有限元理论方法

有限元理论方法
有限元理论方法

关于有限元分析法及其应用举例

摘要:本文主要介绍有限元分析法,作为现代设计理论与方法的一种,已经在

众多领域普遍使用。介绍了它的起源和国内外发展现状。阐述了有限元法的基

本思想和设计方法。并从实际出发,例举了有限元法的一个简单应用———啤

酒瓶的应力分析和优化,表明了利用有限元分析法的众多优点。随着计算机的

发展,基于有限元分析方法的软件开发越来越多。本文也在其软件开发方面进

行阐述,并简单介绍了一下主流软件的发展情况和使用范围。并就这一领域的

未来发展趋势进行阐述。

关键词:有限元分析法软件啤酒瓶

Abstract:This thesis mainly introduces the finite element analysis, as a modern

design theory and methods used widely in in most respects. And this paper

introduces its origins and development in world. It also expounds the basic thinking

and approach of FEM..Proceed from the actual situation,this text holds the a simple

application of finite-element method———the analysis and optimized of an beer

bottle and indicate the the numerous benefits of finite element analysis .As

computers mature and based on the finite element analysis of the software

development is growing. This article introduces its application in the software

development aspects as well, and briefly states the development and scope of the

mainstream software. And it’s also prospect future development tendency in this

area .

Key: Finite Element Analysis Software Beer bottle

0 绪论

有限元法(Finite Element Method,FEM),是计算力学中的一种重要的方法,它是20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。有限元法最初应用在工程科学技术中,用于模拟并且解决工程力学、热学、电磁学等物理问题。对于过去用解析方法无法求解的问题和边界条件及结构形状都不规则的复杂问题,有限元法则是一种有效的分析方法。有限元法的基本思想是先将研究对象的连续求解区域离散为一组有限个且按一定方式相互联结在一起的单元组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模拟成不同几何形状的求解小区域;

然后对单元(小区域)进行力学分析,最后再整体分析。这种化整为零,集零为整的方法就是有限元的基本思路。

(1)就国外发展来说,20世纪50年代,有限元法作为处理固体力学问题的方法出现。1943年,Courant第一次提出单元概念[1]。1945~1955年,Argyris等人在结构矩阵分析方面取得了很大进展?。1956年,Turner、Clough等人把刚架位移法的思路推广应用于弹性力学平面问题?。1960年,Clough首先把解决弹性力学平面问题的方法称为“有限元法-D],并描绘为“有限元法一Rayleigh Ritz 法+分片函数”。 FEM 理论研究的重大进展,引起了数学界的高度重视。自2O

世纪6O年代以来,人们加强了对FEM 数学基础的研究。如大型线性方程组和特征值问题的数值方法、离散误差分析、解的收敛性和稳定性等。FEM 理论研究成果为其应用奠定了基础,计算机技术的发展为其提供了条件。20世纪70年代以来,相继出现了一些通用的有限元分析(FEA:Finite Element Analysis)系统,如SAP、ASKA、NASTRAN等,这些FEA 系统可进行航空航天领域的结构强度、刚度分析,从而推动了FEM 在工程中的实际应用。20世纪80年代以来,随着工程工作站的出现和广泛应用,原来运行于大中型机上的FEA系统得以在其上运行,同时也出现了一批通用的FEA系统,如ANSYS—PC、NISA,SUPERSAP等[ 。20世纪90年代以来,随着微机性能的显著提高,大批FEA系统纷纷向微机移植,出现了基于Windows

的微机版FEA系统。

(2)就我国有限元法的发展,是从八十年代开始的。在1981年ADINA飞线性结构分析程序的引进,一时间许多一直无法解决的工程难题都迎刃而解。大家也都开始认识到有限元分析程序的确是工程师应用计算机进行分析计算的重要工具。但是当时限于国内大中型计算机很少,大约只有杭州汽轮器厂的Siemens7738和沈阳鼓风机厂的IBM4310安装有上述程序,所以用户算题非常不方便,而且费用昂贵。PC机的出现及其性能奇迹般的提高,为移植和发展PC版的有限元程序提高了必要的运行平台,可以说国内FEA软件的发展一直是围绕着PC平台做文章。在国内开发比较成功并拥有较多用户的有限元分析系统有大连理工大学工程力学系的FIFEX95、北京大学力学与科学工程系的SAP84,中国农机科学研究院的MAS5.0和杭州自动化技术研究院的MFEP4.0等。我们现在正处在学习和追赶世界发展水平的阶段。

1 有限元分析法的基本思想和设计方法

1.1 有限元基本思想

有限元分析(FEA,Finite Element Analysis)的基本思想是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域

组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。

(1)物体离散化

将某个工程结构离散为由各种单元组成的计算模型,这一部称作单元部分。离散后单元于单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算进度而定。用有限元分析计算所获得的结果只是近似的。如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。

(2)分析单元的力学性质

根据单元的材料性质、形状、尺寸、节点数目、位置及其含义等,找出单元节点力和节点位移的关系式,这是单元分析中的关键一步。此时需要应用弹性力学中的几何方程和物理方程来建立力和位移的方程式,从而导出单元刚度矩阵,这是有限元法的基本步骤之一。

(3)选择位移模式

位移法:选择节点位移作为基本未知量称为位移法;

力法:选择节点力作为基本未知量时称为力法;

混合法:取一部分节点力和一部分节点位移作为基本未知量时称为混合法。

位移法易于实现计算自动化,所以,在有限单元法中位移法应用范围最广。

(4)计算等效节点力

物体离散化后,假定力是通过节点从一个单元传递到另一个单元。但是,对于实际的连续体,力是从单元的公共边传递到另一个单元中去的。因而,这种作用在单元边界上的表面力、体积力和集中力都需要等效的移到节点上去,也就是用等效的节点力来代替所有作用在单元上得力。

(5)单元组集

利用结构力的平衡条件和边界条件把各个单元按原来的结构重新连接起来,形成整体的有限元方程:KU=F

式中:K是结构的总体刚度矩阵;U是节点位移列阵;F是载荷列阵。

确定总体刚度方程的方法有三种:

1.直接利用总体刚度系数的定义

在求出整体结构中各节点力和节点位移关系的基础上获得总体刚度矩阵。此方法只在简单情况下才能采用。

2.集成法

将整体坐标系的单元刚度矩阵按照节点编码顺序对号入座,迭加形成总体刚度矩阵。

3.利用节点间的刚度系数直接写出总体刚度矩阵

总体刚度矩阵对角线上的刚度系数Kij等于连接节点i和节点j之间几个单元的刚度系数之和。

(6)求解未知节点位移

可以根据方程组的具体特点来选择合适的计算方法。

节点的支撑条件有两种:一种是节点沿某个方向的位移为零,另一种是节点沿某个方向的唯一为一给定值。

(7)计算单元内部应力和应变

根据求解的节点位移,采用所选定的位移函数,计算单元内非节点处的应力和应变。

通过上述分析,可以看出,有限元法的基础思想是“一分一合”。分是为了进行单元划分,合则是为了对整体结构进行综合分析。

1.2 设计方法

(1)划分单元网格,并按照一定的规律对单元和结点编号

(2)选定直角坐标系,按程序要求填写和输入有关信息。

(3)使用已经编好的程序进行上机计算。计算程序中对输入的各种信息进行加工、运算。

(4)对计算成果进行整理、分析,用表格或图线示出所需的位移及应力。

事实上,当划分的区域足够小,每个区域内的变形和应力总是趋于简单,计算的结果也就越接近真实情况。理论上可以证明,当单元数目足够多时,有限单元解将收敛于问题的精确解,但是计算量相应增大。为此,实际工作中总是要在计算量和计算精度之间找到一个平衡点。

有限元法中的相邻的小区域通过边界上的结点联接起来,可以用一个简单的插值函数描述每个小区域内的变形和应力,求解过程只需要计算出结点处的应力或者变形,非结点处的应力或者变形是通过函数插值获得的,换句话说,有限元法并不求解区域内任意一点的变形或者应力。

大多数有限元程序都是以结点位移作为基本变量,求出结点位移后再计算单元内的应力,这种方法称为位移法。

有限元法本质上是一种微分方程的数值求解方法,认识到这一点以后,从70年代开始,有限元法的应用领域逐渐从固体力学领域扩展到其它需要求解微分方程的领域,如流体力学、传热学、电磁学、声学等。

