微电子科学与工程专业

微电子科学与工程专业
微电子科学与工程专业

微电子科学与工程专业

一、培养目标

本专业培养德、智、体等方面全面发展,具备微电子科学与工程专业扎实的自然科学基础、系统的专业知识和较强的实验技能与工程实践能力,能在微电子科学技术领域从事研究、开发、制造和管理等方面工作的专门人才。

二、专业特色

微电子科学与工程是在物理学、电子学、材料科学、计算机科学、集成电路设计制造学等多个学科和超净、超纯、超精细加工技术基础上发展起来的一门新兴学科。微电子技术是近半个世纪以来得到迅猛发展的一门高科技应用性学科,是21世纪电子科学技术与信息科学技术的先导和基础,是发展现代高新技术和国民经济现代化的重要基础,被誉为现代信息产业的心脏和高科技的原动力。本专业主要学习半导体器件物理、功能电子材料、固体电子器件,集成电路设计与制造技术、微机械电子系统以及计算机辅助设计制造技术等方面的基础知识和实践技能,培养出来的学生在微电子技术领域初步具有研究和开发的能力。

三、培养标准

本专业学生要求在物理学、电子技术、计算机技术和微电子学等方面掌握扎实的基础理论,掌握微电子器件及集成电路的原理、设计、制造、封装与应用技术,接受相关实验技术的良好训练,掌握文献资料检索基本方法,具有较强的实验技能与工程实践能力,在微电子科学与工程领域初步具有研究和开发的能力。

毕业生应获得以下几方面的知识和能力:

1. 具有较好的人文科学素养、创新精神和开阔的科学视野;

2. 树立终身学习理念,具有较强的在未来生活和工作中继续学习的能力;

3. 具有较扎实的自然科学基本理论基础;

4. 具备微电子材料、微电子器件、集成电路、集成系统、计算机辅助设计、封装技术和测试技术等方面的理论基础和实验技能;

5. 了解本专业领域的科技发展动态及产业发展状况,熟悉国家电子信息产业政策及国内外有关知识产权的法律法规;

6.掌握文献检索及运用现代信息技术获取相关信息的基本方法;

7.具有归纳、整理和分析实验结果以及撰写论文、报告和参与学术交流的能力。

77

五、主干学科、核心课程与主要实践性教学环节

主干学科:电子科学与技术

主要课程:C语言程序设计、电路分析基础、信号与系统分析、模拟电子技术、数字逻辑、固体物理、半导体物理、微电子技术基础、电磁场与微波技术、通信原理、半导体集成电路、ASIC设计原理及应用、射频集成电路设计、现代模拟集成电路原理及应用等。

主要实践性教学环节:包括机械工程训练、电子认知实习、课程设计、生产实习、工程设计、毕业设计等。

78

主要专业实验:电路分析基础实验、模拟电子技术实验、数字逻辑实验、微电子技术基础实验、半导体物理实验、计算机组成与体系结构实验、电磁场与微波技术实验、IC设计基础与实践实验、ASIC设计原理及应用实验等。

六、毕业合格标准

1.符合德育培养目标要求。

2.学生最低毕业学分为189学分。包括:所有课程、实践教学、素质拓展等。

3.符合大学生体育合格标准。

七、标准修业期限和授予学位

标准修业期限:四年

授予学位:工学学士

八、教学进程计划表(详见附表一)

九、专业培养计划总学时、学分统计表(详见附表二)

十、本专业供辅修的核心课程(详见附表三)

79

附表一

80

注:表中有★的课程为核心课程,有▲标志的课程记入学分绩。

主管校长:欧阳缮教务处长:郭庆学院领导:仇洪冰专业负责人:段吉海

81

微电子科学与工程专业教学进程计划表(选修部分)

82

注:表中有▲标志的课程记入学分绩。

83

84

注:1、生产实习安排在第六学期暑假。

2、表中有▲标志的课程记入学分绩。

85

附表二

微电子科学与工程专业培养计划总学时、学分统计表

附表三

微电子科学与工程专业供辅修的核心课程

86

87

清华大学微电子学本科生培养

首页->人才培养->本科生培养 一、简介 微纳电子系本科生一级学科名称为电子科学与技术,二级学科名称为微电子学。共有2003级本科生92人,2004级本科生66人,2005级本科生67人。2007年微纳电子系开设了21门本科生课程,其中专业核心课8门,专业限选课5门,平台课2门,专业任选课4门,新生研讨课2门。 二、课程设置 ?课程编号:30260093 课程名称:固体物理学 课程属性:专业核心课 任课教师:王燕 内容简介:固体物理学是固体材料和固体器件的基础。该课程主要研究晶体的结构及对称性,晶体中缺陷的形成及特征,晶格动力学,能带理论的基础知识以及晶体中的载流子输运现象等。是微纳电子专业的核心课。 ?课程编号:40260103 课程名称:数字集成电路分析与设计 课程属性:专业核心课 任课教师:吴行军 内容简介:本课程从半导体器件的模型开始,然后逐渐向上进行,涉及到反相器,复杂逻辑门(NAND,NOR,XOR),功能模块(加法器,乘法器,移位器,寄存器)和系统模块(数据通路,控制器,存储器)的各个抽象层次。对于这些层次中的每一层,都确定了其最主要的设计参数,建立简化模型并除去了不重要的细节。 ?课程编号:40260173

课程名称:数字集成电路分析与设计(英) 课程属性:专业核心课 任课教师:刘雷波 内容简介:数字集成电路的分析与设计,包括:CMOS反相器、组合和时序逻辑电路分析与设计、算术运算逻辑功能部件、半导体存储器的结构与实现、互连线模型与寄生效应的分析。并介绍常用数字集成电路的设计方法和流程。 ?课程编号:30260072 课程名称:微电子工艺技术 课程属性:专业核心课 任课教师:岳瑞峰 内容简介:本课程授课目的是使学生掌握微电子制造的各单项工艺技术,以及亚微米CMOS集成电路的工艺集成技术。本课程讲授微电子制造工艺各单项工艺的基本原理(包括氧化、扩散、离子注入、薄膜淀积、光刻、刻蚀、金属化工艺等),并介绍常用的工艺检测方法和MEMS加工技术、集成电路工艺集成技术和工艺技术的发展趋势等问题。另通过计算机试验,可学习氧化、扩散、离子注入等工艺设备的简单操作和模拟。 ?课程编号:40260033 课程名称:模拟集成电路分析与设计 课程属性:专业核心课 任课教师:王自强 内容简介:本课程介绍模拟集成电路的分析与设计方法,帮助学生学习基础电路理论,实现简单的模拟集成电路。课程分成3个部分:电路理论知识、电路仿真和版图介绍。课程以讲述电路理论为主,通过电路仿真对电路理论加以验证,最后介绍版图、流片方面的内容,使学生对全定制集成电路的设计流程有初步了解。 ?课程编号:40260054

