有限元理论与方法-第7讲

有限元理论与方法-第7讲
有限元理论与方法-第7讲

青岛大学讲稿

讲 授 内 容

备 注 第7讲(第7周)

2. 应变矩阵

确定了单元位移后,可以很方便地利用几何方程和物理方程求得单元的应变和应力。作为平面问题,单元内具有3个应变分量εx 、εy 、γxy (各符号的意义见附录1),用矩阵表示为

???

?

???

?

?

???????????+

??????=

??????????=x v y u y v x u xy y x γεεε

将(2.1.4)式代入上式中,得到

e m m

j

j

i

i

m j i m j i

b c b c b c c c c b b b A δε??

????

????=000

00021 或

e

δ

B ε = (2-1-7)

式中B 称为应变矩阵,写为分块形式,即

B =[B i B j B m ] (2-1-8)

而其子阵为

),,( 0

021m j i b c c b A i i

i i

i ???

?

?

???

??=B (2-1-9)

3节点三角形单元的B 是常量阵,所以称为常应变单元。在应变梯度较大(也

即应力梯度较大)的部位,单元划分应适当密集,否则将不能反映应变的真实变化而导致较大的误差。

上述应变中包括与应力有关的应变和与应力无关的应变两部分,无关的应变ε0

又称为初应变

????

??????=0000xy y x γεεε

ε0由温度变化、收缩、晶体生长等因素引起,对工程结构一般只考虑温度应变,无论线性和非线性温度,计算时可近似地采用平均温度

3

3ref

T T T T T m j i -++=

式中,T i 、T j 、T m 分别为节点i 、j 、m 的温度,T ref 为参考温度。

对于平面应力问题,温度T 引起的初始应变为

????

?????

?=00T

T ααε

其中,α为线膨胀系数。

由于温度变化在各向同性介质中不引起剪切变形,所以γxy 0=0。以后所述问题,除非特别说明,都指各向同性介质。

对平面应力问题,温度T 引起的初始应变为

????

????

?

?+=0)1(0T

T ααμε 当不考虑温度的影响时,当前温度即为参考温度。以后所述问题,除非特别说明,不考虑温度影响。

3. 单元应力

根据物理方程,对平面应力问题,取应变分量

xy

xy

x

y

y y

x

x E

E E E

E

τμγ

μσ

σ

εμσ

σε)

1(2+=

-

=-=

由上式解出

xy

xy

xy y x

y

y x x

E E

E E

γ

μ

μ

γ

μτεμεμ

σμεεμσ2

11)

1(2)(1)(12

2

2

--=

+=

+-=+-=

εD ζ =???

?

??????=xy y

x τσσ (2-1-10)

式中,D 为弹性矩阵,

???

????????

?--=

210

0010

112

μ

μμ

μ

E D (2-1-11)

取决于弹性常数E 和μ。

将式(2-1-7)代入式(2-1-10)得

e

δ

S ζ = (2-1-12)

[

]m

j

i

S S

S B D S == (2-1-13)

),,(212

1)1(22

m j i b c c b c b A E i

i i

i i

i

i ??

?

???

?

???????

---=μμ

μμμS

式中,S 为应力矩阵,反映了单元应力与单元节点位移之间的关系。由于单元应力

和应变分量为常量,所以单元边界上有应力阶越,随单元划分变密,突变将减小。

对平面应变问题,有四个应力分量:σx 、σy 、τxy 和σz 。取应变分量

()()

()0

1)

1(211=--=

+=

--=

--=y

x

z

z xy

xy

z

x y y z

y

x

x E E E

E μσ

μσ

σ

ετμγμσ

μσ

σ

εμσμσσε

由应变分量解出σx 、σy 、τxy ,弹性矩阵为

??

?

?

????

?

??????

??

?-----+-=

)1(2210

00

110

11)21)(1()1(μμμ

μμμ

μμμE D (2-1-14)

根据物理方程可以求解各应力分量。

4. 单元刚度矩阵

单元节点力为F e ,节点虚位移为(δ*)e ,节点虚应变为(ε*)e ,平面单元的厚度为t 。应用虚位移原理

()()

()

()

y x t y x t A

A

e

e

d d d d T

*T

*T *D εεζεF

δ????=

=

将e

**)(δB ε=及e

δ B ε=代入上式整理得到

()

e

A e

y x t δDB B

F

d d T

??=

可见单元刚度矩阵为

y x t A

e

d d T ??

=

DB B K

(2-1-15)

对于三节点三角形单元,面积为A ,所取为线性位移模式,单元刚度矩阵为

tA

e

T

S B K

=

进一步表示为

????

?

?????=mm mj

mi

jm jj

ji

im ij ii e

K K K K K

K K K K K

对平面应力问题有

(

)

()

m j i s m j i r b b c c c

b b

c b c c b c c b b A Et s

r s r s

r s r s r s r s r s

r rs

,, ;,, 2

1212

12

1142

==????

???

??

?

-+

-+-+

-+-=

μμμμμμμ

K

(2-1-16)

单元刚度矩阵表达单元抵抗变形的能力,其元素值为单位位移所引起的节点力,与普通弹簧的刚度系数具有同样的物理本质。例如子块K ij

2221

12

11?

???

???