2 有限元分析法的应用优点

有限元法的优点是解题能力强,可以比较精确地模拟各种复杂的曲线或曲面边界,网格的划分比较随意,可以统一处理多种边界条件,离散方程的形式规范,便于编制通用的计算机程序,在固体力学方程的数值计算方面取得巨大的成功。但是在应用于流体流动和传热方程求解的过程中却遇到一些困难,其原因在于,按加权余量法推导出的有限元离散方程也只是对原微分方程的数学近似。当处理流动和传热问题的守恒性、强对流、不可压缩条件等方面的要求时,有限元离散方程中的各项还无法给出合理的物理解释。对计算中出现的一些误差也难以进行改进。

有限元法在工程中最主要的应用形式是结构的优化,如结构形状的最优化,结构强度的分析,振动的分析等等。有限元法在超过五十年的发展历史中,解决了大量的工程实际问题,创造了巨大的经济效益。有限元法的出现,使得传统的基于经验的结构设计趋于理性,设计出的产品越来越精细,尤为突出的一点是,产品设计过程的样机试制次数大为减少,产品的可靠性大为提高。压力容器的结构应力分析和形状优化,机床切削过程中的振动分析及减振,汽车试制过程中的碰撞模拟,发动机设计过程中的减振降噪分析,武器设计过程中爆轰过程的模拟、弹头形状的优化等等,都是目前有限元法在工程中典型的应用。

经过半个多世纪的发展和在工程实际中的应用,有限元法被证明是一种行之有效的工程问题的模拟仿真方法,解决了大量的工程实际问题,为工业技术的进步起到了巨大的推动作用。但是有限元法本身并不是一种万能的分析、计算方法,并不适用于所有的工程问题。对于工程中遇到的实际问题,有限元法的使用取决于如下条件:产品实验或制做样机成本太高,实验无法实现,而有限元计算能够有效地模拟出实验效果、达到实验目的,计算成本也远低于实验成本时,有限元法才成为一种有效的选择

3 有限元分析法应用举例

3.1 案例的提出

从目前国内啤酒生产厂家来看,采用玻璃瓶装的占绝大多数(超过95 ).玻璃瓶作为周转瓶能够多次使用,而且玻璃容器各种各样的形状、大小和颜色对用户都颇具吸引力.啤酒瓶是受压容器,为易碎品,在啤酒瓶包装车间的洗瓶、压盖和杀菌等工序中容易炸裂,此外在销售和消费过程中也经常发生炸裂.啤酒瓶爆炸的原因很多,其根本原因在于啤酒瓶强度不够.啤酒瓶内由于二氧化碳气体的存在,常保持着内压,温度升高则内压上升.因此,研究罐装啤酒瓶在内压力作用下的应力分布,改进其造型结构,增加其强度,对于提高啤酒瓶的使用寿命,避免啤酒瓶的突然爆炸,进而控制啤酒瓶的数量,减少环境污染具有重要的社会

意义,又有其潜在的经济价值.啤酒瓶按瓶型式分有溜肩和端肩两种,按容量分

为355mI 和640mI,本文就此两种瓶型进行了分析.

有限元分析是将机械结构系统转化成由节点及元素所组合的有限元模型,该有限元模型与机械结构系统的几何外形一致.有限元模型的建立是将结构转换成许多节点和元素相连接,通过点、线、面、体积,先建立结构系统的几何外形,再通过360度的旋转得到实体模型.ANSYS作为一个成功的有限元分析软件,在机械、电机、土木、电子以及航空领域得到了广泛的应用.在机械结构分析方面,从静力分析、模态分析、谐振响应分析、瞬态动力分析到结构疲劳分析都可以非常好地完成。

3.2 建立啤酒瓶的有限元模型与求解

3.2.1 几何模型的建立

通过精确测量啤酒瓶的外形尺寸,结合啤酒瓶的设计规范和理论得到其原始几何尺寸.当节点建立完成后,必须使用适当的元素,将结构按照节点连接成元

素,进而建立有限元模型(如图I、图2所示).

图1 溜肩瓶节点的建立图2 端肩瓶节点的建立

3.2.2 有限元模型的求解

有限元法的思想是“化整为零,集零为整”,它将模型划分成连续的单元网格,单元之间通过节点连接,单元内部的待求量可由节点之间通过选定的函数关系插值求得,简单的单元形状易于由平衡关系或能量关系建立节点之间的方程,给定边界条件便可求解.单元划分越细,计算结果越精确.

本文将两个几何模型在ANSYS中网格化生成有限元模型,大约生成几万个单

元.为了计算的方便,利用其轴对称性,本文取其四分之一模型进行分析,约束瓶口端面y方向的移动,约束对称面上的相对移动,从而得到模型的约束条件(如图3、图4所示).

根据文献查阅,罐装啤酒瓶的内压主要是由含二氧化碳的液体引起的,而跟液体的重力产生的压力无关.本文对640 mI 溜肩瓶用0.5 MPa压力作用于瓶体内表面,对355 mI 端肩瓶用0.4 MPa压力作用于内表面,用来模拟实际的罐装内压嘲,在计算机上进行分析之后可以得到其应力分布图.

本文采用的玻璃材料物理参数为:杨氏模量E一67.7 GPa,泊松比一0.24.由计算结果(表1、表2)可以看出,溜肩瓶在瓶口和瓶颈处的应力分布值较小,肩瓶处开始变大,到了瓶身处应力变得很大,而在瓶底的过渡处应力分布较小.在这个连续变化中,瓶的内表面比外表面的应力分布要大,在瓶底的内表面中心处应力达到了最大值,而在瓶底与瓶身的过渡处的内表面应力分布也是很

大的(如图5所示).

作为比较,我们从端肩瓶可以看出,应力分布值在瓶口、瓶肩和瓶身的过渡处、瓶身和瓶底的过渡处是比较小的,而在瓶身以及瓶肩和瓶颈的过渡处分布着较大的应力值(如图6所示).

图3 溜肩瓶模型的建立图4 端肩瓶模型的建立

图5 溜肩瓶应力分布图6 端肩瓶应力分布

3.2.3 分析与优化

(1)计算结果的分析

由图5、图6的应力分布图可以看出,两种瓶型的应力最大点都在瓶底的中心点.对于溜肩瓶而言,较大的应力分布区在瓶身,这完全是由内压力产生的应力分布.根据文献及网上的报道,由内压引起的破损或者爆炸产生的放射状裂纹比较多,而且压力越高裂纹越多,破损的区域集中在瓶身处.因为瓶底的厚度比瓶身大,强度较大,而且瓶底产生的应力主要是压应力,瓶身的应力是拉应力,所以破损主要集中在瓶身,这和文献的结论是一致的。对于端肩瓶而言,应力的集中区域在瓶底和瓶肩处.比较端肩瓶和溜肩瓶可以看出,瓶颈与瓶身的过渡越光滑,曲率半径越大,在瓶肩处产生的应力集中就越小,因而改善瓶身和瓶肩的结构,加强其强度对防止啤酒瓶的爆炸是非常有必要的。

由表1、表2可见,端肩瓶的应力最大值在10 MPa左右,溜肩瓶的最大应力在4 MPa左右,可见溜肩瓶比端肩瓶的应力最大值要小一些.

