(完整版)金属热处理知识点

(完整版)金属热处理知识点
(完整版)金属热处理知识点

1 热处理的目的、分类、条件;

定义:通过加热、保温和冷却的方法,使金属的内部组织结构发生变化,从而获得所要求的性能的一种工艺方法。

目的:1、消除毛坯中的缺陷,改善工艺性能,为切削加工或热处理做组织和性能上的准备。2、提高金属材料的力学性能,充分发挥材料的潜力,节约材料延长零件使用寿命。

分类:

特点:热处理区别于其他加工工艺如铸造、压力加工等的特点是只通过改变工件的组织来改变性能,而不改变其形状。

热处理条件:

(1)有固态相变发生的金属或合金

(2)加热时溶解度有显著变化的合金

热处理过程中四个重要因素:

(1)加热速度V;(2)最高加热温度T;

(3)保温时间h; (4)冷却速度Vt.

2 什么是铁素体、奥氏体、渗碳体?其结构与性能; Ac1、Ar1、Ac3、Ar3、Accm、Arcm临界温度的意义;奥氏体的形成条件;奥氏体界面形核的原因/条件;以共析钢为例,详细分析奥氏体的形成机理;影响奥氏体转变速度的因素;影响奥氏体晶粒长大的因素;

铁素体:碳溶于α-Fe中形成的间隙固溶体,以F或α表示;

结构:体心立方结构;组织:多边形晶粒

性能:铁素体的塑性、韧性很好(δ=30~50%、aKU=160~200J/cm2),但强度、硬度较低(σb=180~280MPa、σs=100~170MPa、硬度为50~80HBS)。其力学性能几乎与纯铁相同。

奥氏体:碳溶于γ-Fe中的间隙固溶体;用A或γ表示

结构:面心立方晶格

性能:奥氏体常存在于727℃以上,是铁碳合金中重要的高温相,强度和硬度不高,但塑性和韧性很好(σb≈400 MPa、δ≈40~50%、硬度为160~200HBS),易锻压成形。钢材热加工都在γ区进行。

组织:多边形等轴晶粒,在晶粒内部往往存在孪晶亚结构渗碳体:铁与碳形成的金属化合物,是钢铁中的强化相,高温下可分解,Fe3C →3Fe+C(石墨) 。

结构:复杂斜方

性能:渗碳体中碳的质量分数为6.69%,熔点为1227℃,硬度很高(800HBW),塑性和韧性极低(δ≈0、aKU≈0),脆性大。渗碳体是钢中的主要强化相,其数量、形状、大小及分布状况对钢的性能影响很大。

由于碳在α-Fe中的溶解度很小,因而常温下碳在铁碳合金中主要以Fe3C或石墨的形式存在。

五个重要的成份点: P、S、E、C、F。

四条重要的线: ECF、ES、GS、PSK。

三个重要转变: 包晶转变反应式、共晶转变反应式、共析转变反应式。

两个重要温度: 1148 ℃、727 ℃。

奥氏体

1.奥氏体:碳溶于γ-Fe中的间隙固溶体;用A或γ表示

结构:面心立方晶格

组织:多边形等轴晶粒,在晶粒内部往往存在孪晶亚结构

性能:奥氏体常存在于727℃以上,是铁碳合金中重要的高温相,强度和硬度不高,但塑性和韧性很好(σb≈400 MPa、δ≈40~50%、硬度为160~200HBS),易锻压成形。钢材热加工都在γ区进行。

室温不稳定相

高塑性、低屈服强度(利用奥氏体量改善材料塑性)

顺磁性能(测残余奥氏体和相变点)

线膨胀系数大(应用于仪表元件)

导热性能差(耐热钢)

比容最小(利用残余奥氏体量减少材料淬火变形)

2.Ac1、Ar1、Ac3、Ar3、Accm、Arcm临界温度的意义

Ac1——加热时珠光体向奥氏体转变的开始温度;

Ar1——冷却时奥氏体向珠光体转变的开始温度;

Ac3——加热时先共析铁素体全部转变为奥氏体的终了温度;

Ar3——冷却时奥氏体开始析出先共析铁素体的温度;

Accm--加热时二次渗碳体全部溶入奥氏体的终了温度

Arcm——冷却时奥氏体开始析出二次渗碳体的温度

3.奥氏体的形成条件

过热(T>A1)

4.奥氏体界面形核的原因/条件

(1) 易获得形成A所需浓度起伏,结构起伏和能量起伏.

(2) 在相界面形核使界面能和应变能的增加减少。

△G = -△Gv + △Gs + △Ge

△Gv—体积自由能差,△Gs —表面能,△Ge —弹性应变能

相界面△Gs 、△Ge 较小,更易满足热力学条件△G<0.

5.以共析钢为例,详细分析奥氏体的形成机理

(1)奥氏体的形核

球状珠光体中:优先在F/Fe3C界面形核

片状珠光体中:优先在珠光体团的界面形核,也在F/Fe3C片层界面形核(2)奥氏体的长大

片状珠光体:奥氏体向垂直于片层和平行于片层方向长大.

球状珠光体:奥氏体的长大首先包围渗碳体,把渗碳体和铁素体隔开,然后通

过A/F界面向铁素体一侧推移, A / Fe3C界面向Fe3C一侧推移,使F和Fe3C逐渐消失来实现长大的.

A长大方向基本垂直于片层和平行于片层。A平行于片层长大速度> 垂直于片层长大速度

(3)残余碳化物的溶解

残余碳化物: 当F完全转变为A时,仍有部分Fe3C没有转变为A,称为残余碳化物。

∵①A/F界面向F推移速度> A/Fe3C界面向Fe3C推移速度

②刚形成的A平均含碳量

残余碳化物溶解:

由Fe3C中的C原子向A中扩散和铁原子向贫碳Fe3C扩散, Fe3C向A 晶体点阵改组实现的.

(4)奥氏体的均匀化

奥氏体的不均匀性:即使Fe3C完全溶解转变为奥氏体,碳在奥氏体中的分布仍然不均匀,表现为原Fe3C区域碳浓度高,原F区碳浓度低。

奥氏体的均匀化:随着继续加热或继续保温,以便于碳原子不断扩散,最终使奥氏体中碳浓度均匀一致。

6.影响奥氏体转变速度的因素

温度、成分、原始组织

1、温度的影响

T↗,I ↗,G↗,且I ↗> G↗

各种因素中,T的影响作用最强烈

2、原始组织的影响

片状P转变速度>球状P

薄片较厚片转变快

3、碳含量的影响

C%↗,A形成速度↗

4、合金元素的影响

(1)对A形成速度的影响

改变临界点位置;影响碳在A 中的扩散系数;合金碳化物在A中溶解难易程度的牵制;对原始组织的影响

(2)对A均匀化的影响

合金钢需要更长均匀化时间

7.影响奥氏体晶粒长大的因素

(1)加热温度和保温时间

随加热温度升高,奥氏体晶粒长大速度成指数关系迅速增大。

加热温度升高时,保温时间应相应缩短,这样才能获得细小的奥氏体晶粒。

(2)加热速度:

加热速度快,奥氏体实际形成温度高,形核率增高,由于时间短奥氏体晶粒来不及长大,可获得细小的起始晶粒度

(3)钢的碳含量的影响

碳在固溶于奥氏体的情况下,由于提高了铁的自扩散系数,将促进晶界的迁移,使奥氏体晶粒长大。共析碳钢最容易长大。

当碳以未溶二次渗碳体形式存在时,由于其阻碍晶界迁移,所以将阻碍奥

氏体晶粒长大。过共析碳钢的加热温度一般选在Ac1 ---- Accm 两相区,为的就是保留一定的残留渗碳体。

(4)合金元素的影响

Mn,P 促进奥氏体晶粒长大:

Mn ---- 在奥氏体晶界偏聚,提高晶界能;

P ---- 在奥氏体晶界偏聚,提高铁的自扩散系数。

强碳氮化物形成元素Ti,Nb,V 形成高熔点难溶碳氮化物(如TiC,NbN),阻碍晶界迁移,细化奥氏体晶粒。

(5)冶炼方法

用Al脱氧,可形成AlN ---- 本质细晶粒钢

用Si、Mn脱氧---- 本质粗晶粒钢

(6)原始组织

主要影响A的起始晶粒。原始组织越细,起始晶粒越细小。

但晶粒长大倾向大,即过热敏感性增大,不可采用过高的加热温度和长时间保温,宜采用快速加热、短时保温的工艺方法。

3 何谓过冷奥氏体,过冷奥氏体等温转变曲线,转变产物;珠光体的组织形态和性能;珠光体的转变机理与影响因素;

1.珠光体的组织形态和性能

组织形态:层片状、粒状、其他

片状珠光体:其F、Fe3C呈层状分布重量比:F: Fe3C = 8:1

珠光体的存在:钢的退火或正火组织中

力学性能:片间距↘,强度和硬度↗,同时塑性和韧性有所改善

粒状珠光体:在铁素体基体上分布着粒状渗碳体的两相机械混合物称为粒状珠光体。粒状珠光体一般经球化退火而得到,也可以通过淬火加回火处理得到。

性能:Fe3C 细小,分布均匀,则强度、硬度较高,韧性也↗。

与同成分片状P相比:强度硬度稍低,塑韧性较高

粒状珠光体的力学性能主要取决于渗碳体颗粒的大小、形态与分布。2.何谓过冷奥氏体

过冷奥氏体——处于临界温度之下暂时存在的奥氏体。

3.过冷奥氏体等温转变曲线,转变产物

4.珠光体的转变机理与影响因素

一.片状珠光体的转变机理

两个基本过程:形核+长大

(1)珠光体的形核

(i)领先相

与化学成分有关

亚共析钢:F

过共析钢:Fe3C

共析钢:两者均可,一般认为是Fe3C

(ⅱ)珠光体形核位置

领先相大多在奥氏体晶界或相界面(奥氏体与先共析相界面)上形核。因为这些区域缺陷较多,能量较高,原子容易扩散,容易满足形核所需要的成分起伏、能量起伏和结构起伏的条件。

