函数的基本性质1

函数的基本性质1
函数的基本性质1

函数的基本性质

[基础训练题]

1.下列判断正确的是( )

A .函数

2

2)(2--=x x x x f 是奇函数

B .函数()(1f x x =-

C .函数()f x x =

D .函数1)(=x f 既是奇函数

又是偶函数

2.下列函数中,在区间()0,1上是增函数的是( )

A .x y =

B .x y -=3

C .x y 1=

D .42

+-=x y

3.如果奇函数)(x f 在区间[3,7] 上是增函数且最大值为5,那么)(x f 在 区间[]3,7--上是( )

A .增函数且最小值是5-

B .增函数且最大值是5-

C .减函数且最大值是5-

D .减函数且最小值是5-

4.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(],40-∞ B .[40,64] C .(][),4064,-∞+∞ D .[)64,+∞

5.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ?<的解集是( ) A .{}|303x x x -<<>或 B .{}|303x x x <-<<或 C .{}|33x x x <->或 D .{}|3003x x x -<<<<或

6.若函数2()(32)f x k k x b =-++在R 上是减函数,则k 的取值范围为__________。

7.函数4

()([3,6])2

f x x x =∈-的值域为____________。

8.若函数()11

x

m

f x a =+

-是奇函数,则m 为__________。

9.已知函数()

f x的定义域是)

,0(+∞,且满足()()()

f xy f x f y

=+,

1

()1 2

f=,

如果对于0x y

<<,都有()()

f x f y

>,

(1)求(1)

f;

(2)解不等式2

)

3(

)

(-

-

+

-x

f

x

f

10.已知22

()444

f x x ax a a

=-+--在区间[]

0,1内有一最大值5-,求a的值.

[基础提高题]

1.已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数, 则m 的值是( )

A . 1

B . 2

C . 3

D . 4

2.函数()log 1a f x x =-在(0,1)上递减,那么()f x 在(1,)+∞上( ) A .递增且无最大值 B .递减且无最小值 C .递增且有最大值 D .递减且有最小值

3.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )

A .)2()1()2

3

(f f f <-<- B .)2()2

3()1(f f f <-<-

C .)23()1()2(-<-

D .)1()2

3

()2(-<-

4.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数, 则)2

52()2

3(2++-a a f f 与的大小关系是( )

A .)23(-f >)252(2++a a f

B .)23(-f <)252(2++a a f

C .)23(-f ≥)252(2++a a f

D .)23(-f ≤)2

5

2(2++a a f

.5.函数33()11f x x x =++-,则下列坐标表示的点一定在函数f (x )图象上 的是( )

A .(,())a f a --

B .(,())a f a -

C .(,())a f a -

D .(,())a f a ---

6.定义在R 上的任意函数()f x 都可以表示成一个奇函数()g x 与一个

偶函数()h x 之和,如果()lg(101),x

f x x R =+∈,那么( )

A .()g x x =,()lg(10

101)x

x h x -=++

B .lg(101)()2x x

g x ++=,x lg(101)()2x h x +-=

C .()2x g x =,()lg(101)2

x x h x =+-

D .()2

x

g x =-, lg(101)()2x x h x ++=

7.函数x x x f -=2)(的单调递减区间是____________________。.

8.若函数2()1

x a

f x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为________.

9.已知函数()f x 的定义域为()1,1-,且同时满足下列条件:

(1)()f x 是奇函数;

(2)()f x 在定义域上单调递减;

(3)2(1)(1)0,f a f a -+-<

a 的取值范围。

10.设函数()f x 与()g x 的定义域是x R ∈且1x

≠±,()f x 是

偶函数, ()g x 是奇函数,且1

()()1

f x

g x x +=-,

(1)求)10(,)10(g f ;

(2)

()f x 和()g x 的解析式.