?=ij ij ij ij rs

k k k k K

其中:上标1表示x 方向自由度,2表示y 方向自由度,后一上标代表单位位移的

方向,前一上标代表单位位移引起的节点力方向。如11

ij k 表示j 节点产生单位水平

位移时在i 节点引起的水平节点力分量,21ij k 表示j 节点产生单位水平位移时在i 节点引起的竖直节点力分量,其余类推。

单元刚度矩阵为对称矩阵。由于单元可有任意的刚体位移,给定的节点力不能惟一地确定节点位移,可知单元刚度矩阵不可求逆,具有奇异性。

5. 等效节点载荷

有限单元法分析只采用节点载荷,作用于单元上的非节点载荷都必须移置为等效节点载荷。可依照静力等效原则,即原载荷与等效节点载荷在虚位移上所作的虚功相等,求等效节点载荷。

(1)集中力的移置。设单元ijm 内坐标为(x ,y )的任意一点M 受有集中载荷f =[f x f y ]T ,移置为等效节点载荷P e =[X i Y i X j Y j X m Y m ]T 。假想单元发生了虚位移,其中,M 点虚位移为u *=N T (δ*)e ,其中(δ*)e 为单元节点虚位移。按照静力等效原则有

f

N

δf u P

δT

T *T

*T

*

))(()

())((e e

e

==

f N

P

T

=e

(2-1-17)

(2)体力的移置。设单元承受有分布体力,单位体积的体力记为q =[q x q y ]T ,其等效节点荷载为

y x t A

e

d d T

q N

P

??=

(2-1-18)

(3)面力的移置。设在单元的某一个边界上作用有分布的面力,单位面积上的面力为p =[p x p y ]T ,在此边界上取微面积t d s ,对整个边界面积分,得到

?=

l

e

s t d T

P N

P

(2-1-19)

例2-1

2-2所示ij 边受

求解说明 利用上述公式求等效节点载荷,当原载荷是分布体力或面力时,进行积分运算是比较繁琐的。但在线性位移模式下,可以按照静力学中力的分解原理直接求出等效节点载荷,上述三种情况等效节点荷载分别为

[]10

1010

3

G e

-

=P

???

?

??=00

0210

21ptl e

P

??

???

?

=03

10

3

2002ptl e

P

6. 整体分析

结构的整体分析就是将离散后的所有单元通过节点连接成原结构物进行分析,分析过程是将所有单元的单元刚度方程组集成总体刚度方程,引进边界条件后求解整体节点位移向量。

总体刚度方程实际上就是所有节点的平衡方程,由单元刚度方程组集总体刚度方程应满足以下两个原则:

(1)各单元在公共节点上协调地彼此连接,即在公共节点处具有相同的位移。由于基本未知量为整体节点位移向量,这一点已经得到满足。

(2)结构的各节点离散出来后应满足平衡条件,也就是说,环绕某一节点的所有单元作用于该节点的节点力之和应与该节点的节点载荷平衡。

每一节点统一使用整体节点编号(如图2-4所示),第4单元节点编号i 、j 、m 统一依次改为8、7、5。确定各单元的大域变换矩阵,如第4单元为

????

?

?????=00

00000000000000004

I

I I G

其中,I

求出各单元刚度矩阵,利用大域变换法求出结构整体刚度矩阵[K ],引入边界

条件,得到结构的节点平衡方程

P K δ= (2-1-19)

,μ、4,坐标分别为(0,0)、(2,0)、(2,1)、(0,1)。单元①、②节点顺序分别取3、1、2和1、3、4,刚度矩阵完全一样。

对单元①:b i =0,b j =-1,b m =1,c i =2,c j =0,c m =-2。 对单元②:b i =0,b j =1,b m =-1,c i =-2,c j =0,c m =2。 单元的刚度矩阵为

?

??

???????

?????????

?--------------==134

1

2

12

2472324121002

23032012

2021202420043232

1

E K

K

利用大域变换法求出整体刚度矩阵为

???

?????????

?

?????????????------------------------=

134

1

2

12

2

47230024121301220423072440

00122134120024472312

2041213024402307323E K

节点荷载向量为

P =[0 0 0 -P /2 0 -P /2 0 0 0]T

位移向量为

δ=[u 1 v 1 u 2 v 2 u 3 v 3 u 4 v 4]T

由结构平衡方程求得节点位移为

[]T

00

42.850.199.888.100

---=

E

P δ

7. 平面问题高次单元

如前所述,三节点三角形单元因其位移模式是线性函数,应变与应力在单元内都是常量,而弹性体实际的应力场是随坐标而变化的。因此,这种单元在各单元间边界上应力有突变,存在一定误差。为了更好地逼近实际的应变与应力状态,提高单元本身的计算精度,可以增加单元节点而采用更高阶次的位移模式,称为

则次应选得对称以保证几何各向同性。其位移模式应取完全二次多项式

?

??

+++++=+++++=212

112109872

652

4321y xy x y x v y xy x y x u ββββββββββββ (2-1-20) 将节点的坐标和位移代入即可求出广义坐标。

四节点矩形单元如图2-7所示,共有8个自由度,取位移模式为

?

??