长大:扩散进行

长大方式:纵向长大,沿着珠光体片长轴方向长大;

横向长大,沿着珠光体片垂直方向长大。

二、粒状珠光体的形成机制

粒状珠光体可通过球化退火和马氏体组织回火得到。

三、亚(过)共析钢的珠光体转变

由偏离共析成分的过冷奥氏体所形成的珠光体称为伪共析体或伪珠光体。

影响因素:

一、奥氏体成分与组织

(1)碳含量

共析成分的C曲线最靠右(共析A最稳定),

成分偏离共析点,C曲线将左移(先析相的析出,

降低过冷A的稳定性)。

成分偏离共析点越多,C曲线左移越多。

(2)奥氏体晶粒度

晶粒细小,可促进P转变

(3)奥氏体成分不均匀性

成分不均匀,有利形核,加速P转变

(4)合金元素

除了Co,大部分使C曲线右移,降低P的转变

二、外界条件

(1)加热温度和保温时间

加热T低,保温t短,将加速P转变

(2)应力和变形

拉应力和变形均加速转变

4 马氏体的定义:晶体结构、组织形态、性能;马氏体具有高硬度、高强度的本质;Ms、Mf点;影响Ms点的主要因素;马氏体的形成条件与转变特点;

1.马氏体的定义:马氏体是C 在α-Fe 中的过饱和间隙式固溶体。具有体心立方点阵(C%极低钢)或体心正方(淬火亚稳相)点阵。

马氏体相变:钢铁在经过奥氏体化温度后采取快速冷却,抑制其扩散分解,在较低温度(<Ms)下发生的无扩散型相变。

晶体结构:体心正方晶格(a = b ≠c)轴比c/a ——马氏体的正方度

钢中马氏体的本质:

马氏体是碳溶于α-Fe中的过饱和间隙式固溶体,记为M或α'。其中的碳择优分布在c轴方向上的八面体间隙位置。这使得c轴伸长,a轴缩短,晶体结构为体心正方。其轴比c/a称为正方度,马氏体含碳量愈高,正方度愈大。

马氏体的晶体结构类型(两种):

体心立方结构(WC<0.2%)

体心正方结构(WC>0.2%)

组织形态:板条,片状,蝴蝶状、薄板状及薄片状

性能:

一. 马氏体的强度和硬度

钢中马氏体的主要特性是高硬度和高强度。

马氏体高强度高硬度的本质

①相变强化

马氏体相变的切变特性,造成马氏体晶体内产生大量的微观缺陷(位错、孪晶、层错等)使马氏体强化,称为相变强化。

②固溶强化

马氏体中以间隙式溶入过饱和碳原子将引起强烈点阵畸变,形成以碳原子为中心应力场,并与位错发生交互作用,使碳原子钉扎位错,强化马氏体。

③马氏体时效强化

马氏体发生碳原子偏聚和析出,从而产生时效强化。

二. 马氏体的塑性和韧性

(1)韧性

马氏体的韧性主要决定于亚结构。

C%:<0.4%,高韧性

>0.4%,韧性低,硬而脆。

仅从韧性考虑,含C量不宜>0.4%

(2)马氏体的相变诱发塑性

在马氏体转变过程中塑性有所增加-----马氏体的相变诱发塑性。

2.马氏体的形成条件与转变特点;

马氏体的形成条件:

(1)快冷V > Vc避免A向P、B转变

(2)深冷T < MS提供足够的驱动力

转变特点:

(1)、表面浮凸效应和共格切变

表面浮凸效应——切变使马氏体表面出现一边凹陷、一边凸起,并带动附近奥氏体也发生弹性切变。

马氏体转变以切变方式进行——界面上原子为马氏体与奥氏体共有。(2)无扩散相变

(3)M转变的位向关系及惯习面

位向关系

相变时,整体相互移动一段距离,相邻原子的相对位置无变化。作小于一个原子间距位置的位移,因此奥氏体与马氏体保持一定的严格的晶体学位向关

系。

位向关系有:(1)K—S关系

(2)西山(N)关系

(3)G—T关系

惯习面:

马氏体是在母相的一定晶面上开始形成的,这个晶面就是惯习面。(4)马氏体转变不完全性(非恒温性)

(5)马氏体转变的可逆性

3.Ms、Mf点

马氏体转变开始的温度称上马氏体点,用Ms 表示。

马氏体转变终了温度称下马氏体点,用Mf 表示.

4.影响Ms点的主要因素

1)化学成分

(1)C%影响

C%的影响最为明显。

C%升高,Ms 和Mf均下降,马氏体转变温度区间移向低温,残余奥氏体量增加。

C%增加,Ms呈连续下降趋势,当C%<0.6%时,Ms下降比Mf下降显著,当C%增加到C%≥0.6%时,Mf下降缓慢直至基本不变。

2)合金元素

合金元素对Ms点影响比较复杂,多种合金元素同时作用的影响和一种合金元素的影响也不相同。总体上:

①除了Co、Al 提高Ms外,合金元素均有降低Ms作用。

②强碳化物形成元素加热时溶入奥氏体中很少,对Ms点影响不大。

③合金元素对Ms点的影响表现在影响平衡温度T0和对奥氏体的强化作用。

3)奥氏体化条件

对MS的影响具有双重性,加热温度高和保温时间长,有利于C

及合金元素原子充分溶入到奥氏体中(固溶强化),降低Ms点;但同时奥氏体晶粒长大,缺陷减少,晶界强化作用降低,切变阻力减小,Ms点有提高趋势。4)淬火速度——目前观点不统一

一般认为:淬火速度较低时,即淬火温度较高,“C 原子气团”可以形成足够大的尺寸并在缺陷处偏聚,强化奥氏体,使Ms点降低,淬火速度较高时,即淬火温度较低,抑制了“C 原子气团”形成,对奥氏体强化作用降低,使Ms点升高。也有人为:高速淬火Ms点升高是淬火应力引起的。

5)磁场

(1)增加磁场只是提高Ms点,对Ms点以下的马氏体转变和总的转变量无影响。

(2)转变过程中增加磁场,转变量的增加趋势与未加磁场相同,撤去磁场,转变量又回到未加磁场状态。

(3)磁场对Ms点影响与形变诱发马氏体影响相似,增加磁能补充了相变所需的驱动力,使马氏体相变能够产生。

5 典型贝氏体的形成温度、组织形态和机械性能;贝氏体相变的基本

特征;

1.贝氏体相变的基本特征

兼有P转变与M转变的某些特征。

(1)转变有上、下限温度

(2)转变产物为非层片状

(3)形核及长大

(4)转变的不完全性

(5)转变的扩散性指碳原子的扩散,中温区,Fe及Me原子则不发生扩散(6)贝氏体转变的晶体学BF与母相A之间存在惯习面和位向关系

(7)BF也为碳过饱和固溶体

过饱和程度随B形成温度的降低而增加,但低于M过饱和程度

2.典型贝氏体的形成温度、组织形态和机械性能

一、上贝氏体

1. 形成温度范围

B转变温度区的较高温度区域,对中、高碳钢,约550~350℃。

2. 组织形态

由成束的、大致平行的F板条加碳化物组成。

铁素体(羽毛状)

束内相邻F位向差很小,束与束之间位向差较大;

亚结构是位错;

C%<0.03%,接近平衡浓度;

F有浮凸;

F惯习面{111},与A位向关系接近K—S。

碳化物

θ分布在F条之间,为渗碳体型碳化物

形态取决于含碳量:碳含量低时,沿条间呈不连续粒状或链珠状分布;随钢中含碳量的增加,上贝氏体板条变薄,渗碳体量增多,短杆状,甚至可分布在铁素体板条内。

与A有位向关系,从A中析出;

二、下贝氏体

1、形成温度范围

B转变区域的低温范围形成,约在350℃以下。碳含量低时,形成温度可略高于350℃。

2、组织形态

F和θ两相混合组织。

贝氏体F的形态与M很相似,亦与A碳含量有关,随碳含量的变化而变化。碳含量低时呈板条状,高时呈透镜片状,中等时两种形态兼有。由于B片间互成交角,金相显微镜下常可观察到的“竹叶状”组织。条状、片状的下贝氏体F,BF内部总有细微碳化物沉淀。为θ或ε碳化物,碳化物呈极细的片状或颗粒状,排列成行,约以55~60°的角度与下B的长轴相交,且仅分布在F内部。

下贝氏体F亚结构为位错,密度较高可形成缠结。未发现孪晶亚结构。

下B中碳化物均匀分布在F内。极细,光镜下无法分辨,与回火M极相似的黑色针状组织,电镜下碳化物呈短杆状,与F长轴成55°~60°角的方向整齐地排列。

下B中碳化物也是θ型,但形成温度低时,最初是ε碳化物,时间延长,ε转变为θ碳化物。在含Si钢中,由于Si能阻止θ碳化物的析出,故B转变时主要析出ε碳化物。

三、无碳化物贝氏体

钢中含一定量硅或铝时,B组织由板条F及富碳残A组成,F间为富碳A,F与A内均无碳化物析出,是贝氏体的一种特殊形态。

1、形成温度范围:

在B转变的最高温度范围内形成。

2、组织形态

主要由大致平行的F板条组成。

四、粒状贝氏体

低碳或中碳合金钢中以一定的速度连续冷却时获得。

1、形成温度范围:稍高于上B形成温度。

2、组织形态

俞德刚:由条状铁素体构成的铁素体块和其中有序分布的岛状组织所组成。

贝氏体转变产物的力学性能:取决于B形态、尺寸大小和分布,以及B与其它组织的相对量等。F和θ是B中最主要的组成相,且F是基本,因此F的强度是B强度的基础。

1.贝氏体的强度、硬度随形成温度的降低而提高;

2.下B冲击韧性优于上B,韧脆转化温度明显低于上B,随着上B屈服强度的升高,韧脆转化温度明显上升,而形成下B时,其韧脆转化温度突然下降,以后随屈服强度的升高,韧脆转化温度又升高。

3.贝氏体的抗疲劳性能和耐磨性能

硬度相同时,等温淬火B组织较淬火回火组织有更高的疲劳性能,因B较其他组织具有最佳的强韧性配合,疲劳裂纹的产生和扩展都较困难;此外,在重载和大的冲击载荷工作条件下,应首选B作为使用组织,因为抗冲击耐磨损性能亦以强韧性配合较佳的组织为最好。

6 退火、正火的定义、目的和分类;常用退火工艺方法;退火、正火

后钢的组织和性能;

退火和正火属于预备热处理工艺。

一退火

1 定义:将组织偏离平衡状态的金属或合金加热到适当的温度,保持一定时间,然后缓慢冷却以达到接近平衡状态组织的热处理工艺。

2 目的:均匀化学成分、改善切削加工性能和冷塑性变形性能、消除或减少内应力、为零件最终热处理准备合适的内部组织。

3.分类:根据加热温度分两类:

在临界温度以上的退火(相变重结晶退火),包括完全退火(均匀化退火)、不完全退火、扩散退火、球化退火;

临界温度以下的退火,包括软化退火,再结晶退火,去应力退火.

二正火

1 定义:将钢材或钢件加热到Ac3(对于亚共析钢)或Accm (对于过共析钢)以上适当温度(30~50℃),保温适当时间,使之完全奥氏体化,然后在空气中冷却,以得到珠光体组织的热处理工艺。

2 目的:细化晶粒、提高硬度、获得比较均匀的组织和性能。

常用退火工艺方法

一、扩散退火:

定义:将金属铸锭、铸件、锻件或锻坯在略低于固相线的温度下长期加热,保温后缓慢冷至室温的热处理工艺。

扩散退火又称均匀化退火。

二、完全退火

定义:将钢件或钢材加热到Ac3点以上20~30℃,使之完全奥氏体化,然后缓慢冷却,获得接近于平衡组织的热处理工艺。或者:将亚共析钢加热到Ac3+

(20~30℃),保温后随炉缓慢冷却到500 ℃以下后在空气中继续冷却。

三、不完全退火

定义:将钢件加热至Ac1和Ac3之间,或Ac1与Accm之间,经保温冷却,以获得接近平衡组织的热处理工艺.

四、球化退火:使钢中的碳化物球化,或获得球状珠光体的退火工艺。

五、再结晶退火

经过冷变形后的金属加热到再结晶温度以上,保持适当时间,使形变晶粒重新转变为均匀的等轴晶粒,以消除形变强化和残余应力的热处理工艺。

六、去应力退火:为了去除由于形变加工、锻造、焊接等所引起的及铸件内存在的残余应力(但不引起组织的变化)而进行的退火。

退火正火后钢的组织和性能

1、组织比较

相同点:均是珠光体型组织

不同点:正火得到的珠光体,过冷度较大,片间距细小;完全退火得到的珠光体片间距较大。

2.性能比较

亚共析钢,正火的强度、硬度、韧性较高,塑性相仿;

过共析钢,退火后强度、硬度、韧性均低于正火的,只有球化退火的,因其所得组织为球状珠光体,故其综合性能优于正火的。

总之,对于含碳量相同的工件,正火后的强度和硬度要高于的退火的。

7 淬火的定义、目的和分类;常用淬火介质;冷却过程三阶段;钢的淬透性及影响因素;淬硬性及影响因素;淬火方法及应用;淬火缺陷;

1.钢的淬火——将钢加热到临界温度(A1 或A3)以上,保温一定时间使其奥氏体化,以大于临界冷却速度进行冷却的工艺。

2.淬火目的:

提高硬度和耐磨性:刀具、量具、磨具

提高强韧性:轴类、杆件、销、受力件

提高硬磁性:用高碳钢、磁钢制的永久磁铁(马氏体磁性)

提高弹性:各类弹簧

提高耐蚀和耐热性:耐热钢和不锈钢

获得M组织

3.淬火分类

按加热温度:完全淬火、不完全淬火、循环加热淬火

按加热速度:普通淬火、快速加热淬火、超快速加热淬火

按加热介质及热源条件:光亮淬火、真空淬火、铅浴加热淬火、盐浴加热淬火、火焰加热淬火、感应加热淬火、高频脉冲淬火、接触电加热淬火、电解液加热淬火、电子束加热淬火、激光加热淬火

按淬火部位:整体淬火、局部淬火、表面淬火

按冷却方式:单液淬火、双液淬火、分级淬火、等温淬火、预冷淬火;马氏体等温淬火、贝氏体等温淬火等

4.常用淬火介质

理想淬火介质具备:高温慢冷;奥氏体鼻子温度快冷;马氏体转变慢冷。(1)无物态变化的淬火介质

冷却机理:辐射、传导和对流将工件的热量带走,使工件冷却

常用的淬火介质:硝酸盐和碱,使用温度在150~550℃之间。

(2)有物态变化的淬火介质

冷却机理:

辐射、传导和对流将工件的热量带走,使工件冷却

汽化沸腾,使工件强烈散热

冷却能力强

5.冷却过程三阶段

6.钢的淬透性及影响因素

1.淬透性——钢在淬火时能够获得马氏体的能力。

其大小是用规定条件下淬硬层深度来表示。

淬硬层深度——由工件表面到半马氏体区(50%M + 50%P)的深度。 2.影响淬透性的因素

决定因素:临界冷却速度;取决于材料化学成分。

C 曲线越靠右,淬火临界冷却速度越小,钢的淬透性越好 因此使C 曲线右移的元素均使淬透性提高;

一般而言,碳钢的淬透性差,合金钢的淬透性好,且合金元素含量越高,淬透性越好(除Co ) 注意区别:

钢的淬透性 —— 钢材本身的固有属性,与外部因素无关 工件的淬透深度 —— 取决于钢材淬透性, 还与冷却介质、 工件尺寸等外部因素有关。

淬透性与工件尺寸、冷却介质无关。它只用于不同材料之间的比较。是在尺寸、冷却介质相同时,用不同材料的淬硬层深度来进行比较的。

7.淬硬性及影响因素

淬硬性: 钢在理想条件下淬火后所能达到的最高硬度。

: 主要取决于马氏体的含碳量。

8.淬火方法及应用

马氏体硬度、韧性与含碳量的关系

C

%

1.单液淬火法

概念:把已加热到淬火温度的工件淬入一种淬火介质,使其完全冷却。如曲线a 所示。

适用条件:

适用于形状简单的碳钢,合金钢工件;

对碳钢直径大于3~5mm的工件水中淬火,更小的可采用油淬;

各类合金钢则以油为常用淬火介质。

2.双液淬火法

概念:把加热到淬火温度的工件,先在冷却能力强的淬火介质中冷却至接近MS 点,然后转入冷却能力弱的淬火介质中冷却至室温。如曲线b所示。

说明:一般用水做快冷淬火介质,用油或空气做慢冷淬火介质,但较少采用空气,在水中停留时间为每5~6mm有效厚度约1秒。

适用条件:尺寸较大的碳素钢工件。

3.喷射淬火法

概念:向工件喷射水流的淬火方法。

适用条件:主要用于局部淬火。

4.分级淬火法

概念:把工件由奥氏体化温度淬入高于该钢种的马氏体开始转变温度的淬火介质(盐浴或碱浴炉)中,在其中冷却直至工件各部分温度达到淬火介质的温度,然后缓冷至室温,发生马氏体转变。

适用条件:只适用于尺寸较小的工件。

5.等温淬火法

概念:工件淬火加热后,若长期保持在下贝氏体转变区的温度使之完成奥氏体的等温转变,获得下贝氏体组织,这种淬火方法称等温淬火法。

等温淬火目的:获得变形小,硬度高并兼有良好韧性的工件。

9.淬火缺陷

(1)淬火内应力

淬火内应力是造成工件变形和开裂根本原因。

淬火内应力超过材料屈服强度----引起工件变形;

淬火内应力超过材料断裂强度----引起工件断裂。

淬火内应力分:热应力(温度应力)组织应力(相变应力)

热应力:由于工件心部和表面冷却速度不一致,其冷却收缩不同而造成的内应力。热应力产生过程:

冷却初期,表面冷速快,表面收缩,产生拉应力;

心部冷速慢,不收缩,产生压应力;

冷却后期,表面冷速慢,表面不收缩,产生压应力;

心部冷速快,收缩,产生拉应力;

最终的淬火热应力:表面压应力、心部拉应力。

组织应力:由于工件表层和心部发生马氏体转变的不同时性而造成的内应力。组织应力产生过程:

冷却初期,表面受压,心部受拉;

冷却后期,表层受拉,心部受压;

(2)淬火变形

几何形状变化+体积变化

热应力使工件沿着最大尺寸方向收缩,沿着最小尺寸方向胀大。变圆

组织应力使工件沿着最大尺寸方向伸长,沿着最小尺寸方向收缩。变尖

(3)淬火裂纹

淬火裂纹产生原因:淬火内应力超过材料断裂强度

材料内部缺陷 + 一定的淬火应力

(4)其它淬火缺陷

淬火硬度不足、氧化和脱碳、软点

8 回火的定义、目的和种类、应用;回火脆性;淬火钢回火时的组织转变阶段;

定义:将淬火零件重新加热到低于临界点A1某一温度保温,使淬火亚稳组织转变为稳定的回火组织,并以适当的冷却速度冷却到室温的热处理工艺过程。

目的:⑴减少或消除淬火内应力, 防止变形或开裂。

⑵获得所需要的力学性能。淬火钢一般硬度高,脆性大,回火可调整硬度、韧性。

⑶稳定尺寸。

⑷对于某些高淬透性的钢,空冷即可淬火,如采用回火软化既能降低硬度,又能缩短软化周期。

回火脆性:在某些温度区间回火时,钢的韧性显著下降的现象。

第一类(低温)回火脆性:是指淬火钢在250-400℃回火时出现的脆性。

特征:不可逆;与冷速无关,与回火时间无关。

第二类(高温)回火脆性:(450?650℃)

是指淬火钢在450-650℃范围内回火后缓冷时出现的脆性。回火后快冷不出现。多发生在含Cr、Ni、Mn、Si等元素的合金钢中。

特征:可逆性,与冷速有关(快冷不产生),与回火时间有关(回火时间、脆性增加)

淬火钢回火时的组织转变阶段:

随温度升高,淬火组织将发生五个阶段变化:

马氏体中碳原子偏聚(100℃以下)

马氏体的分解(100~250℃)

产物:M回

残余奥氏体的转变(200~300℃)

产物:M回(主要)+ B下(微量)

碳化物析出和转变(250~400℃)

产物:T回

α相状态变化及碳化物聚集长大(>400 ℃)

产物:S回

金属学与热处理第二版--复习总结

金属学与热处理第二版复习总结 哈工大(威海)14级苏同学 此文档只总结了部分重要概念与影响因素(不包含第八章、第十二章、第十三章) 另外,第十章、十一章的热处理的具体工艺也是重点,此文档没有涉及。 概念 金属最外层的电子数很少,一般为1~2个,不超过3个。 金属键 ?原子共用自由电子形成 ?无饱和性和方向性。 金属晶体 原子排列密度高,能变形,导电,导热。 金属原子特点 ?外层电子少,易失去 ?有自由电子 ?金属离子与自由电子形成键。 ?金属键无方向性 ?有良好的塑性 晶体:各向异性是晶体区别于非晶体的一个重要标志

柏氏矢量的意义及特征 ?反映位错的点阵畸变总量 ?反映晶体的滑移量及方向 ?与位错线有确定的位置关系 ?具有守恒性 相界 共格界面、半共格界面、非共格界面三类。共格界面界面能最低?界面处晶体缺陷集中,原子能量高 ?界面是氧化、腐蚀的优先发生地 ?界面是固态相变的有效形核位置 ?界面原子的扩散速度远高于晶内 ?存在内吸附现象。异类原子可降低界面能时,会向界面偏聚 ?界面阻碍位错运动,组织越细小,强度硬度越高 ?界面能越大,界面迁移速度越大;晶粒长大可以降低界面能。 固溶体结晶的特点 (1)异分结晶:固相成分与液相成分不同,晶体与母相成分不同称为异分结晶(选择结晶)。 (2)固溶体结晶需要在一定的温度范围:每一温度下,结晶出一定数量的固相。温度的降低,固相的数量增加成分分别沿着固相线和液相线变化 非平衡凝固总结: (1)固相平均成分线和液相平均成分线偏离固相线与液相线。 冷却速度越快,偏离越严重

(2)固溶体成分不均匀。 先结晶部分总是富高熔点组元,后结晶的部分富低熔点组元。 区域偏析、晶内偏析、枝晶偏析 (3)结晶温度。凝固终结温度低于平衡凝固时的终结温度。 伪共晶——靠近共晶点附近合金得到全部共晶组织 离异共晶——共晶组织没有显示出共晶的特征 不平衡共晶——在不该出现共晶的合金里出现共晶组织 孪生变形的特点 (1)切应力作用下发生,临界切应力远大于滑移时。 (2)是一种均匀切变。 (3)孪晶有对称关系。 在一定范围内改变了晶体的取向。 多晶体塑性变形的特点 ?各晶粒变形不同时性 ?晶粒间、晶粒内变形的不均匀性 ?相邻晶粒变形的协调性 ? 配位数:一个原子周围最近邻并且等距离的原子的个数。 致密度——晶胞中原子所占的体积 0.74 12 6 密排六方 0.74 12 4 面心立方 0.68 8 2 体心立方 致密度 配位数 原子数 原子半径 a r 4 3= a r 2 1= a r 4 2=

金属热处理知识点

1 热处理的目的、分类、条件; 定义:通过加热、保温和冷却的方法,使金属的内部组织结构发生变化,从而获得所要求的性能的一种工艺方法。 目的:1、消除毛坯中的缺陷,改善工艺性能,为切削加工或热处理做组织和性能上的准备。2、提高金属材料的力学性能,充分发挥材料的潜力,节约材料延长零件使用寿命。 分类: 特点:热处理区别于其他加工工艺如铸造、压力加工等的特点是只通过改变工件的组织来改变性能,而不改变其形状。 热处理条件: (1)有固态相变发生的金属或合金 (2)加热时溶解度有显著变化的合金 热处理过程中四个重要因素: (1)加热速度V;(2)最高加热温度T; (3)保温时间h; (4)冷却速度Vt. 2 什么是铁素体、奥氏体、渗碳体?其结构与性能; Ac1、Ar1、Ac3、Ar3、Accm、Arcm临界温度的意义;奥氏体的形成条件;奥氏体界面形核的原因/条件;以共析钢为例,详细分析奥氏体的形成机理;影响奥氏体转变速度的因素;影响奥氏体晶粒长大的因素; 铁素体:碳溶于α-Fe中形成的间隙固溶体,以F或α表示;

结构:体心立方结构;组织:多边形晶粒 性能:铁素体的塑性、韧性很好(δ=30~50%、aKU=160~200J/cm2),但强度、硬度较低(ζb=180~280MPa、ζs=100~170MPa、硬度为50~80HBS)。其力学性能几乎与纯铁相同。 奥氏体γ-Fe中的间隙固溶体;用A或γ表示 结构:面心立方晶格 性能:奥氏体常存在于727℃以上,是铁碳合金中重要的高温相,强度和硬度不高,但塑性和韧性很好(ζb≈400 MPa、δ≈40~50%、硬度为160~200HBS),易锻压成形。钢材热加工都在γ区进行。 组织:多边形等轴晶粒,在晶粒内部往往存在孪晶亚结构渗碳体:铁与碳形成的金属化合物,是钢铁中的强化相,高温下可分解,Fe3C →3Fe+C(石墨) 。 结构:复杂斜方 性能:渗碳体中碳的质量分数为6.69%,熔点为1227℃,硬度很高(800HBW),塑性和韧性极低(δ≈0、aKU≈0),脆性大。渗碳体是钢中的主要强化相,其数量、形状、大小及分布状况对钢的性能影响很大。 由于碳在α-Fe中的溶解度很小,因而常温下碳在铁碳合金中主要以Fe3C或石墨的形式存在。

金属学与热处理知识点总结

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法, 铸锭三晶区

的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。 相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,没有过冷度结晶就没有趋动力。根据Rk= 1..,T可知当过冷度T为零时临界晶核半 径R k为无穷大,临界形核功(1订2 )也为无穷大。临界晶核半径R k与临界形核功为无穷大时,无法形核,所以液态金属不能结晶。晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。 细化晶粒的方法:增加过冷度、变质处理、振动与搅拌。 铸锭三个晶区的形成机理:表面细晶区:当高温液体倒入铸模后,结晶先从模壁开始,靠近模壁一层的液体产生极大的过冷,加上模壁可以作为非均质形核的基底,因此在此薄层中立即形成大量的晶核,并同时向各个方向生长,形成表面细晶区。柱状晶区:在表面细晶区形成的同时,铸模温度迅速升高,液态金属冷却速度减慢,结晶前沿过冷都很小,不能生成新的晶核。垂直模壁方向散热最快,因而晶体沿相反方向生长成柱状晶。中心等轴晶区:随着柱状晶的生长,中心部位的液体实际温度分布区域平缓,由于溶质原子的重新分配,在固液界面前沿出现成分过冷,成分过冷区的扩大,促使新的晶核形成长大形成等轴晶。由于液体的流动使表面层细晶一部分卷入液体之中或柱状晶的枝晶被冲刷脱落而进入前沿的液体中作为非自发生核的籽晶。 三、二元合金的相结构与结晶 重点内容:杠杆定律、相律及应用。 基本内容:相、匀晶、共晶、包晶相图的结晶过程及不同成分合金在室温下的显微组织。合金、成分过冷;非平衡结晶及枝晶偏析的基本概念。 相律:f = c -p + 1其中,f为自由度数,c为组元数,p为相数。 伪共晶:在不平衡结晶条件下,成分在共晶点附近的亚共晶或过共晶合金也可能得到全部共晶组织,这种共晶组织称为伪共晶。 合金:两种或两种以上的金属,或金属与非金属,经熔炼或烧结、或用其它方法组合而成的具有金属特性的物质。 合金相:在合金中,通过组成元素(组元)原子间的相互作用,形成具有相同晶体结构与性质,并以明确界面分开的成分均一组成部分称为合金相。 四、铁碳合金 重点内容:铁碳合金的结晶过程及室温下的平衡组织,组织组成物及相组成物的计算 基本内容:铁素体与奥氏体、二次渗碳体与共析渗碳体的异同点、三个恒温转变。 钢的含碳量对平衡组织及性能的影响;二次渗碳体、三次渗碳体、共晶渗碳体相对量的计算;五种渗碳体的来源及形态。

