的间隙也很小,因此可以看成将齿轮泵壳体内分隔成左、右两个密封容腔。当齿轮按图示方向旋转时,右侧的齿轮逐渐脱离啮合,露出齿间。因此这一侧的密封容腔的体积逐渐增大,形成局部真空,油箱中的油液在大气压力的作用下经泵的吸油口进入这个腔体,因此这个容腔称为吸油腔。随着齿轮的转动,每个齿间中的油液从右侧被带到了左侧。在左侧的密封容腔中,轮齿逐渐进入啮合,使左侧密封容腔的体积逐渐减小,

把齿间的油液从压油口挤压输出的容腔称为压油腔。当齿轮泵不断地旋转时,齿轮泵的吸、压油口不断地吸油和压油,实现了向液压系统输送油液的过程。在齿轮泵中,吸油区和压油区由相互啮合的轮齿和泵体分隔开来,因此没有单独的配油机构。

齿轮泵是容积式回转泵的一种,其工作原理是:齿轮泵具有一对互相啮合的齿轮,齿轮(主动轮)固定在主动轴上,齿轮泵的轴一端伸出壳外由原动机驱动,齿轮泵的另一个齿轮(从动轮)装在另一个轴上,齿轮泵的齿轮旋转时,液体沿吸油管进入到吸入空间,沿上下壳壁被两个齿轮分别挤压到排出空间汇合(齿与齿啮合前),然后进入压油管排出。

齿轮泵的主要特点是结构紧凑、体积小、重量轻、造价低。但与其他类型泵比较,有效率低、振动大、噪音大和易磨损的缺点。齿轮泵适合于输送黏稠液体。

2.2 齿轮泵的结构特点

齿轮采用具有国际九十年人先进水平的新技术--双圆弧正弦曲线齿型圆弧。它与渐开线齿轮相比,最突出的优点是齿轮啮合过程中齿廓面没有相对滑动,所以齿面无磨损、运转平衡、无困液现象,噪声低、寿命长、效率高。该泵摆脱传统设计的束缚,使得齿轮泵在设计、生产和使用上进入了一个新的领域。

泵设有差压式安全阀作为超载保护,安全阀全回流压力为泵额定排出压力1.5倍。也可在允许排出压力范围内根据实际需要另行调整。但是此安全阀不能作减压阀长期工作,需要时可在管路上另行安装。

该泵轴端密封设计为两种形式,一种是机械密封,另一种是填料密封,可根据具体使用情况和用户要求确定。

2.3 困油现象及卸荷

困油现象

齿轮泵要平稳工作,齿轮啮合的重合度必须大于1,于是总有两对齿轮同时啮合,并有一部分油液被围困在两对轮齿所围成的封闭容腔之间。这个封闭的容腔开始随着齿轮的转动逐渐减小,以后又逐渐加大。封闭腔容

积的减小会使被困油液受挤压而产生很高的压力,并且从缝隙中挤出,导致油液发热,并致使机件受到额外的负载;而封闭腔容积的增大又造成局部真空,使油液中溶解的气体分离,产生气穴现象。这些都将产生强烈的振动和噪声,这就是齿轮泵的困油现象。

危害

径向不平衡力很大时能使轴弯曲,齿顶与壳体接触,同时加速轴承的磨损,降低轴承的寿命。

消除困油现象方法

消除困油的方法,通常是在两侧盖板上开卸荷槽,使封闭腔容积减小时通过左边的卸荷槽与压油腔相通,容积增大时通过右边的卸荷槽与吸油腔相通。

第三章齿轮泵总体设计

一、主要技术参数

根据任务要求,此型齿轮油泵的主要技术参数确定为:

理论排量:125mlr

额定压力:6.3MPa

额定转速:552rmin

容积效率:≥90%

二、设计计算的内容

1.齿轮参数的确定及几何要素的计算

由于本设计所给的工作介质的粘度为220,由表一进行插补可得此设计最大节圆线速度为2.6。

节圆线速度V:

式中D——节圆直径(mm)

n——转速

表2.1 齿轮泵节圆极限速度和油的粘度关系

量与排

量关系式为:

——流量

——理论排量(mlr)

齿数Z的确定,应根据液压泵的设计要求从流量、压力脉动、机械效率等

各方面综合考虑。从泵的流量方面来看,在齿轮分度圆不变的情况下,齿数越

少,模数越大,泵的流量就越大。从泵的性能看,齿数减少后,对改善困油及提高机械效率有利,但使泵的流量及压力脉动增加。

目前齿轮泵的齿数Z 一般为6-19。对于低压齿轮泵,由于应用在机床方面较多,要求流量脉动小,因此低压齿轮泵齿数Z 一般为13-19。齿数14-17的低压齿轮泵,由于根切较小,一般不进行修正。

3.确定齿宽。齿轮泵的流量与齿宽成正比。增加齿宽可以相应地增加流量。而齿轮与泵体及盖板间的摩擦损失及容积损失的总和与齿宽并不成比例地增加,因此,齿宽较大时,液压泵的总效率较高.一般来说,齿宽与齿顶圆尺寸之比的选取范围为0.2~0.8,即:

Da ——齿顶圆尺寸(mm )

对于低压齿轮泵来说,确定模数主要不是从强度方面着眼,而是从泵的流量、压力脉动、噪声以及结构尺寸大小等方面。

通过对不同模数、不同齿数的齿轮油泵进行方案分析、比较结果,确定此型齿轮油泵的齿轮参数如下:

(1)模数

(2)齿数

(3)齿宽

因为齿轮的齿数为18,不会发生根切现象,所以在这里不考虑修正,以下关于齿轮参数的计算均按标准齿轮参数经行。

(4)理论中心距mm mz D A f 721430=?===

(5)实际中心距

(6)齿顶圆直径()()mm Z m D e 4821432=+?=+=

(7)基圆直径

mm mz D n j 8.2820cos 143cos =???==α

(8)基圆节距42.420cos 5.1cos =???==παπn j m t

(9)齿侧间隙

()()24.0~03.0308.0~01.008.0~01.0=?==m c n

(10)啮合角

(11)齿顶高

(12)齿根高

(13)全齿高

(14)齿根圆直径

5.1375.62482=?-=-=h D D e i

(15)径向间隙

25.4175.624722

20=--=--=i e D D A m c

(16)齿顶压力角

?≈??? ???+=??? ??+==25.3220cos 21818arccos cos 2arccos arccos n e i e Z Z R R αα

(17)分度圆弧齿厚

10.720cos 24.025cos 22≈??-=-=

παπn n f c m s

(18)齿厚s

(19)齿轮啮合的重叠系数

()()46.120an 77.31an 18tan tan ≈?-??=-=ππt t Z e ααε

(20)公法线跨齿数

(21)公法线长度(此处按侧隙 计算)

()[]

432

.2414015.05.05.01809521.23015.05.09521.2≈??

