水中汞等重金属含量的检测

水中汞等重金属含量的检测
水中汞等重金属含量的检测

水中汞等重金属含量检测的新方法——东北师范大学,化学学院,胡志强,1231410011

【摘要】

近年来,由于重金属而受到污染的地区日益增多,受污染的程度日趋加重。因此,重金属开始成为人们关注的焦点。对于水中的重金属而言,由于不易被微生物分解,稳定性较强,会在水体中聚集,造成环境污染。与此同时,它也会因为水生物对重金属的吸收,而在水生物体内聚集,造成水生物重金属中毒。因此,在不明情况下,人们食用受污染的水生物,会引起严重的疾病。

【关键词】:重金属、微观氧化还原法、新方法

【正文】

汞(Hg)为一种银白色液体金属,原子量200.59;相对密度13.546(20℃);沸点357℃;熔点-38.87℃,是常温下唯一的液态金属。蒸气压在0℃为0.0407Pa;20℃为0.1600Pa;30℃为0.3866Pa。金属汞不溶于水及有机溶剂,易溶于稀硝酸中,可溶于类似脂类的物质。汞具有易蒸发的特性,尤其当其洒落在地面,形成无数小汞珠,蒸发面积增大,蒸发速度更快,造成空气污染。汞在空气中以蒸气态存在。

这些重金属主要来源:汞的污染多见于汞矿开采和冶炼,仪表制造(如温度计,压力计等),电气器材制造与修理(如电流开关、整流器、荧光灯等),冶金工业、氯碱工业、有机合成、防腐涂料、电池、塑料、染料等工业生产过程中可能有含汞粉尘或气溶胶。

汞为一种普遍存在的有毒物质。人在空气中汞浓度为1~30mg/m3时,数小时即可引起急性中毒,有头痛、头昏、乏力、失眠、多梦、发热等神经系统及全身症状。慢性中毒一般表现为神经衰弱症候群以及多梦、记忆力减退、情绪不稳、失眠等。在自然界,汞经过转化可变为有机汞,再经过食物链进入人体造成中毒。日本的“水俣病”就是由工业废水中汞的污染造成的一种“公害病”。

既然汞汞是一种重金属,而且其破坏性如此之强,那么研究汞在空气中或是水中的含量,显得迫在眉睫。能不能找到一种及时有效的测定方法,快速简便的检测出汞的含量,提供给人们生活生产等大量有用信息,是我们每一个化学工作者的共同目标。在这里,我们着重介绍水中的汞含量的检测新方法。

核心原理

汞蒸气对波长253.7nm的共振线具有强烈的吸收作用。样品经过酸消解或催化酸消解使汞转为离子状态,在强酸性介质中以氯化亚锡还原成元素汞,以氮气或干燥空气作为载体,将元素汞吹入汞测定仪,进行冷原子吸收测定,在一定浓度范围其吸收值与汞含量成正比,与标准系列比较定量。

【新方法】

1、试剂:

分析过程中全部用水均使用去离子水(电阻率在8×105以上),所使用的化学试剂均为分析纯或优级纯:硝酸、盐酸、过氧化氢(30%)、硝酸(0.5+99.5):取0.5mL硝酸,慢慢加入50mL水中,然后加水稀释至100mL;高锰酸钾溶液(50g/L):称取5.0g高锰酸钾,置于100mL棕色瓶中,以水溶解稀释至100mL;硝酸—重铬酸钾溶液(5+0.05+94.5):称取0.05g 重铬酸钾,溶于水中,加入5mL硝酸,用水稀释至100mL;氯化亚锡溶液(100g/L):称取10g氯化亚锡,溶于20mL盐酸中,以水稀释至100mL,临用时现配;无水氯化钙;汞标准储备液:准确称取0.1354g经干燥器干燥过的二氧化汞,溶于硝酸重铬酸钾溶液中,移入100mL容量瓶中,以硝酸—重铬酸钾溶液稀释至刻度。混匀。此溶液每毫升含1.0mg汞;汞标准使用液:由1.0mg/mL汞标准储备液经硝酸—重铬酸钾溶液稀释成2.0,4.0,6.0,8.0,10.0ng/mL的汞标准使用液。临用时现配。

2、仪器:

所用玻璃仪器均需以硝酸(1+5)浸泡过夜,用水反复冲洗,最后用去离子水冲冼干净:双光束测汞仪(附气体循环泵、气体干燥装置、汞蒸气发生装置及汞蒸气吸收瓶);恒温干燥箱;压力消解器、压力消解罐或压力溶弹。

3、分析步骤

3.1样品预处理

在采样和制备过程中,应注意不使样品污染。储于塑料瓶中,保存备用。

3.2样品消解(可根据实验室条件选用以下任何一种方法消解)

3.2.1 压力消解罐消解法:称取1.00~3.00g样品(干样、含脂肪高的样品少于1.00g,鲜样少于3.00g或按压力消解罐使用说明书称取样品)于聚四氟乙烯内罐,加硝酸2~4mL浸泡过夜。再加过氧化氢(30%)2~3mL(总量不能超过罐容积的1/3)。盖好内盖,旋紧不锈钢外套,放入恒温干燥箱,120~140℃保持3~4h,在箱内自然冷却至室温,用滴管将消化液洗入或过滤入(视消化后样品的盐分而定)10.0mL容量瓶中,用水少量多次洗涤罐,洗液合并于容量瓶中并定容至刻度,混匀备用;同时作试剂空白。

3.3测定

3.3.1 仪器条件:打开测汞仪,预热1~2h,并将仪器性能调至最佳状态。

3.3.2 标准曲线绘制:吸取上面配制的汞标准使用液2.0,

4.0,6.0,8.0,10.0ng/mL各

5.0mL(相当于10.0,20.0,30.0,40.0,50.0ng汞),置于测汞仪的汞蒸气发生器的还原瓶中,分别加入1.0mL还原剂氯化亚锡(100g/L),迅速盖紧瓶塞,随后有气泡产生,从仪器读数显示的最高点测得其吸收值,然后,打开吸收瓶上的三通阀将产生的汞蒸气吸收于高锰酸钾溶液(50g/L)中,待测汞仪上的读数达到零点时进行下一次测定。并求得吸光值与汞质量关系的一元线性回归方程。

3.3.3样品测定:分别吸取样液和试剂空白液各5.0mL,置于测汞仪的汞蒸气发生器的还原瓶中,以下按5.3.2自“分别加入1.0mL还原剂氯化亚锡”起进行。将所测得其吸收值,代入标准系列的一元线性回归方程中求得样液中汞含量。

4.计算X1=(m1-m2)(V1-V2)*1000/(m3*1000)

式中:X1——样品中汞含量,μg/kg(μg/L);

m1——测定样品消化液中汞质量,ng;

m2——试剂空白液中汞质量,ng;

V1——样品消化液总体积,mL;

V2——测定用样品消化液体积,mL;

m3——样品质量或体积,g或mL。

结果的表述:报告算术平均值的二位有效数字。

5.允许差:相对相差≤20%。

【意义】

利用该方法检测水中的汞含量,可以快速检测水中汞的含量,快捷方便。可以及时为企业提供控制水质量的数据指标,保障人们的饮水安全。避免人体因不明水质而长期摄入过量的重金属饮用水,引发各种病症,甚至导致死亡。所以无论从环保还是从人们的身体健康的角度出发,高效而精确的检测方法显得十分必要。

