一元二次方程与不等式专题

一元二次方程与不等式专题
一元二次方程与不等式专题

一元二次方程、二次函数与一元二次不等式总结分析及例题

【基础知识回顾】

1.一元二次方程的一般形式:()002

≠=++a c bx ax ①其中c b a ,,为常数,x 为未知数。

根的判别式:ac b 42

-=?

一元二次方程根的个数与根的判别式的关系:0?时,方程①有两个不相等的实根。

求根公式:在0≥?时,方程①的实根a

ac

b b x 2422,1-±-=

2.二次函数的一般形式:形如()02

≠++=a c bx ax y 其中c b a ,,为常数,x 为自变量。

顶点坐标为???? ?

?--a b ac a b P 44,22,其中直线a b

x 2-=为对称轴, (1)0

的图象开口向下,函数c bx ax y ++=2

在a

b

x 2-

=取到最大值,即a

b a

c y 442

max -=,对任意a b ac y R x 44,2-≤∈.

(2)0>a 时,函数c bx ax y ++=2

的图象开口向上,函数c bx ax y ++=2

在a

b

x 2-

=取到最小值,即a

b a

c y 442

min

-=,对任意a b ac y R x 44,2-≥∈.

3.二次函数()02

≠++=a c bx ax y 与x 轴交点个数的判断:

0

0=?时,函数()02≠++=a c bx ax y 与x 轴相切,有且只有一个交点; 0>?时,函数()02≠++=a c bx ax y 与x 轴有两个交点。

4.二次函数图象的基本元素:开口方向(即首项系数a 的正负)、对称轴、?.

5.二次不等式的概念:形如()002

≠≠++a c bx ax 其中连接c bx ax ++2

与0的不等号可以

是><≥≤,,,或≠.

【典型例题】

【类型一】一元二次方程()002

≠=++a c bx ax 的解法

【方法一】求根公式法

步骤:①计算?;②若0

ac

b b x 2422,1-±-=.

【例1】求解下列方程.

(1)0442=-+x x (2)0122

=-+x x

【练习】解下列方程.

(1)03522=-+x x (2)862

=-x x

【方法二】十字相乘法

利用十字相乘法求解方程()002

≠=++a c bx ax 的前提条件是:0≥?,也就是保证方程

()002≠=++a c bx ax 必须有实根.

十字分解依据:对于方程()002

≠=++a c bx ax 而言,c b a ,,均为整数。当0>ac 时,将

ac 分解为两个约数之和为b ;当0

【例2】求解下列方程

(1)0862

=+-x x (2)01522

=--x x (3)0151122

=++x x (4)02532

=-+x x

【练习】解下列方程

(1)2082

=-x x (2)02522

=++x x

【方法一】公式法

①0

在a

b

x 2-=取到最大值,即a b ac y 442max -=,对任意

a

b a

c y R x 44,2

-≤∈.

②0>a 时,函数c bx ax y ++=2

在a

b

x 2-=取到最小值,即a b ac y 442min -=,对任意

a

b a

c y R x 44,2

-≥∈.

【方法二】配方法

2

2222

2222???

??-+???????

???? ??+??+=+??? ??+=++=a b c a b x a b x a c x a b x a c bx ax y

a b ac a b x a 44222

-+

??? ?

?

+= 【例3】求下列函数的最值

(1)1662

-+=x x y (2)5322

+-=x x y (3)652

+--=x x y (4)5632

++-=x x y

【练习】求下列函数的最值

(1)842

+--=x x y (2)4522

-+=x x y

三个两次之间的关系

一元二次方程、一元二次不等式、二次函数

0>?

0=?

0

c bx ax y ++=2

()0>a 图 象

2=++c bx ax ()0>a 根

21x x x x ==或

a

b x x 221-

==

无 解

2

>++c bx ax ()0>a 解集

{}2

1

x x x x x ><或

?

?????-≠a b x x 2

R

2<++c bx ax ()0>a 解集

{}21

x x x

x <<

?

?

基本步骤:化正-----计算?--------求根--------写解集(大于取两边,小于取中间)

【例4】解下列不等式

(1)02732<+-x x ; (2)0262

≤+--x x ; (3)01442

<++x x ; (4)0532

>+-x x

【练习】(1)不等式x x 4142

<+的解集是 . (2)不等式()()7212>+-x x 的解集是 . (3)不等式()09>-x x 的解集是 . (4)不等式05322

<++x x 的解集是 .

三个二次

x 1 x 2

x 1= x 2

【类型四】分式不等式的解法

解分式不等式的基本思路是将其转化为整式不等式(组):(有分母就要考虑分母不等于零,有根式就考虑大于等于零)

()(),00)()(>??>x g x f x g x f ()()(),000)()

(≠≥??≥x g x g x f x g x f 且 ()(),00)()(

()

(≠≤??≤x g x g x f x g x f 且 【例5】解下列不等式

(1)

11+-x x

; (3)21≥-x x ; (4)0391

2<--x

x

【练习】求解下列不等式 (1)

21≥x ; (2)31

12≥+-x x ;

【课后作业】 1.解下列方程

(1)862

-=+x x (2)021152

=++x x (3)02732

=+-x x (4)062

=--x x

2.不等式0161632≥+-x x 的解集是 .

3.不等式()()6235≥-+x x 的解集是

A .??????≥≤291x x x 或

B .???

?

??≤≤-291x x

C .??????≥-

≤129

x x x 或 D .?

?????≤≤-129x x

4.不等式

2116

≥-x 的解集是 . 5.不等式11

21≤--x x

的解集是 .