(2)优化设计

为了克服溜肩瓶较大应力分布在瓶身的缺点,本文在溜肩瓶的瓶身外表面加了两道环形凸带(如图7、图8所示).经求解表明,其瓶身应力分布值普遍减小了,整个瓶体的应力分布更均匀,在瓶体外表面应力的减小值是很显著的,在内表面应力的分布也更加连续,相对值差别变小了,应力最大处也由瓶底中部移到瓶底与瓶身的连接处。加强环利于贴标签,其造型与实现也非常容易,所以无论从理论上还是从实际的工艺生产上来说,这都是比较好的强度提高措施.环形加强环能够在啤酒瓶相互撞击时产生缓冲作用,这对防止啤酒瓶的相互冲击产生的破损尤其有非常显著的效果。

图7 结构优化模型图8 优化后应力的分布

对于玻璃材料,其抗拉许用应力远远小于抗压许用应力,前者大约是后者的十分之一左右,所以研究玻璃瓶的强度问题只要考虑其拉应力的分布即可.玻璃破损时,通常是从玻璃表面上的伤痕开始破裂的,这称为破坏起点。啤酒瓶的爆炸问题是由于啤酒瓶的强度不够引起的,而其最根本的原因在于瓶体微裂纹的存在。在啤酒瓶的使用及回收过程中,剧烈的相互撞击经常发生,频繁的撞击使得啤酒瓶产生微裂纹和疲劳破坏,于是再次使用时只要有一点外界因素(如物理冲击、温度突然改变引起的热冲击等)就会引起破裂或者爆炸,这样的啤酒瓶被人们称为“啤酒炸弹”。本文认为,要使啤酒瓶在使用过程中不产生突然爆炸,危害人身安全,就必须采取措施避免微裂纹的出现和疲劳破坏.为了提高加强环的缓冲性能,可以在环上进行压花处理,使瓶体的相互撞击被加强环缓解掉,避免瓶身其它部位的撞击,这样不仅能够避免微裂纹的出现,也能防止相互撞击产生的疲劳破坏。

4 国内外著名的有限元软件

有限元软件就是有限元法的计算机程序或程序系统,有通用和专用两种。前者通常是商业软件,优点是通用性强,格式规范,输入方法简单,用户无需特殊记忆也不需要太多专业知识和计算机技能,解决问题领域宽,因而流行范围广;缺点是程序通常很长,开发成本高。专用软件的优点是程序相对短,开发价格低,版本升级相对容易,解决专门问题更有效。

自20世纪70年代后期,国际上较大型的面向工程的有限元通用程序达到几百种,引入我国的各种大、中型专用和通用有限元著名软件有数十种,主要包括:(1)ADINA———由美国麻省理工学院机械工程系开发的自动动力增量非线性分析有限元程序

(2)ALGOR———美国ALGOR公司在SAP5和ADINA有限元分析程序基础上针对微机平台开发的通用有限元分析系统。

(3)ANSYS———世界著名力学分析专家、匹兹堡大学教授J.swanson创建的SASI公司开发的大型通用有限元分析软件,世界最具权威的有限元产品。

(4)IDEAS———美国SDRC公司开发的机械通用软件集成化设计工程分析系统。它是集成设计、分析、数控加工、塑料模具设计和测试数据分析为一体的工作站用软件。

(5)NASTRAN———美国国家航空和宇航局开发的结构分析程序。

(6)SAP———美国加州大学伯克利分校M.J.Wilson教授开发的线性静、动力结构分析程序。

这些程序的共同点在于:都至少包括杆、梁、板、壳和三维实体单元,热分析能力;分析静力合动力问题;分析线弹性和非线性问题;使用多种载荷:集中力、分布力、力偶、温度和支座沉陷;自动划分网格功能的前处理程序;用图形解释计算结果,如变形前后的模型、应力和温度分布的云图、制定位置的位移和应力等。

这些程序有的经过我国工程技术人员消化得到推广和应用,有的经过改进提高形成功能更全更强的通用程序。

20世纪90年代以来,随着我国CAD应用工程的兴起,科学和工程技术人员对有限元软件的注意力由引进、消化、推广和应用转向自主开发,也出现了一大批优秀的专用和通用软件,在各行各业创造出巨大的社会效益和经济效益。

5 未来发展前景

纵观当今国际上CAE软件的发展情况,可以看出有限元分析方法的一些发展趋势:

(1)与CAD软件的无缝集成

当今有限元分析软件的一个发展趋势是与通用CAD软件的集成使用,即在用CAD软件完成部件和零件的造型设计后,能直接将模型传送到CAE软件中进行有限元网格划分并进行分析计算,如果分析的结果不满足设计要求则重新进行设计和分析,直到满意为止,从而极大地提高了设计水平和效率。为了满足工程师快捷地解决复杂工程问题的要求,许多商业化有限元分析软件都开发了和著名的CAD软件(例如Pro/ENGINEER、Unigraphics、 SolidEdge、SolidWorks、IDEAS、Bentley和AutoCAD等)的接口。有些CAE软件为了实现和CAD软件的无缝集成而采用了CAD的建模技术,如ADINA软件由于采用了基于Parasolid内核的实体建模技术,能和以Parasolid为核心的CAD软件(如 Unigraphics、SolidEdge、SolidWorks)实现真正无缝的双向数据交换。

(2)更为强大的网格处理能力

(3)由求解线性问题发展到求解非线性问题

随着科学技术的发展,线性理论已经远远不能满足设计的要求,许多工程问题如材料的破坏与失效、裂纹扩展等仅靠线性理论根本不能解决,必须进行非线性分析求解,例如薄板成形就要求同时考虑结构的大位移、大应变(几何非线性)和塑性(材料非线性);而对塑料、橡胶、陶瓷、混凝土及岩土等材料进行分析或需考虑材料的塑性、蠕变效应时则必须考虑材料非线性。众所周知,非线性问题的求解是很复杂的,它不仅涉及到很多专门的数学问题,还必须掌握一定的理论知识和求解技巧,学习起来也较为困难。为此国外一些公司花费了大量的人力和物力开发非线性求解分析软件,如ADINA、ABAQUS等。它们的共同特点是具有高效的非线性求解器、丰富而实用的非线性材料库,ADINA还同时具有隐式和显式两种时间积分方法。

(4)由单一结构场求解发展到耦合场问题的求解

有限元分析方法最早应用于航空航天领域,主要用来求解线性结构问题,实践证明这是一种非常有效的数值分析方法。而且从理论上也已经证明,只要用于离散求解对象的单元足够小,所得的解就可足够逼近于精确值。现在用于求解结构线性问题的有限元方法和软件已经比较成熟,发展方向是结构非线性、流体动力学和耦合场问题的求解。例如由于摩擦接触而产生的热问题,金属成形时由于塑性功而产生的热问题,需要结构场和温度场的有限元分析结果交叉迭代求解,即"热力耦合"的问题。当流体在弯管中流动时,流体压力会使弯管产生变形,而管的变形又反过来影响到流体的流动……这就需要对结构场和流场的有限元分析结果交叉迭代求解,即所谓"流固耦合"的问题。由于有限元的应用越来越深入,人们关注的问题越来越复杂,耦合场的求解必定成为CAE软件的发展方向。

(5)程序面向用户的开放性

随着商业化的提高,各软件开发商为了扩大自己的市场份额,满足用户的需求,在软件的功能、易用性等方面花费了大量的投资,但由于用户的要求千差万别,不管他们怎样努力也不可能满足所有用户的要求,因此必须给用户一个开放的环境,允许用户根据自己的实际情况对软件进行扩充,包括用户自定义单元特性、用户自定义材料本构(结构本构、热本构、流体本构)、用户自定义流场边界条件、用户自定义结构断裂判据和裂纹扩展规律等等。

关注有限元的理论发展,采用最先进的算法技术,扩充软件的能,提高软件性能以满足用户不断增长的需求,是CAE软件开发商的主攻目标,也是其产品持续占有市场,求得生存和发展的根本之道。

6 结论

利用有限元分析法对啤酒瓶的应力分析,可以清楚的看到,啤酒瓶的最大应力点在于它的瓶底,而它的瓶身能承受的最大应力较低。发现这个问题后,就获得了改进啤酒瓶设计的根据。即要满足两个条件:一是尽量增加瓶身所能承受的最大应力,二是使整个瓶子的应力分布均匀。因此采取了增加两个加强环的措施。

显然,这是一个较合理的解决啤酒瓶的安全问题的方法。通过这个例子,简单地介绍了有限元分析的整个过程。而这只是有限元分析应用的一个方面,其方法还广泛应用在各个方面。这就启发我们去更多的了解这种方法,掌握这种方法,通过对相关基于有限元分析法开发的软件的学习,能够熟练运用,更好的服务于将来的设计和工作应用。

参考文献

[1] 芮延年.现代设计方法及其应用[M].苏州:苏州大学出版,2005.

[2] 孙新民,张秋玲,丁洪生.现代设计方法实用教程[M].北京:清华大学出版

社,2009.7.

[3] 张鄂.现代设计理论与方法[M].上海:科学出版社,2007.

[4] 黄平.现代设计理论与方法[M].北京:清华大学出版社,2010.

[5] 夸克工作室.有限元分析基础篇ANSYS与Matlab[M].北京:清华大学出版社,

2002.