【前景】

由于重金属的检测需要一系列的前处理过程,这就导致了汞检测效率的降低。因此,今后的汞检测一种趋势将是汞的前处理技术。同时,有时由于特殊行业的需要,对汞的精确度进行进一步的要求,因此,高准确度和精确度的测量方法也是汞测量的一个发展趋势。出这两个两个方向外,还有一个尤具吸引力的技术,那就是将检测方法与生物方法相结合。如将细菌、将生物膜引入检测的范畴,将是物质检测的一大亮点。

【结束语】

化学物质的检测,是继化学物质性质研究、化学物质合成之后的又一门高深的化学分支学科,在这门分支学科中,涌现出了许许多多优秀的科学家和方法。在现在这个飞速发展的时代,学习和发展先进的检测物质的方法是我们化学工作者的光荣而艰巨的责任和使命,我们应再接再厉,勤奋创新,在方法上精益求精,为化学科学的发展贡献绵薄之力。

【参考文献】

1、《土壤重金属污染与控制》范拴喜编著中国环境科学出版社

2、《重金属冶金学》翟秀静主编冶金工业出版社

3、《重金属污染对农产品的危害与风险评估》滕葳等编化学工业出版社

4、《污水灌溉土壤重金属污染机理与修复技术》周振民著水利水电出版社

5、《土壤和沉积物中有机物和重金属监测新方法》

6、《天然水环境中的生物膜及其对重金属的吸附》董德明科学出版社

出版社:中国环境科学出版社

7、《土壤重金属的植物污染化学》陈英旭等著科学出版社

8、《中国水环境重金属研究》陈静生等著中国环境科学出版社

水质重金属检测

分析仪器名词:可跟踪链接拓展知识 ?定性分析?定量分析?常量分析?微量分析?痕量分析 ?分析仪器?电化学[式]分析仪器?光学[式]分析仪器?热学[式]分析仪器?质谱仪器 ?波谱仪器?能谱和射线分析仪器?物性分析仪器?pH值?电导 ?电导率?电池常数?当量电导?标准电极电位?电极电位 ?极谱图?电化学分析法?电容量分析法?电导分析法?电量分析法?电位法?伏安法?极谱法?滴定?电泳法 ?电重量分析法?电导[式]分析器?电量[式]分析器?电位[式]分析器?溶解氧分析器重金属: 重金属有许多种不同的定义,常见的一种定义是密度大于5 g/cm3 的金属,大多数金属 都是重金属。主要是指对生物有明显毒性的重金属元素,如汞、镉、铅、铬、锌、铜、钴、 镍、锡、钡等。有时也会将一些有明显毒性的轻金属元素及非金属元素列入:如砷、铍、锂 与铝。尽管锰、铜、锌等重金属是生命活动所需要的微量元素,但是大部分重金属如汞、铅、 镉等并非生命活动所必须,而且所有重金属超过一定浓度都对人体有毒。 重金属污染主要是指:由于采矿、冶炼、制造产品、排放废水废气、处置固 体废物、利用污水进行灌溉和使用重金属制品的过程中,重金属或者其化合物给 自然环境或者人体带来的损害。 对什么是重金属,目前尚没有严格的统一定义,从环境污染方面所说的重金属,实际上 主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、 镍、钴、锡等。 我们从自然性、毒性、活性和持久性、生物可分解性、生物累积性,对生物体作用的加 和性等几个方面对重金属的危害稍作论述。 (一)自然性: 长期生活在自然环境中的人类,对于自然物质有较强的适应能力。有人分析了人体中60多 种常见元素的分布规律,发现其中绝大多数元素在人体血液中的百分含量与它们在地壳中的 百分含量极为相似。但是,人类对人工合成的化学物质,其耐受力则要小得多。所以区别污 染物的自然或人工属性,有助于估计它们对人类的危害程度。铅、镉、汞、砷等重金属,是 由于工业活动的发展,引起在人类周围环境中的富集,通过大气、水、食品等进入人体,在 人体某些器官内积累,造成慢性中毒,危害人体健康。 (二)毒性: 决定污染物毒性强弱的主要因素是其物质性质、含量和存在形态。例如铬有二价、三价和六 价三种形式,其中六价铬的毒性很强,而三价铬是人体新陈代谢的重要元素之一。在天然水 体中一般重金属产生毒性的范围大约在1~10mg/L之间,而汞,镉等产生毒性的范围在 0.01~0.001mg/L之间。 (三)时空分布性: 污染物进入环境后,随着水和空气的流动,被稀释扩散,可能造成点源到面源更大范围的污 染,而且在不同空间的位置上,污染物的浓度和强度分布随着时间的变化而不同。 (四)活性和持久性: 活性和持久性表明污染物在环境中的稳定程度。活性高的污染物质,在环境中或在处理过程

水样中各种重金属的测定

水样中各种重金属的测定方法 1铜、锌、铅、镉的测定火焰原子吸收法(水和废水监测分析方法第四版增补版pp.325-326) 本法适用于测定地下水、地表水、和废水中的铅锌铜镉。 仪器:原子吸收分光光度计 试剂:硝酸,优级纯;高氯酸,优级纯;去离子水; 金属标准储备液:准确称取经稀酸清洗并干燥后的0.5000g光谱重金属,用50ml(1+1)硝酸溶解,必要时加热直至溶解完全。用水稀释至500.0ml,此溶液每毫升含1.00mg金属。 混合标准容液:用0.2%硝酸稀释金属标准储备液配制而成,使配成的混合标准溶液每毫升含镉、铜、铅和锌分别为10.0、50.0、100.0、和10.0μg。 步骤 (1)样品预处理 取100ml水样放入200ml烧杯中,加入硝酸5ml,在电热板上加热消解(不要沸腾)。蒸至10ml左右,加入5ml硝酸和高氯酸2ml,再次蒸至1ml左右。取下冷却,加水溶解残渣,用水定容至100ml。 取0.2%硝酸100ml,按上述相同的程序操作,以此为空白值。(2)样品测定 据表1所列参数选择分析线和调节火焰。仪器用0.2%硝酸调零。吸入空白样和试样,测量其吸光度。扣除空白样吸光度后,从校准曲线上查出试样中的金属浓度。如可能,也从仪器中直接读出试样中的

金属浓度。 表1 元素分析线波长(nm)火焰类型本法测定范围(mg/L)镉228.8 乙炔-空气,氧化型0.05~1 铜324.7 乙炔-空气,氧化型0.05~5 铅283.3 乙炔-空气,氧化型0.2~10 锌213.8 乙炔-空气,氧化型0.05~1 (3)标准曲线 吸取混合标准溶液0, 0.50,1.00, 3.00,5.00和10.00ml,分别放入六个100ml容量瓶中,用0.2%硝酸稀释定容。此混合标准系列各重金属的浓度见表2。接着按样品测定的步骤测量吸光度,用经空白校正的各标准的吸光度对相应的浓度作图,绘制标准曲线。 表2 混合标准使用溶液体积 (ml) 0 0.50 1.00 3.00 5.00 10.00 标准系列各重金属浓度(mg/L)镉0 0.05 0.10 0.30 0.50 1.00 铜0 0.25 0.50 1.50 2.50 5.00 铅0 0.50 1.00 3.00 5.00 10.00 锌0 0.05 0.10 0.30 0.50 1.00 注:定容体积100ml 计算 被测金属(mg/L)= v m 式中:m—从校准曲线上查出或仪器直接读出的被测金属量(μg);