(完整版)金属热处理知识点概括

(一)淬火--将钢加热到Ac 3或Ac 1 以上,保温一段时间,使之奥氏体化后,以 大于临界冷速的速度冷却的一种热处理工艺。 淬火目的:提高强度、硬度和耐磨性。结构钢通过淬火和高温回火后,可以获得较好的强度和塑韧性的配合;弹簧钢通过淬火和中温回火后,可以获得很高的弹性极限;工具钢、轴承钢通过淬火和低温回火后,可以获得高硬度和高耐磨性;对某些特殊合金淬火还会显著提高某些物理性能(如高的铁磁性、热弹性即形状记忆特性等)。 表面淬火--表面淬火是将钢件的表面层淬透到一定的深度,而心部分仍保持未淬火状态的一种局部淬火的方法。分类——感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火、电解液加热表面淬火、激光加热表面淬火、电子束加热表面淬火、离子束加热表面淬火、盐浴加热表面淬火、红外线聚焦加热表面淬火、高频脉冲电流感应加热表面淬火和太阳能加热表面淬火。 单液淬火——将奥氏体化后的钢件投入一种淬火介质中,使之连续冷却至室温(图9-1a线)。淬火介质可以是水、油、空气(静止空气或风)或喷雾等。 双液淬火——双液淬火方法是将奥氏体化后的钢件先投人水中快冷至接近M S 点,然后立即转移至油中较慢冷却(图9-1b线)。 分级淬火——将奥氏体化后的钢件先投入温度约为M S 点的熔盐或熔碱中等温保持一定时间,待钢件内外温度一致后再移置于空气或油中冷却,这就是分级淬火等温淬火--奥氏体化后淬入温度稍高于Ms点的冷却介质中等温保持使钢发生下贝氏体相变的淬火硬化热处理工艺。 等温淬火与分级淬火的区别是:分级淬火的最后组织中没有贝氏体而等温淬火组织中有贝氏体。。。根据等温温度不同,等温淬火得到的组织是下贝氏体、下贝氏体+马氏体以及残余奥氏体等混合组织。 (二)回火--将淬火后的钢/铁,在AC1以下加热、保温后冷却下来的金属热处理 工艺。回火的目的:为了稳定组织,减小或消除淬火应力,提高钢的塑性和韧性,获得强度、硬度和塑性、韧性的适当配合,以满足不同工件的性能要求。 第一类回火脆性:①淬火钢在250~400℃回火后出现韧性降低的现象称为第一类回火脆性,又称为低温回火脆性。几乎所有工业用钢都在一定程度上具有这类回火脆件,而且脆性的出现与回火时冷却速度的快慢无关。 第二类回火脆性:①指合金钢(含有Cr、Ni、Mn、Si等元素的合金钢)淬火并在450~650℃回火后产生低韧性的现象,也称为高温回火脆性。。。。。回火后缓冷促进回火脆性,而快冷抑制回火脆性。 (三)正火--是将工件加热至Ac3或Acm以上40~60℃,保温一段时间后,从 炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。 目的:——如果终锻温度比较高和锻造后冷却速度比较慢,会出现网状碳化物的缺陷。这种网状碳化物在球化退火时不易被消除,需要在球化退火前用正火工艺进行消除。 (四)退火——将钢加热到临界温度Ac1以上或以下温度,保温一定时间,然后缓慢冷却(如 炉冷、坑冷、灰冷等)获得接近平衡组织的热处理工艺称为退火 退火作用——退火过程使组织由非平衡向平衡过度,它可以均匀钢的化学成分及组织,消除铸造偏析,细化晶粒;消除内应力,稳定工件尺寸,减小变形,防止开裂;降低硬度,提高切削加工性能,一般硬度的最佳切削范围为170~230HB;提高塑性,便于冷变形加工;消除淬火后的过热组织以便再进行重新淬火;脱氢,防止白点等。6.5.3 退火工艺的分类

金属学与热处理章节重点总结

第1章金属和合金的晶体结构 1.1金属原子的结构特点:最外层的电子数很少,一般为1~2个,不超过3个。 金属键的特点:没有饱和性和方向性 结合力:当原子靠近到一定程度时,原子间会产生较强的作用力。结合力=吸引力+排斥力结合能=吸引能+排斥能(课本图1.2) 吸引力:正离子与负离子(电子云)间静电引力,长程力 排斥力:正离子间,电子间的作用力,短程力 固态金属原子趋于规则排列的原因:当大量金属原子结合成固体时,为使固态金属具有最低的能量,以保持其稳定状态,原子间也必须保持一定的平衡距离。 1.2晶体:基元在三维空间呈规律性排列。晶体结构:晶体中原子的具体排列情况, 也就是晶体中的这些质点在三维空间有规律的周期性的重复排列方式。 晶格:将阵点用直线连接起来形成空间格子。晶胞:保持点阵几何特征的基本单元 三种典型的金属晶体结构(要会画晶项指数,晶面指数) 共带面:平行或相交于同一直线的一组晶面组成一个晶带,这一组晶面叫做共带面 晶带轴:同一晶带中所有晶面的交线互相平行,其中通过坐标原点的那条直线。 多晶型转变或同素异构转变:当外部的温度和压强改变时,有些金属会由一种晶体结构向另一种晶体结构转变。 1.3合金:两种或两种以上金属元素,或金属元素与非金属元素,经熔炼、烧结或其它方法组合而成并具有金属特性的物质。组元:组成合金最基本的独立的物质,通常组元就是组成合金的元素。相:是合金中具有同一聚集状态、相同晶体结构,成分和性能均一,并以界面相互分开的组成部分。固溶体:合金的组元通过溶解形成一种成分及性能均匀的、且结构与组元之一相同的固相,称为固溶体。与固溶体结构相同的组元为溶剂,另一组元为溶质。 固溶体的分类:按溶质原子在溶剂晶格中的位置:置换固溶体与间隙固溶体。按溶质原子在固体中的溶解度:分为有限固溶体和无限固溶体。按溶质原子在固溶体内分布规则:分为有序固溶体和无序固溶体 固溶强化:在固体溶液中,随着溶质浓度的增加,固溶体的强度、硬度提高,塑性韧性下降。 间隙相:当非金属原子半径与金属原子半径的比值小于0.59时,将形成具有简单晶体结构的金属间化合物。间隙化合物:与间隙相相反(比值大于0.59)。 1.4点缺陷:⑴空位⑵间隙原子⑶置换原子。线缺陷:线缺陷就是各种类型的位错。它是指晶体中的原子发生了有规律的错排现象。(刃型位错、螺型位错、混合型位错)滑移矢量:表示位错的性质,晶格畸变的大小的物理量(刃型位错的柏氏矢量与其位错线相垂直;螺形位错的柏氏矢量与其位错线平行。)。 面缺陷:晶体的面缺陷包括晶体的外表面(表面或自由界面)和内界面两类,其中的内界面又有晶界、亚晶界、 小角度晶界、大角度晶界:两相邻晶粒位向差小于或大于10° 相界面的结构有三类:共格界面、半共格界面、非共格界面 习题3 、5做一下 第2章纯金属的结晶 2.1结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。 同素异构转变:金属从一种固态过渡为另一种固体晶态的转变 过冷度:理论结晶温度与实际结晶温度之差。过冷是结晶的必要条件。(金属不同过冷度也不同,金属纯度越高过冷度越大。过冷度的速度取决于,冷却速度越大过冷度越大实际洁净无度越低,反之) 金属结晶:孕育—出现晶核—长大—金属单晶体 2.2从液体向固体的转变使自由能下降.液态金属结晶时,结晶过程的推动力是 自由能差降低(△F)是自由能增加,阻力是自身放热