2019年教科版小学《科学》新教材解读

2019年教科版小学‘科学“ 新教材培训研讨会资料四北 京四 esph

目一一录 一二小学科学教材(3~6年级)修订报告(1) 二二相关文献(9) esph 三二教科版小学科学教材内容框架(科学知识目标)(16) 四二3~6年级上册各单元概述(28) 五二教材前期试教资料(53)

一二小学科学教材(3~6年级) 修订报告 继一二二年级教材送审之后,根据教育部‘小学科学教材修订送审工作有关要求的通知“,我们对本版3~6年级的科学教材进行了全面修订三 通知中明确,这次修订的目的是使教材的质量得到提升,具体要求是加强整体设计,遵循儿童发展规律三遵照这一目的和要求,我们此次修订的重点是以课程标准为核心,调整现行教材的框架结构和相关内容,提升和改进教学活动的原有设计三esph 一二教材框架结构和内容的调整 (一)调整情况 2017年颁布的小学科学课程标准的一个重要变化,是在内容标准部分进行了学段划分,突出了大概念在学生发展中的作用,强调了学习进阶理论在设计中的地位三我们清醒地意识到,虽然我们编写的教材已经采取了以概念为核心的框架结构,但如何将大单元的结构方式与课程标准的目标体系更完美地融合,仍然有许多工作要做三我们首先将现行3~6年级本版教材的教学目标与课程标准4个领域的207项学段目标逐一核对,结果显示,两者的吻合度还是比较高的,但也发现了与学段目标不够吻合的部分,例如地球与宇宙科学领域的13.1-3目标现行教材是在高年段实现的,为此我们采取了在三年级下册增设 太阳二地球和月球 单元的措施三对个别学段目标的错位,我们进行了单元的拆解或合并,例如 新的生命 分别植入 植物的生长变化 和 动物的一生 , 温度和水的变化 与 溶解 合并为 水 ,呼吸和消化器官的教学集中在了一个单元三至于现行教材中存在个别超出学段目标的部分,则做了删除处理,例如 沉与浮 单元,不再进行浮力的比较,而是指向工程与技术,更名为 船的研究 , 我们的身体 单元主题更明确为 健康生活 三 经过这样的调整,我们达到了如下效果: ?将原3~6年级32个单元减少为28个(3二4年级每册3个单元共计24学时, 5二6年级每册4个单元共计28学时),降低了教材难度,减少了课程容量三?对大部分的主题和内容进行了原有设计的提升和改进,使修订后的教材既具有延续性又提高了质量三

第二章 材料科学与工程的四个基本要素(2020年九月整理).doc

第二章 材料科学与工程的四个基本要素 MSE 四要素; – 使用性能,材料的性质,结构与成分,合成与加工 两个重要内容; – 仪器与设备,分析与建模 §2.1 性质与使用性能 1. 基础概念 2. 性质与性能的区别与关系 3. 材料的失效分析 4. 材料(产品)使用性能的设计 5. 材料性能数据库 6. 其它问题 2.1.1基础内容 材料性质: 是功能特性和效用的描述符,是材料对电.磁.光.热.机械载荷的应。 材料性质描述 ? 力学性质;强度,硬度,刚度,塑性,韧性 物理性质;电学性质,磁学性质,光学性质,热学性质 化学性质;催化性质,防化性质 结构材料性质的表征----材料力学性质 强度:材料抵抗外应力的能力。 塑性:外力作用下,材料发生不可逆的永久性变形而不破坏的能 力。 硬度:材料在表面上的小体积内抵抗变形或破裂的能力。 刚度:外应力作用下材料抵抗弹性变形能力。 疲劳强度:材料抵抗交变应力作用下断裂破坏的能力。 抗蠕变性:材料在恒定应力(或恒定载荷)作用下抵抗变形的能 力。 韧性:材料从塑性变形到断裂全过程中吸收能量的能力。 6 强度范畴 刚度范畴 塑性范畴 韧性范畴 应 力 应 变 2.1.1基础内容

7 材料的物理性质 磁学性质 光学性质 电学性质 · 导电性 · 绝缘性 · 介电性 · 抗磁性 · 顺磁性 · 铁磁性 · 光反射 · 光折射 · 光学损耗 · 光透性 热学性质 · 导热性 · 热膨胀 · 热容 · 熔化 注:上面只列出了材料的主要物理性质 2.1.1基础内容 物理性质的交互性----材料应用的关键点 现代功能材料不仅仅表现出单一的物理性质,更重要的是具备了特 殊的物理交互性。例如: 电学----机械 电致伸缩 机械----电学 压电特性 磁学----机械 磁致伸缩 电学----磁学 巨磁阻效应 电学----光学 电致发光 性能定义 在某种环境或条件作用下,为描述材料的行为或结果,按照特定的 规范所获得的表征参量。 材料力学性能 1. 强度表征: 弹性极限,屈服强度,比例极限…… 2. 塑性表征:延伸率δ,断面收缩率φ,冲杯深度 h 3. 硬度表征:布氏硬度,洛氏硬度,维氏硬度…… 4. 刚度表征:弹性模量,杨氏模量,剪切模量…… 5. 疲劳强度表征:疲劳极限,疲劳寿命…… 6. 抗蠕变性表征:蠕变极限,持久强度…… 7. 韧性表征:断裂韧性 K IC ,断裂韧性 J IC 材料物理性能 1. 电学性能表征:导电率,电阻率,介电常数…… 2. 磁学性能表征:磁导率,矫顽力,磁化率…… 3. 光学性能表征:光反射率,光折射率,光损耗率…… 4. 热学性能表征:热导率,热膨胀系数,熔点,比热…… 2.1.2性质与性能的区别与关系 性质与使用性能的区别与关系