(完整word版)重金属检测方法汇总

重金属检测方法汇总 重金属检测方法及应用 一、重金属的危害特性 从环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、镍、钴、锡等。我们从自然性、毒性、活性和持久性、生物可分解性、生物累积性,对生物体作用的加和性等几个方面对重金属的危害稍作论述。 (一)自然性: 长期生活在自然环境中的人类,对于自然物质有较强的适应能力。有人分析了人体中60多种常见元素的分布规律,发现其中绝大多数元素在人体血液中的百分含量与它们在地壳中的百分含量极为相似。但是,人类对人工合成的化学物质,其耐受力则要小得多。所以区别污染物的自然或人工属性,有助于估计它们对人类的危害程度。铅、镉、汞、砷等重金属,是由于工业活动的发展,引起在人类周围环境中的富集,通过大气、水、食品等进入人体,在人体某些器官内积累,造成慢性中毒,危害人体健康。 (二)毒性: 决定污染物毒性强弱的主要因素是其物质性质、含量和存在形态。例如铬有二价、三价和六价三种形式,其中六价铬的毒性很强,而三价铬是人体新陈代谢的重要元素之一。在天然水体中一般重金属产生毒性的范围大约在1~10mg/L之间,而汞,镉等产生毒性的范围在0.01~0.001mg/L之间。 (三)时空分布性: 污染物进入环境后,随着水和空气的流动,被稀释扩散,可能造成点源到面源更大范围的污染,而且在不同空间的位置上,污染物的浓度和强度分布随着时间的变化而不同。(四)活性和持久性: 活性和持久性表明污染物在环境中的稳定程度。活性高的污染物质,在环境中或在处理过程中易发生化学反应,毒性降低,但也可能生成比原来毒性更强的污染物,构成二次污染。如汞可转化成甲基汞,毒性很强。与活性相反,持久性则表示有些污染物质能长期地保持其危害性,如重金属铅、镉等都具有毒性且在自然界难以降解,并可产生生物蓄积,长期威胁人类的健康和生存。 (五)生物可分解性: 有些污染物能被生物所吸收、利用并分解,最后生成无害的稳定物质。大多数有机物都有被生物分解的可能性,而大多数重金属都不易被生物分解,因此重金属污染一但发生,治理更难,危害更大。 (六)生物累积性: 生物累积性包括两个方面:一是污染物在环境中通过食物链和化学物理作用而累积。二是污染物在人体某些器官组织中由于长期摄入的累积。如镉可在人体的肝、肾等器官组织中蓄积,造成各器官组织的损伤。又如1953年至1961年,发生在日本的水俣病事件,无机汞在海水中转化成甲基汞,被鱼类、贝类摄入累积,经过食物链的生物放大作用,当地居民食用后中毒。 (七)对生物体作用的加和性: 多种污染物质同时存在,对生物体相互作用。污染物对生物体的作用加和性有两类:一类是协同作用,混合污染物使其对环境的危害比污染物质的简单相加更为严重;另一类是拮抗作用,污染物共存时使危害互相削弱。 二、重金属的定量检测技术

水质中重金属危害及其检测方法

水质中重金属危害及其检测方法 水质中重金属危害及其检测方法 【摘要】本文概述了水中重金属的危害和测定重金属的常规方法 【关键词】水质;重金属;检测方法 水是人类的生命之源,在没有人为污染的情况,水中的重金属的含量取决于水与土壤、岩石的相互作用,其值一般很低,不会对人体健康造成危害。但随着工业的发展,工矿业废水、生活污水等未经适当处理即向外排放,污染了土壤,废弃物堆放场受流水作用以及富含重金属的大气沉降物输入,都使水中重金属含量急剧升高,导致水受到重金属污染。重金属通过直接饮水、食用被污水灌溉过的蔬菜、粮食等途径,很容易进入人体内,威胁人体健康。 一、重金属的危害 重金属是指密度4.0以上约60种元素或者是密度在5.0以上的45种元素,其中砷、硒是非金属,但是由于它的毒性及其某些性质与重金属非常相似,所以将砷、硒也列入重金属污染物范围内,在环境污染方面所说的重金属更注重它的毒性对生态的危害,主要是指生物毒性显著的汞、镉、铅、铬以及类金属砷,还包括同样具有毒性的重金属锌、铜、钴、镍、锡、钒等污染物。 随着现代工农业的发展,重金属污染问题日趋严重。重金属污染,不同与其它类型污染,具有隐蔽性、长期性和不可逆转性等特点。重金属既可以直接进入大气、水体和土壤,造成各类环境要素的直接污染;也可以在大气、水体和土壤中相互迁移,造成各类环境要素的间接污染。由于重金属不能被微生物降解,在环境中只能发生各种形态之间的相互转化,所以,重金属污染的消除往往更为困难,对生物引起的影响和危害也是人们更为关注的问题。 二、重金属的测定 我国《生活饮用水卫生标准》和《污水综合排放标准》分别对生活饮用水中重金属元素的含量和污水中重金属元素的最高容许排放

食品中几种常见的重金属检测方法

食品中几种常见的重金属检测方法 随着现阶段社会经济的快速发展,人们物质生活水平在不断提升,社会各界开始逐步重视食品安全问题。当前环境污染问题较为严重,各类重金属对食品安全构成了极大的威胁。为了有效应对食品安全中的重金属污染问题,当前需要对各类检测技术进行探究,促进食品安全检测工作质量的提升。 食品安全对于社会群众生命健康具有重要影响,当前相关食品检测机构需要从日常工作中提高责任意识,完善各项检测技术,确保食品安全。目前自然界中比重大于5的金属都被称为重金属,并不是所有的重金属都会对人体健康构成威胁,当重金属实际含量超出人体承受限度时会造成不同程度的危害,比如Pb、Cd、As、Hg等元素。许多重金属不能通过简单方法就能有效消除,如果人类长期使用被重金属污染后的食物,将会导致中毒问题。所以对重金属检测方法进行研究,对维护食品安全具有重要意义。 食物中常见重金属的主要来源概述 目前食品中存有的重金属来源主要有自然原因,也有诸多人为因素。自然原因主要包括不同地质和地理要素的影响,比如火山运动频繁的地区或是矿区,部分有毒重金属物质会对当地动植物产生不同程度污染,人类生活在此区域内,误食动植物都会诱发重金属中毒。人为因素导致的污染

主要是各类社会活动产生的主要后果,现阶段我国工业经济发展较快,各类工业生产活动会产生大量废渣和废水,此类废弃物当中存有较多重金属元素,如果相关部门不能对其进行有效处理,此类废弃物排放到自然环境中,不仅会破坏自然生态环境,还会对当地群众生命健康构成威胁。还有部分食物在实际存储和运输过程中与各类重金属元素进行直接接触,或是食物添加剂当中的有毒元素不断累积、发生相应化学反应都会导致重金属中毒现象的发生。 现阶段食品中几种常见的重金属检测方法探析 原子吸收光谱法。原子吸收光谱法主要是根据自由基础形态下的原子对辐射光进行共振吸收,通过光照强度来对食物中含有的重金属元素进行检测。此类方法实际操作较为便捷,能够最快速度得出相应结果,是当前食物重金属检测的重要技术。此类技术将磷酸二氢钾或是硝酸钯作为改进剂,通过添加改进剂能够使得原子温度有效降低,排除外界干扰因素,使得检测结果更加准确。现阶段在原子吸收光谱法中应用的吸收分光光度计都是通过微机进行控制,运用软件进行自动处理,简化了各项操作程序,有效缩短了实际反应时间。 原子荧光光谱法。原子荧光光谱技术是存在于原子发射和原子吸收之间的分析技术,在食物样品中添加还原剂,使得原子能够吸收特定的频率辐射,逐步形成激发态原子,此