金属热处理原理知识点总结

第一章金属的晶体结构 1、除化学成分外,金属的内部结构和组织状态也是决定金属材料性能的重要因素。 2、将阵点用直线连接起来形成空间格子,称之为晶格。 3、晶胞中原子排列的紧密程度通常用两个参数来表征:配位数、致密度。 4、原子所占体积与晶胞体积之比称为致密度。 5、体心立方结构有两种间隙:一种是八面体间隙,另一种是四面体间隙。 6、在晶体中,由一系列原子所组成的平面称为晶面,任意两个原子之间连线所指的方向称为晶向。 7、晶体的点缺陷有三种:空位、间隙原子和置换原子。 8、塑性变形时,由于局部区域的晶体发生滑移即可形成位错。 9、刃型位错的柏氏矢量与其位错线相垂直,螺型位错的柏氏矢量与其位错线相平行。 10、把单位体积中所包含的位错线的总长度称为位错密度。 11、晶体的面缺陷包括晶体的外表面和内界面两类。 12、晶体的内界面缺陷有:晶界、亚晶界、孪晶界、堆垛层错和相界等。 13、金属:是具有正的电阻温度系数的物质,其电阻随温度的升高而增加。 14、晶体:原子在三维空间作有规则的周期性排列的物质称为晶体。 15、晶体结构:是指晶体中原子在三维空间有规律的周期性的具体排列方式。 16、点阵:能清楚地表明原子在空间排列规律性的原子的几何点,称之为点阵。 17、晶胞:晶格中能够完全反映晶格特征的最小的几何单元,称为晶胞。用来分析晶体中原子排列的规律性。 18、配位数:是指晶体结构中与任一个原子最邻近、等距离的原子数目。 19、螺型位错:设想在立方晶体右端施加一切应力,使右端上下两部分沿滑移面发生了一个原子间距的相对切边,这种晶体缺陷就是螺型位错。 20、表面能:由于在表面层产生了晶格畸变,其能量就要升高,这种单位面积上升高的能量称为比表面能,简称表面能。 21、什么是晶体?晶体有何特性? 答:晶体:原子在三维空间作有规则的周期性排列的物质称为晶体。 1)晶体具有一定的熔点。在熔点以上,晶体变为液体,处于非晶体状;在熔点以下,液体又变为晶体。 2)晶体的另一个特点是在不同的方向上测量其性能,表现出或大或小的差异,称为各向异性或异向性。 22、确定晶向指数的步骤有哪些? 答:①以晶胞的三个棱边为坐标轴,以棱边长度作为作为坐标轴的长度单位;②从坐标轴原点引一有向直线平行于待定晶向;③在所引有向直线上任取一点,求出改点在X、Y、Z轴上的坐标轴;④将三个坐标轴按比例化为最小简单整数,依次写入方括号中,即得所求的晶向指数。 23、如何确定晶面指数?简要写出步骤。 答:①以晶胞的三条相互垂直的棱边为参考坐标轴X、Y、Z,坐标原点O应位于待定晶面之外,以免出现零截距;②以棱边长度为度量单位,求出待定晶面在各轴上的截距;③取各截距的倒数,并化为最小简单整数,放在圆括号内,即为所求的晶面指数。 24、根据几何形态特征不同,晶体缺陷可分成哪几类?各有何特征? 答:①点缺陷。特征是三个方向上的尺寸都很小,相当于原子的尺寸,例如空位、间隙原子等; ②线缺陷。特征是在两个方向上的尺寸很小,另一个方向上的尺寸相对很大。属于这一类的

热处理复习要点

第一章金属的加热 本章重点: 1 传热方式及其特点 2 对热处理加热时间的理解 3 影响热处理工件加热的因素 4 钢加热时的氧化反应 5 钢加热时的脱碳反应 6 炉气碳势的测定方法 5 加热介质的选择 习题:1、3 1 传热方式及其特点 ●对流传热:靠气体或液体的流动来传热的方式。特点:通过发热体和工件之间流体的流 动进行 ●辐射传热:高温物体直接向外发射热的现象。特点:以电磁波的形式传递能量;波长 范围:0.4~40μm ●传导传热:热从物体温度较高的一部分沿着物体传到温度较低的部分的方式。特点: 传热物质质点间的相互碰撞;固体中热传递的主要方式; ●综合传热 3 影响热处理工件加热的因素 1)加热方式的影响 ?随炉加热:工件装入炉中,随着炉子升温而加热,直至所需加热温度 ?预热加热:工件先在已升温至较低温度的炉子中加热,到温后再转移至预定工件加热温度的炉中加热至工件达到所要求的温度。 ?到温入炉加热又称热炉装料加热:先把炉子升到工件要求的加热温度,然后再把工件装入炉内进行加热 ?高温入炉加热:工件装入较工件要求加热温度高的炉内进行加热,直至工件达到要求温度 关键不同之处:加热速度不同,随炉加热→预热加热→到温入炉加热→高温入炉加热2)加热介质及工件放置方式的影响 (1)加热介质的影响 ①流态化炉中加热的特点工作时,一定压力和流量的气流通入炉内,石墨粒子翻滚,接触或分离,产生电阻,发热,加热工件。 ○2在液态介质(熔盐或金属)中加热的特点加热均匀,不易脱碳,加热速度快。以热传导为主,兼有辐射传热及对流传热---综合传热 ○3在气态介质中加热的特点属于综合传热:高温区:辐射为主;高温区:辐射为主;低于600oC的循环气体炉:对流为主 - 1 -

金属学与热处理章节重点总结

金属学与热处理章节重点总 结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第1章金属和合金的晶体结构 1.1金属原子的结构特点:最外层的电子数很少,一般为1~2个,不超过3个。 金属键的特点:没有饱和性和方向性 结合力:当原子靠近到一定程度时,原子间会产生较强的作用力。结合力=吸引力+排斥力结合能=吸引能+排斥能(课本图1.2) 吸引力:正离子与负离子(电子云)间静电引力,长程力 排斥力:正离子间,电子间的作用力,短程力 固态金属原子趋于规则排列的原因:当大量金属原子结合成固体时,为使固态金属具有最低的能量,以保持其稳定状态,原子间也必须保持一定的平衡距离。 1.2晶体:基元在三维空间呈规律性排列。晶体结构:晶体中原子的具体排列情况, 也就是晶体中的这些质点在三维空间有规律的周期性的重复排列方式。 晶格:将阵点用直线连接起来形成空间格子。晶胞:保持点阵几何特征的基本单元 三种典型的金属晶体结构(要会画晶项指数,晶面指数) 共带面:平行或相交于同一直线的一组晶面组成一个晶带,这一组晶面叫做共带面 晶带轴:同一晶带中所有晶面的交线互相平行,其中通过坐标原点的那条直线。 多晶型转变或同素异构转变:当外部的温度和压强改变时,有些金属会由一种晶体结构向另一种晶体结构转变。 1.3合金:两种或两种以上金属元素,或金属元素与非金属元素,经熔炼、烧结或其它方法组合而成并具有金属特性的物质。组元:组成合金最基本的独立的物质,通常组元就是组成合金的元素。相:是合金中具有同一聚集状态、相同晶体结构,成分和性能均一,并以界面相互分开的组成部分。固溶体:合金的组元通过溶解形成一种成分及性能均匀的、且结构与组元之一相同的固相,称为固溶体。与固溶体结构相同的组元为溶剂,另一组元为溶质。 固溶体的分类:按溶质原子在溶剂晶格中的位置:置换固溶体与间隙固溶体。按溶质原子在固体中的溶解度:分为有限固溶体和无限固溶体。按溶质原子在固溶体内分布规则:分为有序固溶体和无序固溶体 固溶强化:在固体溶液中,随着溶质浓度的增加,固溶体的强度、硬度提高,塑性韧性下降。 间隙相:当非金属原子半径与金属原子半径的比值小于0.59时,将形成具有简单晶体结构的金属间化合物。间隙化合物:与间隙相相反(比值大于0.59)。 1.4点缺陷:⑴空位⑵间隙原子⑶置换原子。线缺陷:线缺陷就是各种类型的位错。它是指晶体中的原子发生了有规律的错排现象。(刃型位错、螺型位错、混合型位错)滑移矢量:表示位错的性质,晶格畸变的大小的物理量(刃型位错的柏氏矢量与其位错线相垂直;螺形位错的柏氏矢量与其位错线平行。)。 面缺陷:晶体的面缺陷包括晶体的外表面(表面或自由界面)和内界面两类,其中的内界面又有晶界、亚晶界、 小角度晶界、大角度晶界:两相邻晶粒位向差小于或大于10° 相界面的结构有三类:共格界面、半共格界面、非共格界面 习题3 、5做一下 第2章纯金属的结晶 2.1结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。 同素异构转变:金属从一种固态过渡为另一种固体晶态的转变 过冷度:理论结晶温度与实际结晶温度之差。过冷是结晶的必要条件。(金属不同过冷度也不同,金属纯度越高过冷度越大。过冷度的速度取决于,冷却速度越大过冷度越大实际洁净无度越低,反之) 金属结晶:孕育—出现晶核—长大—金属单晶体 2.2从液体向固体的转变使自由能下降.液态金属结晶时,结晶过程的推动力是

金属热处理基础知识大全

金属热处理基础知识大全 金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺。 1.金属组织 金属:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特性的物质。金属内部原子具有规律性排列的固体(即晶体)。 合金:由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。 相:合金中成份、结构、性能相同的组成部分。 固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两种。 固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。 化合物:合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。 机械混合物:由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分,具有独立的机械性能。 铁素体:碳在a-Fe(体心立方结构的铁)中的间隙固溶体。 奥氏体:碳在g-Fe(面心立方结构的铁)中的间隙固溶体。 渗碳体:碳和铁形成的稳定化合物(Fe3c)。 珠光体:铁素体和渗碳体组成的机械混合物(F+Fe3c 含碳0.8%) 莱氏体:渗碳体和奥氏体组成的机械混合物(含碳4.3%)

