遥感提取特征点

遥感提取特征点
遥感提取特征点

遥感影像特征点提取

一、 基于Moravec 算子的特征点提取

1. Moravec 算子的原理及算法公式

该算子是通过逐像元量测与其邻元的灰度差,搜索相邻像元之间具有高反差的点,具体方法有以下几种。

(1)计算各像元的有利值,如图所示,在5×5的窗口内沿着图示四个方向分别计算相邻像元间灰度差之平方和V 1,V 2,V 3,及V 4,取其中最小值作为该像元的有利值:

其中:

式中,

j i G ,代表像元j i P ,的灰度值,W 为以像元计的窗口大小,如图所示,n m W ,5,=为像元在整块影像中位置序号。

(2)给定一个阈值,确定待定点的有利点。如果有利值大于给定的阈值,则将该像元作为候选点。阈值一般为经验值。

(3)抑制局部非最大。在一定大小窗口内(例如5×5,7×7,,9×9像元等),将上一步所选的候选点与其周围的候选点比较,若该像元的有利非窗口中最大值,则去掉;否则,该像元被确定为特征点,这一步的目的在于避免纹理丰富的区域产生束点,用于抑制局部非最大的窗口大小取决于所需的有利点密度。

综上所述,Moravec 算子是在四个主要方向上选择具有最大—最小灰度方差的点作为特征点。

2. 基于MATLAB 的算法编程

clear all;close all;clc

img=double(imread('1001.jpg'));

[h w]=size(img);

imshow(img,[])

imgn=zeros(h,w);

n=4;

for y=1+n:h-n

for x=1+n:w-n

sq=img(y-n:y+n,x-n:x+n);

V=zeros(1,4);

}V ,V ,V ,min{V 4321min =IV ∑+-=i j i j i G G

V 21-,1,4)(∑++-=i j i j i G G V 21,1,3)(∑+-=i j i j i G G V 21,,2)(∑+-=i j i j i G G V 2,1,1)(;1,,-+-=k m k m i ;1,,-+-=k n k n j 。2/W k

=

for i=2:2*n+1 %垂直,水平,对角,反对角四个方向领域灰度差的平方和V(1)=V(1)+(sq(i,n+1)-sq(i-1,n+1))^2;

V(2)=V(2)+(sq(n+1,i)-sq(n+1,i-1))^2;

V(3)=V(3)+(sq(i,i)-sq(i-1,i-1))^2;

V(4)=V(4)+(sq(i,(2*n+1)-(i-1))-sq(i-1,(2*n+1)-(i-2)))^2;

end

pix=min(V); %四个方向中选最小值

imgn(y,x)=pix;

end

end

T=mean(imgn(:)); %设阈值,小于均值置零

ind=find(imgn

imgn(ind)=0;

for y=1+n:h-n %选局部最大且非零值作为特征点

for x=1+n:w-n

sq=imgn(y-n:y+n,x-n:x+n);

if max(sq(:))==imgn(y,x) && imgn(y,x)~=0

img(y,x)=255;

end

end

end

figure;

imshow(img,[]);

3.运行结果

1001特征点1002特征点

二、Harris 角点检测算子

1、算法公式

(1)Harris 算子用高斯函数代替二值窗口函数,对离中心点越近的像素赋予越大的权重,以减少噪声影响。

(2)Moravec 算子只考虑了每隔45度方向,Harris 算子用Taylor 展开去近似任意方向。将图像窗口平移[u,v]产生灰度变化E(u,v)。

得 于是对于局部微小的移动量[u,v],可以近似得到下面的表达:

其中M 是2×2的矩阵,可由图像的导数求得: 式中, 为x 方向的差分, 为y 方向的差分,

为高斯函数。 (3)Harris 采用了一种新的角点判断方法。通过M 的两个特征值21λλ,的大小对图像点进行分类。

????????=y x y y x y x x I I I I I I y x w M ,22),(∑

-++=y x y x I v y u x I y x w v u E ,2

)],(),()[,(),()

,(),(,22v u O v I u I y x I v y u x I y x +++=++)(∑++=y x y x v u O v I u I y x w v u E ,2

22)],()[,(),(??

????=v u M v u v u E ],[,)([]??

