简述dna双螺旋结构模型的主要内容

简述dna双螺旋结构模型的主要内容

DNA双螺旋结构模型是生物学界探索着DNA结构的重大突破,它的研究成果对生物学、医学和基因工程等多个学科都有重要的影响。 DNA双螺旋模型是由普林斯顿大学的科学家法拉第和温特勒提出的,他们的理论是由两个单螺旋结构组成的双螺旋结构,两个单螺旋是互相交织着的,形成一个非常紧密的结构。DNA双螺旋模型的主要特征是两股单螺旋上的碱基对就位于两个相邻双螺旋轴之间,并且以右手螺旋形式紧密堆叠。

DNA双螺旋结构模型确定了DNA的结构是一个二维的双螺旋结构,而不是之前认为的单螺旋结构。模型的提出明确了碱基对组成了DNA 双螺旋结构的基本单位,把它们放在双螺旋上,并且以右手螺旋形式紧密堆叠。双螺旋结构可以紧密的结合,分子的表面有很好的稳定性,这也就是DNA分子不易解聚的原因。

DNA双螺旋结构模型的研究结果证实了许多生物学现象,如基因的连续性,即遗传物质的连续性。它们证明了DNA分子是由碱基对组成的,DNA分子是由双螺旋结构构成的,DNA有生物进化、演化、遗

传突变等功能,说明了DNA分子里质子活性影响它们的连续性。

DNA双螺旋结构模型还对蛋白质的结构、功能和组学有着重要的影响。雷贝尔和罗森伯格提出的“密码学”理论彻底改变了人们对DNA结构的认识,他们提出了DNA分子上的信息编码和转录编码两个过程,这两个过程在蛋白质结构和功能中都起着很重要的作用。

DNA双螺旋结构模型的发现也革新了医学和基因工程。双螺旋结

构模型的发现使得人们可以更加清晰地理解基因的运作,通过操控DNA双螺旋结构模型可以调控基因的表达,从而为疾病的鉴定、治疗和基因工程技术的应用提供了新的途径。

总的来说,DNA双螺旋结构模型的发现为生物学、医学和基因工程等多学科的研究开辟了新的领域,这也是20世纪最重大的科学发现之一,具有极为重要的科学意义。

DNA双螺旋结构的提出及验证

DNA双螺旋结构的提出及验证 DNA双螺旋结构的提出开始便开启了分子生物学时代,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径。1953年,沃森和克里克发现了DNA双螺旋的结构,开启了分子生物学时代,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径。在以后的近50年里,分子遗传学、分子免疫学、细胞生物学等新学科如雨后春笋般出现,一个又一个生命的奥秘从分子角度得到了更清晰的阐明,DNA重组技术更是为利用生物工程手段的研究和应用开辟了广阔的前景。 1 DNA双螺旋结构-简介 1.1 DNA双螺旋结构 1952年,奥地利裔美国生物化学家查伽夫(E.chargaff,1905—)测定了DNA 中4种碱基的含量,发现其中腺膘呤与胸腺嘧啶的数量相等,鸟膘呤与胞嘧啶的数量相等。这使沃森、克里克立即想到4种碱基之间存在着两两对应的关系,形成了腺膘呤与胸腺嘧啶配对、鸟膘呤与胞嘧啶配对的概念。 2 DNA双螺旋结构的发现 2.1 DNA双螺旋结构的提出者 1953年2月,沃森、克里克通过维尔金斯看到了富兰克琳在1951年11月拍摄的一张十分漂亮的DNA晶体X射线衍射照片,这一下激发了他们的灵感。他们不仅确认了DNA一定是螺旋结构,而且分析得出了螺旋参数。他们采用了富兰克琳和威尔金斯的判断,并加以补充:磷酸根在螺旋的外侧构成两条多核苷酸链的骨架,方向相反;碱基在螺旋内侧,两两对应。一连几天,沃森、克里克在他们的办公室里兴高采烈地用铁皮和铁丝搭建着模型。1953年2月28日,第一个DNA双螺旋结构的分子模型终于诞生了。 2.2 DNA双螺旋结构的确定 2.2.1建立DNA双螺旋结构 Rosalind Franklin(1920~1958)拍摄到的DNA晶体照片,为双螺旋结构的建立起到了决定性作用。但“科学玫瑰”没等到分享荣耀,在研究成果被承认之前就已凋谢。Franklin生于伦敦一个富有的犹太人家庭,15岁就立志要当科学家,但父亲并不支持她这样做。她早年毕业于剑桥大学,专业是物理化学。1945年,当获得博士学位之后,她前往法国学习X射线衍射技术。她深受法国同事的喜爱,有人评价她“从来没有见到法语讲得这么好的外国人。” 1951年,她回到英国,在剑桥大学国王学院取得了一个职位。那时人们已经知道了脱氧核糖核酸(DNA)可能是遗传物质,但是对于DNA的结构,以及它如何在生命活动中发挥作用的机制还不甚了解。就在这时,Franklin加入了研究DNA结构的行列,然而当时的环境相当不友善。她开始负责实验室的DNA项目时,有好几个月没有人干活。同事Wilkins不喜欢她进入自己的研究领域,但他在研究上却又离不开她。他把