[6] 刘国庆,杨庆东.ANSYS工程应用教程[M].北京:中国铁道出版社,2003.

[7] 李卫民.ANSYS工程结构实用案例分析[M].北京:化学工业出版社,2007.

[8] 莫维尼.有限元分析—ANSYS理论与应用[M].北京:电子工业出版社,2008.

[9] 张洪信.有限元基础理论与ANSYS应用[M].北京:机械工业出版社,2006.

[10] 张应迁,张洪才.ANSYS有限元分析从入门到精通[M].人民邮电出版社,

2007

[11] 丁科,陈月顺.有限单元法[M].北京:北京大学出版社,2006.

[12] 李涛,肖守讷,张卫华.基于APDL高速电力机车转向架构架有限元优化

[J].机车电传动,2007(2):l6.

[13] 邵蕴秋.ANSYS 8.0有限元分析实例导航[M].北京:中国铁道出版社,2001.

[14] 赵叔东.刘友梅.韶山S型电力机车[M].北京:中国铁道出版社,2004.

[15] 庄茁,岑松译.有限元方法[M].北京:清华大学出版社,2006.

[16] 商跃进.有限元原理与ANSYS应用指南[M].北京:清华大学出版社,2005:

11—14.

[17] 彭德其,许平.120km/h整体焊接转向架构架的疲劳分析[J].铁道机车车

辆,1999(1):28—29.

[18] JACQUES RAISON.法国TGV高速列车焊接转向架构架的设计[J].国外铁道

车辆,1999,(4):16-19.

[19] 胡振亚,黄成荣,陈厚嫦.x型转向架焊接构架的强度分析及结构优化[J].铁

道机车车辆,2003,23(6):11—14.

[20] 米彩盈,李芾,高速动力车转向架焊接构架优化设计[J].机车电传动,2005,

(1):46—49.

[21] 马思群,荆志勇,金燕,宫娜.动车组转向架构架的有限元分析及虚拟装配

实现[J].铁道机车车辆工人,2008(10).

[22] 杨改云.郭长江.基于ANSYS的电力机车转向架静强度分析[J].郑州轻工业

学院学报(自然科学版),2008.

[23] 程凯.基于ANSYS的载轨客车转向架构架强度分析[J].中国制造业信息

化.2008.37(21)

[24] 徐芝纶.弹性力学简明教程(第三版)[M].北京:高等教育出版社,2002.

[25] 刘坤.ANSYS有限元方法精解[M].北京:国防工业出版社,2004.

[26] Jung—SeokKim,Nam—PoKim.Seong—HoHan,Experiment study on the

structural safety assement of the tilting bolster

frarne[J].KeyEngineeringMaterials,2006(321—323):603—606.

[27] Je—Sung Bang,Seung—Ho Han,Jai—Kyung LEE.et a1.An automation of

fatigue durability analysis for welded bogie frame using multi—agent based

engineering framework [J].Information Science& Applications,2006,3(12):

2 367—2 370.

[28] Je—Sung Bang,Seung—Ho Han.,Jai—Kyung LEE.et a1.An automation of

fatigue durability analysis for welded bogie frame using multi—agent based

engineering framework [J].Information Science& Applications,2006,3(12):

2 367—2 370.

[29] KOCH P N.EVANS J P,POWELL D.Interdigitation for effective design space

exploration using iSIGHT[J].2002,23(2):111.126.

[30] CULLIMORE B.PANCZAK T,BAUMANN J.Automated Muhidiseiplinary

Optimization of a Space-based Telescope[J].2002,(1):2445

有限元基础知识归纳

有限元知识点归纳 1.、有限元解的特点、原因? 答:有限元解一般偏小,即位移解下限性 原因:单元原是连续体的一部分,具有无限多个自由度。在假定了单元的位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散后的刚度较实际的刚度K为大,因此求得的位移近似解总体上将小于精确解。 2、形函数收敛准则(写出某种单元的形函数,并讨论收敛性)P49 (1)在节点i处N i=1,其它节点N i=0; (2)在单元之间,必须使由其定义的未知量连续; (3)应包含完全一次多项式; (4)应满足∑Ni=1 以上条件是使单元满足收敛条件所必须得。可以推证,由满足以上条件的形函数所建单元是完备协调的单元,所以一定是收敛的。 4、等参元的概念、特点、用时注意什么?(王勖成P131) 答:等参元—为了将局部坐标中几何形状规则的单元转换成总体(笛卡尔)坐标中的几何形状扭曲的单元,以满足对一般形状求解域进行离散化的需要,必须建立一个坐标变换。即: 为建立上述的变换,最方便的方法是将上式表示成插值函数的形式,即: 其中m是用以进行坐标变换的单元节点数,xi,yi,zi是这些结点在总体(笛卡尔)坐标内的坐标值,Ni’称为形状函数,实际上它也是局部坐标表示的插值函数。称前者为母单元,后者为子单元。 还可以看到坐标变换关系式和函数插值表示式:在形式上是相同的。如果坐标变换和函数插值采用相同的结点,并且采用相同的插值函数,即m=n,Ni’=Ni,则称这种变换为等参变换。 5、单元离散?P42 答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。每个部分称为一个单元,连接点称为结点。对于平面问题,最简单、最常用的离散方式是将其分解成有限个三角形单元,单元之间在三角形顶点上相连。这种单元称为常应变三角形单元。常用的单元离散有三节点三角形单元、六节点三角形单元、四节点四边形单元、八节点四边形单元以及等参元。 6、数值积分,阶次选择的基本要求? 答:通常是选用高斯积分 积分阶次的选择—采用数值积分代替精确积分时,积分阶数的选取应适当,因为它直接影响计算精度,计算工作量。选择时主要从两方面考虑。一是要保证积分的精度,不损失收敛性;二是要避免引起结构总刚度矩阵的奇异性,导致计算的失败。

有限元分析基本理论问答 基础理论知识

1. 诉述有限元法的定义 答:有限元法是近似求解一般连续场问题的数值方法 2. 有限元法的基本思想是什么 答:首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。 3. 有限元法的分类和基本步骤有哪些 答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。 4. 有限元法有哪些优缺点 答:优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便,对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点。 缺点:有限元计算,尤其是复杂问题的分析计算,所耗费的计算时间、内存和磁盘空间等计算资源是相当惊人的。对无限求解域问题没有较好的处理办法。尽管现有的有限元软件多数使用了网络自适应技术,但在具体应用时,采用什么类型的单元、多大的网络密度等都要完全依赖适用者的经验。 5. ?梁单元和平面钢架结构单元的自由度由什么确定 答:每个节点上有几个节点位移分量,就称每个节点有几个自由度 6. ?简述单元刚度矩阵的性质和矩阵元素的物理意义 答:单元刚度矩阵是描述单元节点力和节点位移之间关系的矩阵 单元刚度矩阵中元素aml的物理意义为单元第L个节点位移分量等于1,其他节点位移分量等于0时,对应的第m个节点力分量。 7. 有限元法基本方程中的每一项的意义是什么 答:整个结构的节点载荷列阵(外载荷、约束力),整个结构的节点位移列阵,结构的整体刚度矩阵,又称总刚度矩阵。 8. 位移边界条件和载荷边界条件的意义是什么 答:由于刚度矩阵的线性相关性不能得到解,从而引入边界条件。 9. ?简述整体刚度矩阵的性质和特点 答:对称性;奇异性;稀疏性;对角线上的元素恒为正。 11. 简述整体坐标的概念 答:单元刚度矩阵的坐标变换式把平面刚架的所有单元在局部坐标系X’Y’Z’下的单元刚度矩阵变换到一个统一的坐标系xOy下,这个统一的坐标系xOy称为整体坐标系。 13. 简述平面钢架问题有限元法的基本过程 答:力学模型的确定,结构的离散化,计算载荷的等效节点力,计算各单元的刚度矩阵,组集整体刚度矩阵,施加边界约束条件,求解降价的有限元基本方程,求解单元应力,计算结果的输出。 14. 弹性力学的基本假设是什么。 答:连续性假定,弹性假定,均匀性和各向同性假定,小变形假定,无初应力假定。 15.弹性力学和材料力学相比,其研究方法和对象有什么不同。 答:研究对象:材料力学主要研究杆件,如柱体、梁和轴,在拉压、剪切、弯曲和扭转等作用下的应力、形变和位移。弹性力学研究各种形状的弹性体,除杆件外,还研究平面体、空间体,板和壳等。因此,弹性力学的研究对象要广泛得多。研究方法:弹性力学和材料力学