+++=+++=xy y x v xy y x u 87654321ββββββββ (2-1-21)

将节点的坐标和位移代入即可求出广义坐标。

有限元基础知识归纳

有限元知识点归纳 1.、有限元解的特点、原因? 答:有限元解一般偏小,即位移解下限性 原因:单元原是连续体的一部分,具有无限多个自由度。在假定了单元的位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散后的刚度较实际的刚度K为大,因此求得的位移近似解总体上将小于精确解。 2、形函数收敛准则(写出某种单元的形函数,并讨论收敛性)P49 (1)在节点i处N i=1,其它节点N i=0; (2)在单元之间,必须使由其定义的未知量连续; (3)应包含完全一次多项式; (4)应满足∑Ni=1 以上条件是使单元满足收敛条件所必须得。可以推证,由满足以上条件的形函数所建单元是完备协调的单元,所以一定是收敛的。 4、等参元的概念、特点、用时注意什么?(王勖成P131) 答:等参元—为了将局部坐标中几何形状规则的单元转换成总体(笛卡尔)坐标中的几何形状扭曲的单元,以满足对一般形状求解域进行离散化的需要,必须建立一个坐标变换。即: 为建立上述的变换,最方便的方法是将上式表示成插值函数的形式,即: 其中m是用以进行坐标变换的单元节点数,xi,yi,zi是这些结点在总体(笛卡尔)坐标内的坐标值,Ni’称为形状函数,实际上它也是局部坐标表示的插值函数。称前者为母单元,后者为子单元。 还可以看到坐标变换关系式和函数插值表示式:在形式上是相同的。如果坐标变换和函数插值采用相同的结点,并且采用相同的插值函数,即m=n,Ni’=Ni,则称这种变换为等参变换。 5、单元离散?P42 答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。每个部分称为一个单元,连接点称为结点。对于平面问题,最简单、最常用的离散方式是将其分解成有限个三角形单元,单元之间在三角形顶点上相连。这种单元称为常应变三角形单元。常用的单元离散有三节点三角形单元、六节点三角形单元、四节点四边形单元、八节点四边形单元以及等参元。 6、数值积分,阶次选择的基本要求? 答:通常是选用高斯积分 积分阶次的选择—采用数值积分代替精确积分时,积分阶数的选取应适当,因为它直接影响计算精度,计算工作量。选择时主要从两方面考虑。一是要保证积分的精度,不损失收敛性;二是要避免引起结构总刚度矩阵的奇异性,导致计算的失败。

有限元法的基本思想及计算 步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列

有限元分析基本理论问答 基础理论知识

1. 诉述有限元法的定义 答:有限元法是近似求解一般连续场问题的数值方法 2. 有限元法的基本思想是什么 答:首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。 3. 有限元法的分类和基本步骤有哪些 答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。 4. 有限元法有哪些优缺点 答:优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便,对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点。 缺点:有限元计算,尤其是复杂问题的分析计算,所耗费的计算时间、内存和磁盘空间等计算资源是相当惊人的。对无限求解域问题没有较好的处理办法。尽管现有的有限元软件多数使用了网络自适应技术,但在具体应用时,采用什么类型的单元、多大的网络密度等都要完全依赖适用者的经验。 5. ?梁单元和平面钢架结构单元的自由度由什么确定 答:每个节点上有几个节点位移分量,就称每个节点有几个自由度 6. ?简述单元刚度矩阵的性质和矩阵元素的物理意义 答:单元刚度矩阵是描述单元节点力和节点位移之间关系的矩阵 单元刚度矩阵中元素aml的物理意义为单元第L个节点位移分量等于1,其他节点位移分量等于0时,对应的第m个节点力分量。 7. 有限元法基本方程中的每一项的意义是什么 答:整个结构的节点载荷列阵(外载荷、约束力),整个结构的节点位移列阵,结构的整体刚度矩阵,又称总刚度矩阵。 8. 位移边界条件和载荷边界条件的意义是什么 答:由于刚度矩阵的线性相关性不能得到解,从而引入边界条件。 9. ?简述整体刚度矩阵的性质和特点 答:对称性;奇异性;稀疏性;对角线上的元素恒为正。 11. 简述整体坐标的概念 答:单元刚度矩阵的坐标变换式把平面刚架的所有单元在局部坐标系X’Y’Z’下的单元刚度矩阵变换到一个统一的坐标系xOy下,这个统一的坐标系xOy称为整体坐标系。 13. 简述平面钢架问题有限元法的基本过程 答:力学模型的确定,结构的离散化,计算载荷的等效节点力,计算各单元的刚度矩阵,组集整体刚度矩阵,施加边界约束条件,求解降价的有限元基本方程,求解单元应力,计算结果的输出。 14. 弹性力学的基本假设是什么。 答:连续性假定,弹性假定,均匀性和各向同性假定,小变形假定,无初应力假定。 15.弹性力学和材料力学相比,其研究方法和对象有什么不同。 答:研究对象:材料力学主要研究杆件,如柱体、梁和轴,在拉压、剪切、弯曲和扭转等作用下的应力、形变和位移。弹性力学研究各种形状的弹性体,除杆件外,还研究平面体、空间体,板和壳等。因此,弹性力学的研究对象要广泛得多。研究方法:弹性力学和材料力学

