重积分运算的常用解法

重积分运算的常用解法
重积分运算的常用解法

积分运算的常用方法

Warren K

引言: 本学期课程的一大重点在于重积分的运算、利用重积分解决实际问题的微元法以及线面积分及其应用。这里根据自己学习的一些心得以及课本和参考书籍上的知识,归纳总结一些积分运算的常用方法。

一、 二重积分 (1)、化为累次积分 公式

?

?

?

?

??

==b

a

x y x y d

c

y x y x s dxdy y x f dxdy y x f ds y x f )

(2)

(1)

(2)

(1)

(),(),(),(

例1:计算??)

(s xyds ,其中S 为抛物线x y =2与直线2-=x y 所围成的区域.

解 将S 视为y 型区域,先对x 后对y 积分,得

855])2[(5.02

1

4

22

1

2

)

(2=-+==?????--+dy y y y xydx dy

xyds y s y 如果用直线 把此区域(S )分成两部分,那么(S )可以看作是两个x 型区域的并。先对y 后对x 积分得

??????--+=41

2

1

)

(x

x x x

s xydy dx xydy dx xyds

由上式可以得出同样的结果,但这种方法显然要麻烦一些。从这也可以看到,计算二重积分时,选取适当的积分顺序是一个值得注意的问题。如果积分顺序选择不当,不仅可能引起计算上的麻烦,而且可能

导致积分无法算出。 (2)、化为极坐标

若积分域(S )与被积函数f(x,y)用极坐标表示更为简便,则应考虑将其化为极坐标的二重积分来计算。为此,建立极坐标系,令极点与xOy 直角坐标系的原点重合,x 轴取为极轴。利用直角坐标与极坐标的转换公式

),20,0(sin ,cos π?ρ?ρ?ρ≤≤+∞≤≤==y x

将(S )的边界曲线化为极坐标,并把被积函数变换为

).sin ,cos (),(?ρ?ρf y x f =

接下来就是把面积微元由极坐标表示出来,

.?ρρ??≈?s

从而

??????==β

α?ρ?ρ

ρρ?ρ?ρ??ρρ?ρ?ρ)

()

(21)sin ,cos (.)sin ,cos (),(d f d d d f ds y x f s

s

=??b

a d f d )

()(21

)sin ,cos (ρ?ρ??ρ?ρ?ρρ

例2:)0()

(4102

2

2

2

2>+-=??-+--a dy y x a dx I a

x a a x

解:将原积分化为极坐标下的累次积分计算.

a d a d I a 2

2

240

4sin 20

2

2

-=

-=??

--πρρ

ρ

θπθ

(3)、曲线坐标下二重积分的计算法 1.正则变换 二重积分??)

(),(s ds y x f

作变换

.

)(),()(),(),,(),,(2

2R s v u R s y x y x v v y x u u ?'∈?∈==

若以下三个条件满足,则称上变换为一正则变换. a 、函数));((,)1(σC v u ∈

b 、Jacobi 行列式

);(),(,0),(),(σ∈?≠=??y x v u v u y x v u y

y

x x c 、此变换将域)(σ一一对应地映射为).(σ'

2.x0y 坐标系下的二重积分与uOv 坐标系下二重积分之间的关系为

σσσσ

'??=????'

d v u y x v u y v u x f d y x f )

,()

,()]

,(),,([),()

( 例3:求

??-=σ

σ

d x y I )(,其中

)

(σ是由直线

53

,973,3,1+-=+-

=-=+=x

y x y x y x y 所围成的区域。 解:作变换

;4

3)

,(),(1),(),(,3

1,.-=??=??+

=-=y x v u v u y x x y v x y u

于是,由变换公式得:

3

38

4343

),(),()]4343()4341[(597

13)(-==

=??+--+=??????-'udu dv udvdu

dudv v u y x v u v u I σσ

二、 三重积分

(1)、先单后重或先重后单

??????

???

==a

b

y x z y x z V

dz d z y x f d dz z y x f dV z y x f z ]),,([]),,([),,()

()

()

,()

,(21σσσσ

(2)、曲线坐标下三重积分

??????

'??=)

()

(|)

,,()

,,(|

)],,().,,(),,,([),,(V V dudvdw

w v u z y x w v u z w v u y w v u x f dV z y x f (3)、柱面坐标下三重积分的计算

??????=)

()

(),sin ,cos (),,(V V dz d d z f dV z y x f ?ρρ?ρ?ρ

(4)、极坐标下三重积分的计算

.sin )cos ,sin sin ,cos sin (),,()

(2

)

(??????=V V d drd r

r r r f dV z y x f ?θθθ?θ?θ ||

4

};41,|),,{()(,)(2

2222)

(22≤++≤+≥=+???z y x y x z z y x V dV y x z V 解:用球坐标,

原式=πθθθθ?π

π

48

63

sin sin cos 202

122240=?????dr r r r d d 例5:)(,1)(2

2V y

x dV V ???

++ 由1,2

22==+z z y x 所围成, 解:利用柱坐标, 原式=).222(ln 11

01

2

20π

πρ

ρρ?ρ

π

+-=+???dz d d 例6:证明:抛物面122++=y x z 上任一点处的切平面与曲面22y x z +=所围立体的体积恒为一常数值。

解:122++=y x z 上过)1)(,,(2

02000000y x z z y x P ++=处的切平面方程为 .122202000y x y y x x z --++=

则切平面与抛物面22y x z +=所围立体体积为

πρρρ?σσπ

2

3

)1(]1)()[(1

)()(20

1

022

0201

)()(122202020202

20002

2

=+=+-+-=

=??

?????≤-+-≤-+---+++y y x x y y x x y x y y x x y x d d d y y x x dz

d V

与0P 无关的常数其中?ρ?ρsin ,cos 00+=+=y y x x ,则

ρ?ρ=??)