?????+??? ??-+?=+-=αZ z n m L

(22)油泵输入功率 )(kw 05.89.06055210125103.666=?????=-

式中:N - 驱动功率 (kw)

p -工作压力 (MPa)

q - 理论排量 (mLr)

n - 转速 (rmin)

- 机械效率,计算时可取0.9。

三、校核

此设计中齿轮材料选为40cr ,调质后表面淬火

1.使用系数表示齿轮的工作环境(主要是振动情况)对其造成的影响,使用系数的确定:

表2.3 使用系数

2.齿轮精度的确定

齿轮精度此处取7

表2.4 各种机器所用齿轮传动的精度等级范围

数表示由

于齿轮制

造及装配

误差造成

的不定常

传动引起

上确定的精度和轮齿速度,偏于安全考虑,此设计中取为1.1。

4.齿向载荷分布系数是由于齿轮作不对称配置而添加的系数,此设计齿轮对称配置,故取1.185。

5.一对相互啮合的齿轮当在啮合区有两对或以上齿同时工作时,载荷应分配在这两对或多对齿上。但载荷的分配并不平均,因此引进齿间载荷分配系数以解决齿间载荷分配不均的问题。对直齿轮及修形齿轮,取=1

6.弹性系数单位——,数值列表见表3

表2.5 弹性模量

.弯曲疲劳强度寿命系数

7.选取载荷系数

8.齿宽系数的选择

1.齿面接触疲劳强度校核

对一般的齿轮传动,因绝对尺寸,齿面粗糙度,圆周速度及润滑等对实际所用齿轮的疲劳极限影响不大,通常不予以考虑,故只需考虑应力循环次数对疲劳极限的影响即可。

齿轮的许用应力按下式计算

S——疲劳强度安全系数。对解除疲劳强度计算,由于点蚀破坏发生后只引

起噪声,振动增大,并不立即导致不能继续工作的后果,故可取。但对于弯曲疲劳强度来说,如果一旦发生断齿,就会引起严重事故,因此在进行齿根弯曲疲劳强度计算时取。

——寿命系数。弯曲疲劳寿命系数查图1。循环次数N 的计算方法是:设n 为齿轮的转速(单位是rmin );j 为齿轮每转一圈,同一齿面啮合次数;为齿轮的工作寿命(单位为h ),则齿轮的工作应力循环次数N 按下式计算:

(1)设齿轮泵功率为,流量为Q ,工作压力为P ,则

)(245.760/101036w kw Q P P =???=-

(2)计算齿轮传递的转矩

m m 75.125343n P 109.55T W 6?=??=N

(3)

(4)

(5)按齿面硬度查得齿轮的接触疲劳强度极限

(6)计算循环应力次数

9h 1038.21530082155260njL 60N ?=??????==)(

(7)由机设图10-19取接触疲劳寿命系数

(8)计算接触疲劳许用应力

取失效概率为0.1,安全系数S=1

[]MPa

504MPa 0050.9S K lim

HN H =?==σσ

(9)计算接触疲劳强度

76.1==αβH H V A K K K K K

N 416667.2785d T 2F 1t ==

齿数比 ][ MPa 764.20u 1u bd KF 2.5Z H 1t E H σσ<=+?=

2.齿根弯曲强度校核

(1)由图10-20c 查得齿轮的弯曲疲劳强度极限

(2)由图10-18取弯曲疲劳寿命系数

(3)计算弯曲疲劳许用应力

取弯曲疲劳安全系数则:

[]394.64MPa 1.46500.85S K FE FN F =?==σσ

(4)载荷系数 485.1==αβH H V A K K K K K

(5)查取齿形系数应力校正系数

(6)计算齿根危险截面弯曲强度

MPa 45.8654254.185.2416667.2785485.1bm Y Y KF Fa Sa t F =????==σ < 所以,所选齿轮参数符合要求。

三、卸荷槽的计算

此处按“有侧隙时的对称双矩形卸荷槽”计算。

(1)两卸荷槽的间距a

75.1120cos 90

145cos 2222≈???==ππn A z m a α (2)卸荷槽最佳长度c 的确定

35.6cos z m 1mcos 2222min =-=ααεπA

c (3)卸荷槽深度

四、泵体的校核

泵体材料选择球墨铸铁(QT600-02)。由机械手册查得其屈服应力为300420MPa 。因为铸铁是脆性材料,因此其许用拉伸应力的值应该取为屈服极限应力即的值应为300420MPa

泵体的强度计算可按厚薄壁圆筒粗略计算拉伸应力

计算公式为

式中——泵体的外半径(mm )

——齿顶圆半径(mm )

——泵体的试验压力(MPa )

一般取试验压力为齿轮泵最大压力的两倍。

=2p=2x6.3=12.6MPa

因为

代数得

考虑加工设计等其他因素,所以泵体的外半径取为。

五、滑动轴承的计算

选择轴承的类型

选整体式液体静压轴承:因为此种类类型的轴承用于低速轻载,且难以形

成稳定油膜。

轴承材料选择及性能

计算轴承宽度

一般轴承的宽径比Bd 范围在0.3-1.5,宽径比

小,有利于提高运转稳定性,提高端卸量以降低温度。但轴承宽度越小,轴承承载能力也随之降低。综合考虑宽经比取0.5 所以轴承宽度m d B B 014.0028.05.0)d

(=?== 计轴颈圆周速度

(1)按从动齿轮所受径向力计算,两滑动轴承所受径向力之和为

N 7497100143.685.085.0=???==e pBD F △式中:△p 的

单位为,和的单位为。

每个轴承所受径向力为

N 5.37482

7497221====F F F (2)轴承PV 值

s n F PV ?=??=?=m /MPa 58.242

191005525.3748B 19100 (3)齿轮轴颈线速度

s m V /89.21000

60552100100060dn ≈???=?=ππ (4)轴承单位平均压力(比压)

MPa 6775.2014

.01.05.3748d =?=?=B F p (5) 选择轴瓦材料

查机械设计中表12-2,在保证的条件下,选定轴承材料为ZCuAll0Fe3

(6)换算出润滑油的动力粘度

已知选用的润滑油的运动粘度v=220cSt

取润滑油密度

润滑油的动力粘度s a 198.010********v -6-6?=??=?=P ρη

(7)计算相对间隙

由式

0001.010*********n 9

31

94

93194≈=≈)()(ψ ,取为0.00125 (8)计算直径间隙

mm d 035.02800125.0=?==?ψ (9)计算承载量系数 由式48.0042

.081.0198.0200125.05.374822

2≈????==B F C p ηνψ (10)计算轴承偏心率

根据的值查《机械设计》中表12-6,经过查算求出偏心率

(11)计算最小油膜厚度

由式

(12)确定轴颈、轴承孔表面粗糙度十点高度

按照加工加工精度要求取轴颈表面粗糙度为0.8,轴承孔表面粗糙度为1.6,查机《械械设计》书中表7-6得轴颈,轴承孔。

(13)计算许用油膜厚度

取安全系数S=2,由式[]m Rz Rz S μ8.46.18.02)(h 21=+?

=+=)( 因,故满足工作可靠性要求。

(14)计算轴承与轴颈的摩擦系数

因轴承的宽径比Bd=0.5,取随宽径比变化的系数,计算摩擦系数

00275.067.300125.05.0103.600125.060552

2198.05.0f 6=??+????

?=+=ππζψψπηωp (15)查出润滑油流量系数

由宽径比Bd=0.5及偏心率查《机械设计》书中图12-16,得润滑油流量系数

(16)计算润滑油温升

按润滑油密度,取比热容,表面传热系数,由式

C vBd q c p

f t s οπψνπαψρψ226.2289.200125.08011.09001800103.6)00125.000275.0(

)(6=??+????=+???? ??=?(17)计算润滑油入口温度 由式C 887.83C 2

226.22502t i οο=-=?-=t t m 因一般取故上述入口温度适合。

(18)选择配合

根据直径间隙,按GBT1800.3-1998选配合,查得轴承孔尺寸公差为mm ,轴

颈尺寸公差mm 。

(19)求最大、最小间隙

因,在,估算配合合用

六、联轴器的选择及校核计算

1.联轴器类型选择:

为了隔离振动与冲击,选用弹性套柱销联轴器。

2.载荷计算:

设齿轮泵所需功率为

)(245.760/101036kw Q P P w =???=-

Q ——流量

P ——工作压力

公称转矩:

m N 34.125n

P 109.55T 5I ?=?= 由机械设计表14-1查得取,故由式(14-1)计算转矩为: 图6.1 联轴器

由机械设计综合课程设计P143表6-97得刚性凸缘联轴器(GBT5843—2003)轴孔直径为28的联轴器工程转矩为224N.m ,许用最大转速为9000rmin ,,故选用轴孔直径为28mm 的联轴器满足要求。

七、轴的强度计算

轴的强度计算一般可以分为三种:

1.按扭转强度或刚度计算;