简述dna双螺旋结构模型的要点

简述dna双螺旋结构模型的要点 DNA双螺旋结构模型是由英国科学家詹姆斯霍金斯于1953年提 出的。它是关于DNA分子构型的一种模式,也是整个生物学研究的基础。该模型解释了DNA分子形状、功能、行为以及种类间继承信息的一切。在这一模型中,DNA是由碱基链和双螺旋结构组成的双螺旋,因此也被称为“双螺旋结构模型”。 双螺旋结构模型以节肢动物的DNA来解释它的形状和构成,DNA 的双螺旋结构是由两根脱氧核糖核苷酸丝维分子相互构成的双螺旋 结构,称为“旋转”,它们之间由交叉聚合物连接着,由两个脱氧核 糖核苷酸丝维分子构成一个双螺旋形式,每条脱氧核糖核苷酸丝维分子称为一个碱基链。 在双螺旋结构模型中,DNA的双螺旋结构是由两根脱氧核糖核苷酸丝维分子相互构成的双螺旋结构,由交叉聚合物连接着,由两个脱氧核糖核苷酸丝维分子构成一个双螺旋形式,每条脱氧核糖核苷酸丝维分子称为一个碱基链。这种双螺旋结构的形式被称为“双螺旋模型”,它将DNA分子的碱基链折叠成两半,形成特定的轴线,使DNA分子能够呈双螺旋状,形成一个“加载”,它具有一定的安全性和稳定性, 以此来支持DNA分子对外界有效表达信息和进行复制。 DNA双螺旋结构模型是一种将DNA分子折叠成特定形状的一种模型。它可以帮助研究者了解DNA的分子构造,它的结构,这些知识可以帮助我们更好地理解DNA的功能,以及遗传物质的传播以及继承。另外,这种模型也让研究者们更容易地研究基因的调控和表达,从而

为生物和医学研究提供重要的理论基础。 综上所述,DNA双螺旋结构模型是由英国科学家詹姆斯霍金斯于1953年提出的,是一种将DNA分子折叠成特定形状的模型,由两根脱氧核糖核苷酸丝维分子相互构成的双螺旋结构,由交叉聚合物连接着,每条脱氧核糖核苷酸丝维分子称为一个碱基链。它不仅可以帮助我们了解DNA的构造,还帮助研究者更好地理解DNA的功能,以及遗传物质的传播以及继承,为生物和医学研究提供重要的理论基础。