有限元理论方法

关于有限元分析法及其应用举例 摘要:本文主要介绍有限元分析法,作为现代设计理论与方法的一种,已经在 众多领域普遍使用。介绍了它的起源和国内外发展现状。阐述了有限元法的基 本思想和设计方法。并从实际出发,例举了有限元法的一个简单应用———啤 酒瓶的应力分析和优化,表明了利用有限元分析法的众多优点。随着计算机的 发展,基于有限元分析方法的软件开发越来越多。本文也在其软件开发方面进 行阐述,并简单介绍了一下主流软件的发展情况和使用范围。并就这一领域的 未来发展趋势进行阐述。 关键词:有限元分析法软件啤酒瓶 Abstract:This thesis mainly introduces the finite element analysis, as a modern design theory and methods used widely in in most respects. And this paper introduces its origins and development in world. It also expounds the basic thinking and approach of FEM..Proceed from the actual situation,this text holds the a simple application of finite-element method———the analysis and optimized of an beer bottle and indicate the the numerous benefits of finite element analysis .As computers mature and based on the finite element analysis of the software development is growing. This article introduces its application in the software development aspects as well, and briefly states the development and scope of the mainstream software. And it’s also prospect future development tendency in this area . Key: Finite Element Analysis Software Beer bottle 0 绪论 有限元法(Finite Element Method,FEM),是计算力学中的一种重要的方法,它是20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。有限元法最初应用在工程科学技术中,用于模拟并且解决工程力学、热学、电磁学等物理问题。对于过去用解析方法无法求解的问题和边界条件及结构形状都不规则的复杂问题,有限元法则是一种有效的分析方法。有限元法的基本思想是先将研究对象的连续求解区域离散为一组有限个且按一定方式相互联结在一起的单元组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模拟成不同几何形状的求解小区域;

有限元法基本原理与应用

有限元法基本原理与应用 班级机械2081 姓名方志平 指导老师钟相强 摘要:有限元法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 关键词:有限元法;变分原理;加权余量法;函数。 Abstract:Finite element method is based on the variational principle and the weighted residual method, the basic idea is to solve the computational domain is divided into a finite number of non-overlapping units, each unit, select some appropriate function for solving the interpolation node points as , the differential variables rewritten or its derivative by the variable value of the selected node interpolation functions consisting of linear expressions, by means of variational principle or weighted residual method, the discrete differential equations to solve. Different forms of weight functions and interpolation functions, it constitutes a different finite element method. Keywords:Finite element method; variational principle; weighted residual method; function。 引言 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

有限元分析理论基础

有限元分析概念 有限元法:把求解区域瞧作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状与大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性与复杂的边界条件 有限元模型:它就是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:就是利用数学近似的方法对真实物理系统(几何与载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元就是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也就是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程就是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力与应变就是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有她们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题就是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系就是非线性关系。研究这类问题一般都就是假定材料的应力与应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触与摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。 有限元理论基础

有限元理论与方法-第3讲

讲 授 内 容 备 注 第3讲(第3周) 3. θ i i U u , 为例, 作用于杆单元的节点力是[U ij V ij ]T ,而作用于节点i 的节点力是[-U ij -V ij ]T 。将节点脱离出来,受力分析如图1-4b 所示,在水平和垂直方向的节点受力平衡方程为 ? ?? =---=---00ip im ij i ip im ij i V V V Y U U U X (1-2-15) 由式(1-2-14)知道杆单元ij 在节点i 的节点力为 j ij i ii ij ij ij V U δK δK F +=? ?? ???= (1-2-16) 其它单元施于节点i 的节点力同样可以写出,一起代入式(1-2-15),得到 i p ip m im j ij i e ii P δK δK δK δK =+++?? ? ??∑ (1-2-17) 每个节点都有一对平衡方程如上,对于全部节点i =1,2,…,N 的结构,得到2N 阶线性方程组,即结构的 节点平衡方程组 P δK = (1-2-18) 其中 T 21],...,,[N δδδδ= T 21],...,,[N P P P P = 式中,δ为全部节点位移组成的列阵;P 为全部节点荷载组成的列阵;K 为结构的整体刚度矩阵。 4.总体刚度矩阵的合成 由单元刚度矩阵合成结构的整体刚度矩阵通常采用两种方法,一种为编码法,一种为大域变换矩阵法,前者对自由度较少的结构简单明了,后者特别适合计算机编程运算。下面重点阐述后者。 结构总体刚度矩阵[K ]与单元刚度矩阵[K ]e 之间的关系为 () e e e e G K G K ∑=T (1-2-19)

有限元原理与步骤

2.1.1 有限元法基本原理(Basic Theory of FEM) 有限元法的基本思想是离散的概念,它是指假设把弹性连续体分割成数目有限的单元,并认为相邻单元之间仅在节点处相连。根据物体的几何形状特征、载荷特征、边界约束特征等,选择合适的单元类型。这样组成有限的单元集合体并引进等效节点力及节点约束条件,由于节点数目有限,就成为具有有限自由度的有限元计算模型,它替代了原来具有无限多自由度的连续体[24][25]。 有限元法从选择基本未知量的角度来看,可分为三类:位移法、力法和混合法。以节点位移为基本未知量的求解方法称为位移法;以节点力为基本未知量的求解方法称为力法;一部分以节点位移,另一部分以节点力作为基本未知量的求解方法称为混合法。由于位移法通用性强,计算机程序处理简单、方便,成为应用最广泛的一种方法[26]。 有限元法的求解过程简单、方法成熟、计算工作量大,特别适合于计算机计算。再加上它有成熟的大型软件系统支持,避免了人工在连续体上求分析解的数学困难,使其成为一种非常受欢迎的、应用极广泛的数值计算方法[27]。 2.1.2 有限元法基本步骤(Basic Process of FEM) 有限元法求解各种问题一般遵循以下的分析过程和步骤[28][29]: 1. 结构的离散化 结构的离散化是进行有限元法分析的第一步,它是有限元法计算的基础。将结构近似为具有不同有限大小和形状且彼此相连的有限个单元组成的计算模型,习惯上称为有限元网格划分。离散后单元与单元之间利用单元的节点相互连接起来,而单元节点的设置、性质、数目等应视问题的性质、描述变形形态的需要和计算精度而定。所以有限元法分析的结构已不是原有的物体或结构物,而是同种材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果是近似的。显然,单元越小(网格越密)则离散域的近似程度越好,计算结果也越精确,但计算量将增大,因此结构的离散化是有限元法的核心技术之一。有限元离散过程中又一重要环节是单元类型的选择,这应根据被分析结构的几何形状特点、载荷、约束等因素全面考虑。 2. 位移模式的选择 位移模式是表示单元内任意点的位移随位置变化的函数,位移模式的选择是有限元特性分析的第一步。由于多项式的数学运算比较简单、易于处理,所以通常是选用多项式作为位移函数。选择合适的位移函数是有限元分析的关键,它将决定有限元解的性质与近似程度。位移函数的选择一般遵循以下原则(有限元解的收敛条件):