6.在下列不等式中,解集是?的是

0232.2>+-x x A 044.2≤++x x B 044.2<--x x C 0232.2>-+-x x D

7.不等式0752

<-+-x x 的解集是 . 8.不等式01692<+-x x 的解集是 . 9.不等式01442≤++x x 的解集是 . 10.解下列不等式或方程

(1)01522

=--x x ; (2)01662

=++x x ; (3)08232

≥+--x x ; (4)0542

≥+-x x ; (5)31

≥-x x ; (6)52

≤x ;

11.已知集合{

}01662

≤--=x x x A ,集合{

}

11422

++-==x x y y B ,则下列式子中正确的是 ( )

B A A =. A B B ?. B A

C ?. A

D .B

12.当=x 时,函数111232

+-=x x y 取到最 值 .

一元二次不等式专题二

例1 解不等式:(1)01522

3>--x x x ;(2)0)2()5)(4(3

2

<-++x x x .

例2 解下列分式不等式: (1)2

2

123+-≤-x x

(2)12

731

42

2<+-+-x x x x

例3 解不等式242

+<-x x

例4 解不等式

04125

62

2<-++-x x x x .

例5 解不等式x x x x x <-+-+2

2232

2.

例6 设R m ∈,解关于x 的不等式03222<-+mx x m .

例7 解关于x 的不等式)0(122>->-a x a ax .

例8 解不等式331042<--x x .

例9 解关于x 的不等式0)(322>++-a x a a x .

例10 若不等式1

122+--<++-x x b x x x a x 的解为)1()31

(∞+-∞,, ,求a 、b 的值.

例11不等式022<-+bx ax 的解集为{}21<<-x x ,求a 与b 的值.

例12解关于x 的不等式01)1(2<++-x a ax .

例13 解不等式x x x ->--81032.

1、∴原不等式解集为?

??

???><<-

3025x x x 或;∴原不等式解集为{}2455>-<<--

2∴原不等式解集为[)[)+∞?-?--∞,62,1)2,(。 ∴原不等式解集为),2()1,2

1()31,(+∞??-∞ 3、故原不等式的解集为{}

31<

4、∴原不等式解集是}6512{><<-

5、解之,得原不等式的解集为}321{><<-x x x 或.

6、当0=m 时,因03<-一定成立,故原不等式的解集为R .

当0≠m 时,原不等式化为0)1)(3(<-+mx mx ;

当0>m 时,解得m x m 13<<-

; 当0

x m 3

1-<<.

解:原不等式??

?

??->-≥->-?;)1(2,01,

02)1(222x a ax x a ax 或???<-≥-.01,02)2(2x a x

由0>a ,得:?

??

????<+++-≤>?;01)1(2,1,2)1(2

2a x a x x a x ?????>≥?.1,

2)2(x a x

由判别式08)1(4)1(422>=+-+=?a a a ,故不等式01)1(222<+++-a x a x 的解是

a a x a a 2121++<<-+.

当20≤

1212

≤-+≤a a a

,121>++a a ,不等式组(1)的解是121≤<-+x a a ,不等式组(2)的解是1>x .

当2>a 时,不等式组(1)无解,(2)的解是2

a x ≥

. 综上可知,当20≤

+∞-+,21a a ;当2>a 时,原不等

式的解集是??

?

???+∞,2a .

8、∴原不等式的解集为?

?????<<<<-325

021x x x 或.

9、解:原不等式可化为0))((2>--a x a x .

(1)当2a a <(即1>a 或0

{}2a x a x x ><或;

(2)当2a a >(即10<

{}

a x a x x

><或2;

(3)当2a a =(即0=a 或1)时,不等式的解集为:

{}a x R x x

≠∈且.

10、

∴???

????

==2325b a . 11、∴1=a ,1-=b . 12、解:分以下情况讨论

(1)当0=a 时,原不等式变为:01<+-x ,∴1>x (2)当0≠a 时,原不等式变为:0)1)(1(<--x ax ①

①当0--x a

x ,∴不等式的解为1>x 或a x 1

<.

②当0>a 时,①式变为0)1)(1

(<--x a

x . ②

∵a a a -=-111,∴当10<a ,此时②的解为a

x 11<<.当1=a 时,11=a ,

此时②的解为11

<

12、所以原不等式的解集为??????>≤<881374x x x 或,即为????

??

>1374x x .

方程与不等式之一元二次方程技巧及练习题含答案

方程与不等式之一元二次方程技巧及练习题含答案 一、选择题 1.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=144 【答案】D 【解析】 试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可. 解:2012年的产量为100(1+x ), 2013年的产量为100(1+x )(1+x )=100(1+x )2, 即所列的方程为100(1+x )2=144, 故选D . 点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键. 2.上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元,下面所列方程中正确的是( ) A .168(1+a %)2=128 B .168(1-a %)2=128 C .168(1-2a %)=128 D .168(1-a 2%)=128 【答案】B 【解析】 【分析】 【详解】 解:第一次降价a%后的售价是168(1-a%)元, 第二次降价a%后的售价是168(1-a%)(1-a%)=168(1-a%)2; 故选B. 3.将方程()2 2230x x x m n --=-=化为的形式,指出,m n 分别是( ) A .1和3 B .-1和3 C .1和4 D .-1和4 【答案】C 【解析】 【分析】 此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数. 【详解】 移项得x 2-2x=3, 配方得x 2-2x+1=4, 即(x-1)2=4, ∴m=1,n=4.

一元二次方程根与系数关系(附答案)

一元二次方程根与系数的关系(附答案) 评卷人得分 一.选择题(共6小题) 1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是() A.方程有两个相等的实数根B.方程有两个不相等的实数根 C.没有实数根D.无法确定 · 2.关于x的一元二次方程x2+2x﹣m=0有实数根,则m的取值范围是()A.m≥﹣1 B.m>﹣1 C.m≤﹣1 D.m<﹣1 3.关于x的一元二次方程x2+3x﹣1=0的根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.没有实数根D.不能确定 4.设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是()A.2 B.4 C.5 D.6 5.若α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α+β的值为()A.﹣5 B.5 C.﹣2 D. 6.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为()》 A.﹣1 B.0 C.1 D.3 评卷人得分 二.填空题(共1小题) 7.若关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p,q,且p2﹣pq+q2=18,则的值为.