微电子科学与工程专业本科培养计划

微电子科学与工程专业本科培养计划 Undergraduate Program for Specialty in Microelectronic Science and Engineering 一、培养目标 Ⅰ.Program Objectives 本专业培养掌握微电子科学与工程专业必需的基础知识、基本理论和基本实验技能,能够从事该领域的各种微电子材料、器件、封装、测试、集成电路设计与系统的科研、教学、科技开发、工程技术、生产管理等工作的高级专门人才。 This program trains advanced talents with basic knowledge, theory and experimental skills necessary for Microelectronic Science and Engineering. These talents can be engaged in various works in microelectronic materials, devices, packaging, testing, integrated circuit design and system as well as the scientific research, education, technique development, engineering technology, production management. 二、基本规格要求 Ⅱ.Learning Outcomes 毕业生应获得以下几个方面的知识和能力: 1、具有扎实的自然科学基础,良好的人文社会科学基础和外语能力; 2、掌握本专业领域较宽的基础理论知识,主要包括固体物理、半导体物理、微电子材料、微电子器件、集成电路设计等方面的基础理论知识;在本专业领域内具备从事科学研究的能力; 3、受到良好的工程实践训练,掌握各种微电子器件与集成电路的分析、设计与制造方法,具有独立进行微电子材料及器件性能分析、集成电路设计、微电子工艺流程的基本能力;具备一定的工程开发和组织管理能力; 4、了解本专业的最新发展动态和发展前景,了解微电子产业的发展状况。 The program requires that the learners have the knowledge and abilities listed as follows: 1. Have solid foundation in natural science, basic fine knowledge in humanities and social sciences

义务教育小学科学课程目标2017版

课程目标 小学科学课程的总目标是培养学生的科学素养,并为他们继续学习、成为合格公民和终身发展奠定良好的基础。学生通过科学课程的学习,保持和发展对自然的好奇心和探究热情;了解与认知水平相适应的科学知识;体验科学探究的基本过程,培养良好的学习习惯,发展科学探究能力;发展学习能力、思维能力、实践能力和创新能力,以及用科学语言与他人交流和沟通的能力;形成尊重事实、乐于探究、与他人合作的科学态度;了解科学、技术、社会和环境的关系,具有创新意识、保护环境的意识和社会责任感。 本标准分别从“科学知识”“科学探究”“科学态度”“科学、技术、社会与环境”四个方面阐述具体目标。 一、科学知识目标 (一)科学知识总目标 1.了解物质的基本性质和基本运动形式,认识物体的运动、力的作用、能量、能量的不同形式及其相互转换。 2.了解生物体的主要特征,知道生物体的生命活动和生命周期;认识人体和健康,以及生物体与环境的相互作用。

3.了解太阳系和一些星座;认识地球的面貌,了解地球的运动;认识人类与环境的关系,知道地球是人类应当珍惜的家园。 4.了解技术是人类能力的延伸,技术是改变世界的力量,技术推动着人类社会的发展和文明进程。 (二)科学知识学段目标 以下从物质科学、生命科学、地球与宇宙科学、技术与工程。个领域描述科学知识的学段目标

、科学探究目标 (一)科学探究总目标 1.了解科学探究是获取科学知识的主要途径,是通过多种方法寻找证据、运用创造性思维和逻辑推理解决问题,并通过评价与交流

等方式达成共识的过程。 2.知道科学探究需要围绕已提出和聚焦的问题设计研究方案,通过收集和分析信息获取证据,经过推理得出结论,并通过有效表达与他人交流自己的探究结果和观点;能运用科学探究方法解决比较简单的日常生活问题。 3.初步了解分析、综合、比较、分类、抽象、概括、推理、类比等思维方法,发展学习能力、思维能力、实践能力和创新能力,以及运用科学语言与他人交流和沟通的能力。 4.初步了解通过科学探究达成共识的科学知识在一定阶段是正确的,但是随着新证据的增加,会不断完善和深入,甚至会发展变化。 (二)科学探究学段目标 从提出问题、作出假设、制订计划、搜集证据、处理信息、得出结论、表达交流、反思评价这8 个要素描述科学探究的学段目标。

材料科学与工程学科的发展历程和趋势

材料科学与工程学科发展历程和趋势 摘要:本文结合国内几所高校材料学科的具体实例,综述了材料科学与工程学科的国内外发展的历史进程,讨论了材料科学与工程学科的发展趋势,同时展望了材料科学与工程学科在未来的发展前景。 关键词:材料科学与工程,发展历程,趋势 Abstract In this paper,on the basis of practice of materials science and engineering discipline in several domestic universities, the development process of materials science and engineering at home and abroad were reviewed, and the development trend of this discipline were discussed. Meanwhile, the prospect of this subject in the future were prospected. Keywords:materials science and engineering,development process,trend 1 引言 上个世纪70年代以来,人们把信息、材料和能源作为社会文明的支柱。80年代又把新材料、信息技术和生物技术并列为新技术革命的重要标志。随着科学技术的高速发展,新技术、新产品及新工艺对新材料的要求越来越强烈,也促进了当代材料科学技术的飞速发展。现在,材料学科及教育的重要性已被人们认识,国内外许多工科院校及综合性大学都相继成立了材料科学与工程学院(系)。 2 材料科学与工程学科发展历程 “材料科学”这个名词在20世纪60年代由美国学者首先提出。1957年,苏联人造地球卫星发射成功之后,美国政府及科技界为之震惊,并认识到先进材料对于高技术发展的重要性,于是一些大学相继成立了十余个材料科学研究中心,从此,“材料科学”这一名词开始被人们广泛使用。 材料学科的发展过程遵循了现代科学发展的普遍规律,也是从细分走向综合。各门材料学科通过相互交叉、渗透、移植,由细分最终走向具有共同理论和技术基础的全材料科学[1]。20世纪40年代以前,基础科学和工程之间的联系并不十分紧密。在20世纪20年代固体物理和材料工程两学科是分离的,到40年代两学科才有交叉。从60年代初开始出现了材料科学,到了70年代,材料科学和材料工程的学科内涵大部分重叠,材料科学兼备自然科学和应用科学的属性,故“材料科学与工程”(MSE)作为一个大学科逐步为科技界和教育界所接受[2]。 2.1 国外材料科学与工程学科发展历程 美国西北大学M.E.Fine教授等人首先于20世纪60年代初提出了材料科学与 工程(MSE)这一概念。在上20世纪60年代以前,国内外高校均没有明确完整的MSE教育。此时,材料科学与技术人才的培养分属冶金、化工或机械等专业。从60年代初起,欧美等国家高校中冶金、机械或化工等与材料有关的系或相关的专业及学科开始改设“材料科学与工程系”、“材料科学系”、“材料工学系”。至80年代中后期,欧美等国大部分高校已完成此项工作。这种教育符合材料科学技术发展趋势。近年来,美国与欧洲在材料教育方面的最显著特点就是把材料科学与工程看作是一门学科。在大学不再需要专门的材料主题。这些材料不再是冶金、陶瓷或电子材料学,而统称为材料,材料教育涉及的范围包括金属、陶瓷、高分子、