高中数学必修一函数的性质单调性测试题含答案解析

函数的性质单调性 1.在区间(0,+∞)上不是增函数的函数是() 222xxyxyyyx+ 1 DC..B.A.==2=3+1 +=2+1 x2mxxfx+5在区间[-2,+∞]上是增函数,在区间-2.函数((-∞,-)=42) 上是减函数,f(1)等于(则) B.1 C.17 A.-7 D.25 fxyfx+5)的递增区间是 (( (-2,3)上是增函数,则)=3.函数 ()在区间A.(3,8) B.(-7,-2) C.(-2,3) D.(0,5) ax?1axf的取值范围是 ).函数上单调递增,则实数(()=-2,+∞在区间() 4x?211,+∞) C.(-2,+∞) D.(-∞,-1)∪(1) A.(0,B.( ,+∞) 22fxabfafbfxab]内(, ())=0]上单调,且在区间([) ()<5.已 知函数0()在区间[,,则方程 A.至少有一实根 B.至多有一实根 C.没 有实根 D.必有唯一的实根 22gxxgxfxxxf) (.已知函数)=( ))=8+2( 2--,那么函数,如果 (() 6 A.在区间(-1,0)上是减函数 B.在区间(0,1)上是减函数 C.在区间(-2,0)上是增函数 D.在区间(0,2)上是增函数 fxf(x|,1)是其图象上的两点,那么不等式上的增函数,A(0,-1).已知函数7、(B(3)是R+1)|<1的解集的补集是 A.(-1,2) B.(1,4) C.(-∞,-1)∪[4,+∞) D.(-∞,-1)∪[2,+∞) fxtftf(5=,都有)(5R的函数+(上单调递减,对任意实数)在区间(-∞,5)8.定 义域为tfff(13) <(9)(-1)-<),下列式子一定成立的是 A.fffffffff(9) <-(13)<(-1) <1)B.(13)<(13) D(9)<.(-1) C.((9)<f(x)?|x|和g(x)?x(2?x)的递增 区间依次是(.函数9 ) B. A. C. D )??[1,[0,????)),][0,,(??,0],(??1]??),(??,1[(??,0],1,??????a4?,?的取值范 围是(10.已知函数)在区间上是减函数,则实数221fx??xx?2a?aaaa≥.3 .D≤≤3 B.5 ≥-3 C A.fxabab≤0,则下列不等式中正确的是(∈R且+11.已知())在区间(-∞,+∞上是增函数,)、 fafbfafbfafbfafb) ()(+)≤A .(()+(≤-)-()+B()].-()+

人教版_数学_必修1函数的基本性质_教案

一、 函数的单调性 1.单调函数的定义 (1)增函数:一般地,设函数()f x 的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x <,那么就说()f x 在这个区间上是增函数。 (2)减函数:如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x >,那么就说()f x 在这个区间上是减函数。 (3)单调性:如果函数()y f x =在某个区间是增函数或减函数。那么就说函数()y f x =在这一区间具有(严格的)单调性,这一区间叫做()y f x =的单调区间。 2、单调性的判定方法 (1)定义法: 判断下列函数的单调区间:2 1x y = (2)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。 (3)复合函数的单调性的判断: 设)(x f y =,)(x g u =,],[b a x ∈,],[n m u ∈都是单调函数,则[()]y f g x =在] ,[b a 上也是单调函数。 ①若)(x f y =是[,]m n 上的增函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同。 ②若)(x f y =是[,]m n 上的减函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同。 即复合函数的单调性:当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的 单调性相反时则复合函数为增减函数。也就是说:同增异减(类似于“负负得正”) 练习:(1)函数24x y -=的单调递减区间是 ,单调递增区间 为 . (2)5 412 +-= x x y 的单调递增区间为 . 3、函数单调性应注意的问题: ①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数). ③函数在定义域内的两个区间A ,B 上都是增(或减)函数,一般不能认为函数在上 是增(或减)函数 4.例题分析

数学教案-指数函数与对数函数的性质及其应用.doc

数学教案-指数函数与对数函数的性质 及其应用 教案 课题:指数函数与对数函数的性质及其应用 课型:综合课 教学目标:在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。 重点:指数函数与对数函数的特性。 难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。 教学方法:多媒体授课。 学法指导:借助列表与图像法。 教具:多媒体教学设备。 教学过程: 一、复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。 二、展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。

指数函数与对数函数关系一览表函数 性质 指数函数 y=ax (a>0且a≠1) 对数函数 y=logax(a>0且a≠1) 定义域 实数集r 正实数集(0,﹢∞) 值域 正实数集(0,﹢∞) 实数集r 共同的点 (0,1) (1,0) 单调性 a>1 增函数 a>1 增函数 0<a<1 减函数 0<a<1 减函数

函数特性 a>1 当x>0,y>1 当x>1,y>0 当x<0,0<y<1 当0<x<1, y<0 0<a<1 当x>0, 0<y<1 当x>1, y<0 当x<0,y>1 当0<x<1, y>0 反函数 y=logax(a>0且a≠1)y=ax (a>0且a≠1) 图像 y y=(1/2)x y=2x (0,1)

x y y=log2x (1,0) x y=log1/2x 三、同一坐标系中将指数函数与对数函数进行合成,观察其特点,并得出y=log2x与y=2x、 y=log1/2x与y=(1/2)x 的图像关 于直线y=x对称,互为反函数关系。所以y=logax与y=ax互为反 函数关系,且y=logax的定义域与y=ax的值域相同,y=logax的 值域与y=ax的定义域相同。 y y=(1/2)x y=2x y=x (0,1) y=log2x (1,0) x y=log1/2x