2.按弯矩合成刚度计算;

3.精确强度校核计算。根据任务要求我们选择第一种,此法用于计算传递扭矩,不受或受较小弯矩的轴。

材料选用40Cr ,,

03030A 2359.0552

7.245A n P A d ==≥ d-轴端直径,mm

T-轴所传递的扭矩,N.m

P-轴所传递的功率,Kw

n-轴的工作转速,rmin

-许用扭转剪应力,Mpa

又为,考虑有两个键槽,将直径增大,则:,

][MPa 404.34312.262.05527.2451055.9d 2.0n P 1055.9W T 3

636T T T ττ≤=??=?≈= 考虑加工安全等其他因素,则取。

轴在载荷作用下会发生弯曲和扭转变形,故要进行刚度校核。轴的刚度分为扭转刚度和弯曲刚度两种,前者用扭转角衡量,后者以挠度和偏转角来衡量。

轴的扭转刚度

轴的扭转刚度校核是计算轴的在工作时的扭转变形量,是用每米轴长的扭转角度量的。轴的扭转变形要影响机器的性能和工作精度。

轴的扭转角

查《机械设计手册》表5-1-20可知满足要求。

2、轴的弯曲刚度

轴在受载的情况下会产生弯曲变形,过大的弯曲变形也会影啊轴上零件的正常工作,

因此,本泵的轴也必须进行弯曲刚度校核,

15.0~05.0)03.0~01.0(y p ==n m

轴的径向受到力与齿轮沿齿轮圆周液压产生的径向力和由齿轮啮合产生的径向力和相等。在实际设计计算时用近似计算作用在从动齿轮上的径向力,即轴在径向受到的力为

N

7497100143.685.085.0=???==e

pBD F △。

查《机械设计手册》可得

p

22442y 0769.0])287(5.01[028.01067028.0y ≤-=--????-=F

故可得轴满足要求。

八、连接螺栓的选择与校核

1.螺栓选用 材料:低碳钢

由于螺栓组是塑性的,故可根据第四强度理论求出预紧状态下的计算应力 对于普通螺栓连接在拧紧时虽是同时受拉伸和扭转的联合作用,单在计算时,只按拉伸强度计算,并将所受的拉力增大30%来考虑扭转的影响。

N

16859.9896010502103.610R 2103.6PS F 6

26626=????=????==-ππ F ——螺栓组拉力

P ——压力

S ——作用面积

R ——齿顶圆半径

取螺栓组中螺钉数为4

由于壁厚=12,沉头螺钉下沉5mm ,腔体厚42mm 则取螺纹规格d=M10,公称长度L=54,K=4,b=16性能等级为8.8级,表面氧化的内六角圆柱螺钉。

下面对它进行拉伸强度校核

拉伸强度条件为

F ——工作拉力,N;

d ——螺栓危险截面的直径,mm

——螺栓材料的许用拉应力,MPa ;

MPa 5.4093.1322=≈+=στσσca

由机械设计教材P87 表5-8可知:性能等级为8.8级的螺钉的抗拉强度极限 满足条件,螺钉可用。

九、齿轮泵进出口大小确定

齿轮泵的进出口流速计算公式: ()s m S

qn S Q V /106010602-?=?= 式中:Q ——泵的流量(Lmin );

q ——泵的排量(mlr );

n ——泵的转速(rmin );

S ——进油口油的面积()

因为齿轮泵的进油口流速一般推荐为2——4ms,出油口流速一般推荐为3——6ms.

这里选进油口流速为3ms,出油口流速为5ms

利用上一个公式算得进油口面积

出油口面积

由得进油口半径m m 71.2,m m 49.3==出进R R

十、齿轮泵的密封

轴承盖上均装垫片,透盖上装J 型无骨架橡胶油封。因轴径d=12mm ,由下:

内径,外径。

高度H=12mm 。

十一、法兰的选择

因为法兰外径D=124, 所以由中国JB标准JBT79.1-94,可选用数量为4的M12单头螺栓

十二、键的选择

键的截面尺寸b和h按轴的直径d由标准来选定,键的长度L一般可按轮毂的长度而定,即键长等于或略短于轮毂的长度;一般轮毂的长度可取,这里d 为轴的直径。由机械设计P106 表6-1可选得b,8,h=7,L=40。

十三、挡圈的选择

轴的直径d=12,所以由挡圈国标GBT 894. 1—1986 可查得以下参数:

挡圈:,,

沟槽:,,

设计小结

作为一名机械制造及自动化大三的学生,我觉得能做这样的课程设计是十分有意义。在已度过的两年半大学生活里我们大多数接触的是专业基础课。我们在课堂上掌握的仅仅是专业基础课的理论面,如何去面对现实中的各种机械设计?如何把我们所学到的专业基础理论知识用到实践中去呢?我想做类似的大作业就为我们提供了良好的实践平台。在做本次课程设计的过程中,我感触最深的当属查阅了很多次设计书和指导书。为了让自己的设计更加完善,更加符合工程标准,一次次翻阅机械设计书是十分必要的,同时也是必不可少的。作为一名专业学生掌握一门或几门制图软件同样是必不可少的,虽然本次课程设计没有要求用 auto CAD制图,但我却在整个设计过程中都用到了它。用cad 制图方便简洁,易修改,速度快,我的设计,大部分尺寸都是在cad上设计出来的,然后按这尺寸画在图纸上。这样,有了尺寸就能很好的控制图纸的布局。

另外,课堂上也有部分知识不太清楚,于是我又不得不边学边用,

时刻巩固所学知识,这也是我作本次课程设计的第二大收获。整个设计我

基本上还满意,由于水平有限,难免会有错误,还望老师批评指正。由此

我可用更好

地了解到自己的不足。

参考文献

[1] 濮良贵、纪名刚.机械设计(第八版).北京:高等教育出版社,2006.

[2] 龚溎义、罗圣国.机械设计课程设计指导书(第二版).北京:高等教育出版社,1990.

[3] 吴宗泽、罗圣国.机械设计课程设计手册(第二版).北京:高等教育出版社,1999.

[4] 陈铁鸣.新编机械设计课程设计图册.北京:高等教育出版社,2003.

齿轮油泵毕业设计开题报告

附件三 西安交通大学城市学院 毕业设计(论文)开题报告 题目:齿轮泵的设计 所在系:机械工程系 学生姓名: 专业:机械设计制造及其自动化 班级:学号 指导教师: 教学服务中心制表 2012年2月

一、对毕业设计题目的陈述: 液压系统已经越来越广泛应用与各种机械产品,液压驱动以自身的优越性已经广泛应用于汽车行业,特别是专用车辆行业。液压举升机构、助力液压制动机构以及驱动液压马达工作的液压泵,已经受到越来越多的人的青睐。其中的液压齿轮泵是液压系统的核心部件,显得尤为中要。 为了适应液压传动系统正向着快响应、小体积、低噪声的方向发展,齿轮泵除积极采取措施保持其在中低压定量系统、润滑系统等的霸主地位外,尚需向以下几个方向发展: (1) 低流量脉动:流量脉动将引起压力脉动,从而导致系统产生振动和噪声,这是与现代液压系统的要求不符的。降低流量脉动的方法,除了前面所介绍的措施外,采川复合多齿轮泵是一种趋势。 (2)高压化:高压化是系统所要求的,也是齿轮泵与柱塞泵、叶片泵竞争所必须解决的问题。齿轮泵的高压化工作己取得较大进展,但因受其本身结构的限制,要想进一步提高工作压力是很困难的,必须研制出新结构的齿轮泵。在这方面,由多个齿轮组成的复合齿轮泵将有很大优势,国内已有许多研究者对此进行了研究,并取得了显著的成果。 (3)低噪声:国外早就有“安静”的液压泵之说。随着人们环保意识的增强,对齿轮泵的噪声要求也越来越严格。齿轮泵的噪声主要由两部分组成,一部分是齿轮啮合过程中所产生的机械噪声,另一部分是困油冲击所产生的液压噪声。前者与齿轮的加工和安装精度有关,后者则主要取决于泵的卸荷是否彻底。对于外啮合齿轮泵,要实现完全卸荷是很困难的,因此进一步降低泵的噪声受到一定的限制。在这方面,内啮合齿轮泵因具有运转平稳、无困油现象、噪声低等特点而受到普遍重视,特别是直线共轭齿廓的内啮合齿轮泵因其具有运转平稳、噪声低而倍受青睐,正成为研究的焦点。 (4)变排量:齿轮泵的排量不可调节,限制了其使用范同。为了改变齿轮泵的排量,国内外学者进行了大量的研究工作,并取得了很多研究成果。有关齿轮泵变排量方面的专利