电子科学与技术就业前景

电子科学与技术就业前景 阅读精选(1): 电子科学与技术专业就业前景之市场需求 本专业重视厚基础、宽口径培养,学生创新潜力较强,曾获得国际数模大赛金奖,在全国大学生挑战杯、电子设计竞赛等国内重大比赛中均取得了较本专业就业状况良好,一次性签约率到达100%。每年保送免试硕士研究生超过10%,考取硕士研究生40%以上。本专业的毕业生具有深厚的基础知识和很强的工作适应潜力,既可在科研、生产单位和高校从事电子科学与技术领域的设计、研究、开发和管理工作,也可从事电子类其它专业的相应工作。本专业毕业生可继续在光学工程、物理电子学、微电子学与固体电子学、材料学、材料物理与化学等硕士点或博士点进行深造。 电子科学与技术专业就业前景之就业方向 电子公司、通信公司都欢迎本专业的毕业生。攻读研究生进一步深造,会为将来的发展带给更雄厚的知识资本。另外,本专业的毕业生能够在生物医学工程领域、医学仪器以及其他电子技术、计算机技术、信息产业等部门从事研究、开发、教学及管理工作,还能够自主创业,从事计算机、IT行业工作。 电子科学与技术专业就业前景之课程介绍 本专业主要课程:信号与系统、电子技术基础、数字电路与系统设计、高级语言程序设计、微机原理与系统设计、量子力学、固体物理、半导体物理、物理光学与应用光学、近代电子材料、固态电子器件、光电子技术等,以及激光原理与技术、光纤通信、红外技术、红外物理、电介质物理、物理化学、敏感材料与传感器、薄厚膜混合集成电路等专业课程。 电子科学与技术专业就业前景之培养目标 本专业培养适应海外、港澳台地区社会发展需要和内地社会主义现代化建设需要,具备光电子学和物理电子学领域、微电子和集成电路设计领域内宽厚理论基础、实验潜力和专业知识,能在该领域内从事各种光电子材料、光器件和光电子系统的设计、制造,或从事集成电路设计和集成系统的研究、开发和应用,以及相应的新产品、新技术、新工艺的研究、开发等方面工作的高级工程技术人才。毕业生能适应现代通信、信息科学和光电子等行业需要,学生毕业后可在大专院校、科研院所、技术公司等部门从事科学研究、教学、生产设计、应用开发和专业技术管理工作。 阅读精选(2): 电子科学与技术专业介绍 专业概述21世纪,随着现代科学技术的飞速发展,人类历史即将进入一个崭新的时代──信息时代。 其鲜明的时代特征是,支撑这个时代的诸如能源、交通、材料和信息等基础产业均将得到高度发展,并能充分满足社会发展及人民生活的多方面需求。 信息科学的基础是微电子技术和光电子技术,它们同属于教育部本科专业目录中的一级学科“电子科学与技术”。 该专业以电子器件及其系统应用为核心,重视器件与系统的交叉与融合,面向微电子、光电子、光通信、高清晰度显示产业等国民经济发展需求,培养在通信、电子系统、计算机、自动控制、电子材料与器件等领域具有宽广的适应潜力、扎实的理论基础、系统的专业知识、较强的实践潜力、具备创新意识的高级技术人才和管理人才,并掌握必须的人文社会科学及经济管理方面的基础知识,能从事这些领域的科学研究、工程设计及技术开发等方面工作。 课程设置学院在加强通识教育的基础上,进一步拓宽专业口径,课程体系注意理工管结合、文理渗透和学科交叉,培养基础扎实、知识面宽、潜力强、素质高、德智体美全面发展

(完整版)小学科学课程标准2017年义务教育

九年义务教育 小学科学课程标准2017 中华人民共和国教育部制定

目录第一部分前言 一、课程性质 二、课程基本理念 三、课程设计思路 第二部分课程目标 一、科学知识目标 二、科学探究目标 三、科学态度目标 四、科学、技术、社会与环境目标第三部分课程内容 一、物质科学领域 二、生命科学领域 三、地球与宇宙科学领域 四、技术与工程领域 第四部分实施建议 一、教学建议 二、评价建议 三、教材编写建议 四、课程资源开发与利用建议

附录教学案例 案例1 认识空气 案例2 水沸腾现象的观察 案例3 西瓜虫有“耳朵”吗 案例4 观察月相 案例5 暗盒里有什么 案例6 水火箭

第一部分前言 当今世界,科学发现与技术创新不断涌现,为人类在更大范围、更深层次上认识并合理利用自然提供了可能。科学技术推动了生产力的发展、经济的繁荣和社会的进步,促进了人们的生产方式、生活方式和思维方式的变革。科学技术的快速发展对每一位公民的科学素养提出了新的要求。 科学素养是指了解必要的科学技术知识及其对社会与个人的影响,知道基本的科学方法,认识科学本质,树立科学思想,崇尚科学精神,并具备一定的运用它们处理实际问题、参与公共事务的能力。提高公民的科学素养,对于公民改善生活质量,增强参与社会和经济发展的能力,建设创新型国家,实现经济社会全面、协调、可持续发展都具有十分重要的意义。小学科学课程要按照立德树人的要求培养小学生的科学素养,为他们的继续学习和终身发展打好基础。 一、课程性质 小学科学课程是一门基础性课程。早期的科学教育对一个人的科学素养的形成具有十分重要的作用。通过小学科学课程的学习,能够使学生体验科学探究的过程,初步了解与小学生认知水平相适应的一些基本的科学知识(培养提问的习惯,初步学习观察、调查、比较、分类、分