,()

,(y x 三、 含参变量的积分和反常积分

(1)、求导与积分可交换顺序。 条件:)(),(D C f D C f y ∈∈ 则?=a

b dx y x f y F ),()(

在[c,d]上有连续的导数,且求导与积分可交换顺序,即

????==

'b a b

a

dx y y x f dx y x f dy d y F .),(),()( (2)、积分顺序交换性 若),(D C f ∈则

?=b

a dx y x f y F ),()(在[c,d]上可积,

?=d

c

dy y x f x G ),()(在[a.b]上可积,

????

=b a

d

c

d c

b

a

dx dy y x f dy dx y x f )),(()),(( ||

例7:计算积分?>-1

)0,(,ln b a dx x

x x a

b 解:这个积分难以直接求解,需要利用积分顺序交换性来求,由于

.

11ln ln ln 101010a

b dx x dy dy x dx dx x x x dy x x

x x y b a b a y a

b b a y a

b ++===-?=-??????

四、 第一型线面积分

(1)、第一型线积分计算公式

设有一简单的光滑空间曲线(C ),其参数方程为

)

()

(),().(βα≤≤===t t z z t y y t x x

若函数f(x,y,z)在(C )上连续,则

??++=β

α

dt t z t y t x

t z t y t x f ds z y x f C )()()()](),(),([),,()

( (2)、第一型面积分计算公式 设有一曲面(S )3R ∈,其参数方程为

2)(),()),,(),,(),,((),(R v u v u z v u y v u x v u r r ?∈==σ

若函数r(u,v)在)(σ上连续可导,且0≠?v u r r 则

d u d v

r r v u z v u y v u x f dS z y x f v u

S

?????=)

()],(),,(),,([),,(σ

若(S )方程为)(),(),,(σ∈=y x y x z z ,则也可写成

????++=)

(2

2)

(.1)],(,,[),,(σdxdy z z y x z y x f dS z y x f y x S ||

例8:计算??++)(2

)

124(s y x ds

,其中是(S)平面在第一卦限的部分. 解

:

;

9);4816,,(),,(=?--=y x r r y x y x z y x r

原式=

19ln 8

9

)124(9240

2

20

-=

++?

?-x

y x dy

dx

例9:设曲面是上半球面4222=++z y x ,其面密度为z ,求曲面的质量。 解:π824

22==

????≤+y x s

dxdy zdS

五、 第二型线面积分

(1)、第二型线积分的计算

??++=?)

()

(),,(),,(),,()(C C dz z y x R dy z y x Q dx z y x P ds M A

其中

??????===α

βα

βα

βdt t z

t z t y t x R dz z y x P dt t y t z t y t x Q dy z y x Q dt t x

t z t y t x P dx z y x P C C C )()](),(),([),,()()](),(),([),,(,)()](),(),([),,()

()

()

( (2)、第二型面积分的计算

????Λ+Λ+Λ=?)

()

(),,(),,(),,()(S S dy dx z y x R dz dz z y x Q dz dy z y x P dS M A

(3)、利用Green,Stokes,Gauss 公式。|| 例10:计算第二型曲面积分

??∑

Λ++-Λ++Λ+=dy dx z y x dx dz z y dz dy z x I )(4)1(sin )1(cos 2222

其中∑是下半球面221y x z ---=的上侧

解:原式=0

42)(4)41(1

320

122

22=-=+-+

--???????≤+Ω

ρρ?ππd d dxdy

y x

dv y x

六、 巧妙利用对称性简化积分运算

例11:计算??∑

++ds xz yz xy )(,其中∑为锥面22y x z +=被圆柱面

ax y x 222=+所截下的部分。(a>0)

分析 由于曲面∑关于zOx 坐标面对称,而(xy+yz)是y 的奇函数,则

0)(=+??∑

dz yz xy

解:由22y x z +=知

.2112

22

22222

σσσd d y

x y y x x d z z ds y

x

=++++=++= 则

????

??=

=+=-∑

D

a a d d d y x x zxds 422

cos 20

32

2215

64

cos 22π

π?

ρ?ρ?σ 例12:计算二重积分:??+D d b y a

x σ)(22

22其中}|),{(222R y x y x D ≤+=

解:利用对称性:若积分域D 关于直线y=x 对称,则

????=D

D

d x y f d y x f σσ),(),(,本题中的D 关于y=x 对称,则

????+=+D D d b x a y d b y a x σσ)()(22

222222 从而有??+D d b y a

x σ)(22

22=

).

11(4)11(21])()([21324

20032222

222222b

a R d d

b a d b x a y d b y a x R D D +=+=

+++??????πρρ?σσπ

例13:,)]cos(1[44??++=D

d y x x y I σ其中D 由直线y=x,y=1,x=-1围成。

解:用直线y=-x 将积分域D 分为两部分D1和D2,则D1关于y 轴对称,而D2关于x 轴对称,则

原式=3

23200)cos()cos(2

441

44=++=++++??????D

D D yd d y x xy d y x xy σσσ

结语:积分的解法灵活多变,熟练地掌握积分运算还需要多且精的练习,从中也可发现许多实用精辟的方法。

参考文献:

[1] 工科数学分析基础教学辅导书 武忠祥 [2] 《数学分析简明教程》 邓东皋,尹小玲 [3] 数学分析学习指导 裘兆泰等编

重积分的计算方法

重积分的计算方法 重积分包括二重积分和三重积分,它是定积分的推广;被积函数由一元函数f(x)推广为二元函数f(x,y),三元函数(fx,y,z);积分围由数轴上的区域推广为平面域(二重积分)和空间域(三重积分)。我个人在学习与复习多重积分这一块时,感到多重积分的计算比较繁琐,而在日常生活中多重积分有着很多的应用。通过在图书馆查阅资料、以及老师的指点,重积分的计算方法还是有规律可循的。为了更好的应用重积分,本人结合前人的经验,在这里介绍几种常用的重积分计算方法,以及一些小技巧。着重介绍累次积分的计算与变量代换。 一.二重积分的计算 1.常用方法 (1)化累次积分计算法 对于常用方法我们先看两个例子