有限元理论方法

关于有限元分析法及其应用举例 摘要:本文主要介绍有限元分析法,作为现代设计理论与方法的一种,已经在 众多领域普遍使用。介绍了它的起源和国内外发展现状。阐述了有限元法的基 本思想和设计方法。并从实际出发,例举了有限元法的一个简单应用———啤 酒瓶的应力分析和优化,表明了利用有限元分析法的众多优点。随着计算机的 发展,基于有限元分析方法的软件开发越来越多。本文也在其软件开发方面进 行阐述,并简单介绍了一下主流软件的发展情况和使用范围。并就这一领域的 未来发展趋势进行阐述。 关键词:有限元分析法软件啤酒瓶 Abstract:This thesis mainly introduces the finite element analysis, as a modern design theory and methods used widely in in most respects. And this paper introduces its origins and development in world. It also expounds the basic thinking and approach of FEM..Proceed from the actual situation,this text holds the a simple application of finite-element method———the analysis and optimized of an beer bottle and indicate the the numerous benefits of finite element analysis .As computers mature and based on the finite element analysis of the software development is growing. This article introduces its application in the software development aspects as well, and briefly states the development and scope of the mainstream software. And it’s also prospect future development tendency in this area . Key: Finite Element Analysis Software Beer bottle 0 绪论 有限元法(Finite Element Method,FEM),是计算力学中的一种重要的方法,它是20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。有限元法最初应用在工程科学技术中,用于模拟并且解决工程力学、热学、电磁学等物理问题。对于过去用解析方法无法求解的问题和边界条件及结构形状都不规则的复杂问题,有限元法则是一种有效的分析方法。有限元法的基本思想是先将研究对象的连续求解区域离散为一组有限个且按一定方式相互联结在一起的单元组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模拟成不同几何形状的求解小区域;

有限元理论基础

有限元理论基础

有限元理论基础 2.1 数值模拟技术 2.1.1数值模拟技术简介 在工程技术领域中许多力学问题和场问题,实质上就是在一定的边界条件下求解一些微分方程。对于少数简单问题,人们可以通过建立它们的微分方程与边界约束求出该问题的解析解。但是对于比较复杂的数学方程问题以及不规则的边界条件通过激吻戏法往往难以求解,而需要借助各种数值模拟方法活的相应的工程数值解,这就是所谓的数值模拟技术。 在实际工程领域中,用数值模拟技术可以对复杂的工程结构进行受力和响应分析,这样可以在设计或者加工前预知实体结构工作状态下的大概情况。 目前在工程实际应用中,常用的数值求解方法有:有限单元法、有限差分法、边界元等但从实用性和使用范围来说,有限单元法则是随着计算机技术的发展而被广泛应用的一种行之有效的数值计算方法。 2.2.2 有限元法 有限元法是一种基于能量原理的数值计算

方法,是解决工程实际问题的一种有效的数值计 算工具。它是里茨法的另一种表示形式,它可应用里茨法分析的所有弹性理论。 限元法是处理连续的结构体离散或有限个单元集合,也就是将连续的求解域离散为一定数量的单元集合体。且每个单元都具有一定的节点,相邻单元通过节点相互连续,同时使用等效节点力代替作用于单元上的力和选定场函数的节点值作为基本未知量。并在每一单元中假设一个近似插值函数以表示单元中场函数的分布规律:进而利用力学中的某些变分原理去建立用以求解节点未知量的有限元法方程,从而将一个连续域中的无限自由度问题化为离散域中的有限自由度问题。求解后,可利用解出的节点值和设定的插值函数确定整个单元集体上的场函数。有限元求解问题中的单元分析:t t t a k F= 式中::t F单元节点作用力。 t K:单元刚度矩阵。 t a:单元节点位移。 通过单元分析确定单元刚度矩阵,建立单元节点作用力和单元为伊关系。有限元求解问题时建立 的结构整体平衡方程:P KU=

有限元分析报告理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

有限元分析理论基础

有限元分析概念 有限元法:把求解区域瞧作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状与大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性与复杂的边界条件 有限元模型:它就是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:就是利用数学近似的方法对真实物理系统(几何与载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元就是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也就是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程就是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力与应变就是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有她们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题就是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系就是非线性关系。研究这类问题一般都就是假定材料的应力与应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触与摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。 有限元理论基础

有限元理论与方法-第3讲

讲 授 内 容 备 注 第3讲(第3周) 3. θ i i U u , 为例, 作用于杆单元的节点力是[U ij V ij ]T ,而作用于节点i 的节点力是[-U ij -V ij ]T 。将节点脱离出来,受力分析如图1-4b 所示,在水平和垂直方向的节点受力平衡方程为 ? ?? =---=---00ip im ij i ip im ij i V V V Y U U U X (1-2-15) 由式(1-2-14)知道杆单元ij 在节点i 的节点力为 j ij i ii ij ij ij V U δK δK F +=? ?? ???= (1-2-16) 其它单元施于节点i 的节点力同样可以写出,一起代入式(1-2-15),得到 i p ip m im j ij i e ii P δK δK δK δK =+++?? ? ??∑ (1-2-17) 每个节点都有一对平衡方程如上,对于全部节点i =1,2,…,N 的结构,得到2N 阶线性方程组,即结构的 节点平衡方程组 P δK = (1-2-18) 其中 T 21],...,,[N δδδδ= T 21],...,,[N P P P P = 式中,δ为全部节点位移组成的列阵;P 为全部节点荷载组成的列阵;K 为结构的整体刚度矩阵。 4.总体刚度矩阵的合成 由单元刚度矩阵合成结构的整体刚度矩阵通常采用两种方法,一种为编码法,一种为大域变换矩阵法,前者对自由度较少的结构简单明了,后者特别适合计算机编程运算。下面重点阐述后者。 结构总体刚度矩阵[K ]与单元刚度矩阵[K ]e 之间的关系为 () e e e e G K G K ∑=T (1-2-19)

有限元法中的几个基本概念

诚信·公平·开放·共赢 Loyalty Fair Opening Win-win 有限元法中的几个基本概念 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。 这些单元仅在顶角处相互联接,称这些联接点为结点。 离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。 通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。 在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 附:FELAC 2.0软件简介 FELAC 2.0采用自定义的有限元语言作为脚本代码语言,它可以使用户以一种类似于数学公式书写和推导的方式,非常自然和简单的表达待解问题的微分方程表达式和算法表达式,并由生成器解释产生完整的并行有限元计算C程序。 FELAC 2.0的目标是通过输入微分方程表达式和算法之后,就可以得到所有有限元计算的程序代码,包含串行程序和并行程序。该系统采用一种语言(有限元语言)和四种技术(对象技术、组件技术、公式库技术生成器技术)开发而成。并且基于FELAC 1.0的用户界面,新版本扩充了工作目录中右键编译功能、命令终端输入功能,并且丰富了文本编辑功能,改善了用户的视觉体验,方便用户快速便捷的对脚本或程序进行编辑、编译与调试。其中并行版在前后处理上进行了相应的改进。