齿轮油泵课程设计

课程设计说明书 课程名称《工程图学综合实践》 设计名称齿轮油泵拆装测绘 设计时间 2011年10-12月 系别机电工程系 专业机械设计制造及自动化 班级 14班 姓名陈振明 指导教师邓宝清 2011 年 12 月12 日

目录 一、任务 (3) (一)本次课程设计内容 (3) (二)齿轮油泵简介 (3) (三)实际分配任务 (4) 二、进度表 (5) 三、课程设计过程 (5) (一)拆装与测绘 (5) (二)建模 (6) (三)装配与爆炸 (10) (四)绘制零件图 (13) (五)绘制装配图 (13) 四、本次课程设计的感受 (13) 附表 (14) 附图 (155) 主要参考文献 (21)

一、任务 (一)本次课程设计内容:齿轮油泵的拆装、测绘、建模及工程图绘制。 (二)齿轮油泵简介 1.齿轮油泵的工作原理 齿轮泵是用两个齿轮互啮转动来工作,对介质要求不高。一般的压力在6Mpa以下,流量较大。齿轮油泵在泵体中装有一对回转齿轮,一个主动,一个被动,依靠两齿轮的相互啮合,把泵内的整个工作腔分成两个独立的部分。右边为吸入腔,左边为排出腔,齿轮油泵在运转时主动齿轮带动被动齿轮旋转,当齿轮从啮合到脱开时在吸入侧就形成局部真空,液体被吸入。被吸入的液体充满齿轮的各个齿谷而带到排出侧,齿轮进入啮合时液体被挤出,形成高压液体并经泵排出口排出泵外。 图1 工作原理 齿轮油泵在正常工作时,具有一定的油压范围,为使工作油压不超过该额定压力,一般在泵盖上都有限压阀装置,它由螺塞、小垫片、弹簧、钢珠定位圈和钢珠组成。当油压超过额定压力时,高油压就克服弹簧压力,将钢珠阀门顶开,使润滑油自压油腔流回吸油腔,以保证整个润滑系统安全工作。其他零件,如填料、垫片、小垫片等起密封防漏作用。垫片的厚度大小不同,可以调节齿轮两侧面间隙的大小。 2.齿轮油泵的说明 本课程设计中所用到的齿轮油泵型号为CB-B2.5,是一种无侧板、三片式结构的外啮合低压齿轮油泵,它没有径向平衡结构和轴向间隙补偿装置,依靠间隙密封原理工作。该产品具有体积小、重量轻、结构简单,工作可靠、价格低廉、维护方便等优点,主要应用于各种机床液压系统及负载较小的液压传动系统中。

齿轮泵设计步骤

一、主要技术参数 根据任务要求,确定齿轮泵的理论设计流量q t . 二、根据公式选定齿轮泵的转速n ,齿宽系数k b 及齿数z 1.齿轮参数的确定及几何要素的计算 确定设计的零件在工作时的工作介质的粘度,然后再由表一进行插补可得此 次设计的最大节圆线速度V 。即: 节圆线速度V : 601000V ???= n D π 式中D ——节圆直径(mm ) n ——转速 表2.1 齿轮泵节圆极限速度和油的粘度关系 流量与排量关系式为: n 00P Q = 0Q ——流量·· 0P ——理论排量(ml/r ) 2.齿数Z 的确定

应根据液压泵的设计要求从流量、压力脉动、机械效率等各方面综合考虑。从泵的流量方面来看,在齿轮分度圆不变的情况下,齿数越少,模数越大,泵的流量就越大。从泵的性能看,齿数减少后,对改善困油及提高机械效率有利,但使泵的流量及压力脉动增加。 目前齿轮泵的齿数Z 一般为6-19。对于低压齿轮泵,由于应用在机床方面较多,要求流量脉动小,因此低压齿轮泵齿数Z 一般为13-19。齿数14-17的低压齿轮泵,由于根切较小,一般不进行修正。 3.确定齿宽。齿轮泵的流量与齿宽成正比。增加齿宽可以相应地增加流量。而齿轮与泵体及盖板间的摩擦损失及容积损失的总和与齿宽并不成比例地增加,因此,齿宽较大时,液压泵的总效率较高.一般来说,齿宽与齿顶圆尺寸之比的选取围为0.2~0.8,即: )(8.0~2.0B =a D 20m 66.6q 1000Z B = Da ——齿顶圆尺寸(mm ) 4.确定齿轮模数。 对于低压齿轮泵来说,确定模数主要不是从强度方面着眼,而是从泵的流量、压力脉动、噪声以及结构尺寸大小等方面。 通过对不同模数、不同齿数的齿轮油泵进行方案分析、比较结果,确定此型齿轮油泵的齿轮参数,最后得到齿轮的基本参数即模数m 齿数Z 齿宽b 。 得到齿轮的齿数后,若齿轮的齿数≥17则不会发生根切的现象,所以在这里不考虑修正,接下来按照标准公式计算齿轮的基本参数。 (1)理论中心距mz D A f ==0

齿轮泵的结构改进设计论文

摘要 齿轮泵是液压系统中最重要的动力源,在液压传动系统中应用广泛, 因此, 吸引了大量学者对其进行研究,其主要部件是内部相互啮合的一对齿轮。现代机械工程对齿轮泵提出很多新要求,如压强高、排量大、脉动低、噪音低等,所以对齿轮泵的性能分析与改进成为了很重要的课题。 本课题以齿轮泵为研究对象,总结了齿轮泵的特点,深入研究了齿轮泵整体结构及其原理,并利用UG三维建模软件对其进行实体建模,对齿轮泵的流量特征、径向啮合力进行理论分析和数值计算,为齿轮泵的设计提供必要的理论依据。研究了多种齿轮泵的齿廓类型,并推导出这些齿廓线方程。最后学习了流体动力学相关的基础理论知识,利用CFD前处理软件Gambit和后处理软件Fluent对以上五种齿廓齿轮泵进行流体分析,并比较不同齿廓分析后的结果,分别计算了齿轮泵齿间区的流量、齿轮啮合区域的流量,最后就得到了齿轮泵的流量。在时间和转速确定的情况下,得到齿轮泵的流速。外啮合齿轮泵的结构对其内部的流场有很大的影响,采用fluent有限元法求解计算模型,就不同齿廓的变化特点进行对比,可以得出每种类型齿廓的相应的优缺点,从而得出最优的分析结果并在此基础上改进设计出新的齿廓线。 本文对齿轮泵的输出特性研究,推到出齿廓线方程,最后结合流体动力学理论,运用CFD前处理软件Gambit和后处理软件Fluent对以上五种不同的齿廓齿轮泵进行流体分析,在相同的转速下,比较不同齿廓的分析结果,渐开线齿廓在齿轮泵中的增压效果最好,并提出一些优化方案。 关键词:齿轮泵;齿廓;有限元法;输出特性;流体分析