简述dna双螺旋结构模型的主要内容

简述dna双螺旋结构模型的主要内容 DNA双螺旋模型是20世纪50年代由美国科学家詹姆斯霍金斯(JamesWatson)和爱尔兰科学家弗朗西斯克里克(FrancisCrick)提出的,它首次正确地解释了DNA的结构和功能,为生物学中的遗传机理奠定了基础,也奠定了分子生物学研究的基石。 DNA双螺旋模型可以说是一种被称为“双螺旋结构”的结构。它由两条相反的、由碱基链和糖磷酸组成的双链(AT和GC)组成,两条链的碱基对在空间上排列成一种螺旋状的形状,这样就形成了“双螺旋”结构。 双螺旋结构是DNA的基本结构,也是DNA的核心表征。它的两股链的不同碱基配对是DNA的主要特点,它形成的双螺旋结构可以向两个方向无限延伸,构成了DNA的复制机制,使DNA可以从一端复制到另一端,使得遗传物质可以复制并继续传递,即复制下一代。 双螺旋模型的出现揭开了DNA复制机制的谜题。它提出了DNA由一对海绵型双螺旋结构组成,从而解释了DNA的复制方式,由每条链的碱基连接成了一种特定的碱基配对,从而有助于沿着一条链的碱基把信息复制到另一条链,完成了DNA的复制。 双螺旋模型的研究也帮助科学家们了解了DNA的信息传递与启 动机制,其中碱基链的结构非常重要。DNA双螺旋模型的研究表明,当DNA的结构改变时,它可以释放出一种信息载体核苷酸,从而控制蛋白质的合成,实现DNA携带的生物信息的传递,从而实现基因表达,活动和调控。

双螺旋模型的出现也改变了人们对DNA的认知,它提供了重要的研究脉络,并为生物学中的遗传机制奠定了基础。它的出现,也使得分子生物学有了新的发展,使科学家们可以更加清楚地了解和研究DNA,从而有助于我们更加深入地探索生物体内的复杂机制。 总之,DNA双螺旋模型是生物学中一项重要的发现,它以它独特的结构为生物学研究奠定了基石,为细节级别的分子生物学研究提供了一个新的模型,为科学家们更加深入地探索生物体内的机制提供了帮助。

dna分子双螺旋结构模型

dna分子双螺旋结构模型 dna分子双螺旋结构模型是一种由英国分子生物学家詹姆斯沃森于1953年提出的双螺旋结构模型,它是一种双链结构,类似螺旋楼梯,由碱基对和糖磷酸脂质组成。这一理论被广泛接受,并被研究发现,从而决定了dna分子的结构,因此被认为是基因组成的核心组件。 DNA双螺旋结构模型,由两根双螺旋结构螺旋路径以及一个共轴螺旋路径组成,这两根双螺旋结构的螺旋路径是绕着一个中心的另一个螺旋路径绕组成的,它们是相反方向旋转的。由于双螺旋路径的模式,DNA分子具有优越的稳定性和质子酸性,可以有效地储存遗传信息。因为DNA分子双螺旋结构是在体内稳定存在的,所以遗传信息在这种结构中得以安全保存。 DNA双螺旋模型是由碱基对和糖磷酸组成,碱基对是由两种不同的六碳碱基互相结合而成的,一种是腺嘌呤(A),另一种是胞嘧啶核苷(T),它们连接在一起构成了双螺旋序列的碱基对,而糖磷酸则是dna分子的结构支撑。糖磷酸环则充当着dna分子双螺旋结构的粘合剂,将碱基对连接在一起,使得双螺旋结构稳固而完整。 双螺旋结构模型发现对于光合作用、基因组学、基因组编码、移植与基因工程、蛋白质结构的研究有重要意义,它还为人类基因组的排序、克隆以及测序技术的发展提供了基础。在DNA技术的应用中,双螺旋结构模型的研究为分子生物学的研究奠定了坚实的基础,特别是为生物医学工程的发展提供了重要的数据。 DNA双螺旋结构模型是一种极其重要的分子模型,它发掘了遗传

物质的结构,为数字基因组计划奠定了基础,因此,它为细胞、遗传和分子生物学在各个方面的研究及相关技术的发展提供了重要的理 论依据。有了这一新的理论,就可以深入研究基因的起源和作用,从而更好地探索和了解生物的复杂系统,从而为人类的健康和发展做出贡献。 总而言之,dna双螺旋结构模型是当今最重要的一个理论模型,它的发现改变了人们对dna的认识,被广泛应用于许多领域,为解决遗传和免疫病症、预防疾病、防治病毒病、生物技术等方面提供了重要的支撑。DNA双螺旋结构模型也为发展更多的新型技术和理论提供参考,给学术界和实际研究提供新的思路,推动生物与医疗技术的进步。