有限元法中的几个基本概念

诚信·公平·开放·共赢 Loyalty Fair Opening Win-win 有限元法中的几个基本概念 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。 这些单元仅在顶角处相互联接,称这些联接点为结点。 离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。 通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。 在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 附:FELAC 2.0软件简介 FELAC 2.0采用自定义的有限元语言作为脚本代码语言,它可以使用户以一种类似于数学公式书写和推导的方式,非常自然和简单的表达待解问题的微分方程表达式和算法表达式,并由生成器解释产生完整的并行有限元计算C程序。 FELAC 2.0的目标是通过输入微分方程表达式和算法之后,就可以得到所有有限元计算的程序代码,包含串行程序和并行程序。该系统采用一种语言(有限元语言)和四种技术(对象技术、组件技术、公式库技术生成器技术)开发而成。并且基于FELAC 1.0的用户界面,新版本扩充了工作目录中右键编译功能、命令终端输入功能,并且丰富了文本编辑功能,改善了用户的视觉体验,方便用户快速便捷的对脚本或程序进行编辑、编译与调试。其中并行版在前后处理上进行了相应的改进。

有限元理论与方法

第一章 绪论 有限元发展过程: 有限元法在西方起源于收音机和导弹的结构设计,发表这方面文章最早而且最有影响的是西德教授,于1954—1955年间分阶段在《Aircraft Engineering 》上发表上许多有关这方面的论文,并在此基础上写成了《能量原理与结构分析》,此书内容提供了有限元法的理论基础。美国的、 、 和等人于1956年发表了了篇题为《复杂结构的刚度和挠度分析》一文,此文提出了计算复杂结构刚度影响系数的方法,并说明了如何利用计算机进行分析。美国于1960年在一篇介绍平面应力分析的论文中,首先提出了有限元的名字。1965年英国及其合作者解决了将有限元法应用于所有场的问题,使有限元法的应用更加广泛。 有限元法的基本思路: 有限元法的基本思路和基本原理以结构力学中的位移法为基础,把复杂的结构或连续体看成为有限个单元的组合,各单元彼此在节点处连续而组成整体,把连续体分成有限个单元和节点,称之为离散化,先对单元进行特性分析,然后根据各单元在节点处的平衡协调条件建立方程,综合后作整体分析。 这样一分一合,先离散再综合的过程,就把复杂结构或连续体的计算问题转化为简单单元的分析与综合问题。 有限元分析中可采取三种方法: 位移法——取节点位移作为基本未知数 力 法——取节点力作为基本未知数 混合法—— 有限元法分析过程: 1、结构离散化(单元划分) 2、选择位移模式 为了能用节点位移表示单元体的位移、应变和应力,在分析连续体时,必须对单元中位移的分布做出一定的假定,也就是假定位移是坐标的某种简单函数,这种函数称为位移模式或位移函数(形函数)。 {}[]{}e u N δ= (1) 3、分析单元的力学特性 (1)利用几何方程:由位移表达式导出用点位移表示单元应变的关系式 {}[]{} e εδ=B {}ε为单元内任一点的应变列阵 (2) 非线性有限元 线性有限元 几何非线性 材料非线性 有限元

有限元方法理论及其应用

有限元方法理论及其应用

1 课程论文:弹性力学有限元位移法原理(30分) 撰写一篇论文,对有限元位移法的原理作一般性概括和论述。要求论文论及但不 限于下列内容:1)弹性力学有限元位移法的基本思想和数学、力学基础;2)有限元法求解的原理和过程,推导计算列式;对基本概念和矩阵符号进行解释和讨论;3)等参单元的概念、原理和应用。 1.1 对一维杆单元有限元形式的理解 将一维杆单元分成三段加以推导,并应用驻值条件0p D ?∏=?,我们得到节点的平衡 方程[K]{D}{R}=,即: 12 2341100112106012112600118u u AE cL u L u -?? ???? ?? ????--??????= ??????--??????????-???? ?? 我对此提出了几点疑问: 1) 为什么边界条件u 1=0,就要划去刚度矩阵[K]中对应的行列再解方程? 2) 为什么刚度矩阵[K]会奇异? 3) 为什么平衡方程本身是矛盾的,而加上边界条件u 1=0之后就能解出一个唯一的近似解? 4) 为什么刚度矩阵[K]是对称的? 下面我谈谈自己的理解:节点平衡方程是在u 1不定的前提下,假设单元内位移都是线性变化推导出来的,由此u 1相当于一个不确定的定值约束,再加上中间两个节点的连续性要求,系统实际上只有三个独立的自由度(广义坐标)。 对于第一个问题,其实刚度矩阵[K]中的元素不是一成不变的,相反它是伴随边界条件动态变化的。当u 1=0时由刚度矩阵的推导过程可以知道,刚度矩阵的第一行和第一列都会变为0,所以此时第一行和第一列对于求解方程是没有作用的。 对于第二个问题,由于系统自由度(广义坐标)只有三个,而我们的方程却列出了四个,显然这四个方程不可能线性无关,所以刚度矩阵奇异。