Abstract Gear pump is the most important source of power in the hydraulic system, widely used in the hydraulic drive system, therefore, attracted a large number of scholars study, and its main components are a pair of gears meshing with each other by the internal。Modern mechanical engineering have made a lot of new requirements to gear pump,such as high pressure, large displacement,low ripple and low noise, Performance Analysis and Improvement of the gear pump has become a very important issue. The topics to gear pump for the study, summed up the characteristics of the gear pump, in-depth study of the overall structure and principle of the gear pump and UG three-dimensional modeling software, solid modeling, the flow characteristics of the gear pump, theoretical analysis and numerical calculation of the radial direction meshing force of radial direction, to provide the necessary theoretical basis for the design of gear pump. A variety of the type tooth profile of the gear pump and derive the equations of these tooth profile. Finally learn the basic theoretical knowledge of fluid dynamics, to CFD pre-processing software Gambit and post-processing software Fluent for more than five tooth profile gear pump fluid analysis, and comparison results of different tooth profile analysis were calculated flow rate of the area of the interdental, gear meshing area of flow of the gear pump the, and finally got the flow of the gear pump. In the case of time and speed determined to obtain flow rate of the gear pump. Structure of the external gear pump has a great influence on its internal flow field, using the fluent finite element method for solving the calculation model, comparison of the changes in the characteristics of the different tooth profile can be drawn from the corresponding advantages and disadvantages of each type of tooth profile to arrive at the best results of the analysis to improve the design of a new tooth profile on this basis. The output characteristics of the gear pump onto the tooth profile equation and finally the theory of fluid dynamics, the use of pre-processing of software CFD Gambit and post-processing software Fluent fluid analysis more than five different tooth profile of the gear pump in the same speed, different tooth profile analysis result of that the best of booster effect is involute line tooth profile of the gear pump, and put forward some optimization program of it. Keywords: gear pump; tooth profile; finite element method; output characteristics; fluid analysis

CB-B16型外啮合齿轮泵齿轮副参数设计及其绘制(唐柑培)详解

机械原理综合实训课程 设计计算说明书 设计题目: 外啮合齿轮泵的设计 班级: 2013 级材料一班班 学号:201310112113 学生: 唐柑培 指导教师: 李玉龙 起止日期: 2015 年 5 月11 日至 2015 年5月22 日

成都学院(成都大学) 机械工程学院 【机械原理】综合实训课程任务书

目录 一、外啮合齿轮泵工作原理············ 二、电机型号以及减速装置的选型········ 三、齿轮副参数的确定·············· 四、齿轮绘制················· 五、设计小结················· 六、参考文献················

一、外啮合齿轮泵工作原理 外啮合齿轮泵简介 图 1 是外啮合齿轮泵的工作原理图。由图可见,这种泵的壳体内装有一对外啮合齿轮。由于齿轮端面与壳体端盖之间的缝隙很小,齿轮齿顶与壳体内表面的间隙也很小,因此可以看成将齿轮泵壳体内分隔成左、右两个密封容腔。当齿轮按图示方向旋转时,右侧的齿轮逐渐脱离啮合,露出齿间。因此这一侧的密封容腔的体积逐渐增大,形成局部真空,油箱中的油液在大气压力的作用下经泵的吸油口进入这个腔体,因此这个容腔称为吸油腔。随着齿轮的转动,每个齿间中的油液从右侧被带到左侧。在左侧的密封容腔中,轮齿逐渐进入啮合,使左侧密封容腔的体积逐渐减小,把齿间的油液从压油口挤压输出的容腔称为压油腔。当齿轮泵不断地旋转时,齿轮泵的吸、压油口不断地吸油和压油,实现了向液压系统输送油液的过程。在齿轮泵中,吸油区和压油区由相互啮合的轮齿和泵体分隔开来,因此没有单独的配油机构。 齿轮泵是容积式回转泵的一种,其工作原理是:齿轮泵具有一对互相啮合的齿轮,齿轮(主动轮)固定在主动轴上,齿轮泵的轴一端伸出壳外由原动机驱动,

(完整版)渐开线内啮合齿轮泵的设计本科毕业设计

渐开线内啮合齿轮泵的设计 摘要 齿轮泵由于结构紧凑、体积小、重量轻、转速范围大、自吸性能好和对油液的污染部敏感等优点而广泛应用在机床工业、航天工业、造船工业及工程机械等各种机械的液压系统中。 流量脉动、噪声和效率是评价齿轮泵性能的三大指标,它们之间互相联系,互相作用。齿轮泵的流量脉动引起压力脉动,而压力脉动是引起齿轮泵流体噪声的主要因素,在降低噪声和流体脉动的同时,应防止齿轮泵溶积效率的降低。因此,在齿轮泵的设计中,应综合考虑这三者的影响。 本论文以渐开线内啮合齿轮泵为研究对象,从其工作原理出发以及内啮合齿轮泵的齿轮几何参数上对其进行较为详细的分析和计算。从内啮合齿轮泵的设计要点出发,计算出内啮合齿轮泵齿轮副的几何参数,推导出其轮齿啮合时不发生渐开线干涉、齿廓重迭干涉和径向干涉的条件,并代入各参数进行验证,最终确定其几何参数。在此基础上,对渐开线内啮合齿轮泵的总体结构进行研究设计,并选取合适的零部件材料。 参考何存兴老师的《液压元件》教材进行内啮合齿轮泵排量的计算公式的推导。 关键词:内啮合齿轮泵几何参数干涉排量

The design of involute internal pump Abstract Gear pumps are widely used in , shipbuilding and engineering machinesetc, because of their virtues, such as simple and compact structure,lighter weight, wide range of rotate speed, better capability of self-suck and not with the oil’s polluting. Flow pulsation, noise and efficiency, which effect on each other, are three primary criterions that evaluate the performance of gear pumps. The , and pressure pulsation is caused by flow pulsation.. The cubage efficiency should be prevented to reduced when noise and flow pulsation are reduced. So, their effect should be considered when gear pumps are designed. The research object of this dissertation are involute internal gear pumps . On the basis of their working principle , analyses and calculates the geometry parameters of the internal gear pumps. From the designing mainpoint of the geometry parameters of the internal gear pumps, a new desire is called for. Which worked out in the gear pump gears meshing of the geometric parameters, derived its tooth meshing not to interfere in involute line, tooth overlap intervention and interference in the radial conditions, And into the various parameters to verify, ultimay determine their geometric parameters. On this basis, to gradually open lines mesh

齿轮油泵设计说明书

绪论 一、课程设计容 根据齿轮油泵的工作原理和零件图,看懂齿轮油泵的全部零件图,并将标准件按其规定标记查出有关尺寸。应用AutoCAD软件绘制所有正式零件图,装配图(A3图纸幅面1),用UG绘制所有正式零件的三维图形。 二、齿轮油泵工作原理 齿轮油泵示意图 工作原理部分:齿轮油泵是依靠一对齿轮的传动把油升压的一种装配,泵体12有一对齿轮,轴齿轮15是主动轮,轴齿轮16是被动轮,如下图所示。动力从主动轮输入,从而带动被动轮一起旋转。转动时齿轮啮合区的左方形成局部真空,压力降低将油吸入泵中,齿轮继续转动,吸入的油沿着泵体壁被输送到啮合处的右方,压力升高,从而把高压油输往需要润滑的部位。 防渗漏:为使油泵不漏油,泵体和泵盖结合处有密封垫片13(垫片形状与泵体、泵盖结合面相同),主动轴齿轮伸出的一端处填料压盖防漏装置,由填料10、填料压盖9、

螺栓组(件18、件8)组成。 连接与定位:泵体与泵盖之间用螺钉18连接,为保证相对位置的准确,用定位销11定位。 齿轮油泵工作原理 拆装顺序:泵体---主动轴和被动轴---垫片、泵体—定位销—螺钉 ---填料---压盖 三、齿轮油泵零件之间的公差配合 1. 齿轮端面与泵体、泵盖之间为32K6; 2. 齿顶圆与泵体孔为Φ48H7/d7; 3. 主动轴齿轮、被动轴齿轮的两支承轴与泵体、泵盖下轴孔为Φ16H7/h6; 4. 填料压盖与泵体孔径为Φ32H11/d11。 四、齿轮油泵的其它技术要求 1. 装配后应当转动灵活,无卡阻现象; 2. 装配后未加工的外表面涂绿色。