对于重积分的计算主要采用累次积分法,即把一个二重积分表达为一个二次积分,通过两次定积分的计算求得二重积分值,分析上面的例子累次积分法其主要步骤如下: 第一步:画出积分区域D的草图; 第二步:按区域D和被积函数的情况选择适当的积分次序,并确定积分的上、下限; 第三步:计算累次积分。 需要强调一点的是,累次积分要选择适当的积分次序。积分次序的不同将影响计算的繁简,有些题这两种次序的难易程度可以相差很大,甚至对一种次序可以“积出来”,而对另一种次序却“积不出来”。所以,适当选择积分次序是个很重要的工作。 选择积分次序的原则是:尽可能将区域少分块,以简化计算过程;第一次积分的上、下限表达式要简单,并且容易根据第一次积分的结果作第二次积分。 (2)变量替换法 着重看下面的例子:

在计算定积分时,求积的困难在于被积函数的原函数不易求得。从而适当地在计算重积分时,求积的困难来自两个方面,除了被积函数的原因以外还在而且,有时候其积分区域往往成为困难的主要方面。 利用换元法的好处是可以把被积函数的形状进行转化,以便于用基本求积公式。 于积分区域的多样性。为此,针对不同的区域要讨论重积分的各种不同算法。 (3)极坐标变换公式(主要是∫∫f(x,y)dxdy=∫∫f(pcosθ,psinθ)pdpdθ)

定积分的性质与计算方法

定积分的性质与计算方法 摘要: 定积分是微积分学中的一个重要组成部分,其计算方法和技巧非常 丰富。本文主要给出定积分的定义及讨论定积分的性质和计算方法,并通过一些很有代表性的例题说明了其计算方法在简化定积分计算中的强大功能。 关键词:定积分 性质 计算方法 定积分的定义 设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n 个子区间[x 0,x 1], (x 1,x 2], (x 2,x 3], …, (x n-1,x n ],其中x 0=a ,x n =b 。可知各区间的长度依次是:△x 1=x 1-x 0, △x 2=x 2-x 1, …, △x n =x n -x n-1。在每个子区间(x i-1,x i ]中任取一点i ξ(1,2,...,n ),作和式1()n i i f x ι=ξ?∑。设λ=max{△x 1, △x 2, …, △x n }(即λ是 最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为: ()b a f x dx ?。 其中:a 叫做积分下限,b 叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。 对于定积分,有这样一个重要问题:函数()f x 在[a,b]上满足怎样的条件, ()f x 在[a,b]上一定可积?下面给出两个充分条件: 定理1: 设()f x 在区间[a,b]上连续,则()f x 在[a,b]上可积。 定理2: 设()f x 在区间[a,b]上有界,且只有有限个间断点,则 ()f x 在[a,b]上可积。 例:利用定义计算定积分1 20x dx ?. 解:因为被积函数2()f x x =在积分区间[0,1]上连续,而连续函数是可积的,所以积分与区间[0,1]的分法及点i ξ的取法无关。因此,为了 便于计算,不妨把区间[0,1]分成n 等份,分点为i i x n = ,1,2,,1i n =?-;这样,

基本积分公式

§5.3基本积分公式 重点与难点提示 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式. (1) ( 5.6 ) (2) ( 5.7 ) (3) ( 5.8 ) (4) ( 5.9 ) (5) ( 5.10 ) (6) ( 5.11 ) (7) ( 5.12 ) (8) ( 5.13 ) (9) ( 5.14 )

(10) ( 5.15 ) (11) ( 5.16 ) 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有.

是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数)

积分公式表,常用积分公式表

积分公式表 1、基本积分公式: (1) (2) (3) (4) (5) (6) (7) (8) (8) (10) (11) 2、积分定理: (1)()()x f dt t f x a ='??????? (2)()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='??????? (3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f b a b a -==? 3、积分方法 ()()b ax x f +=1;设:t b ax =+

()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x s e c = ()22x a x f +=;设:t a x t a n = ()3分部积分法:??-=vdu uv udv 附:理解与记忆 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数 的积分,应分为与 . 当 时, , 积分后的函数仍是幂函数,而且幂次升高一次. 特别当 时,有 . 当 时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故 ( , )式右边的 是在分 母,不在分子,应记清. 当 时,有 . 是一个较特殊的函数,其导数与积分均不变.

应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式.

反常积分的几种计算方法

反常积分的几种计算方 法 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 0 前言 (1) 1反常积分的定义 (1) 无穷积分的定义 (1) 瑕积分的定义 (2) 2 反常积分的计算方法 (3) 利用Newton—Leibniz公式计算反常积分 (3) 利用变量替换法计算反常积分 (3) 利用分部积分法计算反常积分 (5) 利用分段积分自我消去法计算反常积分 (7) 利用方程法计算反常积分 (7) 利用级数法计算反常积分 (9) 利用待定系数法计算反常积分 (10) 结束语 (11) 参考文献 (11) 反常积分的几种计算方法

摘要:该文主要对反常积分的计算方法进行归纳、总结.重点描述了在进行计算时各种方法的灵活使用. 关键词:反常积分;变量替换;分部积分;级数法;待定系数法 Several calculation methods of abnormal integral Abstract : This paper mainly sums up the calculation methods of abnormal integral. This paper emphasizes on describing the flexible use of various methods in the calculation. Keywords : Abnormal integral; Variable substitution; subsection integral; Series method; the method of undetermined coefficient 0前言 反常积分是微积分学中一类重要的积分,反常积分的计算是学习积分计算中的重难点。本文不仅介绍了常见的三大基本方法:Newton —Leibniz 公式、利用变量替换、利用分部积分法,还介绍了分段积分自我消去法、方程法、级数法和待定系数法等一些在解决问题时较适用的方法,通过引用一些经典例题使我们对这些方法有更加深刻的认识。但是在解决具体问题时要求我们注意各种方法的灵活性与相互渗透,这样可以简便计算。 1反常积分的定义 无穷积分的定义 定义1设函数f 定义在无穷区间[)+∞,a 上,且在任何有限区间[]u a ,上可积,如果存在极限 ? =+∞→u a u J dx x f )(lim , )1( 则称此极限J 为函数f 在[)+∞,a 上的无穷限反常积分(简称无穷积分),记作 ?+∞ =a dx x f J )(, )1(' 并称?+∞a dx x f )(收敛.如果极限)1(不存在,为方便起见,亦称?+∞ a dx x f )(发散. 类似地,可定义f 在(]b ,∞-上的无穷积分:

不定积分的基本公式和运算法则直接积分法

·复习 1 原函数的定义。2 不定积分的定义。3 不定积分的性质。4 不定积分的几何意义。 ·引入在不定积分的定义、性质以及基本公式的基础上,我们进一步来讨论不定积分的计算问题,不定积分的计算方法主要有三种:直接积分法、换元积分法和分部积分法。 ·讲授新课 第二节不定积分的基本公式和运算直接积分法 一基本积分公式 由于求不定积分的运算是求导运算的逆运算,所以有导数的基本公式相应地可以得到积分的基本公式如下:

以上十五个公式是求不定积分的基础,必须熟记,不仅要记右端的结果,还要熟悉左端被积函数的的形式。 求函数的不定积分的方法叫积分法。 例1.求下列不定积分.(1)dx x ?2 1 (2) dx x x ? 解:(1) dx x ? 21 =2121 21x x dx C C x -+-=+=-+-+? (2)dx x x ? =C x dx x +=? 25 235 2 此例表明,对某些分式或根式函数求不定积分时,可先把它们化为x α 的形式,然后应用幂函 数的积分公式求积分。 二 不定积分的基本运算法则

法则1 两个函数代数和的积分,等于各函数积分的代数和,即 dx x g dx x f dx x g x f ???±=±)()()]()([ 法则1对于有限多个函数的和也成立的. 法则2 被积函数中不为零的常数因子可提到积分号外,即 dx x f k dx x kf ??=)()( (0≠k ) 例2 求3(21)x x e dx +-? 解 3(21)x x e d x +-?=23x dx ?+dx ?-x e dx ? = 4 12 x x x e C +-+。 注 其中每一项的不定积分虽然都应当有一个积分常数,但是这里并不需要在每一项后面加上一个积分常数,因为任意常数之和还是任意常数,所以这里只把它的和C 写在末尾,以后仿此。 注 检验解放的结果是否正确,只把结果求导,看它的导数是否等于被积函数就行了。如上例 由于41()2 x x x e C '+-+=321x x e +-,所以结果是正确的。 三 直接积分法 在求积分的问题中,可以直接按基本积分公式和两个基本性质求出结果(如上例)但有时,被积函数常需要经过适当的恒等变形(包括代数和三角的恒等变形)再利用积分的性质和公式求出结果,这样的积分方法叫直接积分法。 例3 求下列不定积分. (1) 1)(x dx ? (2)dx x x ?+-1 122 解:(1)首先把被积函数 1)()x 化为和式,然后再逐项积分得 1)((1x dx x dx - =+-- ??

[整理]三重积分的计算方法小结与例题76202

三重积分的计算方法介绍: 三重积分的计算是化为三次积分进行的。其实质是计算一个定积分(一重积分)和一个二重积分。从顺序看: 如果先做定积分?2 1),,(z z dz z y x f ,再做二重积分??D d y x F σ),(,就是“投 影法”,也即“先一后二”。步骤为:找Ω及在xoy 面投影域D 。多D 上一点(x,y )“穿线”确定z 的积分限,完成了“先一”这一步(定积分);进而按二重积分的计算步骤计算投影域D 上的二重积分,完成“后二”这一步。σd dz z y x f dv z y x f D z z ??????Ω =2 1]),,([),,( 如果先做二重积分??z D d z y x f σ),,(再做定积分?2 1 )(c c dz z F ,就是“截面 法”,也即“先二后一”。步骤为:确定Ω位于平面21c z c z ==与之间,即],[21c c z ∈,过z 作平行于xoy 面的平面截Ω,截面z D 。区域z D 的边界曲面都是z 的函数。计算区域z D 上的二重积分??z D d z y x f σ),,(,完成 了“先二”这一步(二重积分);进而计算定积分?2 1 )(c c dz z F ,完成“后 一”这一步。dz d z y x f dv z y x f c c D z ]),,([),,(2 1σ??????Ω = 当被积函数f (z )仅为z 的函数(与x,y 无关),且z D 的面积)(z σ容易求出时,“截面法”尤为方便。 为了简化积分的计算,还有如何选择适当的坐标系计算的问题。可以按以下几点考虑:将积分区域Ω投影到xoy 面,得投影区域D(平面) (1) D 是X 型或Y 型,可选择直角坐标系计算(当Ω的边界曲

不定积分公式

Ch4、不定积分 §1、不定积分的概念与性质 1、 原函数与不定积分 定义1:若)()(x f x F =',则称)(x F 为)(x f 的原函数。 ① 连续函数一定有原函数; ② 若)(x F 为)(x f 的原函数,则C x F +)(也为)(x f 的原函数; 事实上,())()()(''x f x F C x F ==+ ③ )(x f 的任意两个原函数仅相差一个常数。 事实上,由[]0)()()()()()('2'1'11=-=-=-x f x f x F x F x F x F ,得C x F x F =-)()(21 故C x F +)(表示了)(x f 的所有原函数,其中)(x F 为)(x f 的一个原函数。 定义2:)(x f 的所有原函数称为)(x f 的不定积分,记为?dx x f )(,?-积分号,-)(x f 被积函数,-x 积分变量。 显然C x F dx x f +=?)()( 例1、 求下列函数的不定积分 ①?+=C kx kdx ②??? ???-=+-≠++=+1 ln 11 11 μμμμμ C x C x dx x 2、 基本积分表(共24个基本积分公式) 3、 不定积分的性质 ①[]???±= ±dx x g dx x f dx x g x f )()()()( ②??≠=) 0()()(k dx x f k dx x kf 例2、 求下列不定积分 ①? ? +- =++-= = +--C x C x dx x x dx 11 )2(11 )2(2 2