一般有限元原理

一般有限元原理 一、基本理论 有限元单元法是数值计算方法中发展较早、应用最广的一种方法。利用有限元法,可以解决经典的传统的方法难以解决或无法求解的许多实际问题。其优点是部分地考虑边坡岩土体的非均质、不连续的介质特征,考虑岩土体的应力应变特征,可以避免将坡体视为刚体,过于简化边界条件的缺点,能够接近实际从应力应变的角度分析边坡的变形破坏机制。对了解边坡的应力分布及应变位移变化很有利。 有限单元法实质是变分法的一种特殊的有效形式,其基本思想是:把连续体离散化为一系列的连接单元,每个单元内可以任意指定各种不同的力学形态,从而可以在一定程度上更好地模拟地质体的实际情况,特殊的节理元,可以有效地模拟岩土体中的结构面。 在大多数情况下岩土体材料应采用非线形模型,其中包括岩体弹塑性、蠕变、不抗拉特性以及结构面性质的影响。下面简要叙述有限元法的求解过程和原理。 有限单元法的基本原理 1.有限单元法的实施步骤 有限元的重要步骤归纳起来,主要有以下几步: (1)建立离散化的计算模型,包括以一定型式的单元进行离散化,按照求解问题的具体条件确定荷载及边界条件; (2)建立单元的刚度矩阵; (3)由单元刚度矩阵组集总体刚度矩阵,并建立系统的整体方程组; (4)引入边界条件,解方程组,求得节点位移; (5)求各单元的应变、应力及主应力。 2位移模式与单元类型 在一般的有限单元法问题中,我们常以位移作为未知数,称为位移法。为保证解的收敛性,要求位移模式必须满足以下三条: (1)位移模式必须能包含单元的刚体位移。即当节点位移是由某个刚体位移所引起时,弹性体内不会有应变。 (2)位移模式必须能包含单元的常应变,即与位置坐标无关的那部分应变。

有限元方法理论及其应用

1 课程论文:弹性力学有限元位移法原理(30分) 撰写一篇论文,对有限元位移法的原理作一般性概括和论述。要求论文论及但不限于下列内容:1)弹性力学有限元位移法的基本思想和数学、力学基础;2)有限元法求解的原理和过程,推导计算列式;对基本概念和矩阵符号进行解释和讨论;3)等参单元的概念、原理和应用。 1.1 对一维杆单元有限元形式的理解 我对此提出了几点疑问: 1)为什么边界条件u1=0,就要划去刚度矩阵[K]中对应的行列再解方程? 2)为什么刚度矩阵[K]会奇异? 3)为什么平衡方程本身是矛盾的,而加上边界条件u1=0之后就能解出一 个唯一的近似解? 4)为什么刚度矩阵[K]是对称的? 下面我谈谈自己的理解:节点平衡方程是在u1不定的前提下,假设单元内位移都是线性变化推导出来的,由此u1相当于一个不确定的定值约束,再加上中间两个节点的连续性要求,系统实际上只有三个独立的自由度(广义坐标)。 对于第一个问题,其实刚度矩阵[K]中的元素不是一成不变的,相反它是伴随边界条件动态变化的。当u1=0时由刚度矩阵的推导过程可以知道,刚度矩阵的第一行和第一列都会变为0,所以此时第一行和第一列对于求解方程是没有作用的。 对于第二个问题,由于系统自由度(广义坐标)只有三个,而我们的方程却列出

了四个,显然

这四个方程不可能线性无关,所以刚度矩阵奇异。 对于第三个问题,首先我们应该明确方程区别于等式,虽然左右两边都是用“=”连接,但是方程只在特殊条件下取得定解。由于平衡方程是在没有约束的条件下推导出来的,显然它不可能满足等式要求。宏观上看,系统在没有外部约束,而又施加有外力,显然系统会产生加速度而绝不会平衡。所以平衡方程本身是矛盾的。而加上边界条件之后,不但满足了平衡的前提,还改变了矩阵的结构和性质,所以有解。但是,由于我们提前假设了位移线性变化,相当于人为对单元施加了额外约束,让位移按照我们假设的规律变化,所以得到的解是过刚的近似解。但对于方程本身而言是精确解。 对于第四个问题,其力学的作用机理类似于作用力与反作用力,由于刚度矩阵不表征方向,所以其大小是相等的。 1.2 有限元法的思想 有限元法是求解连续介质力学问题的数值方法,更一般意义是一种分析结构问题和连续场数学物理问题的数值方法。 有限元法的基本思想是离散化和分片插值。 即把连续的几何机构离散成有限个单元,并在每一个单元中设定有限个节点,从而将连续体看作仅在节点处相连接的一组单元的集合体,同时选定场函数的节点值作为基本未知量并在每一单元中假设一个近似插值函数以表示单元中场函数的分布规律,再建立用于求解节点未知量的有限元方程组,从而将一个连续域中的无限自由度问题转化为离散域中的有限自由度问题。 求解得到节点值后就可以通过设定的插值函数确定单元上以至个集合体上的场函数。对每个单元,选取适当的插值函数,使得该函数在子域内部、在子域分界面上以及子域与外界面上都满足一定的条件。单元组合体在已知外载荷作用下处于平衡状态时,列出一系列以节点、位移为未知量的线性方程组,利用计算机解出节点位移后,再用弹性力学的有关公式,计算出各单元的应力、应变,当各单元小到一定程度,那么它就代表连续体各处的真实情况。