八大重金属溶出量测试与限值标准

八大重金屬溶出量測試与限值标准(EN-71标准美国ASTM F963标准)EN-71标准: 玩具EN71-3八大重金属检测ASTMF963测试 EN71-3标准规定了玩具中八种可溶性金属(Cd、Pb、Hg、Cr、Ba、Se、As、Sb)的溶出量限制。 Sb (锑)( < 60 ppm ) As (砷)(< 25 ppm) Ba (钡)(< 1000 ppm) Cd (镉)(< 75 ppm) Cr (铬)(< 60 ppm) Pb (铅)(< 90 ppm) Hg (汞)(< 60 ppm) Se (硒)(< 500 ppm) xxASTMF963标准 总铅含量:600 Sb (锑)( < 60 ppm ) As (砷)(< 25 ppm) Ba (钡)(< 1000 ppm) Cd (镉)(< 75 ppm) Cr (铬)(< 60 ppm) Pb (铅)(< 90 ppm)

Hg (汞)(< 60 ppm) Se (硒)(< 500 ppm) EN-71标准美国ASTM F963标准八大重金屬溶出量測試与限值标准 欧美玩具标准检测,玩具测试,EN71标准测试八大金属玩具检测与测试,提供EN-71标准检测美国ASTM F963八大重金屬測試与限值, 表1玩具材料中转移元素的最高可溶含量单位: ppm(mg/kg) 元素铅(Pb)砷(As)锑(Sb)钡(Ba)镉(Cb)铬(Cr)汞(Hg)硒(Se) 含量90 25 60 1000 75 60 60 500 1.欧盟ROHS标准项目检测 (Cd)镉(Pb)铅(Hg)汞(Cr6+)六价铬PBBs&PBDEs (多溴联苯&多溴联苯醚) 2.欧盟玩具EN71标准美国ASTM F963玩具安全标准检测(八大重金属溶出量测试) 4.重金属元素测试 镉以及镉化合物Cd 铅以及铅化合物Pb 汞以及汞化合物Hg六价铬化合物Cr6+及其它金属元素测试 5.有机溴化合物(阻燃剂)测试 四溴双酚-A(TBBP-A),多溴联苯PBBs,多溴联苯醚PBDEs,其他有机溴化合物 6.有机氯化合物测试

水中重金属离子的测定

一、实验目的与要求 1、掌握水的前处理和消解技术。 2、了解水中重金属的测定方法,掌握原子吸收分光光度计的测定技术。 3、了解利用AAS测定水的硬度和测定废水中SO42+。 4、了解水中重金属的种类、危害及有关知识,掌握水中重金属污染分析与评价的方法。 5、掌握水样的处理方法技术,并小结以前的处理方法。通过测定水中Cr、Pb 的含量分析所取水样的污染程度 二、实验方案 1、原理 (1)火焰原子吸收光度法是根据某元素的基态原子对该元素的特征谱线产生选择性吸收来进行测定的分析方法。将试样溶液喷入空气乙炔火焰中,被测的元素化合物在火焰中离解形成原子蒸汽,由锐线光源(元素灯)发射的某元素的特征普线光辐射通过原子蒸汽层的时候,该元素的基态原子对特征普线产生选择性吸收。在一定的条件下,特征普线与被测元素的浓度成正比。通过测定基态原子对选定吸收线的吸光度,确定试样中元素的浓度。 原子吸收法具有很高的灵敏度。每种元素都具有自己为数不多的特征吸收普线,不同元素的测定采用相应的元素灯,因此普线干扰在原子吸收光度法中是少见的。影响原子吸收光度法准确度的主要是基体的化学干扰。由于试样和标准溶液的基体不一样,试样中存在的某种基体常常影响被测元素的原子化效率,如在火焰中形成难离解的化合物,这时就会发生干扰作用。一般说来Cu,Zn,Pb,Cd的基体干扰不是很严重。 (2)干扰及消除。共存元素的干扰受火焰状态和观测高度的影响很大,在实验的时候应该特别注意。因为铬的化合物在火焰中易生成难以熔融和原子化的氧化物,因此一般在试液中加入适量的助熔剂和干扰元素的抑制剂,如NH4Cl(K2S2O7,NH4F,NH4ClO2)。加入NH4Cl可以增加火焰中的氯离子,使铬生成易于挥发和原子化的氯化物,而且NH4Cl还可以抑制Fe,Co,Ni,V,Al,Pb,Mg的干扰。(3)适用范围。本方法可以适用于地表水和废水中总铬的测定,用空气-乙炔火焰的最佳定量分析范围是0.1-5mg/L。最低检测限是0.03mg/L。

蔬菜中重金属含量测定

华南师范大学实验报告 学生姓名学号 专业)年级、班级 课程名称仪器分析实验实验项目蔬菜中重金属(Pb、Cd)含量的测定实验类型□验证□设计□综合实验时间 2011年月日 √ 实验指导老师实验评分 实验题目:蔬菜中重金属(Pb、Cd)含量的测定 引言: 蔬菜中含有丰富的维生素、矿质元素和膳食纤维等多种营养成分,是人们日常生活中必不可少的食物,但随着工业化进程,工业“三废”的排放、农药、化肥的不合理使用等,严重污染了水、土、气,致使菜区生态环境日益恶化,造成蔬菜品质下降,污染物积累,并通过食物链的传递放大作用,从而对整个生态环境以及人类健康带来极大危害。因此对蔬菜中的重金属铅、镉研究具有极大的现实意义。 经查阅文献,发现目前有关铅、镉的测定方法主要有以下几种: 一、光化学法 1、光度法:如国家标准中第三标准法双硫腙比色法测食品中铅含量。它主要是利用PH=8.5~9.0 时,硫离子与双硫腙生成红色配合物,溶于三氯甲烷,加入柠檬酸铵,氰化钾与盐 酸羟铵等,防止铁、铜、锌等杂质离子的干扰,与标准系列比较定量。国际中测镉 的第三法则是用在碱性溶液中镉离子与6-溴苯并噻唑偶氮萘酚形成红色络合物,溶 于三氯甲烷,氰化钾等剧毒物质。因此应用有一定局限性。 2、原子荧光光谱法:准确配制铅镉系列的标准溶液,在实验工作条件下,测定这两个元素的荧光 强度,得到线性回归方程,再将待测样品的荧光强度代入方程即可得到样品 中铅镉浓度。该法快速、简便、准确且灵敏度高。 3、石墨炉原子吸收光谱法:分别准确量取一定量的铅镉储备液,配置一系列标准溶液后按所选工 作仪器条件用原子吸收分光光度计测出各溶液吸光度并制作A-C标准曲线,得出其一元线 性回归方程。再测出一定量试样溶液吸光度,代入回归方程中即可得到铅镉含量。 4、火焰原子吸收法(标准加入法):分别移取适量样品于容量瓶中,分别加入一系列不同体积相同 浓度的铅镉标准溶液,用盐酸定容。使用空气-乙炔火焰,于原子吸收光谱仪波长 283.30nm,228.85nm处分别测量铅镉的吸光度,以标准系列浓度为横坐标,以扣除空白溶 液的吸光度值为纵坐标作图,根据所绘制的直线外延与横轴的交点求出铅镉元素浓度。 5、电感耦合等离子体质谱法(ICP-MS)法:精密吸取铅镉标准储备溶液,用稀硝酸稀释配成含铅