评卷人· 得分 三.解答题(共8小题) 8.已知关于x的方程x2﹣(2k+1)x+k2+1=0. (1)若方程有两个不相等的实数根,求k的取值范围; (2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L 的长. 9.已知关于x的方程x2+ax+a﹣2=0. (1)若该方程的一个根为1,求a的值; (2)求证:不论a取何实数,该方程都有两个不相等的实数根. · 10.已知关于x的一元二次方程(x﹣m)2﹣2(x﹣m)=0(m为常数). (1)求证:不论m为何值,该方程总有两个不相等的实数根; (2)若该方程一个根为3,求m的值. 11.已知关于x的一元二次方程x2﹣x+a﹣1=0. (1)当a=﹣11时,解这个方程; (2)若这个方程有两个实数根x1,x2,求a的取值范围; (3)若方程两个实数根x1,x2满足[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求a的值.12.已知x1,x2是关于x的一元二次方程4kx2﹣4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=﹣成立若存在,求出k的值;若不存在,说明理由; (2)求使+﹣2的值为整数的实数k的整数值; : (3)若k=﹣2,λ=,试求λ的值. 13.已知关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2. (1)求k的取值范围;

《二次函数与一元二次方程、一元二次不等式》复习题汇编

《二次函数与一元二次方程、一元二次不等式》复习题汇编 【知识梳理】: 1.二次函数与一元二次方程关系非常密切,可以相互转化,若已知函数值,可以利用一元二次方程的知识求自变量的值。 2.从“形”的方面看,函数2 y ax bx c =++的图像与 轴交点的横坐标,即为方程 20ax bx c ++=的解;从“数”的方面看,当二次函数2y ax bx c =++的函数值为 时,相应的自变量的值即为方程2 0ax bx c ++=的解。 3.抛物线2 y ax bx c =++与x 轴有 个, 个, 个交点,相应的一元二次方程 20ax bx c ++=有两个不相等的实数根,两个相等的实数根,没有实数根;反过来,如 果一元二次方程2 0ax bx c ++=有两个不相等的实数根,两个相等的实数根,没有实数 根,那么抛物线2 y ax bx c =++与x 轴有 个, 个, 个交点。 4.二次函数2 y ax bx c =++与一元二次方程2 的关系如下: 5.直线y=kx+b 与抛物线y ax bx c =++有0个、1个、2个交点,则由方程y ax bx c =++; y=kx+b 联立并消元后的一元二次方程分别满足24b ac -<0、24b ac -=0、2 4b ac ->0. 6.二次函数与一元二次不等式的关系也非常密切,当c bx ax ++2 >0时,则相应的二次函 数图象2y ax bx c =++上的点位于x 轴的上方;当c bx ax ++2 <0时,则相应的二次函 数图象2 y ax bx c =++上的点位于x 轴的下方。 7.抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2 与x 轴两交点为 ()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故12b x x a +=- 、12c x x a = ; ()()a a ac b a c a b x x x x x x x x AB ?= -=-?? ? ??-=--= -= -=44422 212 212 2121【典型例题】 例1.已知函数()()()() 2 2 113513x x y x x ?--? =?--??≤>,则使y=k 成立的x 值恰好有三个,则k 的值为( ) A .0 B .1 C .2 D .3 例2.已知函数12)3(2++-=x x k y 的图象与x 轴有交点,则k 的取值范围是 A.4

2.3.1 二次函数与一元二次方程、不等式(第一课时)导学案

§2.3.1 二次函数与一元二次方程、不等式(第一课时) 导学目标: 1.从函数观点看一元二次方程.会结合一元二次函数的图象,求解一元二次方程. 2.从函数观点看一元二次不等式.会结合一元二次函数图像,求解一元二次不等式. 3.借助一元二次函数的图象,了解一元二次不等式、方程与其相应函数的联系. (预习教材P 51~ P 53,回答下列问题) 情景:学校要在长为8,宽为6 的一块长方形地面上进行绿化, 计划四周种花卉,花卉带的宽度相同, 中间种植草坪(图中阴影部分)为了美观, 现要求草坪的种植面积超过总面积的一半, 此时花卉带的宽度的取值范围是什么? 【知识点一】一元二次不等式的定义 只含有一个未知数,并且未知数最高次数是2 的不等式叫做一元二次不等式. 其一般形式可表示为:2 0ax bx c ++>或2 0ax bx c ++<()0a ≠ 自我检测1:下列不等式中是一元二次不等式的是( ) A .22 20a x x +≥ B . 2 1 3x < C .20x x m -+-≤ D .32 410x x x +-+> 【知识点二】一元二次不等式的解法 下图是一元二次函数76y x x =--的图像,请根据图像回答: (1)当x 取 时,0y = 当x 取 时,0y < 当x 取 时,0y > 由上面可知: (2)一元二次不等式2 760x x --<的解集为 一元二次不等式2 760x x --<的解集为 有何发现:

第二章 一元二次函数、方程和不等式 - 2 - (3)一元二次方程2760x x --=的解集为 有何发现: 请归纳求解一元二次不等式()2 00ax bx c ++><的解集的步骤? 自我检测2:一元二次不等式2 20x x -<的解集是 【知识点三】三个二次之间的关系 请根据右图回答: 一元二次方程()2 00ax bx c a ++=≠、 一元二次不等式()2 00ax bx c a ++>≠ 与其对应的一元二次函数()2 0y ax bx c a =++≠图像的关系? (1)一元二次方程()2 00ax bx c a ++=≠的两根为21,x x 是一元二次函数 ()20y ax bx c a =++≠图像与x 轴 . (2)一元二次方程()2 00ax bx c a ++>≠的解集的端点是一元二次方程 ()200ax bx c a ++=≠的 . (3)一元二次方程()2 00ax bx c a ++=≠的两根为21,x x ,则 . 自我检测3:不等式2 50ax x c ++>的解集为1 13 2x x ??<≠恒成立的充要条件是:0a >且2 40()b ac x -<∈R . (2)2 0(0)ax bx c a ++<≠恒成立的充要条件是:0a <且2 40()b ac x -<∈R .