②? ? +=++-= = +--C x C x dx x x dx 21 )21(11 )21(2 1 ③?+-=??? ? ??+--C x x dx x x arctan 3arcsin 5131522 ④() ()() C x e e x dx dx e dx x e x x x x +- = - = ?? ? ?? -?? ?ln 2 1ln 2 121ππππ ⑤()???++-=-=-C x x xdx x xdx dx x x x csc cot cot csc csc cot csc csc 2 ⑥? ??? ++-=+ = +=C x x xdx xdx dx x x x x x x dx tan cot sec csc cos sin cos sin cos sin 2 2 2 2 2 2 2 2 ⑦() ??+--=-=C x x dx x dx x cot 1csc cot 2 2 ⑧? ??++-=? ? ? ??++-= ++-=+C x x x dx x x dx x x dx x x arctan 311111111322 2 4 2 4 §2、不定积分的换元法 一、 第一类换元法(凑微分法) 1、()()()()b ax d a dx b ax d b ax f a dx b ax f += ++= +?? 1,1即 例1、求不定积分 ①()C x udu u x x xd xdx +- === ???)5cos(5 1sin 5 1555sin 5 15sin ②()()()()?? +-- =+-+?-=---=-+C x C x x d x dx x 8 1 77 7 2116 1211 71 21)21(212 121 ③() () )20(arctan 1 11 2 2 2 C a x a a x a x d a x a dx +?? ? ??= += +?? ④()() )23(arcsin 12 2 2 C a x a x a x d x a dx +?? ? ??=-= -? ? 2、()()n n n n n n dx dx x dx x f n dx x x f == --??1 1 ,1 即 例2、求不定积分 ①()( )() () C x C x x d x dx x x +-- =+-+? - =--- =-+??2 32 12 12 2 1 2 12 2 13 111 1 2 1112 1 1

(精选)三重积分的计算方法与例题

三重积分的计算方法: 三重积分的计算是化为三次积分进行的。其实质是计算一个定积分(一重积分)和一个二重积分。从顺序看: 如果先做定积分?2 1),,(z z dz z y x f ,再做二重积分??D d y x F σ),(,就是“投 影法”,也即“先一后二”。步骤为:找Ω及在xoy 面投影域D 。多D 上一点(x,y )“穿线”确定z 的积分限,完成了“先一”这一步(定积分);进而按二重积分的计算步骤计算投影域D 上的二重积分,完成“后二”这一步。σd dz z y x f dv z y x f D z z ??????Ω =2 1]),,([),,( 如果先做二重积分??z D d z y x f σ),,(再做定积分?2 1 )(c c dz z F ,就是“截面 法”,也即“先二后一”。步骤为:确定Ω位于平面21c z c z ==与之间,即],[21c c z ∈,过z 作平行于xoy 面的平面截Ω,截面z D 。区域z D 的边界曲面都是z 的函数。计算区域z D 上的二重积分??z D d z y x f σ),,(,完成 了“先二”这一步(二重积分);进而计算定积分?2 1 )(c c dz z F ,完成“后 一”这一步。dz d z y x f dv z y x f c c D z ]),,([),,(2 1σ??????Ω = 当被积函数f (z )仅为z 的函数(与x,y 无关),且z D 的面积)(z σ容易求出时,“截面法”尤为方便。 为了简化积分的计算,还有如何选择适当的坐标系计算的问题。可以按以下几点考虑:将积分区域Ω投影到xoy 面,得投影区域D(平面) (1) D 是X 型或Y 型,可选择直角坐标系计算(当Ω的边界曲

积分常用公式

积分常用公式 一.基本不定积分公式: 1.C x dx +=? 2.111++= ? αα αx dx x 1(-≠α) 3.C x dx x +=?ln 1 4.C a a dx a x x +=?ln )1,0(≠>a a 5.C e dx e x x +=? 6.C x xdx +-=? cos sin 7.C x xdx +=? sin cos 8.C x dx x xdx +== ?? tan cos 1sec 22 9.C x dx x xdx +-==??cot sin 1csc 22 10.C x xdx x +=??sec tan sec 11.C x xdx x +-=?? csc cot csc 12. C x dx x +=-? arcsin 112 (或12 arccos 11C x dx x +-=-? ) 13. C x dx x +=+?arctan 112 (或12cot 11 C x arc dx x +-=+?) 14.C x xdx +=?cosh sinh 15.C x xdx +=? sinh cosh 二.常用不定积分公式和积分方法: 1.C x xdx +-=?cos ln tan 2.C x xdx +=? sin ln cot 3. C a x a x a dx +=+?arctan 122 4.C a x a x a a x dx ++-=-?ln 2122 5.C x x xdx ++=?tan sec ln sec 6.C x x xdx +-=? cot csc ln csc 7. C a x x a dx +=-? arcsin 2 2 8.C a x x a x dx +±+=±?222 2ln 9. C a x a x a x dx x a ++-=-?arcsin 2222 22 2 10. C a x x a a x x dx a x +±+ ±±= ±? 222 2 2 2 2 ln 2 2 11.第一类换元积分法(凑微分法):

二重积分的计算方法

第二节 二重积分的计算法 教学目的:熟练掌握二重积分的计算方法 教学重点:利用直角坐标和极坐标计算二重积分 教学难点:化二重积分为二次积分的定限问题 教学内容: 利用二重积分的定义来计算二重积分显然是不实际的,二重积分的计算是通过两个定积分的计算(即二次积分)来实现的. 一、利用直角坐标计算二重积分 我们用几何观点来讨论二重积分的计算问题. 讨论中,我们假定 ; 假定积分区域可用不等式 表示, 其中, 在上连续. 据二重积分的几何意义可知,的值等于以为底,以曲面为顶的曲顶柱体的体积. 在区间上任意取定一个点,作平行于面的平面,这平面截曲顶柱体所得截面是一个以区间为底,曲线为曲边的曲边梯形,其面积为