DNA双螺旋模型基本要点

DNA双螺旋模型基本要点: 1)两条反向平行的多核苷酸链围绕同一条中心轴相互盘曲而成; 两条链均为右手螺旋 2)链的外侧是核糖与磷酸,内侧是碱基.碱基平面与螺旋轴垂直; 3)螺旋的两条链具有互补序列;两条链由碱基对间的氢键加以稳定;其中G与C 配对;A与T配对 4)螺旋的直径约为2nm; 沿螺旋轴方向每一圈有10个碱基对,相邻两个碱基对间的夹角为36℃,双螺旋螺距为3.4nm. 5) 双螺旋表面有大沟(major groove)和小沟(minor groove)之分;一般大沟 较宽,而小沟较窄.由于大沟和小沟中暴露的碱基对可供利用来形成形成氢键 的基团不同,所含有的化学信息不同.大沟一般为蛋白质与DNA相互作用的位点. 6)双螺旋结构在不同条件下可以不同形式存在,如B-DNA, A-DNA及Z-DNA 其中B-DNA最接近生理条件下DNA存在形式;而A-DNA结构更为紧密,一般 存在于RNA-RNA及RNA-DNA螺旋中,而Z-DNA为左手螺旋,常见于高盐 浓度条件下嘌呤嘧啶交替存在的序列中,生物学功能还不确定. DNA分子的其它性质: 1)在较高温度下或较高pH条件下,双螺旋的两条链可以分开,称为变性(denaturation); 1)变性过程是可逆的;当较高温度下变性的DNA分子逐渐冷却时,互补的两条链又可以 重新形成双螺旋,称为复性(renautration); 是核酸杂交技术(hybirdization)的基础. 3) 双螺旋DNA分子在260nm波长下具有最大吸收度.变性过程中, DNA分子的吸光度逐 渐增加,称为增色效应(hyperchromicity); 相反,在复性过程中,由于碱基堆积效应, 吸 光度逐渐降低,称为减色效应(hypochromicity). 4) DNA分子的熔点温度(melting temperature, Tm)是一个其特征常数,与DNA分子的 G:C含量及溶液离子浓度有关, G:C含量越高及离子浓度越大, Tm越大. 5) 某些DNA分子是环状的如细菌染色体,质粒DNA(plasmid)等. DNA的一级结构: 指核酸分子中4种核苷酸的连接方式及其排列顺序.基本单位是脱氧核糖核苷酸 由于DNA中核苷酸彼此之间的差别仅见于碱基部分,因此DNA的一级结构又指 碱基顺序 DNA的三级结构(DNA topology): DNA双螺旋进一步盘曲而形成的一种更为复杂的结构, 称为DNA的三级结构. 其中 以超螺旋最为常见(supercoil). DNA超螺旋可分为负超螺旋(negatively supercoiled)和正超螺旋(positively supercoiled). 由于DNA本身具有相当的柔性, 对简单线性DNA分子,由于其末端是自由的,所以较容易承受 双螺旋两条链间相互缠绕的变化; 对于一个闭合共价环状DNA (covalently closed, circular, cccDNA)分子来讲,只要磷酸二酯键不被打断,则两条链间的绝对缠绕次数是不会改变的。 生理环境下,其分子参数在一定程度上主要受环境离子浓度及与其相互作用蛋白质的影响。从拓扑学上来说, cccDNA分子结构是受限的(constrained);