高一数学必修一函数概念表示及函数性质练习题(含答案)(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 赠人玫瑰,手留余香。 1.已知R 是实数集,21x x ?? M =.则满足(21)f x -<1 ()3 f 的x 取值范围是( ) 6.已知 上恒成立,则实数a 的取值 范围是( ) A. B. C. D. 7.函数2 5 ---= a x x y 在(-1,+∞)上单调递增,则a 的取值范围是 A .3-=a B .3f (2x )的x 的取值 范围是________.

高一数学必修1函数的基本性质

高中数学必修1函数的基本性质 1.奇偶性 (1)定义:如果对于函数f(x)定义域内的任意x 都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x) 定义域内的任意x 都有f(-x)=f(x),则称f (x)为偶函数。 如果函数f(x)不具有上述性质,则 f (x)不具有奇偶性.如果函数同时具有上述两条性质,则 f(x)既是奇函数, 又是偶函数。 注意: ○ 1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;○ 2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也 一定是定义域内的一个自变量(即定义域关于原点对称)。 (2)利用定义判断函数奇偶性的格式步骤: ○ 1首先确定函数的定义域,并判断其定义域是否关于原点对称;○ 2确定f(-x)与f(x)的关系;○ 3作出相应结论:若f(-x) = f(x) 或f(-x)-f (x) = 0,则f (x)是偶函数;若f(-x) =-f(x) 或f(-x)+f(x) = 0,则f (x)是奇函数。(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称; 一个函数是偶函数的充要条 件是它的图象关于 y 轴对称; ②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇 奇=偶,偶+偶=偶,偶 偶=偶 2.单调性 (1)定义:一般地,设函数 y=f(x)的定义域为I ,如果对于定义域 I 内的某个区间 D 内的任意两个自变量 x 1,x 2,当x 1f(x 2)),那么就说f(x)在区间D 上是增函数(减函数); 注意: ○ 1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;○ 2必须是对于区间D 内的任意两个自变量 x 1,x 2;当x 1

高中数学全必修一函数性质详解及知识点总结及题型详解

高中数学全必修一函数性质详解及知识点总结及题型详解

————————————————————————————————作者:————————————————————————————————日期:

(经典)高中数学最全必修一函数性质详解及知识点总结及题型详解 分析 一、函数的概念与表示 1、映射:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射 集合A ,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:(x,y)→(x 2+y 2,xy),求象(5,2)的原象. 3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11 -x ,则集合A 中的元素最多有几个?写出元素最多时的集合A. 2、函数。构成函数概念的三要素 ①定义域②对应法则③值域 两个函数是同一个函数的条件:三要素有两个相同 1、下列各对函数中,相同的是 ( ) A 、x x g x x f lg 2)(,lg )(2== B 、)1lg()1lg()(,1 1 lg )(--+=-+=x x x g x x x f C 、 v v v g u u u f -+= -+= 11)(,11)( D 、f (x )=x ,2)(x x f = 2、}30|{},20|{≤≤=≤≤=y y N x x M 给出下列四个图形,其中能表示从集合M 到集合 N 的函数关系的有 ( ) A 、 0个 B 、 1个 C 、 2个 D 、3个 二、函数的解析式与定义域 函 数 解 析 式 的 七 种 求 法 待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2 已知221 )1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例3 已知x x x f 2)1(+=+,求)1(+x f x x x x 1 2 1 1 1 2 2 2 1 1 1 1 2 2 2 2 y y y y 3 O O O O

必修1函数的基本性质专题复习(精心整理)

必修 1 《函数的基本性质》专题复习 (一)函数的单调性与最值 ★知识梳理 1.函数的单调性定义: 设函数的定义域为,区间 如果对于区间内的任意两个值,,当时,都有,那么就说在区间上是单调增函数,称为的单调增区间 如果对于区间内的任意两个值,,当时,都有,那么就说在区间上是单调减函数,称为的单调减区间 2.函数的最大(小)值 设函数的定义域为 如果存在定值,使得对于任意,有恒成立,那么称为的最大值; 如果存在定值,使得对于任意,有恒成立,那么称为的最小值。 ★热点考点题型探析 考点1 函数的单调性 【例】试用函数单调性的定义判断函数2()1 f x x =-在区间(1,+∞)上的单调性. )(x f y =A A I ?I 1x 2x 21x x <)()(21x f x f <)(x f y =I I )(x f y =I 1x 2x 21x x <)()(21x f x f >)(x f y =I I )(x f y =)(x f y =A A x ∈0A x ∈)()(0x f x f ≤) (0x f )(x f y =A x ∈0A x ∈)()(0x f x f ≥) (0x f )(x f y =