电子科学与技术微电子技术方向专业培养方案

电子科学与技术(微电子技术方向)专业 培养方案 一、专业培养目标 本专业旨在培养德、智、体、美全面发展,具备基本的科学素养,系统掌握电子科学与技术基本理论和专业知识,掌握微电子技术基础知识与方法,可以在电子系统、集成电路、电子器件的设计与制造开发中承担任务,拥有较好的实践动手能力、系统分析与开发能力,适应社会经济发展需要的专门人才。毕业后,可在电子科学技术及微电子技术相关学科领域从事应用研究、技术开发或经营管理等工作,并有在工作中继续学习、不断更新知识的能力。毕业后经过5年左右的实践锻炼,能够具备较高的职业素养和社会责任感;具有良好的沟通交流、组织协调和团队合作能力;胜任工作岗位要求,具有独立承担本专业或相关领域技术开发和管理工作的能力;预期发展为高级工程技术人员,成为本领域的专业技术骨干或管理骨干。 二、专业毕业要求 本专业毕业生应具备数学、自然科学及工程基础知识,较好地掌握电子科学与技术的基本理论以及微电子技术基本技能与方法,针对电子科学与技术及微电子技术相关领域中的复杂工程问题具有问题分析、研究、解决方案的设计、以及项目管理的能力,并且能够理解和评价复杂工程问题对环境和社会的影响。此外,毕业生还应具有终身学习的意识和能力、良好的沟通能力和团队合作意识和精神。 毕业要求 具体地说,对于本专业的学生,毕业要求包括如下12项基本要求: (1)工程知识:能够将数学、自然科学、工程基础和电子科学与技术及微电子技术知识用于解决复杂工程问题; (2)问题分析:能够应用数学、自然科学和工程科学的基本原理,识别、表达、并通过文献研究分析复杂工程问题,以获得有效结论; (3)设计/开发解决方案:能够设计针对复杂工程问题的解决方案,设计和开发满足特定需求的电子器件、集成电路和电子系统,并能够在设计与开发环节中体现创新意识,考虑社会、健康、安全、法律、文化以及环境等因素; (4)研究:能够基于科学原理并采用科学方法对复杂工程问题进行研究,包括设计实验、分析与解释数据、并通过信息综合得到合理有序的结论; (5)使用现代工具:能够针对复杂问题,开发、选择与使用恰当的技术、资源、现代工程工具和信息技术工具,包括对复杂工程问题的预测与模拟,并能够理解其局限性;(6)工程与社会:能够基于工程相关背景知识进行合理分析,评价专业工程实践和复杂工

2020最新微电子科学与工程专业大学排名

2020微电子科学与工程专业大学排名 微电子科学与工程专业介绍 微电子科学与工程专业培养德、智、体全面发展,具有扎实的数理基础和电子技术基础理论,掌握新型微电子器件和集成电路分析、设计、制造的基本理论和方法;具备本专业良好的实验技能,能在微电子及相关领域从事科研、教学、科技开发、工程技术、生产管理与行政管理等工作的高级专门人才。 微电子科学与工程是物理学、电子学、材料科学、计算机科学、集成电路设计制造学等多个学科和超净、超纯、超精细加工技术基础上发展起来的一门新兴学科。微电子学是21世纪电子科学技术与信息科学技术的先导和基础,是发展现代高新技术和国民经济现代化的重要基础。主要研究半导体器件物理、功能电子材料、固体电子器件,超大规模集成电路(ULSI)的设计与制造技术、微机械电子系统以及计算机辅助设计制造技术等。 主干课程: 高等数学、大学物理及实验、电路分析基础及实验、模拟电路及实验、数学物理方法、C++语言、数字电路及实验、信号与系统及实验、半导体物理及实验、固体电子学、微电子器件、微电子集成电路、集成电路设计与制造、电子设计自动化、集成电路CAD、微电子技术专业实验和集成电路工艺实习等。 核心知识领域:电路理论、电子技术基础、信号与系统、电磁场与电磁波、半导体物理、微电子器件原理、集成电路设计原理、微电子工艺原理、集成电路封装与系统测试、嵌入式系统原理与设计、电子设计自动化基础等。 核心课程示例: 示例一:电路分析原理(64学时)、微电子与电路基础(48学时)、信号与系统(48学时)、半导体物理(64学时)、电子线路A(48学时)、数字逻辑电路(48学时)、数字集成电路设计(48学时)、集成电路工艺原理(48学时)、半导体器件物理(48学时)、数字集成电路原理(64学时)、电子系统设计(64学时)、集成电路计算机辅助设计(48学时)。 示例二:电路分析理论(48学时)、电磁场理论(48学时)、模拟电子线路(64学时)、信号与系统(64学时)、数字电子线路(64学时)、固体物理学(64学时)、半导体物理学(64学时)、集成电路原理与设计(64学时)、半导体器件物理(64学时)、微电子制造科学原理(48学时)。 示例三:核心必修课,包括电路分析(54学时)、模拟电子技术(48学时)、数字电子技术(48学时)、固体物理(48学时)、半导体物理(48学时)、半导体器件物理(64学时)、半导体工艺原理(48学时);专业方向核心限选课,包括半导体集成电路原理与设计(32学时)、集成电路CAD(32学时)、集成