有限元理论与方法

第一章 绪论 有限元发展过程: 有限元法在西方起源于收音机和导弹的结构设计,发表这方面文章最早而且最有影响的是西德教授,于1954—1955年间分阶段在《Aircraft Engineering 》上发表上许多有关这方面的论文,并在此基础上写成了《能量原理与结构分析》,此书内容提供了有限元法的理论基础。美国的、 、 和等人于1956年发表了了篇题为《复杂结构的刚度和挠度分析》一文,此文提出了计算复杂结构刚度影响系数的方法,并说明了如何利用计算机进行分析。美国于1960年在一篇介绍平面应力分析的论文中,首先提出了有限元的名字。1965年英国及其合作者解决了将有限元法应用于所有场的问题,使有限元法的应用更加广泛。 有限元法的基本思路: 有限元法的基本思路和基本原理以结构力学中的位移法为基础,把复杂的结构或连续体看成为有限个单元的组合,各单元彼此在节点处连续而组成整体,把连续体分成有限个单元和节点,称之为离散化,先对单元进行特性分析,然后根据各单元在节点处的平衡协调条件建立方程,综合后作整体分析。 这样一分一合,先离散再综合的过程,就把复杂结构或连续体的计算问题转化为简单单元的分析与综合问题。 有限元分析中可采取三种方法: 位移法——取节点位移作为基本未知数 力 法——取节点力作为基本未知数 混合法—— 有限元法分析过程: 1、结构离散化(单元划分) 2、选择位移模式 为了能用节点位移表示单元体的位移、应变和应力,在分析连续体时,必须对单元中位移的分布做出一定的假定,也就是假定位移是坐标的某种简单函数,这种函数称为位移模式或位移函数(形函数)。 {}[]{}e u N δ= (1) 3、分析单元的力学特性 (1)利用几何方程:由位移表达式导出用点位移表示单元应变的关系式 {}[]{} e εδ=B {}ε为单元内任一点的应变列阵 (2) 非线性有限元 线性有限元 几何非线性 材料非线性 有限元

有限元法的理论基础

有限元法的理论基础-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

有限元法的理论基础 有限元法是一种离散化的数值计算方法,对于结构分析而言,它的理论基础是能量原理。能量原理表明,在外力作用下,弹性体的变形、应力和外力之间的关系受能量原理的支配,能量原理与微分方程和定解条件是等价的。下面介绍有限元法中经常使用的虚位移原理和最小势能原理。 1.虚位移原理 虚位移原理又称虚功原理,可以叙述如下:如果物体在发生虚位移之前所受的力系是平衡的(物体内部满足平衡微分方程,物体边界上满足力学边界条件),那么在发生虚位移时,外力在虚位移上所做的虚功等于虚应变能(物体内部应力在虚应变上所做的虚功)。反之,如果物体所受的力系在虚位移(及虚应变)上所做的虚功相等,则它们一定是平衡的。可以看出,虚位移原理等价于平衡微分方程与力学边界条件。所以虚位移原理表述了力系平衡的必要而充分的条件。 虚位移原理不仅可以应用于弹性性力学问题,还可以应用于非线性弹性以及弹塑性等非线性问题。 2.最小势能原理 最小势能原理可以叙述为:弹性体受到外力作用时,在所有满足位移边界条件和变形协调条件的可以位移中,真实位移使系统的总势能取驻值,且为最小值。根据最小势能原理,要求弹性体在外力作用下的位移,可以满足几何方程和位移边界条件且使物体总势能取最小值的条件去寻求答案。最小势能原理仅适用于弹性力学问题。 有限元法求解问题的基本步骤 弹性力学中的有限元法是一种数值计算方法,对于不同物理性质和数学模型的问题,有限元法的基本步骤是相同的,只是具体方式推导和运算求解不同,有限元求解问题的基本步骤如下。 2.2.1问题的分类 求解问题的第一步就是对它进行识别分析,它包含的更深层次的物理问题是什么比如是静力学还是动力学,是否包含非线性,是否需要迭代求解,要从分析中得等到什么结果等。对这些问题的回答会加深对问题的认识与理解,直接影响到以后的建模与求解方法的选取等。 2.2.2建模 在进行有限元离散化和数值求解之值,我们为分析问题设计计算模型,这一步包括决定哪种特征是所要讨论的重点问题,以便忽略不必要的细节,并决定采用哪种理论或数学公式描述结果的行为。因此,我们可以忽略几何不规则性,把一些载荷看做是集中载荷,并把某些支撑看做是固定的。材料可以理想化为线弹性和各向同性的。根据问题的维数、载荷以及理论化的边界条件,我们能够决定采用梁理论、板弯曲理论、平面弹性理论或者一些其他分析理论描述结构性能。在求解中运用分析理论简化问题,建立问题的模型。 2.2.3连续体离散化 连续体离散化,习惯上称为有限元网络划分,即将连续体划分为有限个具有规则形状的单元的集合,两相邻单元之间只通过若干点相互连接,每个连接点称为节点。单元节点的设置、性质、数目等应视问题的性质、描述变形的需要和计算精度而定,如二维连续体的单元可为三角形、四边形,三维连续体的单元

有限元方法理论及其应用

有限元方法理论及其应用

1 课程论文:弹性力学有限元位移法原理(30分) 撰写一篇论文,对有限元位移法的原理作一般性概括和论述。要求论文论及但不 限于下列内容:1)弹性力学有限元位移法的基本思想和数学、力学基础;2)有限元法求解的原理和过程,推导计算列式;对基本概念和矩阵符号进行解释和讨论;3)等参单元的概念、原理和应用。 1.1 对一维杆单元有限元形式的理解 将一维杆单元分成三段加以推导,并应用驻值条件0p D ?∏=?,我们得到节点的平衡 方程[K]{D}{R}=,即: 12 2341100112106012112600118u u AE cL u L u -?? ???? ?? ????--??????= ??????--??????????-???? ?? 我对此提出了几点疑问: 1) 为什么边界条件u 1=0,就要划去刚度矩阵[K]中对应的行列再解方程? 2) 为什么刚度矩阵[K]会奇异? 3) 为什么平衡方程本身是矛盾的,而加上边界条件u 1=0之后就能解出一个唯一的近似解? 4) 为什么刚度矩阵[K]是对称的? 下面我谈谈自己的理解:节点平衡方程是在u 1不定的前提下,假设单元内位移都是线性变化推导出来的,由此u 1相当于一个不确定的定值约束,再加上中间两个节点的连续性要求,系统实际上只有三个独立的自由度(广义坐标)。 对于第一个问题,其实刚度矩阵[K]中的元素不是一成不变的,相反它是伴随边界条件动态变化的。当u 1=0时由刚度矩阵的推导过程可以知道,刚度矩阵的第一行和第一列都会变为0,所以此时第一行和第一列对于求解方程是没有作用的。 对于第二个问题,由于系统自由度(广义坐标)只有三个,而我们的方程却列出了四个,显然这四个方程不可能线性无关,所以刚度矩阵奇异。

有限元分析基础

有限元分析基础 第一章有限元法概述 在机械设计中,人们常常运用材料力学、结构力学等理论知识分析机械零构件的强度、刚度和稳定性问题。但对一些复杂的零构件,这种分析常常就必须对其受力状态和边界条件进行简化。否则力学分析将无法进行。但这种简化的处理常常导致计算结果与实际相差甚远,有时甚至失去了分析的意义。所以过去设计经验和类比占有较大比重。因为这个原因,人们也常常在设计中选择较大的安全系数。如此也就造成所设计的机械结构整体尺寸和重量偏大,而局部薄弱环节强度和刚度又不足的设计缺陷。 近年来,数值计算机在工程分析上的成功运用,产生了一门全新、高效的工程计算分析学科——有限元分析方法。该方法彻底改变了传统工程分析中的做法。使计算精度和计算领域大大改善。 §1.1 有限元方法的发展历史、现状和将来 一,历史 有限元法的起源应追溯到上世纪40年代(20世纪40年代)。1943年R.Courant从数学的角度提出了有限元法的基本观点。50年代中期在对飞机结构的分析中,诞生了结构分析的矩阵方法。1960年R.W.Clough在分析弹性力学平面问题时引入了“Finite Element Method”这一术语,从而标志着有限元法的思想在力学分析中的广泛推广。 60、70年代计算机技术的发展,极大地促进了有限元法的发展。具体表现在: 1)由弹性力学的平面问题扩展到空间、板壳问题。 2)由静力平衡问题——稳定性和动力学分析问题。 3)由弹性问题——弹塑性、粘弹性等问题。 二,现状 现在有限元分析法的应用领域已经由开始时的固体力学,扩展到流体力学、传热学和电磁力学等多个传统的领域。已经形成了一种非常成熟的数值分析计算方法。大型的商业化有限元分析软件也是层出不穷,如: SAP系列的代表SAP2000(Structure Analysis Program) 美国安世软件公司的ANSYS大型综合有限元分析软件 美国航天航空局的NASTRAN系列软件 除此以外,还有MASTER、ALGO、ABIQUES、ADINA、COSMOS等。 三,将来 有限元的发展方向最终将和CAD的发展相结合。运用“四个化”可以概括其今后的发展趋势。那就是:可视化、集成化、自动化和网络化。 §1.2 有限元法的特点 机械零构件的受力分析方法总体说来分为解析法和数值法两大类。如大家学过的材料力学、结构力学等就是经典的解析力学分析方法。在这些解析力学方法中,弹性力学的分析方法在数学理论上是最为严谨的一种分析方法。 其解题思路是:从静力、几何和物理三个方面综合考虑,建立描述弹性体的平衡、应力、应变和位移三者之间的微分方程,然后考虑边界条件,从而求出微分方程的解析解。其最大的有点就是,严密精确。缺点就是微分方程的求解困难,很多情况下,无法求解。 数值方法是一种近似的计算方法。具体又分为“有限差分法”和“有限元法”。 “有限差分法”是将得到的微分方程离散成近似的差分方程。通过对一系列离散的差分