水中重金属实验报告

《环境化学实验》报告 实验考核标准及得分

题目:水中重金属的污染评价 一、实验目的与要求 1、了解水中重金属的消解与测定方法。 2、掌握原子吸收分光光度计分析技术。 3、了解水体的重金属污染状况,制定相应的污染控制对策 二、实验方案 1、实验原理: 环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、镍、钴、锡等。常用火焰原子吸收光度法测定试样中元素的浓度来测重金属浓度。原子吸收光度法是根据物质产生的原子蒸气对特定波长的光的吸收作用来进行定量分析的。元素的气态基态原子外层的电子可以吸收与其发射波长相同的特征谱线。当光源发射的某一特征波长的光通过原子蒸气时,原子中的外层电子将选择性地吸收该元素所能发射的特征波长的谱线,这时,透过原子蒸气的入射光将减弱,其减弱的程度与蒸气中该元素的浓度成正比,吸光度符合吸收定律: A=lg(I0 / I)=KcL 根据这一关系可以用工作曲线法或标准加入法来测定未知溶液中某元素的含量。 原子吸收光度法具有较高的灵敏度。每种元素都有自己为数不多的特征吸收谱线,不同元素的测定采用相应的元素灯,因此,谱线干扰在原子吸收光度法中是少见的。影响原子吸收光度法准确度的主要是基体的化学干扰。由于试样和标准溶液整体的不一致,试样中存在的某些基体常常影响被测元素的原子化效率,如在火焰中形成难于离解的化合物或使离解生成的原子很快重新形成在该火焰温度下不再离解的化合物,这时就发生干扰作用。一般来说,铜、铅、锌、镉的基体干扰不太严重。 2、实验仪器: 3个250mL烧杯、AAS、电热板、100mL比色管 3、试剂 (1)浓硝酸:优级纯 (2)3mol/L盐酸:优级纯 (3)双氧水 (4)10%氯化铵溶液 4、实验步骤 (1)各取3组废水水样50mL放入烧杯中,加入浓硝酸5mL,在电热板上加热消解 (2)蒸至剩余40mL左右,加入5mL浓硝酸和2mL双氧水,继续于电热板上加热消解 (3)蒸至剩余30mL左右,加入2mL10%的氯化铵和10mL 3mol/L的HCl,取下来冷却,待冷却后,装入比色管中,定容到100mL,若溶液比较混浊,则先过滤再测。 (4)用AAS测定并记录数据结果 三、实验结果与数据处理

土壤中重金属全量测定方法

精心整理 精心整理 版本1: 土壤中铜锌镉铬镍铅六中重金属全量一次消解测定方法.用氢氟酸-高氯酸-硝酸消解法,国家标准物质检测值和标准值吻合性很好,方便可行.具体方法: 准确称取0.5克土壤样品(过0.15mm 筛)于四氟坩埚中,加7毫升硝酸+3毫升高氯酸+10毫升氢氟酸加盖,放置过夜(不过夜效果同),电热板上高温档加热(数显的控制温度300~350度)1小时,去盖,加热到近干,冷却到常温,然后再加3毫升硝酸+2毫升盐酸溶题,版本1) 2) 3) 4) 5) 6) 附: 现在一般做法是,砷汞用1+1的王水在沸水煮2小时,加固定剂(含5g/l 重铬酸钾的5%硝酸溶液),在50毫升比色管中,固定,然后用原子荧光光谱仪测定砷汞. 1 土壤消化(王水+HClO 4法) 称取风干土壤(过100目筛)0.1 g (精确到0.0001 g )于消化管中,加数滴水湿润,再加入3 ml HCl 和1 ml HNO 3(或加入配好的王水4~5mL ),盖上小漏斗置于通风橱中浸泡过夜。第二天放入消化炉中,80~90℃消解30 min 、100~110℃消解30 min 、120~130℃消解1 h ,取下置于通风处冷却。

精心整理 加入1 ml HClO4于100~110℃条件下继续消解30 min,120~130℃消解1 h。冷却,转移至20mL容量瓶中,定容,过滤至样品存储瓶中待测。 注:最高温度不可超过130℃。消化管底部只残留少许浅黄色或白色固体残渣时,说明消化已完全。如果还有较多土壤色固体存在,说明消化未完全,应继续120~130℃消化直至完全。 2植物消化(HNO3+H2O2法) 称取待测植物1~2g(具体根据该植物对重金属吸收能力的强弱而定)于消化管中,加入5ml HNO3,盖上小漏斗置于通风橱中浸泡过夜。第二天放入消化炉中,80~90℃消解30 min、100~110℃消解30 min、120~130℃消解1 h,取下置于通风处冷却。加入1 ml H2O2,于100~110℃条件下继续消解30 min,120~130℃消解1 h。冷却,转移至20mL容量瓶中,定容,过滤至样品存储瓶中待测。 精心整理

水体中重金属污染实例

水体中重金属污染实例 1 引言 20世纪70年代以来快速发展的环境磁学,由于其测量简便、快速、经济和无破坏性的特点,被广泛应用于地球科学和环境科学领域.近年来,国内外许多学者利用环境磁学手段对湖泊、河 口和海洋沉积物、城市和交通道路土壤、大气悬浮物及降尘、植物等进行了表征,并探讨了其在 指示重金属、有机化合物污染方面的应用.不少研究发现,在受工业、交通排放显著影响的城市 土壤、大气悬浮颗粒物和降尘中,重金属污染与磁性特征具有显著相关关系,其机制在于工业活动、燃料燃烧、汽车尾气等排放的颗粒污染物中,往往含有亚铁磁性矿物(如Fe3O4),因而利用 磁学方法可以诊断上述物质中的重金属污染情况. 河流沉积物因受水体和大气污染的输入,往往存在重金属污染现象.在河流开放的环境中, 探讨环境磁学对重金属污染的指示,国内近年来已有相关报道,多集中在干旱半干旱区域,而季 风气候控制下的我国南方地区研究较少.这些研究也揭示出河流沉积物磁性参数与重金属污染关 系的复杂性,二者之间并非简单的线性关系.因此,在不同的研究区域,在利用磁学方法进行重 金属污染诊断前,需要对磁性特征的变化因素,及其与重金属污染关联的机制加以分析.我国南 方江浙地区由于工业发达,河流沉积物已遭受不同程度的重金属污染.本研究以浙江省金华市义 乌江城区段边滩沉积物为对象,拟通过系统环境磁学、地球化学、粒度和有机碳分析,旨在探讨 环境磁学方法诊断河流沉积物重金属污染的可行性. 2 材料与方法 2.1 研究区域概况 义乌江位于浙江省中部金华市(119°13′~120°47′E,28°31′~29°41′N)境内,上游 称为东阳江,发源于金华市磐安县龙鸟尖,入义乌接纳南江后,称义乌江,流域面积3407 km2,上游属山区性河流,流至义乌后坡降逐渐平缓.流域地处金衢盆地,属于亚热带季风性湿润气候,年平均气温17°C,年均降水量超过1400 mm,降水季节性差异明显.流域流经的东阳市、义乌市 均为浙中经济重镇和交通中心,经济活动频繁,人口密度大.商品贸易、磁性电子、建筑建材等 产业等是义乌江流域重要经济支柱,经济发展的同时也造成了河流严重的污染. 2.2 样品采集与实验方法 研究样品取自义乌江金华城区建筑艺术公园附近,距离下游拦江橡皮坝5 km左右,洪季和 橡皮坝蓄水期间,采样点为水淹没,物理扰动干扰较小.在枯季(2010年12月)使用PVC管获得 30 cm柱样YW.在实验室用按2 cm间隔逐层取样,得到15个样品.去除样品中植物根系、砂石等 异物杂质后,40 ℃低温下烘干,以备分析.