第一章 二维零件图

第一章绘制三维零件图 第一节、泵盖 齿轮油泵泵盖如图所示。 具体建模步骤如下: 图 1-1 泵盖 一、整体建模 1、打开UG,新建模型。在菜单栏中选择“插入”\“设计特征”\“长方体”命令。系统弹出“长方体”对话框。如图1-2a所示。 2、在“类型”下拉表框中选择“两点和高度”选项,单击按钮弹出点对话框设置两点位置,相对于wcs坐标系第一点位置为(42,21,0)、第二点为(-42、-21、0),在“尺寸”选项中输入高度为10mm。点击确定建立一个长84mm、宽42mm、高10mm的长方体,完成如图1-2b所示

基于UG的齿轮泵三维设计与仿真设计

广西水利电力职业技术学院 题目:基于UG的齿轮油泵 三维建模与仿真 班级: 2011机制 姓名:廖建 专业:机械设计及制造 指导教师:小芹 答辩日期: 2014年5月26日

广西水电职业技术学院 机电工程系 2011届毕业生毕业设计 任务书 2014年 10 月

:廖建班级:2011 专业:机械设计入制造学号:20110301106 设计题目:基于UG的齿轮泵三维建模与仿真 容:运用UG NX 8.0软件,对齿轮泵油泵这类常用的液压元件进行三维建模 设计,虚拟装配以及工作原理的运动仿真。 进度:第一周,图纸分析及各组件的三维设计。 第二周,齿轮泵的虚拟装配及爆炸图的创建。 第三周,工作原理的运动仿真。 第四周,设计说明书的撰写。 第五周,制作PPT准备答辩。 要求:能熟练运用UG NX 8.0开发系统中的基本指令进行设计,装配以及工 作原理的运动仿真。 前言 UG 是目前市场上功能最极致的产品设计工具,它不仅拥有现金现今CAD/CAM

软件中功能最强大的Parasolid实体建模核心技术,更提供高效能的曲面建构功能,能够完成最复杂的造型设计。UG提供工业标准之人机接口,不但易学易用,更有无限次数的undo功能、方便好用的弹出窗口指令、快捷图像操作说明、自订造作功能指令及中文操作接口等特色,并且拥有一个强固的档案转换工具,能转换各种不同CAD软件的图文件,以及重复使用原有资料。 UG是一套复杂产品设计制造的最佳系统,从概念设计到生产产品,UG广泛 的使用在汽车业、航天业、磨具加工以及设计业、医疗器材产业等等,近年来更 将触角深及消费性市场产业中最为复杂的领域—工业设计。运用其功能强大的复 合式建模工具设计者可以工作的需求选择最合适的建模方式:关联性的单一数据库,是大量的零件处理更加方稳定。除此之外,组立功能、2D出图功能、模具 加工功能及与PDM之间的紧密结合,使得UG在工业界成为一套无可匹敌CAD/CAM 系统。 本设计从齿轮泵的三维设计、虚拟装配以及运动仿真方面着手,就UG的一 些常用的基本功能进行一个综合运用,是对自己三年来所学的一个检验,更是对 自己的一个挑战! 限于学生本人水平有限,书中难免有错误和不妥之处,希望导师批评指正。 目录 前言 (2)

齿轮泵的常见故障及处理措施分解

重庆交通大学应用技术学院 2010届航运工程系毕业论文 论文题目:齿轮泵的常见故障及处理措施 班级:10级轮机工程技术7班 姓名:蒋选马 指导老师:谭显坤 日期:2013年5月19号 重庆交通大学应用技术学院航运工程系

毕业论文(设计)开题报告 专业10级轮机工程技术班级轮机七班 姓名蒋选马学号0811******** 论文(设计)题目:齿轮泵的常见故障及处理措施 论文(设计)纲目 1齿轮泵的工作原理及特点 2齿轮泵的常见故障及其产生的原因 3处理措施 4齿轮泵的管理注意事项 论文(设计)开始日期2013 年05月19日指导教师谭显坤

毕业论文(设计)评语专业10级轮机工程技术班级轮机七班 姓名蒋选马学号0811******** 题目:齿轮泵的常见故障及处理措施 论文(设计)篇幅: 图纸0 张 其他附件0 指导教师评语: 论文成绩 指导教师 年月日

毕业论文(设计)交叉评语一、交叉评阅评语 二、评阅成绩的评分 论文评阅成绩参考标准 论文设计 内容正确性,方案可行性,论证严密性和独创性;数据处理能力,计算能力,分析解决问题能力;文字表达能力及附件质量。工艺及过程论证、计算的正确性和严密性,方案可行性、创新性;数据处理能力,计算机应用能力、分析解决问题能力;设计图纸的质量,文字水平及其他附件质量。 给定成绩: 交叉评阅教师签字 年月日

题目名称齿轮泵的常见故障及处理措施指导教师谭显坤 承担人姓名蒋选马航运系轮机工程技术 专业 7班 摘要 通过简单的介绍齿轮泵工作原理,齿轮泵的特点和一些比较常见的故障,来分析故障产生的原因,以及解决这些故障的处理措施,并且一些齿轮泵的管理。 签名:年月日 指导教师意见 是否能参加毕业设计(论文)答辩: 指导教师签名:年月日注:本页一式两份,分别完成中、英文摘要。

齿轮油泵设计说明书

绪论 一、课程设计内容 根据齿轮油泵的工作原理和零件图,看懂齿轮油泵的全部零件图,并将标准件按其规定标记查出有关尺寸。应用AutoCAD软件绘制所有正式零件图,装配图(A3图纸幅面1张),用UG绘制所有正式零件的三维图形。 二、齿轮油泵工作原理 齿轮油泵示意图 工作原理部分:齿轮油泵是依靠一对齿轮的传动把油升压的一种装配,泵体12内有一对齿轮,轴齿轮15是主动轮,轴齿轮16是被动轮,如下图所示。动力从主动轮输入,从而带动被动轮一起旋转。转动时齿轮啮合区的左方形成局部真空,压力降低将油吸入泵中,齿轮继续转动,吸入的油沿着泵体内壁被输送到啮合处的右方,压力升高,从而把高压油输往需要润滑的部位。 防渗漏:为使油泵不漏油,泵体和泵盖结合处有密封垫片13(垫片形状与泵体、泵盖结合面相同),主动轴齿轮伸出的一端处填料压盖防漏装置,由填料10、填料压盖9、螺栓组(件18、件8)组成。

连接与定位:泵体与泵盖之间用螺钉18连接,为保证相对位置的准确,用定位销11定位。 齿轮油泵工作原理 拆装顺序:泵体---主动轴和被动轴---垫片、泵体—定位销—螺钉---填料---压盖 三、齿轮油泵零件之间的公差配合 1. 齿轮端面与泵体、泵盖之间为32K6; 2. 齿顶圆与泵体内孔为Φ48H7/d7; 3. 主动轴齿轮、被动轴齿轮的两支承轴与泵体、泵盖下轴孔为Φ16H7/h6; 4. 填料压盖与泵体孔径为Φ32H11/d11。 四、齿轮油泵的其它技术要求 1. 装配后应当转动灵活,无卡阻现象; 2. 装配后未加工的外表面涂绿色。

第一章 二维零件图

第一章绘制三维零件图 第一节、泵盖 齿轮油泵泵盖如图所示。 具体建模步骤如下: 图1-1 泵盖 一、整体建模 1、打开UG,新建模型。在菜单栏中选择“插入”\“设计特征”\“长方体”命令。系统弹出“长方体”对话框。如图1-2a所示。 2、在“类型”下拉表框中选择“两点和高度”选项,单击按钮弹出点对话框设置两点位置,相对于wcs坐标系第一点位置为(42,21,0)、第二点为(-42、-21、0),在“尺寸”选项中输入高度为10mm。点击确定建立一个长84mm、宽42mm、高10mm的长方体,完成如图1-2b所示 图1-2a 长方体对话框图1-3b 3、在菜单栏中选择“插入”\“设计特征”\“圆柱”命令。系统弹出“圆柱”对话框。