高二生物制作dna双螺旋结构模型

实验十制作DNA双螺旋结构模型 一、教材分析 本实验既可加深学生对“DNA结构”的感性认识和理解,也可以培养学生的动手能力。 教材首先介绍了该实验的“实验原理”。从制作DNA模型前应该考虑的问题、制作过程做了详细阐述。 教材接着说明了制作的“目的要求”。要求通过制作DNA双螺旋结构模型,加深对DNA 分子结理解和认识。 教材第三部分清楚地列出了该实验所需要的“材料用具”。特别应明白用什么代表磷酸、什么代表糖、什么代表含氮碱基。以及用什么对它们进行连接。 教材第四部分更为详细地介绍该实验的“方法步骤”。从制作“基本单位→脱氧核苷酸长链→DNA结构→DNA的空间结构”这一步骤详细地作了说明。 因此,我们从如下几方面对该实验做本质性的准备: 1.知识结构的联系:要明确DNA的化学元素是C、H、O、N、P,由它们组成磷酸、脱氧核糖和含氮碱基,再由1分子磷酸、1分子脱氧核糖和1分子的含氮碱基组成基本单位一—脱氧核苷酸;再由脱通过聚合作用形成DNA分子。 2.掌握该实验的知识点:对理解和掌握“DNA分子的功能(复制和表达)”、“遗传和变异”以及“基因工程”打下了较好的理论基础。 3.实验操作的关键:该实验成败的关键是连接。 二、教学目标 1 知识目标 ①应用:碱基互补配对原则。 ②掌握:制作DNA双螺旋结构模型的方法。 2 能力目标 通过制作“DNA双螺旋结构模型”培养学生的动手能力。 3 情感目标 ①通过小组实验,培养学生的合作精神。 ②通过实验,培养学生的实事求是精神。 三、重点·实施方案 1 重点掌握制作“DNA双螺旋结构模型”的技术。 2 实施方案①对每小组进行关键步骤指导;②对连接方式进行讲解。 四、难点·突破策略 1 难点“DNA双螺旋结构模型”的制作。 2 突破策略①板书说明制作的程序和重要环节。②诱导学生理解各步骤的连接及原 理。 五、实验原理 DNA分子具有特殊的空间结构一一规则的双螺旋结构,这一结构的主要特点是: (1)DNA分子由两条反向平行的脱氧核苷酸长链盘旋而成。 (2)DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内 侧。 (3)DNA分子两条链上的碱基按照互补配对原则两两配对,并且以氢键连接。

简述DNA双螺旋结构,以及生物学意义?

1.简述DNA双螺旋结构,以及生物学意义? DNA双螺旋结构:有两条DNA单链,反向平行,一段由3’端开始,一段由5‘端开始,螺旋成双链结构。外部是磷酸和脱氧核糖交替构成的,内部碱基遵循碱基互补配对原则(A-T,C-G),碱基之间是由氢键连接,脱氧核苷酸之间由磷酸二脂键链接。双螺旋模型的意义:双螺旋模型的意义,不仅意味着探明了DNA分子的结构,更重要的是它还提示了DNA的复制机制:由于腺膘呤(A)总是与胸腺嘧啶(T)配对、鸟膘呤(G)总是与胞嘧啶(C)配对,这说明两条链的碱基顺序是彼此互补的,只要确定了其中一条链的碱基顺序,另一条链的碱基顺序也就确定了。因此,只需以其中的一条链为模版,即可合成复制出另一条链。 2.人类基因组计划?简要概括? 人类基因组计划是由美国科学家于1985年率先提出,于1990年正式启动的。多科学家共同参与了这一预算达30亿美元的人类基因组计划。人类基因组计划是一项规模宏大,跨国跨学科的科学探索工程。其宗旨在于测定组成人类染色体中所包含的30亿个碱基对组成的核苷酸序列,从而绘制人类基因组图谱,并且辨识其载有的基因及其序列,达到破译人类遗传信息的最终目的。基因组计划是人类为了探索自身的奥秘所迈出的重要一步,是继曼哈顿计划和阿波罗登月计划之后,人类科学史上的又一个伟大工程。截止到2005年,人类基因组计划的测序工作已经完成。其中,2001年人类基因组工作草图的发表被认为是人类基因组计划成功的里程碑。 3.计算生物学的研究范畴? (1)计算生物学最终是以生命科学中地现象和规律作为研究对象,以解决生物学问题为最终目标,计算机和数学仅仅是解决问题的工具和手段。(2)计算生物学主要侧重于利用数学模型和计算机仿真技术对生物学问题进行研究。(3)是应用数学理论和计算机技术研究生命科学中数量性质、空间结构形式、分析复杂的生物系统的内在特性,揭示在大量生物实验数据中所隐含的生物信息。 4.计算生物学研究的三个研究层面? (1)初级层面:基于现有的生物信息数据库和资源,利用成熟的计算生物学和生物信息学工具(专业网站、软件)解决生物学问题(2)中级层面:利用数值计算方法、数理统计方法和相关的工具,研究计算生物学和生物信息学问题。(3)高级层面:提出有重要意义的计算生物学和生物信息学问题;自主创新,发展新型方法,开发新型工具,引领计算生物学和生物信息学领域研究方向。 5.目前比较常用的核酸数据库有哪些?概括之 (1)GenBank:由美国国家生物技术信息中心(National Center for Biotechnology Information,NCBI)建立(1979-1982)。该中心隶属于美国国家医学图书馆,位于美国家卫生研究院(NIH)内。(2)EMBL:由欧洲分子生物学实验室(European Molecular Biology Laboratory,其下有European Bioinformatics Centre)建立(1982),主要位于英国剑桥Cambridge和德国汉堡Hamburg。(3)DDBJ:日本DNA数据库(DNA Data Bank of Japan)。由the National Institute of Genetics 建立(1984-1987),NIG主管 6.常用一级数据库有?至少列举三类 一级数据库的数据都直接来源于实验获得的原始数据,只经过简单的归类整理和注释。(1)一级核酸数据库:Genbank、EMBL、DDBJ