一元二次方程(根与系数关系)

一元二次方程(根与系数关系专题测试) 一、单选题(共10题;共30分) 1.已知x1,x2是方程x2﹣3x﹣2=0的两根,则x12+x22的值为() A. 5 B. 10 C. 11 D. 13 2.已知关于x的一元二次方程x2+5x﹣m=0的一个根是2,则另一个根是() A. ﹣7 B. 7 C. 3 D. ﹣3 3.一元二次方程x2-5x+6=0的两根分别是x1、x2,则x1+x2等于() A. 5 B. 6 C. -5 D. -6 4.是方程的两根, 的值是() A. 2017 B. 2018 C. 2019 D. 2020 5.关于x的方程有两个实数根,,且,那么m的值为() A. -1 B. -4 C. -4或1 D. -1或4 6.关于x的方程(为常数)根的情况下,下列结论中正确的是() A. 两个正根 B. 两个负根 C. 一个正根,一个负根 D. 无实数根 7.已知一元二次方程x2﹣4x+m=0有一个根为2,则另一根为() A. ﹣4 B. ﹣2 C. 4 D. 2 8.已知,是一元二次方程的两个实数根且,则的值为(). A. 0或1 B. 0 C. 1 D. -1 9.若α,β是方程x2﹣2x﹣3=0的两个实数根,则α2+β2+αβ的值为() A. 10 B. 9 C. 7 D. 5 10.若a≠b,且则的值为() A. B. 1 C. .4 D. 3 二、填空题(共6题;共18分) 11.如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么x1+x2=﹣, x1x2= ,这就是一元二次方程根与系数的关系(韦达定理).利用韦达定理解决下面问题:已知m与n是方程x2﹣5x﹣25=0的两根,则+ =________. 12.一元二次方程的两根为,则________

二次函数与一元二次方程和不等式教学提纲

怀文中学2014—2015学年度第一学期随堂练习 初 三 数 学(5.3二次函数与一元二次方程和不等式(1)) 设计:吴兵 审校:蔡应桃 班级__________ 学号___________ 姓名____________ 一、知识点 1.二次函数与一元二次方程之间的关系是通过 与 的交点来体现的:若抛物线0(2 ≠++=a c bx ax y )与x 轴的交点为(m ,0)、(n ,0),则对应的一元二次方程 02=++c bx ax 的两根为 . 一元二次方程根的情况对应决定着抛物线与x 轴的交点个数. (1)抛物线2 (0)y ax bx c a =++≠与x 轴有两个交点, 02 =+ +c bx ax ac b 42- 0; (2)抛物线2 (0)y ax bx c a =++≠与x 轴只有一个交点, 02 =++c bx ax ac b 42- 0; (3)抛物线2 (0)y ax bx c a =++≠与x 轴没有交点, 02 =++c bx ax ac b 42- 0. 2.抛物线与直线的交点: ①二次函数图象与x 轴及平行于x 轴的直线; ②二次函数图象与y 轴及平行于y 轴的直线; ③二次函数图象与其它直线(不平行于坐标轴,即一次函数图象). 3.根据示意图求一元二次不等式的解集. 二、典型例题 不画图象,你能判断函数 的图象与x 轴是否有公共点吗?请说明理由。 三、适应练习 1、方程 的根是 ;则函数 的图象与x 轴的交点有 个,其坐标是 . 2、方程 的根是 ;则函数 的图象与x 轴的 交点有 个,其坐标是 . 3、下列函数的图象中,与x 轴没有公共点的是( ) 62 -+=x x y 0542 =-+x x 025102=-+-x x 25102 -+-=x x y 542 -+=x x y 2)(2-=x y A x x y B -=2)(96)(2-+-=x x y C 2)(2+-=x x y D

解一元二次方程及一元二次不等式练习题-

一元二次方程练习题 1. 解下列方程:(1)2(1) 9x -=; (2)2(21)3x +=; (3)2(61)250x --=. (4)281(2)16x -=. 2. 用直接开平方法解下列方程: (1)25(21) 180y -=; (2)21(31)644x +=; (3)26(2) 1x +=; (4)2()(00)ax c b b a -=≠,≥ 3. 填空 (1)28x x ++( )=(x + )2.(2)223x x -+( )=(x - )2. (3)2b y y a -+( )=(y - )2. 4. 用适当的数(式)填空: 23x x -+ (x =- 2);2x px -+ =(x - 2) 23223(x x x +-=+ 2)+ . 5. 用配方法解方程. 23610x x --= 22540x x --= 6. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = . 7. 用适当的方法解方程(1)23(1) 12x +=; (2)2410y y ++=; (3)2884x x -=; (4)2310y y ++=. (5) ()9322=-x ; (6)162=-x x ; 一元二次不等式 2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程2 0(0)ax bx c a ++=>之间判别式ac b 42-=? 0>? 0=? 0a )的图象 ()002>=++a c bx ax 的解集)0(02>>++a c bx ax 的解集)0(02><++a c bx ax 1、把二次项的系数变为正的。(如果是负,那么在不等式两边都乘以-1,把系数变为正) 2、解对应的一元二次方程。(先看能否因式分解,若不能,再看△,然后求根) 3、求解一元二次不等式。(根据一元二次方程的根及不等式的方向) 一、解下列一元二次不等式:

二次函数与一元二次方程不等式之间的关系

九年级数学第十周拓展训练(部分习题选自《新思维》)(2017.11.5) 1.(永州)抛物线122-++=m x x y 与x 轴有两个不同的交点,则m 的取值范围是----( ) A .m <2 B .m >2 C .0<m≤2 D .m <﹣2 2.(陕西)根据下表中的二次函数c bx ax y ++=2的自变量x 与函数y 的对应值,可判断该二次函数的图 ( ) x … 1- 0 1 2 … y … 1- 47- 2- 4 7- … A.只有一个交点 B.有两个交点,且它们分别在y 轴两侧 C.有两个交点,且它们均在y 轴同侧 D.无交点 3.(宜昌)已知抛物线122+-=x ax y 与x 轴没有交点,那么该抛物线的顶点所在的象限是------( ) A.第四象限 B.第三象限 C.第二象限 D.第一象限 4.(南宁)二次函数)0(2≠++=a c bx ax y 和正比例函数x y 3 2=的图象如图所示,则方程0)3 2(2=+-+c x b ax 的两根之和-------------------------------------------------------( ) A .大于0 B .等于0 C .小于0 D .不能确定 5.(安徽)如图,一次函数x y =1与二次函数c bx ax y ++=22的图象相交于P 、Q 两点,则函数 c x b ax y +-+=)1(2的图象可能为-----------------------------------------------------( ) 6.(绵阳)若)(,2121x x x x <是方程)(1))((b a b x a x <=--的两个根,则b a x x ,,,21的大小关系( ) A. b a x x <<<21 B. b x a x <<<21 C. 21x b a x <<< D. 21x b x a <<< 7.(泰安)二次函数bx ax y +=2 的图象如图所示,若一元二次方程02=++m bx ax 有实数根,则m 的最大值为-----------------------------------------------------------------------------( ) A.-3 B.3 C.-6 D.9 第4题 第5题 第7题

复系数一元二次方程求解

复系数方程的求解 知识点: 1.复系数方程的一般求解方法; 2.复系数方程与实系数方程解的关联性; 教学过程: 1.系数为复数的方程统称为复系数方程; 2.复系数方程的一般求解方程方法为待定系数法; 3.复系数一元二次方程的根满足韦达定理; 4.复系数一元n次方程有且仅有n个根(k重根按k个根记),此结论由高斯在1797年的博士论文中严格证明。并称为代数基本定理 ......。 例1.解关于x的方程: (1)2340 --= x i (2)2(1)0 -++= x i x i (3)2 i x i x i +----= (1)(1)260 (4)2(3)430 -+++= x i x i (5)22 -++--= 252(2)0 x x x x i

例2.设方程20x px k -+=有一个根是12i +。 (1)若p R ∈,求实数k 的值; (2)若4p =,求复数k 的值; 例3.解关于x 的方程(1)(1)0,n n x x n N +--=∈。 例4.设1,,x u vi u v R =+∈是关于x 的方程20,,ax ibx c a b R ++=∈的根,求方程的另一个根; 例5.设k R ∈,关于x 的方程2(2)20x k i x ki ++++=有实数解,求k 的值,并求方程的根。

例6.已知关于x 的方程222(1)(1)0a i x a i a i +++++=有实数解,求实数a 积方程的根。 例7.已知关于x 的方程09)6(2=+++-ai x i x ,a R ∈有实数根b 。 (1)求实数,a b 的值; (2)若复数z 满足02=---- z bi a z ,求z 为何值时,z 有最小值,并求出z 的值。 例8.关于x 的二次方程2120x z x z m +++=中,12,,z z m 均是复数,且i z z 20164221+=-. 设这个方程的两个根为α、β,且满足72||=-βα.求|m |的最大值和最小值。

(5)二元二次方程和一元二次不等式解法

(5)二元二次方程和一元二次不等式解法 2.3 方程与不等式 2.3.1 二元二次方程组解法 方程 2 2 260x xy y x y +++++= 是一个含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,这样的方程叫做二元二次方程.其中 2x ,2xy ,2y 叫做这个方程的二次项,x ,y 叫做一次项,6叫做常数项. 我们看下面的两个方程组: 224310, 210;x y x y x y ?-++-=? --=? 2222 20, 560. x y x xy y ?+=??-+=?? 第一个方程组是由一个二元二次方程和一个二元一次方程组成的,第二个方程组是由两个二元二次方程组成的, 像这样的方程组叫做二元二次方程组. 下面我们主要来研究由一个二元二次方程和一个二元一次方程组成的方程组的解法. 一个二元二次方程和一个二元一次方程组成的方程组一般可以用代入消元法来解. 例1 解方程组 22440, 220. x y x y ?+-=?--=? 分析:二元二次方程组对我们来说较为生疏,在解此方程组时,可以将其转化为我们熟悉的形式.注意到方程②是一个一元一次方程,于是,可以利用该方程消去一个元,再代入到方程①,得到一个一元二次方程,从而将所求的较为生疏的问题转化为我们所熟悉的问题. 解:由②,得 x =2y +2, ③ 把③代入①,整理,得 8y 2+8y =0, 即 y (y +1)=0. 解得 y 1=0,y 2=-1. 把y 1=0代入③, 得 x 1=2; 把y 2=-1代入③, 得x 2=0. 所以原方程组的解是 112, 0x y =??=?, 22 0, 1.x y =?? =-? 说明:在解类似于本例的二元二次方程组时,通常采用本例所介绍的代入消元法来求解. 例2 解方程组 7, 12.x y xy +=?? =? 解法一:由①,得 7.x y =- ③ 把③代入②,整理,得 2 7120y y -+= 解这个方程,得 123,4y y ==. 把13y =代入③,得14x =; 把24y =代入③,得23x =. 所以原方程的解是 114, 3x y =??=?, 22 3, 4.x y =??=? 解法二:对这个方程组,也可以根据一元二次方程的 根与系数的关系,把,x y 看作一个一元二次方程的两个根,通过解这个一元二次方程来求,x y . 这个方程组的,x y 是一元二次方程 2 7120z z --= 的两个根,解这个方程,得 3z =,或4z =. ① ② ①②