有限元理论与方法

第一章 绪论 有限元发展过程: 有限元法在西起源于收音机和导弹的结构设计,发表这面文章最早而且最有影响的是西德J.H.Argyrb 教授,于1954—1955年间分阶段在《Aircraft Engineering 》上发表上多有关这面的论文,并在此基础上写成了《能量原理与结构分析》,此书容提供了有限元法的理论基础。美国的M.T.Turner 、 R.W.cloagh 、 H.C.martin 和L.J.Topp 等人于1956年发表了了篇题为《复杂结构的刚度和挠度分析》一文,此文提出了计算复杂结构刚度影响系数的法,并说明了如利用计算机进行分析。美国于1960年在一篇介绍平面应力分析的论文中,首先提出了有限元的名字。1965年英国及其合作者解决了将有限元法应用于所有场的问题,使有限元法的应用更加广泛。 有限元法的基本思路: 有限元法的基本思路和基本原理以结构力学中的位移法为基础,把复杂的结构或连续体看成为有限个单元的组合,各单元彼此在节点处连续而组成整体,把连续体分成有限个单元和节点,称之为离散化,先对单元进行特性分析,然后根据各单元在节点处的平衡协调条件建立程,综合后作整体分析。 非线性有限元 线性有限元 几何非线性 材料非线性 有限元

这样一分一合,先离散再综合的过程,就把复杂结构或连续体的计算问题转化为简单单元的分析与综合问题。 有限元分析中可采取三种法: 位移法——取节点位移作为基本未知数 力 法——取节点力作为基本未知数 混合法—— 有限元法分析过程: 1、结构离散化(单元划分) 2、选择位移模式 为了能用节点位移表示单元体的位移、应变和应力,在分析连续体时,必须对单元中位移的分布做出一定的假定,也就是假定位移是坐标的某种简单函数,这种函数称为位移模式或位移函数(形函数)。 {}[]{}e u N δ= (1) 3、分析单元的力学特性 (1)利用几程:由位移表达式导出用点位移表示单元应变的关系式 {}[]{}e εδ=B {}ε为单元任一点的应变列阵 (2) (2)利用物理程,由应变的表达式导出用节点位移表示单元应力的关系式 {}[][]{}[]{}e D D δδε=B = (3) {}δ是单元任一点的应力列阵 []D 是材料的弹性矩阵 (3)利用虚功原理建立作用于单元上的节点力和节点位移之间的关系式,即单元的刚度程(平衡程) []{}{}e e K R δ=

有限元法的理论基础

有限元法的理论基础 有限元法是一种离散化的数值计算方法,对于结构分析而言,它的理论基础是能量原理。能量原理表明,在外力作用下,弹性体的变形、应力和外力之间的关系受能量原理的支配,能量原理与微分方程和定解条件是等价的。下面介绍有限元法中经常使用的虚位移原理和最小势能原理。 1.虚位移原理 虚位移原理又称虚功原理,可以叙述如下:如果物体在发生虚位移之前所受的力系是平衡的(物体内部满足平衡微分方程,物体边界上满足力学边界条件),那么在发生虚位移时,外力在虚位移上所做的虚功等于虚应变能(物体内部应力在虚应变上所做的虚功)。反之,如果物体所受的力系在虚位移(及虚应变)上所做的虚功相等,则它们一定是平衡的。可以看出,虚位移原理等价于平衡微分方程与力学边界条件。所以虚位移原理表述了力系平衡的必要而充分的条件。 虚位移原理不仅可以应用于弹性性力学问题,还可以应用于非线性弹性以及弹塑性等非线性问题。 2.最小势能原理 最小势能原理可以叙述为:弹性体受到外力作用时,在所有满足位移边界条件和变形协调条件的可以位移中,真实位移使系统的总势能取驻值,且为最小值。根据最小势能原理,要求弹性体在外力作用下的位移,可以满足几何方程和位移边界条件且使物体总势能取最小值的条件去寻求答案。最小势能原理仅适用于弹性力学问题。 2.2有限元法求解问题的基本步骤 弹性力学中的有限元法是一种数值计算方法,对于不同物理性质和数学模型的问题,有限元法的基本步骤是相同的,只是具体方式推导和运算求解不同,有限元求解问题的基本步骤如下。 2.2.1问题的分类 求解问题的第一步就是对它进行识别分析,它包含的更深层次的物理问题是什么?比如是静力学还是动力学,是否包含非线性,是否需要迭代求解,要从分析中得等到什么结果等。对这些问题的回答会加深对问题的认识与理解,直接影响到以后的建模与求解方法的选取等。 2.2.2建模 在进行有限元离散化和数值求解之值,我们为分析问题设计计算模型,这一步包括决定哪种特征是所要讨论的重点问题,以便忽略不必要的细节,并决定采用哪种理论或数学公式描述结果的行为。因此,我们可以忽略几何不规则性,把一些载荷看做是集中载荷,并把某些支撑看做是固定的。材料可以理想化为线弹性和各向同性的。根据问题的维数、载荷以及理论化的边界条件,我们能够决定采用梁理论、板弯曲理论、平面弹性理论或者一些其他分析理论描述结构性能。在求解中运用分析理论简化问题,建立问题的模型。 2.2.3连续体离散化 连续体离散化,习惯上称为有限元网络划分,即将连续体划分为有限个具有规则形状的单元的集合,两相邻单元之间只通过若干点相互连接,每个连接点称为节点。单元节点的设置、性质、数目等应视问题的性质、描述变形的需要和计算精度而定,如二维连续体的单元可为三角形、四边形,三维连续体的单元可以是四面体、长方体和六面体等。为合理有效地表示连续体,需要适当选择单元的类型、数目、大小和排列方式。 离散化的模型与原来模型区别在于,单元之间只通过节点相互连接、相互作用,而无其他连接。因此这种连接要满足变形协调条件。离散化是将一个无限多自由度的连续体转化为一个有限多自由度的离散体过程,因此必然引起误差。主要有两类:建模误差和离散化误差。

有限元理论与方法讲

讲 授 内 容 备 注 第13讲(第13周) 4.1 结构动力学问题有限元方法 动力学问题在国民经济和科学技术的发展中有着广泛的应用领域。最经常遇到的是结构动力学问题,它有两类研究对象:一类是在运动状态下工作的机械或结构,例如高速旋转的电机、汽轮机、离心压缩机,往复运动的内燃机、冲压机床,以及高速运行的车辆、飞行器等,它们承受着本身惯性及与周围介质或结构相互作用的动力载荷。如何保证它们运行的平稳性及结构的安全性,是极为重要的研究课题。另一类是承受动力载荷作用的工程结构,例如建于地面的高层建筑和厂房,石化厂的反应塔和管道,核电站的安全壳和热交换器,近海工程的海洋石油平台等,它们可能承受强风、水流、地震以及波浪等各种动力载荷的作用。这些结构的破裂、倾覆和垮塌等破坏事故的发生,将给人民的生命财产造成巨大的损失。正确分析和设计这类结构,在理论和实际上也都是具有意义的课题。 动力学研究的另一重要领域是波在介质中的传播问题。它是研究短暂作用于介质边界或内部的载荷所引起的位移和速度的变化,如何在介质中向周围传播,以及在界面上如何反射、折射等的规律。它的研究在结构的抗震设计、人工地震勘探、无损探伤等领域都有广泛的应用背景,因此也是近20多年一直受到工程和科技界密切关注的课题。 现在应用有限单元法和高速电子计算机,已经可以比较正确地进行各种复杂结构的动力计算,本章阐明如何应用有限单元法进行动力分析。 4.1.1 运动方程 结构离散化以后,在运动状态中各节点的动力平衡方程如下 F i +F d +P (t )=F e (2-2-1) 式中:F i 、F d 、P (t )分别为惯性力、阻尼力和动力荷载,均为向量;F e 为弹性力。 弹性力向量可用节点位移δ和刚度矩阵K 表示如下 F e =K δ 式中:刚度矩阵K 的元素K ij 为节点j 的单位位移在节点i 引起的弹性力。 根据达朗贝尔原理,可利用质量矩阵M 和节点加速度22t ??δ 表示惯性力如下 22i t ??-=δ M F 式中:质量矩阵的元素M ij 为节点j 的单位加速度在节点i 引起的惯性力。 设结构具有粘滞阻尼,可用阻尼矩阵C 和节点速度 t ??δ 表示阻尼力如下 2d t ??-=δC F 式中:阻尼矩阵的元素C ij 为节点j 的单位速度在节点i 引起的阻尼力。 将各力代入式(2-2-1),得到运动方程如下 )(22t t t P K δδC δM =+??+?? (2-2-2)

有限元计算原理与方法..