科学和工程实践八个类型

科学和工程实践八个类型 “科学和工程实践”包括8 个实践类型,它们分别是: 1. 提出问题和明确需要解决的难题 能够提出关于物质世界的问题,能区分科学问题和非科学问题,区分提出的问题和需要解决的困难,能质疑数据,解释或提出进一步的思考。 2. 建立和使用模型 可以通过图画、表格或做实物模型,表征自然界的具体事物、相互关系或运动模式,能够运用类比、举例或比喻的方法描述一个科学原理。 3.设计和实施调查研究 能够以现有的学习经验为基础设计并进行探究,寻找对于问题的合理答案。能开展不同类型的调查研究,利用不同的技术收集数据,包括控制变量的实验。在探究中能够与同伴密切合作。 4.分析和解释数据 能够通过绘画、写作、图解、制表或统计分析简单记录并分享观察到的事物。真实实践收集、分析和解读数据的过程。能描述数据的重要特点、相关性或因果关系,运用逻辑推理对数据进行分析和解释。 5.运用数学和计算思维 学习使用合适的测量工具及单位,得出测量结果和定量结果,尝试使用计算机记录、汇总和展示数据,寻找数据间的关系。 6.建构解释和设计解决方案 在基于证据解释自然现象的过程中,能运用证据支持或建构某一解释。在解决问题的方案中能运用所提供的工具和材料,并能对各种方案进行比较。 7.基于证据进行论证 能比较和评价同伴提出的不同科学解释,判定哪个解释的证据更加充分,并合作探寻最佳解释。能运用证据证明自己的想法,挑战不同的观点或支持某一观点。能听取其他同学的意见,利用他人的证据和评论来反思和修正自己的理解。在口头、书面以及利用图表表述时,使用逻辑推理。 8.获取、评估和交流信息 能运用观察结果和文本与他人清晰地交流,在口头或书面表达时能运用模型、图画及数字说明个人观点的细节部分。能通过阅读书籍和其他可靠的媒体获取信息,对自己和同伴的想法或方案的优点进行评价。

我对材料科学与工程的认识和了解

专业介绍与概论 作业 题目:我对材料科学与工程专业的了解和认识班级: 学号: 姓名:

我对材料科学与工程专业的认识和了解 在上大学之前,我无意中就了解到当今世界的三的经济支柱是材料,信息,能源。又发现材料在我们的生活中无处不在,并且在高中通过对物理化学的不断学习,才使我在高三毕业后毫不犹豫地选择了材料科学工程专业,相信我的选择没有错。 上大学后,我对本专业有了更多的了解。在咱们学校材料科学与工程分金属材料及热处理,建筑材料工程,表面工程三个方向。下面是我分别对这三个方向的了解。 1.金属材料及热处理: 金属材料这好理解,就是金属做的材料,一般以铁为主,钢一类,使用很广。热处理可以简单的分为组织结构控制和表面处理。组织控制就是:淬火、正火、回火、退火,通过控制钢铁的加温温度,将金属原本的缺陷得以弥补,也可以将原来比较软的钢变硬,原来很脆的便的柔韧,这要看具体的工件的工作要求。在当今社会生产中,金属材料的应用是十分广泛的,尤其是钢铁材料,在工业。农业。交通运输。建筑以及国防等各方面都离不开他。随着现代化工农业以及科学技术的发展,人们对金属材料的性能要求越来越高。为满足这一点,一般可以采取两种方法:研制新材料和对金属材料进行热处理。后者是最广泛,最常用的方法。热处理是一种综合工艺。热处理工艺学就是研究这种综合工艺的原理及规律的一门学科。

业务培养目标:培养从事金属材料的设计、使用、质量控制 和检验,热处理,研究发展新材料、新工艺以及管理的高级工程 技术人才。 业务培养要求:本专业学生主要学习材料科学的基础理论, 掌握金属材料的成份、组织结构、生产工艺、环境与性能之间关 系的基本规律,研究钢铁材料、有色金属合金、功能材料及特殊 性能合金,通过合金设计和工艺设计,提高材料的性能和质量, 并开发新材料、新工艺。 毕业生应获掌握物理化学、金用学、金属材料学等材料科学的理论;掌握金属材料的冶炼、铸造、冷热加工和热处理等生产 工艺的基本知识和技术经济管理知识;具有材料的基本检测技术和计算机应用等基本技能;具有正确选择、合理使用金民材料。质量控制与实验分析以及合金设计的初步能力;具有制定合理的热处理工艺,分析热处理质量问题以及正确选用热处理设备的能力;具有研究开发新材料、热处理新工艺和新设备的初步能力。 主要实践环节:金工实习、认识实习、生产实习、课程设计、专业实验、计算机应用及上机实践、热处理车间设计、毕业论文(设计)。毕业生可从事材料科学与工程的教学与科研工作,可在机械、电子、冶金、石化、交通、轻纺等工厂的理化检验部门,从事材

微电子科学与工程专业导论

《微电子科学与工程专业导论》课程教学大纲 一、课程基本信息 课程编号:201408104 课程中文名称:微电子科学与工程专业导论 课程英文名称:Introduction on Microelectronic science and Engineering 课程性质:专业核心课程 开课专业:微电子科学与工程 开课学期:1,3 总学时:16 总学分:1 二、课程目的和任务 通过本课程的学习可以使学生了解什么是微电子学,微电子学的目的任务,微电子专业将要学习的课程和需要掌握的相关知识和软件,微电子学的历史和典型微电子器件,微电子学的发展和规律,通过学习使学生能够对微电子学有一个总体的、全面的了解,培养学生对微电子学的兴趣,了解微电子学的最新发展趋势,微电子科学与工程专业的就业和深造情况。相关知识包括固体物理及量子力学初步知识,握半导体物理及微电子器件知识,微电子工艺技术,集成电路设计,MEMS(微机电系统)相关知识,还将讲解学生关心的最新的数码、电脑硬件及微处理器的原理、结构以及选购知识。通过学习使微电子专业的学生对微电子学的基本知识有一个比较系统、全面的认识。激发学生对本专业的兴趣,为学生下一步学习微电子学各门专业课准备好必要条件。 三、教学基本要求 (1)了解微电子科学与工程专业的发展历史、内涵、涉及领域、发展概况; (2)理解专业的培养目标、毕业要求、课程体系、知识领域、课程设置的原则及其相互关系; (3)了解课程的基本内容及应用,课程的先后承接关系及选课注意事项; (4)微电子学研究的内容,领域,研究方向和学习的课程及相关软件,微电子学的就业和深造情况。 (5)掌握专业基础知识。包括固体物理及量子力学初步,半导体的基本电学性质,基