有限元理论与方法

第一章 绪论 有限元发展过程: 有限元法在西起源于收音机和导弹的结构设计,发表这面文章最早而且最有影响的是西德J.H.Argyrb 教授,于1954—1955年间分阶段在《Aircraft Engineering 》上发表上多有关这面的论文,并在此基础上写成了《能量原理与结构分析》,此书容提供了有限元法的理论基础。美国的M.T.Turner 、 R.W.cloagh 、 H.C.martin 和L.J.Topp 等人于1956年发表了了篇题为《复杂结构的刚度和挠度分析》一文,此文提出了计算复杂结构刚度影响系数的法,并说明了如利用计算机进行分析。美国于1960年在一篇介绍平面应力分析的论文中,首先提出了有限元的名字。1965年英国及其合作者解决了将有限元法应用于所有场的问题,使有限元法的应用更加广泛。 有限元法的基本思路: 有限元法的基本思路和基本原理以结构力学中的位移法为基础,把复杂的结构或连续体看成为有限个单元的组合,各单元彼此在节点处连续而组成整体,把连续体分成有限个单元和节点,称之为离散化,先对单元进行特性分析,然后根据各单元在节点处的平衡协调条件建立程,综合后作整体分析。 非线性有限元 线性有限元 几何非线性 材料非线性 有限元

这样一分一合,先离散再综合的过程,就把复杂结构或连续体的计算问题转化为简单单元的分析与综合问题。 有限元分析中可采取三种法: 位移法——取节点位移作为基本未知数 力 法——取节点力作为基本未知数 混合法—— 有限元法分析过程: 1、结构离散化(单元划分) 2、选择位移模式 为了能用节点位移表示单元体的位移、应变和应力,在分析连续体时,必须对单元中位移的分布做出一定的假定,也就是假定位移是坐标的某种简单函数,这种函数称为位移模式或位移函数(形函数)。 {}[]{}e u N δ= (1) 3、分析单元的力学特性 (1)利用几程:由位移表达式导出用点位移表示单元应变的关系式 {}[]{}e εδ=B {}ε为单元任一点的应变列阵 (2) (2)利用物理程,由应变的表达式导出用节点位移表示单元应力的关系式 {}[][]{}[]{}e D D δδε=B = (3) {}δ是单元任一点的应力列阵 []D 是材料的弹性矩阵 (3)利用虚功原理建立作用于单元上的节点力和节点位移之间的关系式,即单元的刚度程(平衡程) []{}{}e e K R δ=

有限元法的理论基础

有限元法的理论基础 有限元法是一种离散化的数值计算方法,对于结构分析而言,它的理论基础是能量原理。能量原理表明,在外力作用下,弹性体的变形、应力和外力之间的关系受能量原理的支配,能量原理与微分方程和定解条件是等价的。下面介绍有限元法中经常使用的虚位移原理和最小势能原理。 1.虚位移原理 虚位移原理又称虚功原理,可以叙述如下:如果物体在发生虚位移之前所受的力系是平衡的(物体内部满足平衡微分方程,物体边界上满足力学边界条件),那么在发生虚位移时,外力在虚位移上所做的虚功等于虚应变能(物体内部应力在虚应变上所做的虚功)。反之,如果物体所受的力系在虚位移(及虚应变)上所做的虚功相等,则它们一定是平衡的。可以看出,虚位移原理等价于平衡微分方程与力学边界条件。所以虚位移原理表述了力系平衡的必要而充分的条件。 虚位移原理不仅可以应用于弹性性力学问题,还可以应用于非线性弹性以及弹塑性等非线性问题。 2.最小势能原理 最小势能原理可以叙述为:弹性体受到外力作用时,在所有满足位移边界条件和变形协调条件的可以位移中,真实位移使系统的总势能取驻值,且为最小值。根据最小势能原理,要求弹性体在外力作用下的位移,可以满足几何方程和位移边界条件且使物体总势能取最小值的条件去寻求答案。最小势能原理仅适用于弹性力学问题。 2.2有限元法求解问题的基本步骤 弹性力学中的有限元法是一种数值计算方法,对于不同物理性质和数学模型的问题,有限元法的基本步骤是相同的,只是具体方式推导和运算求解不同,有限元求解问题的基本步骤如下。 2.2.1问题的分类 求解问题的第一步就是对它进行识别分析,它包含的更深层次的物理问题是什么?比如是静力学还是动力学,是否包含非线性,是否需要迭代求解,要从分析中得等到什么结果等。对这些问题的回答会加深对问题的认识与理解,直接影响到以后的建模与求解方法的选取等。 2.2.2建模 在进行有限元离散化和数值求解之值,我们为分析问题设计计算模型,这一步包括决定哪种特征是所要讨论的重点问题,以便忽略不必要的细节,并决定采用哪种理论或数学公式描述结果的行为。因此,我们可以忽略几何不规则性,把一些载荷看做是集中载荷,并把某些支撑看做是固定的。材料可以理想化为线弹性和各向同性的。根据问题的维数、载荷以及理论化的边界条件,我们能够决定采用梁理论、板弯曲理论、平面弹性理论或者一些其他分析理论描述结构性能。在求解中运用分析理论简化问题,建立问题的模型。 2.2.3连续体离散化 连续体离散化,习惯上称为有限元网络划分,即将连续体划分为有限个具有规则形状的单元的集合,两相邻单元之间只通过若干点相互连接,每个连接点称为节点。单元节点的设置、性质、数目等应视问题的性质、描述变形的需要和计算精度而定,如二维连续体的单元可为三角形、四边形,三维连续体的单元可以是四面体、长方体和六面体等。为合理有效地表示连续体,需要适当选择单元的类型、数目、大小和排列方式。 离散化的模型与原来模型区别在于,单元之间只通过节点相互连接、相互作用,而无其他连接。因此这种连接要满足变形协调条件。离散化是将一个无限多自由度的连续体转化为一个有限多自由度的离散体过程,因此必然引起误差。主要有两类:建模误差和离散化误差。