金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。 为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。 在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。早在公元前770~前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。白口铸铁的柔化处理就是制造农具的重要工艺。 公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。 随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。 1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。法国人奥斯蒙德确立的铁的同素异构理论,以及英国人奥斯汀最早制定的铁碳相图,为现代热处理工艺初步奠定了理论基础。与此同时,人们还研究了在金属热处理的加热过程中对金属的保护方法,以避免加热过程中金属的氧化和脱碳等。 1850~1880年,对于应用各种气体(诸如氢气、煤气、一氧化碳等)进行保护加热曾有一系列专利。1889~1890年英国人莱克获得多种金属光亮热处理的专利。

金属学与热处理复习资料(本)

金属学与热处理复习资料 一、名词解释 1、晶体:原子在三维空间做有规则的周期性重复排列的物质。 2、非晶体:指原子呈不规则排列的固态物质。 3、晶格:一个能反映原子排列规律的空间格架。 4、晶胞:构成晶格的最基本单元。 5、晶界:晶粒和晶粒之间的界面。 6、单晶体:只有一个晶粒组成的晶体。 7、合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。 8、组元:组成合金最基本的、独立的物质称为组元。 9、相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。 10、固熔体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相。 11、结晶:纯金属或合金由液体转变为固态的过程。 12、重结晶:金属从一种固体晶态改变了晶体结构转变为另一种固体晶态的过程。 13、过冷度:理论结晶温度(T0)和实际结晶温度(T1)之间存在的温度差。 14、铁素体:碳溶解于α-Fe中形成的间隙固溶体。 15、渗碳体:是铁与碳形成的质量分数为6.69%的金属化合物。 16、奥氏体:碳溶解于γ-Fe中形成的间隙固溶体。 17、珠光体:是由铁素体与渗碳体组成的机械化合物。 18、莱氏体:奥氏体与渗碳体的混合物为莱氏体。 19、同素异构转变:一些金属,在固态下随温度或压力的改变,还会发生晶体结构变化,即由一种晶格转变为另一种晶格的变化,称为同素异构转变。 20、实际晶粒度:某一具体热处理或热加工条件下的奥氏体的晶粒度叫实际晶粒度,它决定钢冷却后的组织和性能。 21、马氏体:碳在α-Fe 中的过饱和间隙固溶体,具有很大的晶格畸变,强度很高。 22、贝氏体:渗碳体分布在含碳过饱和的铁素体基体上或的两相混合物。根据形貌不同又可分为上贝氏体和下贝氏体。 23、淬透性:淬透性是指在规定条件下,钢在淬火冷却时获得马氏体组织的能力。 24、淬硬性:淬硬性是指钢在理想的淬火条件下,获得马氏体所能达到的最高硬度。 25、调质处理:淬火后高温回火的热处理工艺组合。 二、填空题 1、常见金属的晶体结构有体心立方晶格、面心立方晶格、密排六方晶格三种。 2、实际金属的晶体缺陷有点缺陷、线缺陷、面缺陷、体缺陷。 3、根据溶质原子在溶剂晶格中占据的位置不同,固溶体可分为置换固溶体和间隙固溶体两种。 4、置换固溶体按照溶解度不同,又分为无限固溶体和有限固溶体。 5、合金相的种类繁多,根据相的晶体结构特点可将其分为固溶体和金属化合物两种。 6、金属晶体中最主要的面缺陷是晶界和亚晶界。 7、固溶体的强度和硬度比溶剂的强度和硬度高 8、金属结晶时,冷却速度越快,实际结晶温度就越低,过冷度越大。 9、纯金属的结晶过程是依靠两个密切联系的基本过程来实现的,这两个过程是形核和长大。 10、当对金属液体进行变质处理时,变质剂的作用是促进形核,细化晶粒。 11、液态金属结晶时,结晶过程的推动力是自由能差(△F)降低,阻力是自由能增加。

合工大工程材料及热处理知识点资料

工程材料及热处理 第一部分名词解释 第一章材料的结构与性能 1、金属键:通过共有化的自由电子和正离子依靠静电引力结合的方式。 金属的宏观特性:①导电性②导热性③不透明④有光泽⑤具有正电阻温度系数⑥塑性、延展性 书P12 表1-1 2、晶体:内部质点(原子、离子或分子)在三维空间按一定规律进行周期性重复排列的固体。 晶体与非晶体的区别: 根本区别:内部质点排列的规律不同,即结构不同。 (1)晶体有一定的熔点,而非晶体则没有。 (2)晶体具有各向异性,而非晶体是各向异性。 (3) 3、空间点阵或晶格:将晶体的内部质点抽象为几何点得到的由几何点构成的空间构架。 4、晶胞:能完全反应点阵特征的最小的几何单元。 5、晶面:通过将晶体中由原子构成的平面。 6、晶向:任意两个原子的连线方向。 7、晶体缺陷:实际金属中,因一些原子在外在因素的作用下偏离平衡位置破坏晶体中原子排列的规律性,形成的微小不完整区域。 根据几何形状特征,可将晶体缺陷分为点缺陷、线缺陷和面缺陷三类。 点缺陷:空位、间隙原子和置换原子 线缺陷:也称为位错(位错密度用X射线或透射电镜测定) 面缺陷:晶界、亚晶界 8、合金:由两种或两种以上的金属元素(或金属元素与非金属元素)组成的具有金属特性的物质。 9、相:合金中具有同一聚集状态、同一结构、同一性质,并与其他部分有界面分开的均匀组成部分。 10、固溶体:溶质原子溶入固态金属溶剂晶格中所形成的均一的、保持溶剂晶体结构的合金相称为固溶体。 间隙固溶体:溶质原子不是占据溶剂晶格结点位置,而是填入溶剂晶格的某些间隙位置所形成的固溶体。 置换固溶体:溶质原子占据了溶剂晶格的某些结点位置所形成的的固溶体。

金属学与热处理复习题

第一章 复习题 晶向指数相同,符号相反的为同一条直线 原子排列相同但空间位向不同的所有晶向 晶面指数的数字和顺序相同,符号相反则两平面互相平行 晶面的空间位向不同但原子排列相同的所有晶面 当一个晶向[uvw]与一个晶面(hkl )平行时hu+kv+lw=0 当一个晶向[uvw]与一个晶面(hkl )垂直时h=u ,K=v ,l=w 晶体的各向异性原因: 在不同晶面上的原子紧密程度不同 纯铁冷却时在912 发生同素异晶转变是从 结构转变为 结构,配位数 ,致密度降低 ,晶体体积 ,原子半径发生 。 面心立方晶胞中画出)(211晶面和]211[晶向 刃型位错的四个特征(作业) 螺型位错的四个特征(作业) 面心立方(FCC ) 体心立方(BCC ) 密排六方(HCP ) 晶胞原子数 原子半径 配位数 致密度 同素异构转变定义--18页 晶体缺陷的分类: 常见的点缺陷: 常见的面缺陷: 第二章 复习题 一、填空 1、金属结晶两个密切联系的基本过程是 和 2 、金属结晶的动力学条件为 3 、金属结晶的结构条件为 4 、铸锭的宏观组织包括 5、如果其他条件相同,则金属模浇注的铸件晶粒比砂模浇注的晶粒更细 ,高温浇注的铸件晶粒比低温浇注的晶粒 粗大 ,采用振动浇注的铸件晶粒比不采用振动的晶粒更细,薄铸件的晶粒比厚铸件晶粒更细 。 二、问答 1、金属的结晶形核45页 2、金属的长大的要点52页 2、铸锭三晶区名称及形成过程(柱状晶为重点) 3、影响柱状晶生长的因素56-57页 三、名词解释: 1、细晶强化 2、变质处理 3、铸造织构

第三章二元合金的相结构与结晶作业题(复习题) 1、概念 合金、相、固溶体、固溶强化、、离异共晶、伪共晶 2、填空 1)固溶体按照溶质原子在晶格中所占位置分为和。2)固溶体按照固溶度不同分为和。 3)置换固溶体溶解度的影响因素有、、、、和温度。 4)置换固溶体中原子半径相对差别Δr 8%且两者的晶体结构相同时才有可能形成无限固溶体。 5)间隙固溶体形成无限固溶体(填“有可能”“不可能”) 6)正温度梯度下:随成分过冷程度增大分别形成、和。7)为消除晶内偏析和离异共晶,工业上广泛应用方法。(作业题) 8)相变反应式L(液)→α(固)+ β(固)表示反应;γ(固)→ α(固)+ β(固)表示反应。(作业题) 3、根据Pb-Sn相图(见下图及有关数据表),计算w Sn=40%的亚共晶合金在183℃共晶转变结束后,先共晶α相和共晶组织(α+β)的质量百分数,以及相组成物α和β相的质量百分数。(作业题) 4、简答二元相图各类恒温转变类型、反应式和相图特征。103页 第四章铁碳合金 (一)定义 渗碳体、奥氏体、铁素体(作业题)、珠光体、莱氏体 (二)填空 12.钢中常存杂质元素有、、、等,其中是有害元素,它们使钢产生、。 15. 标出Fe—Fe3C相图(图4—3)中指定相区的相组成物:

锻造技术-知识点(金属热处理)