“技术与工程”领域内容解读和教学建议

“技术与工程”领域内容解读和教学建议 添加日期:2017/6/2 15:08:40 点击率:323 来源:钱金明录入人:海风 “技术与工程”领域内容解读和教学建议 嘉兴海宁市教师进修学校钱金明 一、技术与工程领域解读 新颁布的《小学科学课程标准》将“技术与工程”列为与物质科学、生命科学、地球与宇宙科学并列为一个专门的领域,这是我国首次将“技术与工程”纳入小学科学课程标准。科学教育的重要目标是培养具有科学素养、适应社会发展的未来公民,使其具备一定的创新能力和实践能力。为达到这一目标,国际科学教育界日益关注科学、技术、工程和数学教育的交叉融合,提出以整合的教学方式使学生掌握知识和技术,并能进行灵活迁移应用,解决现实问题。为此,新的小学科学课程标准从目标上明确设置了“科学、技术、社会和环境”目标,包括总目标和学段目标,到课程内容的技术与工程领域3个主要概念,即16.工程技术人员依据科学原理设计和制造物品、解决技术应用的难题,创造了丰富多彩的人工世界;17.工具延伸和增强了人类的能力;人们利用工具生产产品、改造环境,以满足自身和社会发展的需求。18.工程技术的核心是设计,创新是设计的灵魂,每一项设计都需要不断完善。并进一步分解细化为9个学习内容,并分段设计和呈现相应的课程目标与内容,这为课程教材编写提供了清晰的目标和明确的依据,也方便我们一线教师理解课标,更好解读教材,把握目标设计学习方案。 在原《科学(3~6年级)课程标准》中虽没有单独设置“技术与工程领域”,但我们认真分析,此理念、要求也早就隐含在其中,分散在各个部分里,如在其科学探究内容标准框图及具体内容标准中,把“观察、实验、制作”作为一个部分进行了阐述,它包含了对简单工具使用方面的要求。在情感态度与价值观内容标准框图及具体内容标准中,把“对待科学、技术和社会的关系”,包括用科学改善生活、关注与科学有关的社会问题和科学对社会的双重作用等内容。在物质世界内容标准框图及具体内容标准中,“运动与力”中包含了简单机械。两者相比最显著的不同有:一是原课标没有自成领域,也没有以3个主概念及细化成9个学习内容这样清晰的呈现;二是新的课标中增加了2个主核心概念的内容,“工程技术人员依据科学原理设计和制造物品、解决技术应用的难题,创造了丰富多彩的人工世界”和“工程技术的核心是设计,创新是设计的灵魂,每一项设计都需要不断完善”,和6个学习内容。目的是帮助学生了解工程师职业特点,认识科学家是探索世界以发现科学原理,而工程师是根据科学原理设计实际应用的产品,这些产品给我们的生活带来方便和舒适;同时指导学生通过亲身设计和制作作品或产品,来了解设计作品、完成项目的基本过程。意识到科技产品给我们的生活带来方便和舒适,意识到创意设计能够改善生活质量,同时也要意识到技术进步会带来某些不良的影响,如环境污染问题等。 我们原使用的教科版教材是将这些涉及技术与工程的相关内容有机地镶嵌在各单元的学习内容之中,包括一些常用工具的使用,如放大镜、酒精灯、温度

微电子科学与工程专业职业生涯规划书范文格式(原创)

微电子科学与工程专业职业生涯规划书范文格式(原 创) 一、职业规划自测结果 1.自我分析 性格:有点内向,乐观,不喜欢和不熟悉的人分享太多兴趣爱好:大篮球,看电影,听音乐,看书情绪情感状况:遇到不开心的事时情绪会低落意志力状况:不够坚强 已具备经验:当过七年的寄宿生,当过一个月的超市服务生,大学刚开始时为班上的同学团购收音机,在老家干过农活,已具备能力:可以照顾好自己,可以好好的关心他人,拥有一定的自学能力,可以独立的完成一件事 现学专业:微电子 现有外语计算机水平:CET--4、计算机二级2.社会中的自我评估他人对你的看法与期望: 父亲:爸爸总认为我是家里最聪明的孩子,他希望我将来能走政治的路子母亲:妈妈是认为我是家中最乖的孩子,她只希望我的将来的生活美好亲戚:都认为我念书好,都认为我将来能成就一翻事业 二、环境与职业分析 1.人际关系分析1).校园环境对你的成才影响学校:某大学院系:专业:微电子学 2).人才供应状况与就业形势分析

对人才素质要求:具有良好的数学基础知识,微电子学基本理论素质和专业基础知识,掌握微电子学的基本理论方法和实验技能 3.)对知识的要求及学校中的哪些课程对从事该项职业有帮助:通过微电子学的基本理论和基础知识的学习和运用微电子学知识﹑方法进行科学研究和技术开发的基本训练,具有较强科学实验与科学思维能力和具备良好的科学素养,掌握大规模集成电路及新型半导体器件的设计﹑制造及测试所必须的基本理论和方法,具有电路分析﹑工艺分析﹑器件性能分析和版图设计等的能力 三、建立初步目标 1.初步职业理想:做一名资深集成电路开发工程师 2.描述:职业类型:技术人员工作性质:为公司开发新产品工作待遇:享受应有的待遇职业地域:集成电路产业发达地区工作环境:外企 章或是浏览英语网站。下自习后回宿舍和室友用英语交谈。然后利用一些时间预习第二天要上的课程。晚上十二点准时入睡。 六,综述 以上就是我在职业生涯规划课所学到的。没有目标的生活就如没有灯塔的小船。如何才能有效地生活,目标与规划可以给我们答案。当然,目标定的很好,规划做的很严谨,若是缺少坚持的勇气和不达目的不罢休的毅力,我们仍旧离期望很远。但是目标和规划永远是成功的基石。对于我们大二学生来讲,我们应该明确自己的奋斗方向,不管以后是就业还是考研,在为大方向做准备的基础上努力按照预定的计划走下去不失为良方。

义务教育小学科学课程标准 2017

义务教育 小学科学课程标准中华人民共和国教育部制定

目录第一部分前言 一、课程性质 二、课程基本理念 三、课程设计思路 第二部分课程目标 一、科学知识目标 二、科学探究目标 三、科学态度目标 四、科学、技术、社会与环境目标第三部分课程内容 一、物质科学领域 二、生命科学领域 三、地球与宇宙科学领域 四、技术与工程领域 第四部分实施建议 一、教学建议 二、评价建议 三、教材编写建议 四、课程资源开发与利用建议