土壤中重金属全量测定方法(精)

版本1: 土壤中铜锌镉铬镍铅六中重金属全量一次消解测定方法.用氢氟酸-高氯酸-硝酸消解法,国家标准物质检测值和标准值吻合性很好,方便可行.具体方法: 准确称取0.5克土壤样品(过0.15mm筛于四氟坩埚中,加7毫升硝酸+3毫升高氯酸+10毫升氢氟酸加盖,放置过夜(不过夜效果同,电热板上高温档加热(数显的控制温度300~350度1小时,去盖,加热到近干,冷却到常温,然后再加3毫升硝酸+2毫升高氯酸+5毫升氢氟酸,高温档继续加热到完全排除各种酸,既高氯酸白烟冒尽,加1毫升(1+1盐酸溶解残渣,完全转移到25毫升容量瓶中,加0.5毫升的100g/L的氯化铵溶液,定容,然后原子吸收分光光度计检测,含量低用石墨炉,注意定容完尽快检测锌,且锌估计需要适当的稀释.其实放置几天没有问题,相对比较稳定拉. 版本2: 1称量0.5000g样品放入PTFE(聚四氟乙烯烧杯中(先称量样品,后称量标 样,用少量去离子水润湿; 2缓缓加入10.0mLHF和4.0mLHClO4(如果在开始加热蒸发前先把样品在混合 酸中静置几个小时,酸溶效果会更好一些,加盖后在电热板上200℃下蒸发(蒸发至样品近消化完后打开坩埚盖至形成粘稠状结晶为止(2~3小时; 3视情况而定,若有未消化完的样品则需要重新加入HF和HClO4,每次加入都 需要蒸发至尽干;若消化完全则直接进行下一步; 4加入4.0mLHClO4,蒸发至近干,以除尽残留的HF; 5加入10.0mL的5mol/L HNO3,微热至溶液清亮为止。检查溶液中有无被分解 的物料。如有,蒸发至近干,执行步骤4(此时可以酌情减半加酸; 6待清亮的溶液冷却后,转入容量瓶,用去离子水定容至50mL(此时所得溶

小麦叶片中细胞器中重金属含量测定

小麦叶片中细胞器中重金属含量测定 一实验目的 1了解生物毒性的一般方法。 2掌握匀浆器、原子吸收仪的使用。 3掌握生物样品的处理方法。 二实验原理 湿法消化:使用具有强氧化性酸混合液(如HNO3、HCl、HClO4等),式样共同加热消化,使细胞器中的金属元素锌、铜、镉以离子态溶解在消解液中。 差速离心法:细胞内不同细胞器的比重和大小都不相同,在均匀密度介质中不同离心力下沉降的细胞器组成不同或在梯度介质中离心后分布于不同密度层,根据这一原理,差速离心法或密度梯度离心法就可将细胞内各种组分分离出来。分离流程: 破碎组织(匀浆或研磨)-差速离心或密度梯度离心分离细胞器-结果检验分析 原子吸收分光光度计一般由四大部分组成,即光源(单色锐线辐射源)、试样原子化器、单色仪和数据处理系统(包括光电转换器及相应的检测装置)。 原子化器主要有两大类,即火焰原子化器和电热原子化器。火焰有多种火焰,目前普遍应用的是空气—乙炔火焰。电热原子化器普遍应用的是石墨炉原子化器,因而原子吸收分光光度计,就有火焰原子吸收分光光度计和带石墨炉的原子吸收分光光度计。前者原子化的温度在2100℃~2400℃之间,后者在2900℃~3000℃之间。 火焰原子吸收分光光度计,利用空气—乙炔测定的元素可达30多种,若使用氧化亚氮—乙炔火焰,测定的元素可达70多种。但氧化亚氮—乙炔火焰安全性较差,应用不普遍。空气—乙炔火焰原子吸收分光光度法,一般可检测到PPm 级(10-6),精密度1%左右。国产的火焰原子吸收分光光度计,都可配备各种 型号的氢化物发生器(属电加热原子化器),利用氢化物发生器,可测定砷(As)、锑(Sb)、锗(Ge)、碲(Te)等元素。一般灵敏度在ng/ml级(10-9),相对标准偏差2%左右。汞(Hg)可用冷原子吸收法测定。 石墨炉原子吸收分光光度计,可以测定近50种元素。石墨炉法,进样量少,灵敏度高,有的元素也可以分析到pg/mL级。 三实验内容 1 实验液的预处理。 2 小麦叶片中细胞器中的重金属含量。 四实验仪器设备和材料清单 1 仪器设备:25ml匀浆器,电热板,原子吸收仪,石墨炉原子吸收分光光度计,电子分析天平,离心机;25ml、50ml比色管,离心管,50ml烧杯,50ml、500ml容量瓶,玻璃珠若干,剪刀,镊子。1ml、2ml、5ml、10ml、25ml移液

重金属测定方法

重金属总量的测定采用消化→原子吸收光谱仪测定; 重金属有效态的测定采用震荡提取→原子吸收光谱仪测定 1 土壤消化(王水+HClO4法) 称取风干土壤(过100目筛)0.1 g(精确到0.0001 g)于消化管中,加数滴水湿润,再加入3 ml HCl和1 ml HNO3(或加入配好的王水4~5mL),盖上小漏斗置于通风橱中浸泡过夜。第二天放入消化炉中,80~90℃消解30 min、100~110℃消解30 min、120~130℃消解1 h,取下置于通风处冷却。加入1 ml HClO4于100~110℃条件下继续消解30 min,120~130℃消解1 h。冷却,转移至20mL容量瓶中,定容,过滤至样品存储瓶中待测。 注:最高温度不可超过130℃。消化管底部只残留少许浅黄色或白色固体残渣时,说明消化已完全。如果还有较多土壤色固体存在,说明消化未完全,应继续120~130℃消化直至完全。 2植物消化(HNO3+H2O2法) 称取待测植物1~2g(具体根据该植物对重金属吸收能力的强弱而定)于消化管中,加入5ml HNO3,盖上小漏斗置于通风橱中浸泡过夜。第二天放入消化炉中,80~90℃消解30 min、100~110℃消解30 min、120~130℃消解1 h,取下置于通风处冷却。加入 1 ml H2O2,于100~110℃条件下继续消解30 min,120~130℃消解1 h。冷却,转移至20mL容量瓶中,定容,过滤至样品存储瓶中待测。 注:植物消化完全为透明液体,无残留。植物消化前是否需要干燥根据实验要求而定。 3土壤中重金属有效态的提取 铅、锌、铜、镉有效态的提取:提取液为0.1mol/L的HCl 砷有效态的提取:提取液为0.5mol/L的NaH2PO4 水土比:10:1~20:1 提取步骤:称取1g(精确的0.0001g)土壤样品于100mL锥形瓶中,加入15mL提取液(以