【巩固练习】证明:函数2()1 x f x x = -在区间(0,1)上的单调递减. 考点2 函数的单调区间 1.指出下列函数的单调区间: (1)|1|y x =-; (2)22||3y x x =-++. 2. 已知二次函数2()22f x x ax =++在区间(-∞,4)上是减函数,求a 的取值范围.

【巩固练习】 1.函数26y x x =-的减区间是( ). A . (,2]-∞ B. [2,)+∞ C. [3,)+∞ D. (,3]-∞ 2.在区间(0,2)上是增函数的是( ). A. y =-x +1 B. y C. y = x 2-4x +5 D. y =2x 3. 已知函数f (x )在-1∞(,)上单调递减,在[1+∞,) 单调递增,那么f (1),f (-1),f 之间的大小关系为 . 4.已知函数)(x f 是定义在]1,1[-上的增函数,且)31()1(x f x f -<-,求x 的取值范围. 5. 已知二次函数2()22f x ax x =++在区间(-∞,2)上具有单调性,求a 的取值范围.

人教版高中数学必修一《指数函数及其性质》教案

指数函数及其性质教案 一、教学目的 1、使学生掌握指数函数的概念、图象和性质;能初步简单应用。 2、使学生理解数形结合的基本数学思想方法,培养学生观察、联想、类 比、猜测、归纳的能力。 3、使学生体验从特殊到一般的学习规律,认识事物之间的普遍联系与相 互转化,培养学生用联系的观点看问题。 4、通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、 概括、分析、综合的能力。 二、教学重点、难点 教学重点:指数函数的定义、图象、性质. 教学难点:指数函数的定义理解,指数函数的图象特征及指数函数性质的归纳、概括。 三、教具、学具准备: 多媒体课件:使用多媒体教学手段,增大教学容量和直观性,提高教学效率与质量。 四、教学方法 遵循“以学生为主体、教师是数学课堂活动的组织者、引导者和参与者”的现代教育原则。依据本节为概念学习的特点,探究发现式教学法、类比学习法,并利用多媒体辅助教学,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。 五、学法指导 1.再现原有认知结构。在引入两个实例后,请学生回忆有关指数的概 念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。 2.领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到 分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。 3.在互相交流和自主探究中获得发展。在实例的课堂导入、指数函数 的性质研究、例题与训练、课内小结等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。 4.注意学习过程的循序渐进。在概念、图象、性质、应用的过程中按 照先易后难的顺序层层递进,让学生感到有挑战、有收获,跳一跳,够得着,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。 六、教学过程 1、复习回顾,以旧悟新 函数的三要素是什么?函数的单调性反映了函数哪方面的特征? 答:函数的三要素包括:定义域、值域、对应法则。函数的单调性反映了函数值随自变量变化而发生变化的一种趋势,例如:某个函数当自变量取值增大时对应的函数值也增大则表明此函数为增函数,图象上反应出来越往右图象

指数函数及其性质教学设计

一、标题与单位 指向数学学科核心素养的课堂教学设计 ——指数函数及其性质 《数学5 必修A版》(人教版)第二章(2.1.2) 建宁一中肖秀勇 二、教学设计 (一)内容和内容解析 本节课的内容在知识体系上起到承上启下的作用。这是在学生已掌握了函数的一般性质和简单的指数运算的基础上进一步研究指数函数以及指数函数的图像与性质。在实际生活中应用也非常广泛。它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。这节课在授课的时候借助了空间认识事物的位置关系、形态变化与运动规律;利用图形描述、分析数学问题;建立形与数的联系;构建数学问题的直观模型,探索解决问题的思路。 我根据所教班级的实际情况,我把这部分内容分为两节课来讲。其一,探究图象及其性质;其二,指数函数及其性质的应用。这是第一节课,所以所讲的内容是“探究图象及其性质”。作为常见函数,它一方面可以进一步深化学生对函数的理解,使学生得到较系统的函数知识和研究函的方法,另一方面也为学习对数函数、幂函数以及等比数列的学打习下坚实的基础。 (二)目标和目标解析 1、知识目标:理解并掌握指数函数的定义,熟悉指数函数的图像特点及其性质。能画出指数函数的简图,会判断指数函数的单调性,并能根据指数函数的单调性判断同底幂的大小。 2、能力目标:一方面培养学生运用信息技术解决数学问题的能力;另一方面提高学生观察分析、类比归纳和问题探究的能力。 3、情感目标:通过主动探究,合作交流学习,使学生养成积极思考,勇于探索的思想,同时培养学生的团队合作精神。 在直观想象核心素养的形成过程中,学生能够进一步发展几何直观和空间想象能力,增强运用图形和空间想象思考问题的意识,提升数形结合的能力,感悟事物的本质,培养创新思维。在教学过程中通过类比,回顾归纳从图象和解析式这两种不同角度研究函数性质的数学方法,加深对指数函数的认识,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识。 (三)教学问题诊断分析