附录教学案例 案例1 认识空气 案例2 水沸腾现象的观察 案例3 西瓜虫有“耳朵”吗 案例4 观察月相 案例5 暗盒里有什么 案例6 水火箭

第一部分前言 当今世界,科学发现与技术创新不断涌现,为人类在更大范围、更深层次上认识并合理利用自然提供了可能。科学技术推动了生产力的发展、经济的繁荣和社会的进步,促进了人们的生产方式、生活方式和思维方式的变革。科学技术的快速发展对每一位公民的科学素养提出了新的要求。 科学素养是指了解必要的科学技术知识及其对社会与个人的影响,知道基本的科学方法,认识科学本质,树立科学思想,崇尚科学精神,并具备一定的运用它们处理实际问题、参与公共事务的能力。提高公民的科学素养,对于公民改善生活质量,增强参与社会和经济发展的能力,建设创新型国家,实现经济社会全面、协调、可持续发展都具有十分重要的意义。小学科学课程要按照立德树人的要求培养小学生的科学素养,为他们的继续学习和终身发展打好基础。 一、课程性质 小学科学课程是一门基础性课程。早期的科学教育对一个人的科学素养的形成具有十分重要的作用。通过小学科学课程的学习,能够使学生体验科学探究的过程,初步了解与小学生认知水平相适应的一些基本的科学知识(培养提问的习惯,初步学习观察、调查、比较、分类、分

小学科学课程标准与教材分析复习资料

小学科学课程标准与教材分析 一、什么是课程标准?什么是教材? 课程标准:指由国家发布的关于学校课程建设和实施的纲领性指导文件,它确定一定学段的课程水平及课程结构。是教材编写的依据 教材:广义上指课堂上和课堂外教师和学生使用的所有教学材料,凡有利于学习者增长知识和发展技能的材料都可以称作教材。狭义上:教科书 二、我国小学科学课程标准经历了怎样的发展? 1992:教学大纲、自然、从1-5/6年级 2001:课程标准、科学、3-6年级 2017:课程标准、科学、1-6年级 三、我国小学科学教材经历了怎样的发展?(了解) 自然—一纲多本 四、我国小学科学课程标准由哪几部分构成? 1、前言 2、课程目标 3、课程内容 4、实施建议 5、教学案例 五、目前大陆地区小学科学教材主要有哪些版本?(了解) 六、什么是课程目标? 课程目标:指课程本身要实现的具体目标和意图,它规定了某一教育阶段的学生通过课程学习以后,在发展品德、智力、体质等方面期望实现的程度,它是确定课程内容、教学目标和教学方法的基础。 七、2017版小学科学课程标准的课程目标有哪些? 科学知识目标(学段目标:物质科学、生命科学、地球与宇宙科学、技术与工程),科学探究目标(学段目标:提出问题、作出假设、制定计划、搜集证据、处理信息、得出结论、表达交流、反思评价),科学态度目标(学段目标:探究兴趣、实事求是、追求创新、合作分享),科学、技术、社会与环境目标(学段目标:科学技术与日常生活的联系、科学技术与社会发展的联系、人类与自然和谐共处) 八、课程目标对教师开展教学有啥用? 指导作用:确定课程内容、教学目标和教学方法 九、什么是大概念? 核心概念是位于学科中心的概念性知识,包括重要概念、原理、理论等的基本理解和解释,这些内容能够展现当代学科图景,是学科结构的主干部分。 十、什么是学习进阶? 学习进阶是对学生在各学段学习同一主题的概念时所遵循的连贯的、典型的学习路径的描述,一般呈现为围绕核心概念展开的一系列由简单到复杂、相互关联的概念序列。 十一、什么是物质科学?为什么学习物质科学? 物质科学:是研究物质及其运动和变化规律的自然科学 为什么学习:学科价值:1、初步形成观察自然界的物质意识、运动与变化意识和能量意识2、初步形成对物质及其运动和变化的观察与实验意识和描述意识 教育价值:1、激发探究物质世界奥秘的好奇心2、培养基本的科学观念3、初步养成基本的科学品质 十二、物质科学领域的大概念有哪些?结构如何? 大概念:1、物体具有一定的特征,材料具有一定的性能2、水是一种常见而重要的单一物质3、空气是一种常见而重要的混合物质4、物体的运动可以用位置、快慢和方向来描述5、力作用于物体,可以改变物体的形状和运动状态6、机械能、声、光、热、电、磁是能量的不同表现形式

微电子科学与工程卓越全英班

微电子科学与工程(卓越全英班)Microelectronic Science and Engineering(Excellent English-Taught) 专业代码:080704 学制:4年 Program Code: 080704Duration: 4 years 培养目标: 面向国家集成电路发展历史机遇和粤港澳大湾区电子信息技术发展需求,培养德智体全面发展,具有家国情怀和高度社会责任感,具有扎实的基础理论和系统的专门知识,具备宽阔的国际视野、深厚的文化底蕴和优良的综合素质,胜任国际化合作与竞争的复合型集成电路工程精英人才。 Educational Objectives: Facing the historical opportunities of national integrated circuit development and the development needs of electronic information technology in Guangdong, Hong Kong, Macao and Dawan District, we should cultivate advanced integrated circuit technical talents with all-round development of morality, intelligence and physique, national sentiment and high social responsibility, basic training of engineers and comprehensive knowledge: basic knowledge, basic skills and basic qualities of scientific research in the field of microelectronic engineering. It has the ability of international vision, as well as excellent comprehensive quality. As a compound qualified talents who’s capable for international communication and competition in the field of integrated circuits engineering. 毕业要求: ①工程知识:掌握扎实的基础知识、专业基本原理、方法和手段,能够将数学、自然科学、本专业基础知识和专业知识用于解决复杂工程问题,并接触和掌握电子行业部分营运知识,为解决企业电子工程实际复杂问题打下知识基础。 ②问题分析:能够应用数学、自然科学、本专业的基本原理、方法、手段和电子行业营运知识,识别、表达、并通过文献研究分析电子工程中的复杂问题,以获得有效结论。 ③设计/开发解决方案:能够设计针对微电子工程复杂问题的解决方案,设计满足特定需求的微电子系统、单元(部件)或工艺流程,并能够在设计环节中体现创新意识,考虑社会、健康、安全、法律、文化以及环境等因素。 ④研究:能够基于科学原理并采用科学方法对微电子工程复杂问题进行研究,包括设计实验、分析与解释数据、并通过信息综合得到合理有效的结论。 ⑤使用现代工具:能够针对复杂微电子工程问题,开发、选择与使用恰当的技术、资源、现代工程

相关文档
最新文档