第4节 从函数的观点看一元二次方程和一元二次不等式

第4节从函数的观点看一元二次方程和 一元二次不等式 知识梳理 1.一元二次不等式 只含有一个未知数,并且未知数的最高次数为2的整式不等式叫作一元二次不等式. 2.三个“二次”间的关系 判别式Δ=b2-4ac Δ>0Δ=0Δ<0 二次函数 y=ax2+bx+c (a>0)的图象 一元二次方程ax2+bx+c=0 (a>0)的根有两相异实根x1, x2(x1<x2) 有两相等实根x1= x2=- b 2a 没有实数根 ax2+bx+c>0 (a>0)的解集{x|x>x2 或x<x1}?? ? ? ? ? x|x≠- b 2a R ax2+bx+c<0 (a>0)的解集 {x|x1<x<x2}??3.(x-a)(x-b)>0或(x-a)(x-b)<0型不等式的解集 不等式 解集 ab (x-a)·(x-b)>0{x|xb} {x|x≠a}{x|xa} (x-a)·(x-b)<0{x|a

(1)f (x ) g (x )>0(<0)?f (x )·g (x )>0(<0). (2)f (x ) g (x )≥0(≤0)?f (x )·g (x )≥0(≤0)且g (x )≠0. [微点提醒] 1.绝对值不等式|x |>a (a >0)的解集为(-∞,-a )∪(a ,+∞);|x |0)的解集为(-a ,a ). 记忆口诀:大于号取两边,小于号取中间. 2.解不等式ax 2+bx +c >0(<0)时不要忘记当a =0时的情形. 3.不等式ax 2+bx +c >0(<0)恒成立的条件要结合其对应的函数图象决定. (1)不等式ax 2+bx +c >0对任意实数x 恒成立????a =b =0,c >0或???a >0,Δ<0. (2)不等式ax 2 +bx +c <0对任意实数x 恒成立????a =b =0,c <0或???a <0, Δ<0. 基 础 自 测 1.判断下列结论正误(在括号内打“√”或“×”) (1)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.( ) (2)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( ) (3)不等式x 2≤a 的解集为[-a ,a ].( ) (4)若方程ax 2+bx +c =0(a <0)没有实数根,则不等式ax 2+bx +c >0(a <0)的解集为R .( ) 解析 (3)错误.对于不等式x 2≤a ,当a >0时,其解集为[-a ,a ];当a =0时,其解集为{0},当a <0时,其解集为?. (4)若方程ax 2+bx +c =0(a <0)没有实根,则不等式ax 2+bx +c >0(a <0)的解集为?. 答案 (1)√ (2)√ (3)× (4)× 2.(必修5P103A2改编)已知集合 A =???? ?? x ???12x -1≤0,B ={x |x 2-x -6<0},则A ∩B

一元二次方程和不等式

一元二次方程和不等式 1. 如图,抛物线从 c bx ax y ++=2与x 轴交于点A (1,0),B (3,0),则 (1) a 0, b 0, c 0; (2) 方程02=++c bx ax 的解集为 ; (3) 不等式02>++c bx ax 的解集为 ; (4) 不等式02<++c bx ax 的解集为 ; 2. 如图,是二次函数 c bx ax y ++=21和一次函数n mx y +=2的图象, (1) n x c bx ax +=++m 2的解为 ; (2) 不等式n x c bx ax +>++m 2的解集为 ; (3) 不等式n x c bx ax +<++m 2的解集为 ; 3. 解一元二次不等式 (1) 解不等式0342<+-x x (2) 已知二次函数21x y -=与一次函数432--=x y 交于A 、B 两点 a 、 求A 、B 两点的坐标; b 、判断x 为何值时,21 y y < 4、抛物线c bx ax y ++=2分别交坐标轴于A (-2,0),B (6,0),C (0,4),则402<++≤c bx ax 的解集是 。 y y 2y 1

根与系数关系(一) 基本问题:直线与抛物线相交所截线段长度可用根与系数关系得到。 例1:基本图形,抛物线所截弦长。如图,直线1+=x y 与m m mx x y ++-=222交于A ,B 两点(A 在B 左边)。求证无论m 为任何值,AB 的长总为定值。 例2:(线段和差)如图,抛物线342+-=x x y 与x 轴交于A ,B 两点,与y 轴交于点C ,将直线BC 向上平移交抛物线于M ,N ,交y 轴于点P ,求PM-PN 的 值。 例3:(线段乘积)如图,已知直线k kx 9y -=(k<0)与抛物线322 --=x x y 交于A,B 两点,与x 轴交于点P ,过点A 做AC ⊥x 轴于点C ,过点B 做BD ⊥x 轴于点D ,求证:PC PD ? 为定值。 例4.抛物线L :y =-x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B (1) 直接写出抛物线L 的解析式 (2) 如图1,过定点的直线y =kx -k +4(k <0)与抛物线L 交于点M 、N .若 △BMN 的面积等于1,求k 的值