1.有限元计算原理与方法 有限元是将一个连续体结构离散成有限个单元体,这些单元体在节点处相互铰结,把荷载简化到节点上,计算在外荷载作用下各节点的位移,进而计算各单元的应力和应变。用离散体的解答近似代替原连续体解答,当单元划分得足够密时,它与真实解是接近的。 1.1. 有限元分析的基本理论 有限元单元法的基本过程如下: 1.1.1.连续体的离散化 首先从几何上将分析的工程结构对象离散化为一系列有限个单元组成,相邻单元之间利用单元的节点相互连接 而成为一个整体。单元可采用各种类 型,对于三维有限元分析,可采用四 面 体单元、五西体单元和六面体 单元等。在Plaxis 3D Foundation 程序中,土体和桩体主要采用包 含6个高斯点的15节点二次楔 形体单元,该单元由水平面为6 节点的三角形单元和竖直面为四 边形8节点组成的,其局部坐标 下的节点和应力点分布见图3.1,图3.1 15节点楔形体单元节点和应力点分布界面单元采用包含9个高斯点的 8个成对节点四边形单元。 在可能出现应力集中或应力梯度较大的地方,应适当将单元划分得密集些;

若连续体只在有限个点上被约束,则应把约束点也取为节点:若有面约束,则应 把面约束简化到节点上去,以便对单元组合体施加位移边界条件,进行约束处理; 若连续介质体受有集中力和分布荷载,除把集中力作用点取为节点外,应把分布 荷载等效地移置到有关节点上去。 最后,还应建立一个适合所有单元的总体坐标系。 由此看来,有限单元法中的结构已不是原有的物体或结构物,而是同样材料 的由众多单元以一定方式连接成的离散物体。因此,用有限元法计算获得的结果 只是近似的,单元划分越细且又合理,计算结果精度就越高。与位移不同,应力 和应变是在Gauss 积分点(或应力点)而不是在节点上计算的,而桩的内力则可通 过对桩截面进行积分褥到。 1.1. 2. 单元位移插值函数的选取 在有限元法中,将连续体划分成许多单元,取每个单元的若干节点的位移 作为未知量,即{}[u ,v ,w ,...]e T i i i δ=,单元体内任一点的位移为{}[,,]T f u v w =。 引入位移函数N (x,y,z )表示场变量在单元内的分布形态和变化规律,以便用 场变量在节点上的值来描述单元内任一点的场变量。因此在单元内建立的位移模 式为: {}[]{}e f N δ= (3-1) 其中:12315[][,,......]N IN IN IN IN =,I 为单位矩阵。 按等参元的特性,局部坐标(,,)ξηζ到整体坐标,,x y z ()的坐标转换也采用 与位移插值类似的表达式。经过坐标变化后子单元与母单元(局部坐标下的规则 单元)之间建立一种映射关系。不管内部单元或边界附近的单元均可选择相同的 位移函数,则为它们建立单元特性矩阵的方法是相同的。因此,对于15节点楔 形体单元体内各点位移在整体坐标系,,x y z ()下一般取:

COSMOS有限元分析理论基础

华睿在线技术专刊
COSMOS 有限元分析理论基础
Comos 系列软件是由 SRAC 公司推出的业界著名有限元分析系列软件,它以简单易用, 功能强大并且分析快速而准确而著称.利用 Comos 的软件功能,使工程师能在产品开发过 程中达到设计分析的能力.正是由于以上的原因,该软件也越来越被广大用户所欢迎,在整 个业界受到了越来越多的应用. 要掌握 Comos 系列软件相对于其他分析软件要简单的多,但是毕竟它也是属于有限元 的范畴, 这里我就一些有限元的基本理论作一个简单的概述, 以使大家对这块儿基本理论有 一个大概的了解,为有限元的分析打下良好的基础.
一,什麽是 FEA?
先来看看什么是 FEA/M.我们先看看他们的全称: FEA 是 Finite Element Analysis 英文的缩写,意思是有限单元分析; FEM 是 Finite Element Method 英文的缩写,意思是有限单元分方法; 所以,我们可以这样认为,FEA 是一种 将复杂的几何模型离散分解成许多简单的小块 的 分析方法或手段 学过理论力学的人都知道, 我们在现实世界中传统的方法就是利用解析方法来处理相关 问题,比如对于一个梁的受力情况分析.这种分析的方法在处理这些问题的特点显而易见, 首先要求该分析的人员要具备一定的理论知识, 对于这类哪怕是最简单的对象的分析处理也 比较复杂,复杂的分析量就会大幅度上升.看看下面的例子,对于这种钢结构的分析使用这 种方法也能找到解决的方法,但是我想大部分的人都会对它的大量计算感到为难.
类似的问题在现实的例子中会有更加多的例子, 可见这样的问题我们使用传统的方法无疑 遇到了瓶颈,理论上方法可解,但是事实上无解.但是我们如果采用有限元的分析方法,他 们都是可以解决的.这也是之所以现今我们在讨论有限元方法的原因.
二,FEA 在工业中的作用
那 FEA 到底能给我们带来什么呢?…… 我们来看看它的一些作用: 1. CAD 和 FEA 的结合使得在实际工作中使用 FEA 方便简单 2. 在设计中使用 FEA 可以大大减少 (但不是替代) 建物理样机和试验 3. 通过使用 FEA, 设计可以更优,减少重量体积 并且提高可靠性 要认清 FEA 在工业中的作用,要注意 FEA 并不只强调自己 ,FEA 要在设计中发挥作用不 开物理样机的实验. 我们来看看下面的例子:
--------------------------------------------------------------------------------------------------------------------1 ------wqh469 Wqh469@https://www.360docs.net/doc/0f3886909.html,

浅析有限元方法的发展与应用

浅析有限元方法的发展与应用 摘要:1965年“有限元”这个名词第一次在我国出现,到今天有限元在工程上得到广泛应用,经历了三十多年的发展历史,理论和算法都已经日趋完善。有限元法(Finite Element Method,简写为FEM)是求解微分方程的一种非常有效的数值计算方法,用这种方法进行波动数值模拟受到越来越多的重视。 关键字:有限元法发展应用 Abstract:1965 the term "finite element" first appeared in our country, to this day the finite ele ment is widely used in engineering, has experienced more than 30 years of development history, the ory and algorithm have been becoming more complete.FEM (Finite Element Method, abbreviated a s FEM) is a very effective to solve the differential equation of numerical calculation Method of wav e numerical simulation by using this Method is more and more attention. Keywords: finite element method development Application 绪论 有限元法是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。它是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。有限单元法是随着电子计算机的发展而迅速发展起来的一种现代计算方法。 一、有限元的发展历程 有限元法的发展历程可以分为提出(1943)、发展(1944-1960)和后期(1961-二十世纪九十年代)三个阶段。有限元法是受内外动力的综合作用而产生的。 1943年,柯朗在《美国数学学会公报》(Bulletin of The American Mathematical Society)上发表了《平衡和振动问题的变分解法》 (Variational Methods for The Solution of Problems of Equilibrium And Vibration)一文,这篇文章实际上是他1941年在美国数学学

相关文档
最新文档