高中数学最全必修一函数性质详解及知识点总结及题型详解

(经典)高中数学最全必修一函数性质详解及知识点总结及题型详解 分析 一、函数的概念与表示 1、映射:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射 集合A ,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:(x,y)→(x 2+y 2,xy),求象(5,2)的原象. 3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11 -x ,则集合A 中的元素最多有几个?写出元素最多时的集合A. 2、函数。构成函数概念的三要素 ①定义域②对应法则③值域 函 数 解 析 式 的 七 种 求 法 待定系数法:在已知函数解析式的构造时,可用待定系数法。 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 例2 已知221 )1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例3 已知x x x f 2)1(+=+,求)1(+x f 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式

五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过 解方程组求得函数解析式。例5 设,)1 (2)()(x x f x f x f =-满足求)(x f 例6 设)(x f 为偶函数,)(x g 为奇函数,又,1 1 )()(-= +x x g x f 试求)()(x g x f 和的解析式 六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例7 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f 七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式。 例8 设)(x f 是+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求 )(x f 1、求函数定义域的主要依据: (1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义; (3 2(1) ()x 已知f 的定义域是[-2,5],求f(2x+3)的定义域。 (2) (21)x x 已知f -的定义域是[-1,3],求f()的定义域 1求函数值域的方法 ①直接法:从自变量x 的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数; ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式; ③判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围;适合分母为二次且x ∈R 的分式; ④分离常数:适合分子分母皆为一次式(x 有范围限制时要画图); ⑤单调性法:利用函数的单调性求值域; ⑥图象法:二次函数必画草图求其值域; ⑦利用对号函数

指数函数的性质及应用

对应学生用书P 110 基础达标 一、选择题 1.若函数y =(1-2a )x 是实数集R 上的增函数,则实数a 的取值范围为( ) A .(1 2,+∞) B .(-∞,0) C .(-∞,1 2 ) D .(-12,1 2 ) 解析:由题意知,此函数为指数函数,且为实数集R 上的增函数,所以底数1-2a >1,解得a <0. 答案:B 2.(2010·温州十校联考)函数y =2x +1 的图象是( ) 解析:函数y =2x 的图象是经过定点(0,1)、在x 轴上方且单调递增的曲线,依据函数图象的画法可得函数y =2x +1 的图象单调递增且过点(0,2),故选A. 答案:A 3.函数y =(12)1- x 的单调递增区间为( ) A .(-∞,+∞) B .(0,+∞) C .(1,+∞) D .(0,1) 解析:定义域为R . 设u =1-x ,y =(1 2 )u . ∵u =1-x 在R 上为减函数, 且y =(1 2)u 在(-∞,+∞)为减函数, ∴y =(12)1- x 在(-∞,+∞)是增函数,∴选A. 答案:A

4.设y 1=40.9,y 2=80.48,y 3=(12)- 1.5,则( ) A .y 3>y 1>y 2 B .y 2>y 1>y 3 C .y 1>y 2>y 3 D .y 1>y 3>y 2 解析:y 1=40.9=21.8,y 2=80.48=21.44,y 3=(12)- 1.5=21.5.因为函数y =2x 在R 上是增函数, 且1.8>1.5>1.44,所以y 1>y 3>y 2. 答案:D 5.已知函数f (x )=a x 在(0,2)内的值域是(a 2,1),则函数y =f (x )的图象是( ) 解析:∵f (x )=a x 在(0,2)内的值域是(a 2,1), ∴f (x )在(0,2)内单调递减, ∴01,-10,函数y =(a 2-8)x 的值恒大于1,则实数a 的取值范围是______________. 解析:因为x >0时,y =(a 2-8)x 的值大于1恒成立,则a 2-8>1,即a 2>9,解得a >3或a <-3.