齿轮泵毕业设计

苏州托普信息职业技术学院 毕业论文 论文题目齿轮泵的设计 指导教师吴小花 专业机械制造与自动化班级机械1201 姓名张杰学号 1205300125

摘要:在当今社会泵的应用是很广泛的,在国民经济的许多部门要用到它。在供给系统中几乎是不可缺少的一种设备。在泵的实际应用中损耗严重,特别是化工用泵在实际应用中损耗,主要是轴封部分,在输送过程中由于密封不当而出现泄漏造成重大损失和事故。轴封有填料密封和机械密封。填料密封使用周期短,损耗高,效率低。本设计中设计的齿轮泵排量较小安全性较高,轴封设计合理,精度较高,齿轮泵使用寿命较高。 关键词:泵填料密封机械密封

一、课程设计任务书………………………………………( 4 ) 二、齿轮的设计与校核……………………………………( 5 ) 三、卸荷槽的计算…………………………………………( 12 ) 四、泵体的校核……………………………………………( 13 ) 五、滑动轴承的计算………………………………………( 14 ) 六、联轴器的选择及校核计算……………………………( 17 ) 七、连接螺栓的选择与校核………………………………( 18 ) 八、连接螺栓的选择与校核………………………………( 20 ) 九、齿轮泵进出口大小确定………………………………( 21 ) 十、齿轮泵的密封…………………………………………( 22 ) 十一、法兰的选择…………………………………………( 23 ) 十二、键的选择……………………………………………( 24 ) 十三、键的选择……………………………………………( 25 ) 设计小结……………………………………………………( 27 ) 参考文献……………………………………………………( 29 )

齿轮泵三维设计报告

三维设计技术课程设计说明书设计题目:齿轮泵的三维设计 班级:2013级冶炼-2班 设计人员(按贡献大小排序): 吴迪 荣强 伟 朱宝 指导教师:王 2016年11月

一、设计任务概述:本设计主要围绕齿轮泵这个实例展开。液压油泵作为 一种重要的液压元件,其规格和型号比较繁多,传统的开发过程繁琐,效率低下、Solidworks是一款快捷的制图软件,克服了以上的不足之处,大大提高了设计人员的开发速度,本文将着重就Solidworks的实体建模、虚拟装配、爆炸式图等功能进行齿轮泵的设计。齿轮泵包含多个零部件,本设计巧妙的利用Solidworks这种综合运用多种建模方法和设计方法进行。 二、设计任务分工: 查找资料:吴迪 三维图设计:吴迪 二维图设计:吴迪、荣强 说明书书写:吴迪、荣强、伟、朱宝 齿轮泵工作原理分析:吴迪 设备的工作原理:外啮合齿轮泵是应用最广泛的一种齿轮油泵,一般齿轮泵通常指的就是外啮合齿轮泵。它主要有主动齿轮、从动齿轮、泵体、泵盖和安全阀等组成。泵体、泵盖和齿轮构成的密封空间就是齿轮泵的工作室。两个齿轮的轮轴分别装在两泵盖上的轴承孔,主动齿轮轴伸出泵体,由电动机带动旋转。 齿轮泵工作时,主动轮随电动机一起旋转并带动从动轮跟着旋转。当吸入室一侧的啮合齿逐渐分开时,吸入室容积增大,压力降低,便将吸人管中的液体吸入泵;吸入液体分两路在齿槽被齿轮推送到排出室。液体进入排出室后,由于两个齿轮的轮齿不断啮合,便液体受挤压而从排出室进入排出管中。主动齿轮和从动齿轮不停地旋转,泵就能连续不断地吸入和排出液体。泵体上装有安全阀,当排出压力超过规定压力时,输送液体可以自动顶开安全阀,使高压液体返回吸入管。

齿轮泵设计说明书

% 武汉科技大学 本科毕业设计(论文) · 题目:中高压外啮合齿轮泵设计 姓名: 专业: 学号: 指导教师: 【 武汉科技大学机械工程学院 二0一三年五月

目录 摘要.................................................................. I Abstract.......................................................................... II 1绪论. (1) 研发背景及意义 (1) 齿轮泵的工作原理 (2) 齿轮泵的结构特点 (3) 外啮合齿轮泵基本设计思路及关键技术 (3) 2 外啮合齿轮泵设计 (5) 齿轮的设计计算 (5) 轴的设计与校核 (7) 齿轮泵的径向力 (7) 减小径向力和提高齿轮轴轴颈及轴承负载能力的措施 (8) 轴的设计与校核 (8) 卸荷槽尺寸设计计算 (11) 困油现象的产生及危害 (11) 消除困油危害的方法 (13) 卸荷槽尺寸计算 (15) 进、出油口尺寸设计 (17) 选轴承 (17) 键的选择与校核 (17) 连接螺栓的选择与校核 (18) 泵体壁厚的选择与校核 (18) 总结 (19) 致谢 (20) 参考文献 (22)

摘要 外啮合齿轮泵是一种常用的液压泵,它靠一对齿轮的进入和脱离啮合完成吸油和压油,且均存在泄漏现象、困油现象以及噪声和振动。减小外啮合齿轮泵的径向力是研究外啮合齿轮泵的一大课题,为减小径向力中高压外啮合齿轮泵多采用的是变位齿轮,并且对轴和轴承的要求较高。为解决泄漏问题,低压外啮合齿轮泵可采用提高加工精度等方法解决,而对于中高压外啮合齿轮泵则需要采取加浮动轴套或弹性侧板的方法解决。困油现象引起齿轮泵强烈的振动和噪声还大大所短外啮合齿轮泵的使用寿命,解决困油问题的方法是开卸荷槽。 关键词:外啮合齿轮泵,变位齿轮,浮动轴套,困油现象,卸荷槽 (此毕业设计获得2013届优秀毕业设计荣誉,共有5张零件图,1张装配图,并且有开题报告、外文翻译、答辩稿,答辩ppt,保证让你的毕业设计顺利过关!先找份好的工作,不再为毕业设计而发愁!!!有需要零件图和装配图的同学请联系)

齿轮泵使用说明书

齿轮泵使用说明书 使用前必须遵守事项 ■本注意事项仅适用于本公司齿轮泵产品。 ■本说明书重点说明了产品使用方法。 ■为了充分发挥产品的性能,预防事故,并且使泵长时间正常运转需要定期检查各项部位,本产品安装测试前要仔细阅读本说明书。 ■为了安全不能随意改动本产品,修理,改动后发生事故,我公司不负责任。 ■要熟读本说明书上实际安装,运转,保修,检查等最终使用步骤。 ■长时间不使用时需要断电,放在通风干燥的地方保管。 ■对本产品有疑问时可以通过代理商或是办事处联系解决。 安全注意事项 ●使用产品(安装,运转,保修,检查)前要熟读本说明书上正确使用方法。 ●本说明书把安全注意事项以危险和注意区分说明。 ●齿轮泵禁止使用带有挥发性的油和危险性高的液体,如用以上液体漏出后容易引发火灾,环境污染等危险。 ●禁止使用漏油的泵,如泵出现漏油的现象,请尽快终止使用并替换或修理,如油漏到地面请尽快擦净,以免滑倒受伤。 ●齿轮泵使用温度范围在(-5℃~80℃),如超过以上温度密封件将失去其功能出现漏油等现象,请不要在超出以上温度范围下使用。 ●泵出油口部位的接头等配件要选择能够承受比泵最大压力大1.5倍的产品。 ●请按照说明书上的方法安装泵,设计管道。 齿轮泵的旋转方向是一致的,如安装不正确,驱动时容易磨损密封件,使油溢出。 ●泵的出油口部分一定要安装完成后驱动。 容易造成泵的损坏或是发生火灾等危险。 ●泵在驱动状态时请勿将出油管拆卸,容易使油溢出造成危险。 ●请勿拆卸泵上任何螺丝或配件。 ●出油管上请安装压力调节阀。 ●为了防止出现漏油现象,请确保使用压力低于泵的最高压力。 ●泵的表面温度较高时请勿用手背触摸,容易烫伤。 ●请勿踩踏泵。 ●泵需移动时要注意不要摔落。