描述dna双螺旋的结构组成

描述dna双螺旋的结构组成 DNA(脱氧核糖核酸)是组成生物体遗传信息的基本分子,它的双螺旋结构是由两条互补的链以螺旋形式紧密相连而成的。这种结构的发现对于理解遗传信息的传递、基因复制和蛋白质合成等生物学过程具有重要意义。 DNA的双螺旋结构是由四种核苷酸单元组成的。这四种核苷酸单元分别是腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)。这些核苷酸单元按照一定的顺序排列在DNA链上,形成了遗传信息的编码。 在DNA的双螺旋结构中,两条链是通过氢键相互连接在一起的。这些氢键是由核苷酸单元之间的氮碱基形成的。腺嘌呤和鸟嘌呤之间通过三个氢键相互连接,而胸腺嘧啶和胞嘧啶之间通过两个氢键相互连接。这种氢键的形成使得DNA的双螺旋结构非常稳定,能够有效地保护遗传信息的完整性。 双螺旋结构中的两条链是互补的,即它们的碱基配对是特定的。腺嘌呤只能与胸腺嘧啶配对,而鸟嘌呤只能与胞嘧啶配对。这种特定的碱基配对方式使得DNA的复制过程变得相对简单。在复制过程中,DNA的两条链会被分离,然后每条链上的碱基会作为模板合成新的互补链。这样,每一条新合成的DNA分子都与原始DNA分子完全一样,保证了遗传信息的传递准确性。

除了碱基配对,DNA的双螺旋结构还具有另一个重要的特点,即两条链的方向是相反的。一条链的5'端与另一条链的3'端相对应,而一条链的3'端与另一条链的5'端相对应。这种反向排列的方式使得DNA的复制和转录过程能够按照一定的方向进行。 DNA的双螺旋结构在细胞中起着重要的作用。首先,它能够保护遗传信息的完整性,避免外界因素对DNA分子的损害。其次,双螺旋结构的稳定性使得DNA能够在细胞中长期存储,并且能够传递给后代。此外,双螺旋结构还为DNA的复制、转录和翻译等生物学过程提供了基础。 总结起来,DNA的双螺旋结构是由两条互补的链以螺旋形式紧密相连而成的。这种结构通过碱基配对和氢键的形成实现了DNA的复制和遗传信息的传递。双螺旋结构的稳定性和方向性使得DNA能够在细胞中起到重要的作用。对于理解生物体的遗传机制和生物学过程具有重要意义。