(完整版)有限元法的基本原理

第二章有限元法的基本原理 有限元法吸取了有限差分法中的离散处理内核,又继承了变分计算中选择试探函数并对区域积分的合理方法。有限元法的理论基础是加权余量法和变分原理,因此这里首先介绍加权余量法和变分原理。 2.1等效积分形式与加权余量法 加权余量法的原理是基于微分方程等效积分的提法,同时它也是求解线性和非线性微分方程近似解的一种有效方法。在有限元分析中,加权余量法可以被用于建立有限元方程,但加权余量法本身又是一种独立的数值求解方法。 2.1.1 微分方程的等效积分形式 工程或物理学中的许多问题,通常是以未知场函数应满足的微分方程和边界条件的形式提出来的,可以一般地表示为未知函数u 应满足微分方程组 12()()()0A A A ?? ?== ? ??? u u u M (在Ω内) (2-1) 域Ω可以是体积域、面积域等,如图2-1所示。同时未知函数u 还应满足边界条件 12()()()0B B B ?? ?== ? ??? u u u M (在Γ内) (2-2) 要求解的未知函数u 可以是标量场(例如压力或温度),也可以是几个变量组成的向量场(例如位移、应变、应力等)。A ,B 是表示对于独立变量(例如空间坐标、时间坐标等)的微分算子。微分方程数目应和未知场函数的数目相对应,因此,上述微分方程可以是单个的方程,也可以是一组方程。所以在以上两式中采用了矩阵形式。 以二维稳态的热传导方程为例,其控制方程和定解条件如下: ()()()0A k k q x x y y φφφ????=++=???? (在Ω内) (2-3)

0()0q B k q n φφφφφ?-=Γ?=??-=Γ???(在上)(在上) (2-4) 这里φ表示温度(在渗流问题中对应压力);k 是流度或热传导系数(在渗流问题中对应流度/K μ);φ和q 是边界上温度和热流的给定值(在渗流问题中分别对应边界上的压力和边界上的流速);n 是有关边界Γ的外法线方向;q 是源密度(在渗流问题中对应井的产量)。 在上述问题中,若k 和q 只是空间位置的函数时,问题是线性的。若k 和q 是φ及其导数的函数时,问题则是非线性的。 由于微分方程组(2-1)在域Ω中每一点都必须为零,因此就有 1122()(()())0u d v A u v A u d ΩΩ Ω≡++Ω≡? ?T V A L (2-5) 其中 12v V v ?? ?= ? ??? M (2-6) 其中V 是函数向量,它是一组和微分方程个数相等的任意函数。 式(2-5)是与微分方程组(2-1)完全等效的积分形式。我们可以说,若积分方程对于任意的V 都能成立,则微分方程(2-1)必然在域内任一点都得到满足。同理,假如边界条件(2-2)亦同时在边界上每一点都得到满足,对于一组任意函数,下式应当成立 1122 ()(()())0u d v B u v B u d ΓΓΓ≡++Γ≡??VB L 因此积分形式 ()()0u d u d ΓΓ Ω+Γ=??T T V A V B 对于所有的V 和V 都成立是等效于满足微分方程(2-1)和边界条件(2-2)。我们把(2-7)式称为微分方程的等效积分形式。 2.1.2等效积分的“弱”形式 在一般情况下,对(2-7)式进行分部积分得到另一种形式: ()()()()0T T v d v d ΩΓ Ω+Γ=??C D u E F u (2-8) 其中C ,D ,E ,F 是微分算子,它们中所包含的导数的阶数较(2-7)式的低,这样对函数u 只需要求较低阶的连续性就可以了。在(2-8)式中降低连续性要求是以提高V 和V 的连续性要求为代价的,由于原来对V 和V (在(2-7)式中)并无连续性要求,但是适当提高对其连续性的要求并不困难,因为它们是可以选择的已知函数。这种降低对函数u 连续性要求的作法在近似计算中,尤其是在有限单元法中是十分重要的。(2-8)式称为微分方程

相关文档
最新文档