大米中重金属含量测定

大米中重金属(镉)含量测定方案 ——常州工程职业技术学院工分0911陈俊海 一、实验原理: 试样经处理后,在酸性溶液中镉离子与碘离子形成络合物,并经4一甲基戊酮-2萃取分离,导入原子吸收仪中,原子化以后,吸收228.8nm共振线,其吸收量与镉含量成正比,与标准系列比较定量。 二、实验试剂及仪器: 4一甲基戊酮-2( MIBK,又名甲基异丁酮), 磷酸(1+10), 盐酸(1+11):量取10mL盐酸加到适量水中再稀释至120 mL, 盐酸(5+7)量取50mL盐酸加到适量水中再稀释至120 mL, 混合酸:硝酸与高氯酸按3+1混合。 硫酸(1+1), 碘化钾溶液(250g/L), 脱脂棉, 原子吸收分光光度计。 镉标准溶液:准确称取1.0000 g 金属镉(99.99%),溶于20mL盐酸(5+7)中,加入2滴硝酸后,移入1000mL容量瓶中,以水稀释至刻度,混匀。贮于聚乙烯瓶中。此溶液每毫升相当于1.0 mg镉。 镉标准使用液:吸取10.0 mL镉标准溶液,置于100mL容量瓶中,以盐酸(1+11)稀释至刻度,混匀,如此多次稀释至每毫升相当于0.20 μg镉。 三、试样处理(三种方法取一): 干法灰化:称取1.00 g -5.00 g (根据镉含量而定)试样于瓷坩埚中,先小火在可调式电炉上炭化至无烟,移入马弗炉500℃灰化6h-8h时,冷却。若个别试样灰化不彻底,则加1 mL混合酸在可调式电炉上小火加热,反复多次直到消化完全。放冷,用硝酸(0.5 mol/L)将灰分溶解,用滴管将试样消化液洗入或过滤入(视消化液有无沉淀而定)10 mL-25 mL容量瓶中,用水少量多次洗涤瓷坩埚,洗液合并于容量瓶中并定容至刻度,混匀备用。同时作试剂空白。 过硫酸铵灰化法:称取1.00g -5.00g 试样于瓷坩埚中,加2mL-4mL硝酸浸泡1h以上,先小火炭化,冷却后加2.00g -3.00 g过硫酸铵盖于上面,继续炭化至不冒烟,转人马弗炉,500℃恒温2h,再升至800℃,保持20 min,冷却,加2mL-3mL 硝酸(1.0 mol/L),用滴管将试样消化液洗入或过滤入(视消化液有无沉淀而定)10 mL-25 mL容量瓶中,用水少量多次洗涤瓷坩埚,洗液合并于容量瓶中并定容至刻度,混匀备用。同时作试剂空白。 湿式消解法:称取试样1.00g -5.00g 于三角瓶或高脚烧杯中,放数粒玻璃珠,加10m L混合酸,加盖浸泡过夜,加一小漏斗电炉上消解,若变棕黑色,再加混合酸,直至冒白烟,消化液呈无色透明或略带黄色,放冷用滴管将试样消化液洗入或过滤入(视消化后试样的盐分而定)10 mL-25 mL容量瓶中,用水少量多次洗涤三角瓶或高脚烧杯,洗液合并于容量瓶中并定容至刻度,混匀备用。同时作试剂空白。

重金属含量的检测

重金属含量的检测(硫化钠—丙三醇法) 1、引用标准:GB/T 8451—1987 2、原理 在乙酸介质中(PH3~4),将重金属转变为硫化物沉淀悬浮在溶液中,并用目视比色法进行测定 3、使用试剂 3.1 盐酸(1+3) 3.2 氨水(1+2) 3.3 酚酞(10g/L乙醇溶液) 3.4 冰乙酸(6%溶液) 3.5 硫化钠—丙三醇溶液(配制:将5g硫化钠溶解于10ml水和30ml丙三醇的混合液中,混匀,装入棕色瓶中,避光封闭保存,有效期三个月) 3.6 铅标准溶液:1ug/ml 4、实验步骤 4.1 标准管的制备 准确移取铅标准溶液(1ug/ml)至比色管中,加水至25ml,混匀,滴加氨水(1+2)至溶液呈微红色,加盐酸(1+3)使红色刚刚褪去,再加入2ml冰乙酸(6%),用水稀释至50ml,混匀,此时溶液PH控制在3.5~4.0,向标准管中加入2滴硫化钠—丙三醇溶液,充分混合,放置5min,待用。 4.2 样品管的制备 1.称取1g适量样品(准至0.0001g),加水溶解至25ml,滴加氨水(1+2)至溶液呈微红色,加盐酸(1+3)使红色刚刚褪去,再加入2ml冰乙酸(6%),用水稀释至50ml,混匀,此时溶液PH控制在3.5~4.0,向样品管中加入2滴硫化钠—丙三醇溶液,充分混合,放置5min,用比色箱进行比色 结果:样品液和标准液进行比色,样品的颜色应不深于标准 2.称取1g适量样品(准至0.0001g),加水溶解至2Hml,加PH= 3.5NaAC-HAC5ml,PH控制 3.5- 4.0,加1滴硫化钠—丙三醇溶液,充分混合,放置5min,待用。 标准管中加入2滴硫化钠—丙三醇溶液,充分混合,放置5min,待用。用比色箱进行比色

重金属检测方法比较

重金属检测方法 通常认可的重金属分析方法有:紫外可分光光度法(UV)、原子吸收法(AAS)。现就这二种方法简介: 一、紫外可见分光光度法(UV) 检测原理:重金属与显色剂—通常为有机化合物,可于重金属发生络合反应,生成有色分子团,溶液颜色深浅与浓度成正比。在特定波长下,比色检测。 一般来说分光光度计有两种方法:一种是利用物质本身对紫外及可见光的吸收进行测定;另一种是生成有色化合物,即“显色”,然后测定。 虽然不少无机离子在紫外和可见光区有吸收,但因一般强度较弱,所以直接用于定量分析的较少。加入显色剂使待测物质转化为在紫外和可见光区有吸收的化合物来进行光度测定,这是目前应用最广泛的测试手段。 显色剂分为无机显色剂和有机显色剂,而以有机显色剂使用较多。大多当数有机显色剂本身为有色化合物,与金属离子反应生成的化合物一般是稳定的螯合物。显色反应的选择性和灵敏度都较高。有些有色螯合物易溶于有机溶剂,可进行萃取浸提后比色检测。 检测波长一般是紫外和可见光区。

二、原子吸收法(AAS) 原子荧光光谱法是通过测量待测元素的原子蒸气在特定频率辐射能激以下所产生的荧光发射强度,以此来测定待测元素含量的方法。 检测原理:每一种元素的原子不仅可以发射一系列特征谱线,也可以吸收与发射线波长相同的特征谱线。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,与被测元素的含量成正比。由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。通过能量的衰减量来检测原子的浓度。