指数函数性质应用(一)

指数函数性质应用(一) 教学目标:1、掌握指数函数定义式的应用 2、会求定点,会求指数函数和其它函数综合的定义域,值域 难点,重点:性质的灵活运用 回顾指数函数的定义和性质 定义: 定义域: 值域: 过定点: 活动一:定义式的应用 例1、 若函数2(55)x y a a a =-+?为指数函数,求a 的值 例2、 若指数函数图像过点(2,4),求(2)f 练习:函数223()(1)x x f x a m a +-=+>的图像恒过定点(1,10),求m 活动二:过定点问题 复习平移变换(0)a > ()y f x = ()y f x a =+ ()y f x = ()y f x a =- ()y f x = ()y f x a =+ ()y f x = ()y f x a =- 例3、 函数1x y a +=过定点 思考:函数1x y a +=的图像由x y a =的图像经过怎么样的平移得到的? 例4、 函数12x y a -=+(0,1)a a >≠过定点 思考:函数12x y a -=+(0,1)a a >≠图像由x y a =图像经过怎么样的平移得到的?

例5、 函数3x y m =+的图像不经过第二象限,求m 的取值范围? 思考:如果13x y m +=+呢? 活动三:定义域、值域问题 例6、求下列函数的定义域、值域 (1)y y =153-x (3)y =2x +1 ⑷ 112x x y -+= 例7、设[0,2]x ∈求4425x x y =-?+的值域 例8、求下列函数的值域 ①31 31x x y -=+ ②3131x x y +=-

指数函数及其性质教案

指数函数及其性质教案 课题:指数函数及其性质(第1课时) 教材:普通高中课程标准试验教科书人教社A版,数学必修1 教学内容:第二章,基本初等函数(I),指数函数及其性质 教学目标 知识目标:理解指数函数的概念,初步掌握指数函数的图像和性质 能力目标:通过定义的引入,图像特征的观察,培养学生的探索发现能力,在学习过程中体会从具体到一般及数形结合的方法 情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。 | 教学重点﹑难点 重点:指数函数的概念和图像 难点:用数形结合的方法从具体到一般地探索﹑概括指数函数的性质 教学流程设计 (一)指数函数概念的构建 1.探究:本节问题2中函数的解析式与问题1中函数的解析式有什么共同特征 师生活动:教师提出问题引导学生把对应关系概括到的形式,学生思考归纳概括共同特征 2.给出指数函数的概念 一般地,函数叫做指数函数,其中是自变量,函数的定义域是 & 3.剖析概念 (1)规定底数大于零且不等于1的理由: 如果=0, 如果等等时,在实数范围内实数值不存在 如果是一个常量,对它就没有研究的必要 (2)形式上的严格性 指数函数是形式定义的函数,就像初中所学的一次函数﹑反比例函数都是形式定义的概念,因此把握指数函数的形式非常重要。在指数函数的定义表达式中,前的系数必须是1,自变量在指数的位置上,否则,不是指数函数,比如等,都不是指数函数 (二)指数函数的图像及性质 ) 1.提出问题:同学们能类比前面讨论函数性质时的思路,提出研究指数函数性质的方法吗 师生活动:教师引导学生回顾需要研究函数的那些性质,讨论研究指数函数性质的方法,强调数形结合,强调函数图像在研究性质中的作用,注意从具体到一般的思想方法的应用,渗透概括能力的培养,学生独立思考,提出研究指数函数性质的基本思路 2.画出函数的图像 师生活动:学生用描点法独立画图,教师课堂巡视,个别辅导,展示画的较好的学生的图像

高中数学必修一 函数的基本性质(一)