齿轮泵设计说明书

齿轮泵设计说明书

文档仅供参考 武汉科技大学 本科毕业设计(论文) 题目:中高压外啮合齿轮泵设计姓名: 专业: 学号: 指导教师: 武汉科技大学机械工程学院 二0一三年五月

目录 摘要 (3) Abstract..........................................................................................................II 1绪论 (1) 1.1 研发背景及意义 (1) 1.2齿轮泵的工作原理 (2) 1.3 齿轮泵的结构特点 (4) 1.4外啮合齿轮泵基本设计思路及关键技术 (5) 2 外啮合齿轮泵设计 (5) 2.1 齿轮的设计计算 (5) 2.2 轴的设计与校核 (7) 2.2.1.齿轮泵的径向力 (7) 2.2.2减小径向力和提高齿轮轴轴颈及轴承负载能力的措施 (9) 2.2.3 轴的设计与校核 (10) 2.3 卸荷槽尺寸设计计算 (13) 2.3.1 困油现象的产生及危害 (13) 2.3.2 消除困油危害的方法 (15) 2.3.3 卸荷槽尺寸计算 (19) 2.4 进、出油口尺寸设计 (20) 2.5 选轴承 (20) 2.6 键的选择与校核 (21)

2.7 连接螺栓的选择与校核 (21) 2.8 泵体壁厚的选择与校核 (22) 总结 (23) 致谢 (24) 参考文献 (26) 摘要 外啮合齿轮泵是一种常见的液压泵,它靠一对齿轮的进入和脱离啮合完成吸油和压油,且均存在泄漏现象、困油现象以及噪声和振动。减小外啮合齿轮泵的径向力是研究外啮合齿轮泵的一大课题,为减小径向力中高压外啮合齿轮泵多采用的是变位齿轮,而且对轴和轴承的要求较高。为解决泄漏问题,低压外啮合齿轮泵可采用提高加工精度等方法解决,而对于中高压外啮合齿轮泵则需要采取加浮动轴套或弹性侧板的方法解决。困油现象引起齿轮泵强烈的振动和噪声还大大所短外啮合齿轮泵的使用寿命,解决困油问题的方法是开卸荷槽。 关键词:外啮合齿轮泵,变位齿轮,浮动轴套,困油现象,卸荷槽 (此毕业设计获得优秀毕业设计荣誉,共有5张零件图,1张装配图,而且有开题报告、外文翻译、答辩稿,答辩ppt,保证让你的毕业设计顺利过关!先找份好的工作,不再为毕业设计而发愁!!!有需要零件

毕业设计---基于solidworks的齿轮油泵设计

XX学院 毕业设计 题目基于solidworks的齿轮油泵设计系别 专业 班级 姓名 学号 指导教师 日期

设计任务书 设计题目: 基于Solidworks的齿轮油泵设计 设计要求: 1.收集关于齿轮油泵的资料,并详细了解齿轮油泵的各个组成部分及其作用;知道齿轮油泵的工作原理; 2.了解三维软件Solidworks的发展历程,并能熟练运用Solidworks进行零件建模设计,装配设计,仿真设计; 3.提交毕业论文,完成毕业设计。 设计进度要求: 第一周:选择课题,勾勒基本的设计思路 第二周:查找与其有关的资料,确定总体方案设计 第三周:进行齿轮油泵的设计和计算 第四周:写出草稿,画出草图,让老师检查 第五周:撰写毕业论文 第六周:修改论文、定稿、打印 第七周:提交论文并准备答辩 第八周:参加答辩 指导教师(签名):

摘要 在现代社会中,科技成果的应用已成为推动生产力发展的重要手段。把其他国家的科技成果加以引进,消化吸收,改进提高,再进行创新设计,进而发展自己的新技术,是发展民族精神的捷径。称这一过程为反求工程。反求设计的流程是对原有零件进行分析和测绘,绘制装配示意图-绘制零件草图-确定尺寸与公差-绘制零件图-装配图-对零件图和装配图进行复核。 可以看出,对设计对象进行测绘是反求设计的重要内容。 SolidWorks软件是世界上第一个基于Windows开发的三维CAD系统,Solidworks 功能强大、易学易用和技术创新是SolidWorks 的三大特点,使得SolidWorks 成为领先的、主流的三维CAD解决方案。SolidWorks 能够提供不同的设计方案、减少设计过程中的错误以及提高产品质量,并已经成功地应用为最广泛的中、高端CAD产品,逐步成为其他三维CAD软件追赶和仿效的标准。SolidWorks 不仅提供如此强大的功能,同时对每个工程师和设计者来说,操作简单方便、易学易用。 本论文就是以反求设计为理论支撑,以零部件测绘为主要内容,应用SolidWorks 对齿轮油泵各零件进行三维建模,充分利用SolidWorks的参数、关系式、零件库等知识对各组成零、部件进行建模,再完成各部件装配和总装配,最后对总体机构进行运动仿真。通过一系列操作的完成,真实再现齿轮油泵的工作,对零部件的设计有很大的帮助。 关键词:齿轮油泵,Solidworks,齿轮,参数化

齿轮泵设计课程设计

齿轮油泵设计 中文摘要 齿轮泵是用两个齿轮互啮转动来工作,对介质要求不高。一般的压力在6MPa以下,流量较大。齿轮油泵在泵体中装有一对回转齿轮,一个主动,一个被动,依靠两齿轮的相互啮合,把泵内的整个工作腔分两个独立的部分。A为吸入腔,B为排出腔。齿轮油泵在运转时主动齿轮带动被动齿轮旋转,当齿轮从啮合到脱开时在吸入侧(A)就形成局部真空,液体被吸入。被吸入的液体充满齿轮的各个齿谷而带到排出侧(B),齿轮进入啮合时液体被挤出,形成高压液体并经泵排出口排出泵外。 齿轮油泵广泛应用于石油、化工、船舶、电力、粮油、食品、医疗、建材、冶金及国防科研等行业。齿轮油泵适用于输送不含固体颗粒和纤维,无腐蚀性、温度不高于150℃、粘度为5~1500cst 的润滑油或性质类似润滑油的其它液体。试用各类在常温下有凝固性及高寒地区室外安装和工艺过程中要求保温的场合。

English abstract Gear pump with two gears meshed rotating to work, no high requirement for medium General pressure below 6MPa, the larger flow. Gear pumps in the pump body with a pair of rotary gear, a drive, a passive, rely on the two gears mesh with each other, the whole work within the pump chamber in two separate parts. A is a suction chamber, for discharging cavity B. Gear pumps in operation when the passive gear driven rotary gear, when the gear was torn off from the mesh to the suction side ( A ) on the formation of partial vacuum, the liquid is sucked into the. The liquid was aspirated with gear each tooth Valley and take to the discharge side ( B ), into gear meshing liquid is formed by extrusion, high pressure liquid pump outlet and discharged out of the pump. Gear pumps are widely used in petroleum, chemical, electric power, shipping, oil, food, medical, building materials, metallurgy and defense industry and scientific research. Gear pump is applicable to transport solid particles and fibers, no corrosion, no more than 150 degrees Celsius temperature, viscosity of 5~1500cSt lubricating oil or lubricating oil and other liquid similar in nature. The trial of all kinds under normal temperature

相关文档
最新文档