一般地,过区间上任一点且平行于面的平面截曲顶柱体所得截面的面积为 利用计算平行截面面积为已知的立体之体积的方法,该曲顶柱体的体积为 从而有 (1) 上述积分叫做先对Y,后对X的二次积分,即先把看作常数,只看作的函数,对 计算从到的定积分,然后把所得的结果( 它是的函数 )再对从到计算定积分. 这个先对, 后对的二次积分也常记作 在上述讨论中,假定了,利用二重积分的几何意义,导出了二重积分的计算公式(1).但实际上,公式(1)并不受此条件限制,对一般的(在上连续),公式(1)总是成立的. 例如:计算 解: 类似地,如果积分区域可以用下述不等式 表示,且函数,在上连续,在上连续,则 (2)

显然,(2)式是先对,后对的二次积分. 二重积分化二次积分时应注意的问题 1、积分区域的形状 前面所画的两类积分区域的形状具有一个共同点: 对于I型(或II型)区域, 用平行于轴(轴 )的直线穿过区域内部,直线与区域的边界相交不多于两点. 如果积分区域不满足这一条件时,可对区域进行剖分,化归为I型(或II型)区域的并集. 2、积分限的确定 二重积分化二次积分, 确定两个定积分的限是关键.这里,我们介绍配置二 次积分限的方法 -- 几何法.画出积分区域的图形(假设的图形如下 ) 在上任取一点,过作平行于轴的直线,该直线穿过区域,与区域的边界有两个交 点与,这里的、就是将,看作常数而对积分时的下限和上限; 又因是在区间上任意取的,所以再将看作变量而对积分时,积分的下限为、上限为 . 例1计算,其中是由轴,轴和抛物线在第一象限内所围成的区域.

不定积分表

Y 卷终 公式表注解四 基本不定积分表 序言: 微积分创立之初,牛顿与莱布尼茨分享荣誉。虽其间发生很多在优先权上的争论,但最终依然走向了发展之正轨。在微积分公式体系上,莱布尼茨对之要求甚严,并总结其基本微分表和基本积分表。如今随微积分之发展,公式表逐渐全面,分类亦几乎覆盖各种不定积分。积分表的编订对于积分运算可以说是必要,亦是数学发展之必要结果。 本表给出常用不定积分的计算公式和运算方法,以及每个积分的简要推演方法,其中引入了除一般之换元法,凑微分法,分部积分法之外,亦引入虚数单位,并使用虚数单位推演某些复杂的不定积分运算。而对于简单的不定积分运算和基本的微分公式之反用,或均不在此给出推演方法,或仅以推演步骤简要之说明。 本表收录公式16组,151式。 公式一 基本初等函数的不定积分18式: 反三角函数 上述公式均为基本初等函数之不定积分,其中部分公式均可以由分部积分公式给出,特别的,对于正切函数,余切函数,正割函数与余割函数的不定积分,使用了诸多三角变换完成。 公式二 含ax b +的积分(要指出a 非零)10式: 对于其中的第二式,是利用换元积分完成的。 对于第一者,可以利用凑的方式,我们考虑分式11x b ax b a ax b ??=- ?++?? ,则得其积分是显的:111()ln ||x b b dx x d ax x ax b aC ax b a a ax b a a ????=-=-++ ? ?++??????。而第二式依然采取类似的方式,可借由带余多项式除法算得:22211()2x x ax b ab b ax b a ax b ax b ??=+-+??+++?? ,然后利用第一个积分式即可得到结论。 对于分母是二次多项式或者更高者,常常分成多个低次多项式之和,这两个积分便是沿用了此结论所得 到的。我们注意第一式中有 111111()(/)/b x ax b a x x b a a x x b a a ??==- ?+++??,积分即得。对于第二式依然可用分

常见不定积分的求解方法

常见不定积分的求解方法的讨论 马征 指导老师:封新学 摘要介绍不定积分的性质,分析常见不定积分的各种求解方法:直接积分法、第一类换元法(凑微法)、第二类换元法、分部积分法,并结合实际例题加以讨论,以便于在解不定积分时能快速选择最佳的解题方法。 关键词不定积分直接积分法第一类换元法(凑微法)第二类换元法分部积分法。 The discussion of common indefinite integral method of calculating Ma Zheng Abstract there are four solutions of indefinite integration in this discourse: direct integration; exchangeable integration; parcel integration. It discussed the feasibility which these ways in the solution of integration, and it is helpful to solve indefinite integration quickly. Key words Indefinite integration,exchangeable integration, parcel integration.

0引言 不定积分是《高等数学》中的一个重要内容,它是定积分、广义 积分、狭积分、重积分、曲线积分以及各种有关积分的函数的基础, 要解决以上问题,不定积分的问题必须解决,而不定积分的基础就是 常见不定积分的解法。不定积分的解法不像微分运算时有一定的法 则,它要根据不同题型的特点采用不同的解法,积分运算比起微分运 算来,不仅技巧性更强,而且也已证明,有许多初等函数是“积不出 来”的,就是说这些函数的原函数不能用初等函数来表示,例如 ?-x k dx 22sin 1(其中10<