函数的基本性质(一) 基础知识: 函数的性质通常是指函数的定义域、值域、解析式、单调性、奇偶性、周期性、对称性等等,在解决与函数有关的(如方程、不等式等)问题时,巧妙利用函数及其图象的相关性质,可以使得问题得到简化,从而达到解决问题的目的. 关于函数的有关性质,这里不再赘述,请大家参阅高中数学教材及竞赛教材:陕西师范大学出版社 刘诗雄《高中数学竞赛辅导》、刘诗雄、罗增儒《高中数学竞赛解题指导》. 例题: 1. 已知f(x)=8+2x -x 2 ,如果g(x)=f(2-x 2 ),那么g(x)( ) A.在区间(-2,0)上单调递增 B.在(0,2)上单调递增 C.在(-1,0)上单调递增 D.在(0,1)上单调递增 提示:可用图像,但是用特殊值较好一些.选C 2. 设f(x)是R 上的奇函数,且f(x +3)=-f(x),当0≤x≤ 2 3 时,f(x)=x ,则f(2003)=( ) A.-1 B.0 C.1 D.2003 解:f(x +6)=f(x +3+3)=-f(x +3)=f(x) ∴ f(x)的周期为6 f(2003)=f(6×335-1)=f(-1)=-f⑴=-1 选A 3. 定义在实数集上的函数f(x),对一切实数x 都有f(x +1)=f(2-x)成立,若f(x)=0仅有 101个不同的实数根,那么所有实数根的和为( ) A.150 B. 2 303 C.152 D. 2 305 提示:由已知,函数f(x)的图象有对称轴x =2 3 于是这101个根的分布也关于该对称轴对称.

即有一个根就是 23,其余100个根可分为50对,每一对的两根关于x =2 3 对称 利用中点坐标公式,这100个根的和等于 2 3 ×100=150 所有101个根的和为 23×101=2 303.选B 4. 实数x ,y 满足x 2 =2xsin(xy)-1,则x 1998 +6sin 5 y =______________. 解:如果x 、y 不是某些特殊值,则本题无法(快速)求解 注意到其形式类似于一元二次方程,可以采用配方法 (x -sin(xy))2 +cos 2 (xy)=0 ∴ x=sin(xy) 且 cos(xy)=0 ∴ x=sin(xy)=±1 ∴ siny=1 xsin(xy)=1 原式=7 5. 已知x =9919+是方程x 4 +bx 2 +c =0的根,b ,c 为整数,则b +c =__________. 解:(逆向思考:什么样的方程有这样的根?) 由已知变形得x -9919= ∴ x 2 -219x +19=99 即 x 2-80=219x 再平方得x 4 -160x 2 +6400=76x 2 即 x 4 -236x 2+6400=0 ∴ b=-236,c =6400 b +c =6164 6. 已知f(x)=ax 2 +bx +c(a >0),f(x)=0有实数根,且f(x)=1在(0,1)内有两个实数根, 求证:a >4. 证法一:由已知条件可得 △=b 2-4ac≥0 ① f⑴=a +b +c >1 ②

指数函数及其性质教学设计

指数函数及其性质教案 一、教学目标: 1.通过观察、分析,归纳探究指数函数的概念,并能判断给出的具体函数是否是指数函数. 2. 会画指数函数的图象,从借助计算机画出的多个指数函数的图象中,能观察归纳出指数函数的的有关性质。至少能说出四条。 3.能根据图象或指数函数的性质判断两个具体的同底数的指数幂值的大小,以及具体的不同底数而同指数的两个指数幂值的大小. 4. 在学习的过程中,体会探究指数函数及其性质的过程和方法,如具体到一般的过程、数形结合的方法等. 二、教学重点、难点: 教学重点:指数函数的概念、图象和性质。 < 教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。 三、教学过程: (一)创设情景: 问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂x次后,得到的细胞分裂的个数y与x之间,构成一个函数关系,能写出x与y之间的函数关系式吗学生回答:y与x之间的关系式,可以表示为y=2x 。 问题2:一根1米长的绳子,第1次剪去绳长的一半,第2次再剪去剩余绳子的一半,剪了x 次后,绳子的剩余长度y与x有怎样的关系学生回答:y与x之间的关系式,可以表示为y=1 x。 () 2 (二)导入新课: 引导学生观察,两个函数中,底数是常数,指数是自变量。

设计意图:充实实例,突出底数a的取值范围,让学生体会到数学来源于生产生活实际。函数 y=2x、y= 1 () 2 x分别以01的数为底,加深对定义的感性认识,为顺利引出指数函数 定义作铺垫。 · 1.指数函数的定义 一般地,函数叫做指数函数,其中x是自变量,函数的定义域是R。 的含义: 设计意图:为按两种情况得出指数函数性质作铺垫。若学生回答不合适,引导学生用区间表示:(0,1)∪(1,+∞) 问题:指数函数定义中,为什么规定“”如果不这样规定会出现什么情况 设计意图:教师首先提出问题:为什么要规定底数大于0且不等于1呢这是本节的一个难点,为突破难点,采取学生自由讨论的形式,达到互相启发,补充,活跃气氛,激发兴趣的目的。 对于底数的分类,可将问题分解为: (1)若a<0会有什么问题(如,则在实数范围内相应的函数值不存在) ! (2)若a=0会有什么问题(对于,都无意义) (3)若a=1又会怎么样(1x无论x取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定a>0且. 在这里要注意生生之间、师生之间的对话。 设计意图:认识清楚底数a的特殊规定,才能深刻理解指数函数的定义域是R;并为学习对数函数,认识指数与对数函数关系打基础。 教师还要提醒学生指数函数的定义是形式定义,必须在形式上一模一样才行,然后把问题引向深入。 1:判断下列函数哪些是指数函数