制作DNA双螺旋结构模型分析

制作DNA双螺旋结构模型 一、实验背景资料 本实验的来源是人教版高中生物第二册中的实验十二——《制作DNA双螺旋结构模型》,旧人教必修高中生物实验十《制作DNA双螺旋结构模型》。在上课之前同学们学习了DNA的发现历程,了解到DNA是生物的主要遗传物质,且它由四种脱氧核苷酸(腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸、胞嘧啶脱氧核苷酸)组成,它的排列顺序以及数量多少决定了其储存遗传信息的多样性,同时明确组成DNA的化学元素是C、H、O、N、P,由它们组成磷酸、脱氧核糖和含氮碱基,再由1分子磷酸、1分子脱氧核糖和1分子的含氮碱基组成基本单位一—脱氧核苷酸;再通过一定的化学键(氢键、3‘-5’磷酸二酯键)连接作用形成DNA分子。在本实验前中学生物学中与本实验相关的理论知识主要有“基因在染色体上”、“DNA是生物的主要遗传物质”、“DNA的分子结构内容”等内容。即学生在本实验前已经对DNA双螺旋结构模型的制作有了一定的理论基础。 高中生物课程标准对本实验相关内容的要求主要有:1、通过制作DNA分子双螺旋结构模型,深入理解DNA双螺旋结构的特点;2、通过本实验锻炼学生的动手操作能力;3、培养学生对生物的兴趣爱好;4、激发学生的探究能力;5、培养学生的团队合作精神。 本实验现代生物教学中起着举足轻重的作用,在现代生物科学研究中,模型方法被广泛运用,DNA分子双螺旋结构模型的成功就是一个范例。DNA分子双螺旋结构模型是以形象化的具体模型,能使研究对象直观化,既可以促进研究,又可以简略地描述研究成果,又便于理解和传播。在中学生物学教材中,制作DNA 分子双螺旋结构模型作为生物技术性设计和制作的第一案例,对学生的学习有很大的帮助。 常见的难题和疑问:1、如何选取更好的实验材料便于更好地制作DNA双螺旋结构模型;2、如何确保模型构建的成功,即构建的关键步骤有哪些;3如何将模型和理论知识结合使学生更好、更全面的弄懂DNA的双螺旋结构;4、怎么通过平面结构使学生对DNA的空间立体结构有更深的了解;5、如何通过本实验开发学生的动手能力以及他们对生物学的兴趣。6、实验的拓展(替代实验) (一)核酸的发现历程

高考生物一轮讲义:第19讲 DNA分子的结构、复制以及基因的本质 Word版含解析

第19讲DNA分子的结构、复制以及基因的本质[考纲明细] 1.DNA分子结构的主要特点(Ⅱ) 2.DNA分子的复制(Ⅱ) 3.基因的概念(Ⅱ) 考点1DNA分子的结构及相关计算 1.DNA双螺旋模型构建者:沃森和克里克。 2.DNA双螺旋结构的形成 3.DNA的双螺旋结构 (1)DNA由两条脱氧核苷酸链组成,这两条链按反向平行的方式盘旋成双螺旋结构。 (2)外侧:脱氧核糖和磷酸交替连接,构成基本骨架。

(3)内侧:两条链上的碱基通过氢键连接成碱基对。碱基互补配对遵循以下原则:A===T(两个氢键)、G≡C(三个氢键)。 4.DNA分子结构特点 1.深挖教材 (1)DNA分子都是双链结构吗? 提示并非所有的DNA分子均具“双链”,有的DNA分子为单链。 (2)DNA分子都是“链状”的吗? 提示目前发现链状的DNA存在于真核细胞的细胞核中,并与蛋白质结合组成染色体,而细胞器(线粒体、叶绿体)DNA、原核细胞中的DNA以及病毒DNA均为环状。 2.判断正误 (1)嘌呤碱基与嘧啶碱基的结合保证了DNA分子空间结构的相对稳定(√) (2)含有G、C碱基对比较多的DNA分子热稳定性较差(×) (3)分子大小相同、碱基含量相同的核酸分子所携带的遗传信息一定相同(×) (4)沃森和克里克研究DNA分子的结构时,运用了构建物理模型的方法(√) (5)富兰克林和威尔金斯对DNA双螺旋结构模型的建立也作出了巨大的贡献(√)

(6)双链DNA分子中一条链上的磷酸和核糖是通过氢键连接的(×) 1.解读两种DNA结构模型 (1)由图1可解读以下信息 (2)图2是图1的简化形式,其中①是磷酸二酯键,③是氢键。解旋酶作用于③部位,限制性核酸内切酶和DNA连接酶作用于①部位。 (3)碱基对数与氢键数的关系

相关文档
最新文档