会员积分计算公式

积分回报率 C=c1*c2(00,c2>0) C1:消费者每消费1元钱可以得到的积分,我们称之为积分增长率 C2:每个积分可以换取的礼品所折合的市场公允价值。由于商家的积分回报是为了取得利润,因此,c2我们称之为积分转换率 招商银行现金消费20元(A)-积累积分1积分(B), 消费积分300积分(C)抵扣消费20元(D)冰淇凌 C=c1*c2=(1/20)*(20/300) C=c1*c2=(B/A)*(D/C) C=c1*c2=(积累积分/现金消费)*(抵扣消费/消费积分) 会员积分营销四种类型 以现金为反馈 现金消费10元—积累1积分—消费1积分—抵扣消费1元 A B C D 积分回报率c=(1/10)*(1/1)=10% (当积分可以抵扣现金时,积分回报率也称作积分返比) (B/A)*(D/C) (积累积分/消费现金)*(抵扣消费/消费积分) 以商品为反馈 现金消费10元—积累1积分—消费10积分—抵扣价值10元商品 A B C D 积分回报率=(1*10)/(10*10)=10%

(积累积分*消费现金)/(抵扣消费*消费积分) 以物资或荣誉为反馈 该营销方式用户互联网营销或者在线游戏,作为反馈提供给消费者(头衔/昵称/更改头像/编辑签名等)本身并无实际价值,仅作为该用户使用时间或者游戏时间长短的象征,但作为消费者而言,该虚拟荣誉可以作为经验丰富或者信誉良好的保证并满足了其个性化需求。以服务为反馈 通常用于VIP服务,针对针对消费力非常强或者消费频次很高的客人,会有专属经理服务,例如,专属包间,专属车位,专属定制化服务等。 积分玩法 一·当钱花——最直接体现积分的价值 通过积分提醒或者消费比例变换达到不同的营销效果 1/积分唤醒:1带动消费2避免哄抢 2/闲时积分活用 3/特殊时间积分翻倍 二·随心送——将积分看作企业发行的货币 代金券/菜品券/自产品/礼品 1/积分商城:兑换的本质在于消耗和带动 2/积分换礼:储值礼品积分换 3/积分跨业态通兑:资源的活用 三·中奖——积分换取抽奖的权利 触发娱乐心理,中奖在于带动消费

定积分计算公式和性质

第二节 定积分计算公式和性质 一、变上限函数 设函数在区间上连续,并且设x 为上的任一点, 于是, 在区间 上的定积分为 这里x 既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 如果上限x 在区 间上任意变动,则对 于每一个取定的x 值,定积分有一个确定值与之对应,所以定积分在 上定义了一个以x 为自变量的函数,我们把 称为函数 在区间 上 变上限函数 记为 从几何上看,也很显然。因为X 是上一个动点, 从而以线段 为底的曲边梯形的面积,必然随着底数 端点的变化而变化,所以阴影部分的面积是端点x 的函数(见图5-10) 图 5-10

定积分计算公式 利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。因此,必须寻求计算定积分的简便方法。 我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s 为 另一方面,如果物体经过的路程s 是时间t 的函数,那么物体 从t=a 到t=b 所经过的路程应该是(见图5-11) 即 由导数的物理意义可知:即 是 一个原函数,因此,为了求出定积分,应先求出被积函数 的原函数 , 再求 在区间 上的增量 即可。 如果抛开上面物理意义,便可得出计算定积分的一般 方法: 设函数在闭区间上连续, 是 的一个原函数, 即 ,则 图 5-11

这个公式叫做牛顿-莱布尼兹公式。 为了使用方便,将公式写成 牛顿-莱布尼兹公式通常也叫做微积分基本公式。它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。它揭示了定积分和不定积分的内在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。 例1 计算 因为是的一个原函数所以 例 2 求曲线 和直线x=0、x= 及y=0所围成图形面积A(5-12) 解 这个图形的面积为 二、定积分的性质 设 、 在相应区间上连续,利用前面学过的知识,可以 得到定积分以下几个简单性质: 图 5-12

几种特殊积分的计算方法

几种特殊积分的计算方法 1前言 积分发展的动力来自于实际应用中的需求.实际操作中,有时候可以粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值.要求简单几何形体或者体积,可以套用已知的公式.比如一个长方体状的游泳池的容积可以用长乘宽乘高求出.但如果游泳池是卵形、抛物型或者更加不规则的形状,就需要用积分来求出容积.物理学中,常常需要知道一个物理量(比如位移)对另一个(比如力)的累积效果,这时候也需要积分.在古希腊数学的早期,数学分析的结果是隐含给出的.比如,芝诺的两分法悖论就隐含了无限几何和.再后来,古希腊数学家如欧多克索斯和阿基米德使数学分析变得更加明确,但还不是很正式.他们在使用穷竭法去计算区域和固体的面积和体积时,使用了极限和收敛的概念. 在古印度数学(英语:Indian mathematics)的早期,12世纪的数学家婆什迦罗第二给出了导数的例子,还使用过现在所知的罗尔定理.数学分析的创立始于17 世纪以牛顿(Newton, I.)和莱布尼茨(Leibniz, G.W.)为代表的开创性工作,而完成于19世纪以柯西(Cauchy, A.-L.)和魏尔斯特拉斯(Weierstrass, K.(T.W.))为代表的奠基性工作.从牛顿开始就将微积分学及其有关内容称为分析.其后,微积分学领域不断扩大,但许多数学家还是沿用这一名称.时至今日,许多内容虽已从微积分学中分离出去,成了独立的学科,而人们仍以分析统称之.数学分析亦简称分析(参见“分析学”).数学分析的研究对象是函数,它从局部和整体这两个方面研究函数的基本性态,从而形成微分学和积分学的基本内容.微分学研究变化率等函数的局部特征,导数和微分是它的主要概念,求导数的过程就是微分法.围绕着导数与微分的性质、计算和直接应用,形成微分学的主要内容.积分学则从总体上研究微小变化(尤其是非均匀变化)积累的总效果,其基本概念是原函数(反导数)和定积分,求积分的过程就是积分法.积分的性质、计算、推广与直接应用构成积分学的全部内容.牛顿和莱布尼茨对数学的杰出贡献就在于,他们在1670年左右,总结了求导数与求积分的一系列基本法则,发现了求导数与求积分是两种互逆的运算,并通过后来以他们的名字命名的著名公式反映了这种互逆关系,从而使本来各自独立发展的微分学和积分