必修一函数概念与基本性质

函数的概念及基本性质 【知识要点】 1. 函数的概念:设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于 集合A 中的任意 一个 数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么就称 :f A B →为从集合A 到集合B 的一个函数,记作:()y f x =,x A ∈,其中,自变 量x 的取值范围A 称为函数的定义域;与x 的值对应的y 值得取值范围(){} f x x A ∈称为函数的值域; 2. 函数的三要素:____________ 、____________、__________________; 3. 函数的三种表示方法:____________ 、____________、__________________; 4. 相同函数需要满足的条件:____________和______________相同就表示同一个函数; 5. 复合函数的概念:设()y f u = ,()u g x = ,设函数()u g x =的定义域为D ,函数() u g x =的值域为M ,函数()y f u =的值域为N ,则函数()u g x =的值域M 就是函数()y f u =的定义域,当函数()u g x =的自变量x 在定义域D 内变化时,函数()u g x =的值在函数()y f u =的定义域内变化,因此变量x 与变量y 通过中间变量u 形成的一种函数关系,记为 [()]y f g x = 。 6. 分段函数:在定义域内不同部分,函数有不同的解析式,这样的函数称为分段函数。 7. 映射:设A 、B 是两个非空的集合,如果按照某种确定的对应关系f ,使对于集合A 中的任 意一个元素x ,在集合B 中都有唯一确定的元素()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个映射。 【知识点1】函数概念的理解 【例1】判断下列对应是否为A 到B 的函数. (1)R A =,{} 0B x x =>,x y x f =→:; (2)Z A =,B Z =,2 x y x f =→:; (3)A Z =,B Z =,x y x f = →:; (4){} 11≤≤-=x x A ,{}0B =,0=→y x f :. 【例2】设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合 M 到集合N 的函数关系的是________. 【练习】下列对应是A 到B 的函数的是( ) .A A R =,B R =,对应法则: f 取倒数 {} 0.>=x x A B ,B R =,对应法则:f 求平方根 {}.0C A x x =>,B R =,3:f x y x x →=+ {}.55D A x x =-≤≤,{}55B y y =-≤≤,22::25f x y x y →+= 【点评】判断一个对应是不是函数,关键看数集A 中的元素x 在数集B 中是否有唯一的元

北师大版数学高一必修1练习 指数函数及其性质的应用

[A 基础达标] 1.当x ∈[-1,1]时,f (x )=3x -2的值域是( ) A.??? ?-53,1 B .[-1,1] C.????1,53 D .[0,1] 解析:选A.f (x )在R 上是增函数,由f (-1)=-53 ,f (1)=1得当x ∈[-1,1]时,f (x )=3x -2的值域是??? ?-53,1. 2.设f (x )=????12|x |,x ∈R ,那么f (x )是( ) A .奇函数且在(0,+∞)上是增函数 B .偶函数且在(0,+∞)上是增函数 C .奇函数且在(0,+∞)上是减函数 D .偶函数且在(0,+∞)上是减函数 解析:选D.f (x )的定义域为R ,f (-x )=f (x ),所以f (x )为偶函数,排除A 、C ;当x >0时,y =????12x 为减函数,排除B.故选D. 3.函数y =6x 与y =-6-x 的图像( ) A .关于x 轴对称 B .关于y 轴对称 C .关于原点对称 D .关于直线y =x 对称 解析:选C.y =f (x )与y =-f (-x )的图像关于原点对称. 4.函数y =????12x 2-2在下列哪个区间上是减少的( ) A .(-∞,0] B .[0,+∞) C .(-∞,2] D .[2,+∞) 解析:选B.设u =x 2-2,u 在(-∞,0]是减函数,在[0,+∞)上是增加的,y =????12u 是 减函数, 所以y =????12x 2 -2在[0,+∞)上是减少的.

5.下列图像中,二次函数y =ax 2+bx 与指数函数y = ????b a x 的图像只可能是( ) 解析:选A.由指数函数图像可以看出0

相关文档
最新文档