锻 压 金属塑性成形(压力加工):金属材料在外力作用下产生塑性变形,获得具有一定形状、尺 寸和力学性能的毛坯或零件的生产方法。 塑性成形基本生产方式:轧制,挤压,拉拔,锻压(锻造(自由锻造,模型锻造),冲压) 一.塑性变形的力学基础: 1.塑性变形的本质:位错滑移 2.塑性变形屈服准则 (1)屈雷斯加(Tresca )屈服准则 假设σ1>σ2>σ3>时,则外加最大切应力 τmax=(σ1-σ3)/2 达到推动位错运动所需要的 最小应力时材料则发生屈服 (2)密西斯(Mises )屈服准则 当等效应力达到某定值时,材料即会屈服,即: ()()()C =-+-+-=][213232221σσσσσσσ21 *二.金属锻造性能 1.可锻性: 金属的可锻性是衡量材料在经受压力加工时获得优质零件难易程度的一个工艺性能。 2..衡量标准: 常用金属的塑性和变形抗力来综合衡量。塑性越大,变形抗力越小,则可认为金属的可锻 性好;反之则差。 3.影响可锻性的因素 (1) 内在因素 (a)化学成分: 不同化学成分的金属其可锻性不同 (b)合金组织: 金属内部组织结构不同,其可锻性差别很大 (2) 外在因素 (a)变形温度: 系指金属从开始锻造到锻造终止的温度范围。 温度过高: 过热、过烧、脱碳和严重氧化等缺陷。温度过低:变形抗力↑-难锻,开裂

(b)变形速度:变形速度即单位时间内的变形程度 (c)应力状态:金属在经受不同方法进行变形时,所产生的应力大小和性质(压应力或拉应 力)是不同 4.锻造流线与锻造比 (1)锻造比:表示金属变形程度大小 - 拔长工序的锻造比为:Y 拔长=A0/A=I/I0 式中:A0、A--坯料拔长前后的横截面积 I0、I--坯料拔长前后的长度 - 镦粗工序的锻造比为:Y 墩粗=H0/H 式中:H0,H--坯料拔长前后的高度。 (2) 锻造流线(纤维组织): 金属压力加工最原始的坯料是铸锭,铸锭大多具有粗大的结晶组织以及气孔、缩松、不溶 于基体金属的非金属夹杂等,在压力加工过程中,基体金属的晶粒形状和沿晶界分布的 杂质形状都将沿着变形方向被拉长,呈纤维状分布,这种具有方向性的组织称为锻造流线 三.坯料的加热及锻件的冷却 1.加热目的:提高坯料的塑性,降低变形抗力,改善锻压性能。 2.加热原则:在保证坯料均匀热透的条件下,应尽量缩短加热时间,以减少金属氧化等缺 陷,降低燃料消耗。 3.加热缺陷及防止措施 (1) 脱 碳: 钢中表层碳在高温下与炉气中的氧或氢发生化学反应,生成一氧化碳或甲烷而被烧损掉, 使表层含碳量降低的现象。 (2) 氧 化: 钢中表层金属极易与炉气中的氧化性气体发生化学反应形成氧化皮(成分为FeO 、Fe3O4、 Fe2O3等)的现象称为氧化。 - 防止措施:保证热透前提下,快速加热并减少高温停留时间。 (3) 过 热: 坯料的加热温度过高或在高温下长久停留,引起晶粒粗化的现象。 - 防止措施:重新加热后反复锻造或锻后热处理使晶粒细化。 (4) 过 烧: 加热温度如果超过始锻温度过多并接近熔点温度,晶界处会因炉气中的氧气或其他氧化性 气体的渗入而被氧化,晶粒与晶粒之间结合力降低,一经锻打便会碎裂,这种现象称为过烧。 - 防止措施:无 (过烧一旦产生,将是无法挽救的)。 4.加热设备 电阻加热 感应加热 接触加热 5.锻造温度范围 (1) 始锻温度:开始锻造的温度 在不出现过热的前提下,应尽量提高始锻温度,以使坯料具有最佳的锻造性能。 碳钢的始锻温度:Ts-200℃左右 铸造组织 压力加工后的组织 (镦粗)

(完整版)钢的热处理考试知识点,推荐文档

钢的热处理 1、钢的热处理工艺主要有几种 退火、淬火、正火、回火、表面热处理 2、什么是同素异构转变、多形性转变 同素异构转变:纯金属在温度和压力变化时,由某一种晶体结构转变为另一种晶体结构的过程称为同素异构转变。 多形性转变:在固溶体中发生的由一种晶体结构转变为另一种晶体结构的过程称为多形性转变。 3、奥氏体及其结构特点 奥氏体是碳在γ-Fe中的间隙固溶体,具有面心立方结构。 奥氏体的面心立方结构使其具有高的塑性和低的屈服强度,在相变过程中容易发生塑性变形,产生大量位错或出现孪晶,从而造成相变硬化和随后的再结晶、高温下经历的反常细化以及低温下马氏体相变的一系列特点。

4、共析碳钢在加热转变时,奥氏体优先形核位置及原因 奥氏体的形核 1)球状珠光体中:优先在F/Fe3C界面形核 2)片状珠光体中:优先在珠光体团的界面形核,也在F/Fe3C片层界面形核奥氏体在F/Fe3C界面形核原因: (1) 易获得形成A所需浓度起伏,结构起伏和能量起伏. (2) 在相界面形核使界面能和应变能的增加减少。 △G = -△Gv + △Gs + △Ge △Gv—体积自由能差,△Gs —表面能,△Ge —弹性应变能

5、珠光体向奥氏体转变的三阶段,并说明为什么铁素体完全转变为奥氏体后仍然有一部分碳化物没有溶解? (1)奥氏体的形核;(2)奥氏体的长大;(3)残余碳化物的溶解和奥氏体成分的均匀化; 奥氏体长大的是通过γ/α界面和γ/Fe3C界面分别向铁素体和渗碳体迁移来实现的。由于γ/α界面向铁素体的迁移远比γ/Fe3C界面向Fe3C的迁移来的快,因此当铁素体已完全转变为奥氏体后仍然有一部分渗碳体没有溶解。 6、晶粒度概念 奥氏体本质晶粒度:根据标准试验方法,在930±10°C保温足够时间后测得的奥氏体晶粒大小。 奥氏体起始晶粒度:在临界温度以上,奥氏体形成刚刚完成,其晶粒边界刚刚相互接触时的晶粒大小 奥氏体实际晶粒度:在某一加热条件下所得的实际奥氏体晶粒大小。 7、共析碳钢IT图

复习资料 工程材料学 金属热处理习题与答案详解

一.选择题(10分,每题1分)二.填空题(20分,每空1分) 1.奥氏体转变速度的影响因素 A形成时,T↗(或过热度△T ↗),始终有利于A的形成。 ∴T↗,A形成速度↗ 影响奥氏体转变速度的因素:温度的影响:T↗,I ↗,G↗,且I ↗> G↗奥氏体起始晶粒度越小。各种因素中,T的影响作用最强烈 原始组织的影响:片状P转变速度>球状P薄片较厚片转变快 碳含量的影响:C%↗,A形成速度↗ 合金元素的影响:改变临界点位置,影响碳在A 中的扩散系数 合金碳化物在A中溶解难易程度的牵制,对原始组织的影响 合金钢需要更长均匀化时间 2.马氏体的转变、亚结构及影响Ms的因素 亚结构:位错 板条马氏体的亚结构主要为高密度的位错,位错形成位错网络(缠结),位错密度随含碳量增加而增大,常为(0.3~0.9) ×1012㎝/cm3。故称位错马氏体。 一般情况下残余奥氏体对钢性能的影响很小,精密的零件就不同了,残余奥氏体在常温下仍然可以继续变成马氏体,而马氏体的比容大,会引起零件的体积变大,所以Ms低一些比较好,这时残余奥氏体较少,超高精度的零件可采用低温处理,将残余奥氏体全部会谈为马氏体,以使零件尺寸稳定。 Ms点下降,说明钢的马氏体转变温度降低,钢就越容易得到马氏体组织,钢的淬火硬度就高;反之,Ms点上升,说明钢的马氏体转变温度升高,钢就不容易得到马氏体组织。 3.渗碳后的热处理 钢的渗碳:将钢件在碳的活性介质中加热并保温,使碳原子渗入表层的一种表面化学热处理工艺。 目的:提高零件的表面硬度、耐磨性;高的接触疲劳强度和弯曲疲劳强度;心部保持良好的塑性与韧性。 渗碳后常用热处理方法: 1、直接淬火 渗碳后,预冷到一定温度,立即进行淬火冷却,这种方法适合于气体或液体渗碳,固体渗碳不适合。 2、一次淬火法 工件渗碳后随炉冷却到室温,然后再重新加热到淬火温度,经保温后淬火。 3、两次淬火法 将渗碳缓冷到室温的工件进行两次加热淬火。 注意:淬火后需要进行低温回火。 4.球化退火的意义 球化退火的作用和目的有:提高钢材的塑性和韧性、改善切削加工性能、减少淬火加热时的过热倾向和变形开裂倾向,使钢件具有足够的强度、硬度、耐磨性、抗接触疲劳性和断裂韧性。 5.粒状P与片状P的区别 二.片状珠光体的转变机理 1、领先相 (a)形核位置:Fe3C形核于奥氏体晶界或奥氏体晶内未溶Fe3C粒子。珠光体优先在奥氏体晶界上或其他晶体缺陷处形核。?

相关文档
最新文档