(初稿)三重积分计算方法小结

江西师范大学数学与信息科学学院 学士学位论文 三重积分的计算方法小结Methods of Calculation of Triple Integral 姓名:蒋晓颖 学号: 1007012048 学院:数学与信息科学学院 专业:数学与应用数学 指导老师:蒋新荣(副教授) 完成时间:2014年1月23日

三重积分的计算方法小结 蒋晓颖 【摘要】三重积分的计算是数学分析中的难点,本文结合教材以及相关资料较全面地给出了三重积分计算中的四种处理方法。第一,利用降低三重积分重数的思想,将其化为累次积分;第二,采用坐标变换的方法,将积分体表示成适当的形式;第三,充分运用被积函数的奇偶性和积分区域的对称性,简化计算;第四,利用高斯公式将三重积分的计算转化成曲面积分计算。希望这几种方法能对学习者具有一定的指导意义。 【关键词】三重积分累次积分坐标变换对称性高斯公式

Methods of Calculation of Triple Integral Jiang Xiaoying 【Abstract】The calculation of triple integral is the difficulty in Mathematics analysis.In this paper,unifying the teaching and related materials ,we give four instructive methods of the calculation of triple integral for learner.The four methods are as follows:the first,lower the multiplicity of triple integral and replace it with iterated integral;the second,with the method of coordinate alternate,we can transform the integral volume into appropriate form;the third,fully use the parity of integrand and symmetry of integral area to simplify calculation;finally,we can calculate the triple integral with the Gauss formula that could transform triple integral into a surface integral. 【Key words】triple integral iterated integral coordinate alternate symmetry Gauss formula

二重积分计算中的积分限的确定

二重积分计算中积分限的确定 摘要:二重积分计算中积分限的确定对于初学者是一个重点更是一个难点.本文旨在介绍一种二重积分计算中确定积分限的简单易行的方法. 关键词:二重积分累次积分积分限积分次序 引言:高等数学学习过程中,二重积分计算是个难点。原因在于将二重积分化为累次积分时,对于积分限的确定学生难以掌握。本人结合自己的教学过程和自己的学习体会总结出一个口诀,发现在教学过程中效果不错可以很好的帮助学生解决这一难题。 1.高等数学中计算二重积分的方法 在高等数学课本中,在直角坐标系下计算二重积分的步骤为:]1[。 (1)画出积分区域 (2)确定积分区域是否为X-型或Y-型区域,如既不是X-型也不是Y-型区域,则要将 积分区域化成几个X-型和Y-型区域,并用不等式组表示每个X-型和Y-型区域. (3)用公式化二重积分为累次积分. (4)计算累次积分的值. 在教学的过程中我发现学生对于此种方法掌握的很不好,尤其是在第二步中,确定积分区域从而确定累次积分的积分限是一个薄弱环节.下面就本人在教学中的体会谈谈在这方面的一点心得. 2.教学过程中总结的方法 本人的心得可用下面的口诀概括:后积先定限,限内画条线,先交下限取,后交上限见.下面简单解释一下该口诀,然后以具体的例题加以说明.在将二重积分转化为累次积分的时候对于两个积分变量必然会有个先后顺序,这就要求对后积分的那个变量我们要根据积分区域确定其上下限(所谓确定是指根据积分区域图将其上下限定为常数).确定了这个变量的上下限以后,我们在其上下限内画一条和上下限平行的直线,该直线沿着坐标轴的正方向画过来,这样该直线如果和积分区域总是有两个交点,先交的即为另一个积分变量的积分下限,后交的即为其积分上限. 3.例题解析 例1 计算?? D xydxdy,其中D是由直线x y y x= = =,1 ,2所围成的区域. 解:作出积分区域D的图形 x 页脚内容1

高等数学三重积分计算方法总结

高等数学三重积分计算方法总结 1、利用直角坐标计算三重积分: (1)投影法(先一后二): 1)外层(二重积分):区域Ω在xoy 面上的投影区域Dxy 2)内层(定积分): 从区域Ω的底面上的z 值,到区域Ω的顶面上的z 值。 (2)截面法(先二后一): 1)外层(定积分): 区域Ω在z 轴上的投影区间。 2)内层(二重积分):Ω垂直于z 轴的截面区域。 2、利用柱坐标计算三重积分 3、利用球面坐标计算三重积分 定限方法: (1)转面定θ(2)转线定φ (3)线段定r 4、利用对称性化简三重积分计算 设积分区域Ω关于xoy 平面对称, (1)若被积函数 f (x,y,z ) 是关于z 的奇函数,则三重积分为零。 (2)若被积函数 f (x,y,z ) 是关于z 的偶函数,则三重积分等于:在xoy 平面上方的半个Ω,区域上的三重积分的两倍. 使用对称性时应注意: 1)积分区域关于坐标面的对称性; 2)被积函数关于变量的奇偶性。 (cos ,sin ,)f z d d dz ρθρθρρθΩ???(,,)f x y z dv Ω=??? (,,)f x y z dxdydz Ω??? (sin cos ,sin sin ,cos )f r r r φθφθφΩ=???2 sin r drd d φφθ

例 计算 ,其中Ω是由曲面z = x 2 + y 2和x 2 + y 2 + z 2 =2所围成的空间闭区域. 解: 是关于x 的奇函数,且Ω关于 yoz 面对称 故其积分为零。 2x 2 y 是关于y 的奇函数,且关于 zox 面对称 ???Ω++dxdydz z y x x 2)(2 )(z y x x ++ 22222222)(zx xyz y x z y x x +++++=xyz z y x x 2)(222+++ ,022???Ω=∴ydv x ???Ω++=∴dxdydz z y x x I 2)(,22???Ω=zdxdydz x ???Ωθρρ??θρ=dz d d z 22cos 2????θρρθ=zdz d d 23cos 2 ??πρρ-ρ-θρθ=20104 223)2(cos d d 245π=222ρ-ρπ20

相关文档
最新文档