《一元二次方程的解法》规律总结

《一元二次方程的解法》规律总结 1.一元二次方程的解法 (1)直接开平方法:根据平方根的意义,用此法可解出形如a x 2=(a ≥0), b )a x (2=-(b ≥0)类的一元二次方程.a x 2=,则a x ±=;b )a x (2=-,b a x ±=-,b a x +=.对有些一元二次方程,本身不是上述两种形式,但可以化为a x 2=或b )a x (2 =-的形式,也可以用此法解. (2)因式分解法:当一元二次方程的一边为零,而另一边易分解成两个一次因式的积时,就可用此法来解.要清楚使乘积ab =0的条件是a =0或b =0,使方程x(x -3)=0的条件是x =0或x -3=0.x 的两个值都可以使方程成立,所以方程x(x -3)=0有两个根,而不是一个根. (3)配方法:任何一个形如bx x 2 +的二次式,都可以通过加一次项系数一半的平方的方法配成一个二项式的完全平方,把方程归结为能用直接开平方法来解 的方程.如解07x 6x 2=++时,可把方程化为7x 6x 2-=+,2 2226726x 6x ??? ??+-=??? ??++,即2)3x (2=+,从而得解. 注意:(1)“方程两边各加上一次项系数一半平方”的前提是方程的二次项系数是1. (2)解一元二次方程时,一般不用此法,掌握这种配方法是重点. (3)公式法:一元二次方程0c bx ax 2=++(a ≠0)的根是由方程的系数a 、b 、 c 确定的.在0ac 4b 2≥-的前提下,a 2ac 4b b x 2-±-=.用公式法解一元二次方 程的一般步骤: ①先把方程化为一般形式,即0c bx ax 2 =++(a ≠0)的形式; ②正确地确定方程各项的系数a 、b 、c 的值(要注意它们的符号); ③计算0ac 4b 2<-时,方程没有实数根,就不必解了(因负数开平方无意义); ④将a 、b 、c 的值代入求根公式,求出方程的两个根. 说明:象直接开平方法、因式分解法只是适宜于特殊形式的方程,而公式法则是最普遍,最适用的方法.解题时要根据方程的特征灵活选用方法. 2.一元二次方程根的判别式 一元二次方程的根有三种情况:①有两个不相等的实数根;②有两个相等的 实数根;③没有实数根.而根的情况,由ac 4b 2-的值来确定.因此ac 4b 2-=?叫做一元二次方程0c bx ax 2 =++的根的判别式. △>0?方程有两个不相等的实数根. △=0?方程有两个相等的实数根. △<0?方程没有实数根.

方程与不等式之一元二次方程技巧及练习题

方程与不等式之一元二次方程技巧及练习题 一、选择题 1.已知x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,下列结论一定正确的是( ) A .x 1≠x 2 B .x 1+x 2>0 C .x 1?x 2>0 D .x 1<0,x 2<0 【答案】A 【解析】 分析:A 、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x 1≠x 2,结论A 正确; B 、根据根与系数的关系可得出x 1+x 2=a ,结合a 的值不确定,可得出B 结论不一定正确; C 、根据根与系数的关系可得出x 1?x 2=﹣2,结论C 错误; D 、由x 1?x 2=﹣2,可得出x 1<0,x 2>0,结论D 错误. 综上即可得出结论. 详解:A ∵△=(﹣a )2﹣4×1×(﹣2)=a 2+8>0, ∴x 1≠x 2,结论A 正确; B 、∵x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根, ∴x 1+x 2=a , ∵a 的值不确定, ∴B 结论不一定正确; C 、∵x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根, ∴x 1?x 2=﹣2,结论C 错误; D 、∵x 1?x 2=﹣2, ∴x 1<0,x 2>0,结论D 错误. 故选A . 点睛:本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 2.从4-,2-,1-,0,1,2,4,6这八个数中,随机抽一个数,记为a .若数a 使关于x 的一元二次方程()22 240x a x a --+=有实数解.且关于y 的分式方程1311y a y y +-=--有整数解,则符合条件的a 的值的和是( ) A .6- B .4- C .2- D .2 【答案】C 【解析】 【分析】 由一元二次方程()22240x a x a --+=有实数解,确定a 的取值范围,由分式方程1311y a y y +-=--有整数解,确定a 的值即可判断. 【详解】

二元一次不等式及解法

3.2《一元二次不等式及其解法》教案(第1课时) 【教学目标】 1.知识与技能:理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力; 2.过程与方法:经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法; 3.情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。 【教学重点及难点】 教学重点:从实际情境中抽象出一元二次不等式模型;一元二次不等式的解法。 教学难点:理解二次函数、一元二次方程与一元二次不等式解集的关系。 【教学过程】 一.课题导入 从实际情境中抽象出一元二次不等式模型: 教材P84互联网的收费问题 教师引导学生分析问题、解决问题,最后得到一元二次不等式模型:2 50x x -<…………………………(1) 二.讲授新课 1)一元二次不等式的定义 象2 50x x -<这样,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式 2)探究一元二次不等式250x x -<的解集 怎样求不等式(1)的解集呢? 探究: (1)二次方程的根与二次函数的零点的关系 容易知道:二次方程的有两个实数根:120,5x x == 二次函数有两个零点:120,5x x == 于是,我们得到:二次方程的根就是二次函数的零点。 (2)观察图象,获得解集 画出二次函数2 5y x x =-的图象,如图,观察函数图象,可知: 当 x<0,或x>5时,函数图象位于x 轴上方,此时,y>0,即2 50x x ->;

二次函数与一元二次方程和一元二次不等式

二次函数与一元二次方程和一元二次不等式 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值2 44ac b a -,无最大值;当0a <时,函数在2b x a =-处取得最大值2 44ac b a -,无最小值. 方程与函数不仅是初中数学中的重要内容,也是高中数学学习的重要内容,方程与函数之间存在着密切的联系,二次函数的图象与x 轴交点的横坐标即为相应的二次方程的解,课程标准要求我们能利用二次函数的图象求二次方程的近似解。 本节我们将进一步研究一元二次方程与函数问题,研究当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用. 【例1】已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的解为 . 分析:因为二次方程220x x m -++=的根为二次函数22y x x m =-++的图象与x 轴交点 横坐标。根据已知条件22y x x m =-++ ,可知抛物线的对称轴为直线1x =;根据图象可知抛物线与x 轴的一个交点的横坐标为3x =,所以利用抛物线的对称性知抛物线与x 轴的另一个交点横坐标为―1,因此,方程220x x m -++=的解为3和-1。本题利用抛 物线的轴对称性求抛物线与轴的交点坐标,从而求出相应的一元二次方程的根。 【例2】 二次函数2(0y ax bx c a a b c =++≠,,,是常数)中,自变量x 与函数y 的对应值如下表:

含字母系数的一元二次方程

(6)含字母系数的一元一次方程 班别______姓名________ 一、性质:一般地,当 (1)a ≠0?方程ax=b 有且只有一解; (2)a=0且b=0?方程ax=b 有无数多个解; (3)a=0且b ≠0?方程无解。 二、例题 例1 解关于x 的方程(m-1)x – 1=3x + 4 解:整理,得 (m – 4)x=5,当m ≠4时,x= 45-m ;当m=4时,原方程无解。 例2 解关于y 的方程(k 2+2k+3)y + 4=3(y+2)+k 解:整理,得(k 2 +2k )y=2 + k ∴ k (k+2)y=2+k 当k=-2时,方程有无数多个解; 当k ≠-2时,得ky=1 ∴当k ≠-2且k ≠0时,方程的解为y=k 1 当k=0时,原方程无解 当k=-2时,方程有无数多个解。 例3 b (b ≠0)为何值时,关于x 的方程(b+1)x=2bx –3b 2 的解为负数。 解:整理,得(1 - b )x= –3b 2 当b ≠1时,方程有解x = b b --132 ,由于b ≠0分子(–3b 2)为负,只需分母为正,即b ﹤1时,方程的解为负数。 例4 某施工队第一组原有96人现调出16人到第二组,调整人数后,第一组人数是第二组人数的k (k 是不等于1的正整数)倍还多6人,问第二组原有多少人。 解:设第二组原有x 人。调整后,第一组有96 – 16 = 80(人),第二组有x+16(人)。根据题意,得 80=k (x+16)+6 整理,得 kx=74 – 16k k 是不等于1的正整数,∴x=k k 1674-

因为x 为所求人数,必须为正整数,而k 是不等于1人正整数,故74 – 16K 也是正整数,k 只能取2、3、4。代入计算得k 为3、4均不适合。 ∴当k=2时,得第二组原有x=2 21674?-=21(人) 评注 : 对含字母系数的一元一次方程中的字母系数要讨论,如果是应用问题,还得根..................................据实际意义,对字母系数的取值范围进行取舍.................... 。 三、练习 1、选择题:设关于x 的方程a (x - a )+b (x+b )=0有无穷多个解,则( ) (A )a+b=0 (B )a-b=0 (C )ab=0 (D ) 0=b a 2、填空:若方程249x+8 a ∣x ︱-1=0解小于零,则a 的取值范围是________. 3、解下列关于x 的方程: (1)x+b a b ax +=; (2)=+n x m m n x -; (3)x=b a a b a bx -++; (4)(=-x m n n m )m n n m + 4、k 为何值时,方程(m – 3)(m - 4)x=(m – 3)(m+2)的解是负数? 5、解关于x 的方程m+122++=+m x m mx

方程与不等式之一元二次方程经典测试题及答案解析

方程与不等式之一元二次方程经典测试题及答案解析 一、选择题 1.若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .无法确定 【答案】A 【解析】 【分析】 利用一次函数性质得出k >0,b≤0,再判断出△=k 2-4b >0,即可求解. 【详解】 解:Q 一次函数y kx b =+的图象不经过第二象限, 0k ∴>,0b ≤, 240k b ∴?=->, ∴方程有两个不相等的实数根. 故选:A . 【点睛】 本题考查的是一元二次方程的根的判别式,熟练掌握一次函数的图像和一元二次方程根的判别式是解题的关键. 2.若关于x 的一元二次方程x 2﹣2x +m =0没有实数根,则实数m 的取值是( ) A .m <1 B .m >﹣1 C .m >1 D .m <﹣1 【答案】C 【解析】 试题解析:关于x 的一元二次方程2x 2x m 0-+=没有实数根, ()2 24241440b ac m m ?=-=--??=-<, 解得: 1.m > 故选C . 3.对于一元二次方程ax 2+bx +c =0(a ≠0),下列说法: ①若b =ax 2+bx +c =0一定有两个相等的实数根; ②若方程ax 2+bx +c =0有两个不等的实数根,则方程x 2﹣bx +ac =0也一定有两个不等的实数根; ③若c 是方程ax 2+bx +c =0的一个根,则一定有ac +b +1=0成立; ④若x 0是一元二次方程ax 2+bx +c =0的根,则b 2﹣4ac =(2ax 0+b )2,其中正确的( ) A .只有①②③ B .只有①②④ C .①②③④ D .只有③④

一元二次方程与一元二次不等式的解法分析及例题

一元二次方程、二次函数与一元二次不等式总结分析及例题 (一)一元二次方程的一般形式:()002 ≠=++a c bx ax 其中c b a ,,为常数,x 为未知数。根的判别式:ac b 42 -=? 一元二次方程根的个数与根的判别式的关系: 0?时,方程①有两个不相等的实根。a ac b b x 2422,1-±-= (二)二次函数的一般形式:形如()a b ac a b a y a c bx ax y 442x 022 2 -+ ??? ? ? +==≠++= 其中c b a ,,为常数,x 为自变量。顶点坐标为???? ? ?--a b ac a b P 44,22,其中直线a b x 2-=为对称轴, 1、(1)0a 时,函数c bx ax y ++=2 的图象开口向上,函数c bx ax y ++=2 在a b x 2- =取到最小值,即a b a c y 442 min -=,对任意a b ac y R x 44,2-≥∈. 2、二次函数()02 ≠++=a c bx ax y 与x 轴交点个数的判断: 0?时,函数()02≠++=a c bx ax y 与x 轴有两个交点。 3、二次函数图象的基本元素:开口方向(即首项系数a 的正负)、对称轴、?. (三)一元二次不等式的概念:形如()002 ≠≠++a c bx ax 其中连接c bx ax ++2 与0的 不等号可以是><≥≤,,,或≠.

相关文档
最新文档