水质重金属检测

分析仪器名词:可跟踪链接拓展知识 ? 定性分析 ? 定量分析 ? 常量分析 ? 微量分析 ? 痕量分析 ? 分析仪器 ? 电化学[式]分析仪器 ? 光学[式]分析仪器 ? 热学[式]分析仪器 ? 质谱仪器 ? 波谱仪器 ? 能谱和射线分析仪器 ? 物性分析仪器 ? pH值 ? 电导 ? 电导率 ? 电池常数 ? 当量电导 ? 标准电极电位 ? 电极电位 ? 极谱图 ? 电化学分析法 ? 电容量分析法 ? 电导分析法 ? 电量分析法 ? 电位法 ? 伏安法 ? 极谱法 ? 滴定 ? 电泳法 ? 电重量分析法 ? 电导[式]分析器 ? 电量[式]分析器 ? 电位[式]分析器 ? 溶解氧分析器 重金属: 重金属有许多种不同的定义,常见的一种定义是密度大于5 g/cm3 的金属,大多数金属都是重金属。主要是指对生物有明显毒性的重金属元素,如汞、镉、铅、铬、锌、铜、钴、镍、锡、钡等。有时也会将一些有明显毒性的轻金属元素及非金属元素列入:如砷、铍、锂与铝。尽管锰、铜、锌等重金属是生命活动所需要的微量元素,但是大部分重金属如汞、铅、

镉等并非生命活动所必须,而且所有重金属超过一定浓度都对人体有毒。 重金属污染主要是指:由于采矿、冶炼、制造产品、排放废水废气、处置固体废物、利用污水进行灌溉和使用重金属制品的过程中,重金属或者其化合物给自然环境或者人体带来的损害。 对什么是重金属,目前尚没有严格的统一定义,从环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、镍、钴、锡等。 我们从自然性、毒性、活性和持久性、生物可分解性、生物累积性,对生物体作用的加和性等几个方面对重金属的危害稍作论述。 (一)自然性: 长期生活在自然环境中的人类,对于自然物质有较强的适应能力。有人分析了人体中60多种常见元素的分布规律,发现其中绝大多数元素在人体血液中的百分含量与它们在地壳中的百分含量极为相似。但是,人类对人工合成的化学物质,其耐受力则要小得多。所以区别污染物的自然或人工属性,有助于估计它们对人类的危害程度。铅、镉、汞、砷等重金属,是由于工业活动的发展,引起在人类周围环境中的富集,通过大气、水、食品等进入人体,在人体某些器官内积累,造成慢性中毒,危害人体健康。 (二)毒性: 决定污染物毒性强弱的主要因素是其物质性质、含量和存在形态。例如铬有二价、三价和六价三种形式,其中六价铬的毒性很强,而三价铬是人体新陈代谢的重要元素之一。在天然水体中一般重金属产生毒性的范围大约在1~10mg/L之间,而汞,镉等产生毒性的范围在0.01~0.001mg/L之间。 (三)时空分布性: 污染物进入环境后,随着水和空气的流动,被稀释扩散,可能造成点源到面源更大范围的污染,而且在不同空间的位置上,污染物的浓度和强度分布随着时间的变化而不同。 (四)活性和持久性: 活性和持久性表明污染物在环境中的稳定程度。活性高的污染物质,在环境中或在处理过程中易发生化学反应,毒性降低,但也可能生成比原来毒性更强的污染物,构成二次污染。如汞可转化成甲基汞,毒性很强。与活性相反,持久性则表示有些污染物质能长期地保持其危害性,如重金属铅、镉等都具有毒性且在自然界难以降解,并可产生生物蓄积,长期威胁人类的健康和生存。 (五)生物可分解性: 有些污染物能被生物所吸收、利用并分解,最后生成无害的稳定物质。大多数有机物都有被生物分解的可能性,而大多数重金属都不易被生物分解,因此重金属污染一但发生,治理更难,危害更大。 (六)生物累积性: 生物累积性包括两个方面:一是污染物在环境中通过食物链和化学物理作用而累积。二是污染物在人体某些器官组织中由于长期摄入的累积。如镉可在人体的肝、肾等器官组织中蓄积,造成各器官组织的损伤。又如1953年至1961年,发生在日本的水俣病事件,无机汞在海水中转化成甲基汞,被鱼类、贝类摄入累积,经过食物链的生物放大作用,当地居民食用后中毒。 (七)对生物体作用的加和性: 多种污染物质同时存在,对生物体相互作用。污染物对生物体的作用加和性有两类:一类是

水中汞等重金属含量的检测

水中汞等重金属含量检测的新方法——东北师范大学,化学学院,胡志强,1231410011 【摘要】 近年来,由于重金属而受到污染的地区日益增多,受污染的程度日趋加重。因此,重金属开始成为人们关注的焦点。对于水中的重金属而言,由于不易被微生物分解,稳定性较强,会在水体中聚集,造成环境污染。与此同时,它也会因为水生物对重金属的吸收,而在水生物体内聚集,造成水生物重金属中毒。因此,在不明情况下,人们食用受污染的水生物,会引起严重的疾病。 【关键词】:重金属、微观氧化还原法、新方法 【正文】 汞(Hg)为一种银白色液体金属,原子量200.59;相对密度13.546(20℃);沸点357℃;熔点-38.87℃,是常温下唯一的液态金属。蒸气压在0℃为0.0407Pa;20℃为0.1600Pa;30℃为0.3866Pa。金属汞不溶于水及有机溶剂,易溶于稀硝酸中,可溶于类似脂类的物质。汞具有易蒸发的特性,尤其当其洒落在地面,形成无数小汞珠,蒸发面积增大,蒸发速度更快,造成空气污染。汞在空气中以蒸气态存在。 这些重金属主要来源:汞的污染多见于汞矿开采和冶炼,仪表制造(如温度计,压力计等),电气器材制造与修理(如电流开关、整流器、荧光灯等),冶金工业、氯碱工业、有机合成、防腐涂料、电池、塑料、染料等工业生产过程中可能有含汞粉尘或气溶胶。 汞为一种普遍存在的有毒物质。人在空气中汞浓度为1~30mg/m3时,数小时即可引起急性中毒,有头痛、头昏、乏力、失眠、多梦、发热等神经系统及全身症状。慢性中毒一般表现为神经衰弱症候群以及多梦、记忆力减退、情绪不稳、失眠等。在自然界,汞经过转化可变为有机汞,再经过食物链进入人体造成中毒。日本的“水俣病”就是由工业废水中汞的污染造成的一种“公害病”。 既然汞汞是一种重金属,而且其破坏性如此之强,那么研究汞在空气中或是水中的含量,显得迫在眉睫。能不能找到一种及时有效的测定方法,快速简便的检测出汞的含量,提供给人们生活生产等大量有用信息,是我们每一个化学工作者的共同目标。在这里,我们着重介绍水中的汞含量的检测新方法。 核心原理 汞蒸气对波长253.7nm的共振线具有强烈的吸收作用。样品经过酸消解或催化酸消解使汞转为离子状态,在强酸性介质中以氯化亚锡还原成元素汞,以氮气或干燥空气作为载体,将元素汞吹入汞测定仪,进行冷原子吸收测定,在一定浓度范围其吸收值与汞含量成正比,与标准系列比较定量。

相关文档
最新文档