????????????=+v u I I I I I I v u v I u I y y x y x x y x 222],[x I y I ),(y x w 如果1λ和2λ都很小,图像窗口在所有方向上移动都无明显灰度变化 2222)(221),(σπσy x e y x w +-=

但是解特征向量需要比较多的计算量,且两个特征值的和等于矩阵M 的迹,两个特征值的积等于矩阵M 的行列式。所以用下式来判定角点质量。(K 常取0.04—0.06)

(4)Harris 算法总结

1:对每一像素点计算相关矩阵M

2:计算每像素点的Harris 角点响应。

3:在w ×w 范围内寻找极大值点,若Harris 角点响应大于阀值,则视为角点。

Harris 算子对灰度的平移是不变的,因为只有差分,对旋转也有不变性,但是对尺度很敏感,在一个尺度下是角点,在另一个尺度下可能就不是了。

二 MATLAB 代码

clear;

Image = imread('1001.jpg'); % 读取图像

Image = im2uint8(rgb2gray(Image));

dx = [-1 0 1;-1 0 1;-1 0 1]; %dx :横向Prewitt 差分模版

Ix2 = filter2(dx,Image).^2;

Iy2 = filter2(dx',Image).^2;

Ixy = filter2(dx,Image).*filter2(dx',Image);

%生成 9*9高斯窗口。窗口越大,探测到的角点越少。

h= fspecial('gaussian',9,2);

A = filter2(h,Ix2); % 用高斯窗口差分Ix2得到A

B = filter2(h,Iy2);

C = filter2(h,Ixy);

nrow = size(Image,1);

ncol = size(Image,2);

Corner = zeros(nrow,ncol);

%矩阵Corner 用来保存候选角点位置,初值全零,值为1的点是角点

%真正的角点在137和138行由(row_ave,column_ave)得到

%参数t:点(i,j)八邻域的“相似度”参数,只有中心点与邻域其他八个点的像素值之差在 %(-t,+t )之间,才确认它们为相似点,相似点不在候选角点之列

t=20;

%并没有全部检测图像每个点,而是除去了边界上boundary 个像素,

%因为我们感兴趣的角点并不出现在边界上

boundary=8;

2

2)(B A k CD AB R +--=)(2),(x I y x w A ?=2),(y I y x w B ?=)(y x I I y x w D C ?==),(??????=D C B A M 2)(det traceM k M R -=

for i=boundary:nrow-boundary+1

for j=boundary:ncol-boundary+1

nlike=0; %相似点个数

if Image(i-1,j-1)>Image(i,j)-t && Image(i-1,j-1)

nlike=nlike+1;

end

if Image(i-1,j)>Image(i,j)-t && Image(i-1,j)

nlike=nlike+1;

end

if Image(i-1,j+1)>Image(i,j)-t && Image(i-1,j+1)

nlike=nlike+1;

end

if Image(i,j-1)>Image(i,j)-t && Image(i,j-1)

nlike=nlike+1;

end

if Image(i,j+1)>Image(i,j)-t && Image(i,j+1)

nlike=nlike+1;

end

if Image(i+1,j-1)>Image(i,j)-t && Image(i+1,j-1)

nlike=nlike+1;

end

if Image(i+1,j)>Image(i,j)-t && Image(i+1,j)

nlike=nlike+1;

end

if Image(i+1,j+1)>Image(i,j)-t && Image(i+1,j+1)

nlike=nlike+1;

end

if nlike>=2 && nlike<=6

Corner(i,j)=1;%如果周围有0,1,7,8个相似与中心的(i,j)

%那(i,j)就不是角点,所以,直接忽略

end;

end;

end;

CRF = zeros(nrow,ncol); % CRF用来保存角点响应函数值,初值全零

CRFmax = 0; % 图像中角点响应函数的最大值,作阈值之用

t=0.05;

% 计算CRF

%工程上常用CRF(i,j) =det(M)/trace(M)计算CRF,那么此时应该将下面第105行的%比例系数t设置大一些,t=0.1对采集的这几幅图像来说是一个比较合理的经验值for i = boundary:nrow-boundary+1

for j = boundary:ncol-boundary+1

if Corner(i,j)==1 %只关注候选点

M = [A(i,j) C(i,j);

C(i,j) B(i,j)];

CRF(i,j) = det(M)-t*(trace(M))^2;

if CRF(i,j) > CRFmax

CRFmax = CRF(i,j);

end;

end

end;

end;

%CRFmax

count = 0; % 用来记录角点的个数

t=0.01;

% 下面通过一个3*3的窗口来判断当前位置是否为角点

for i = boundary:nrow-boundary+1

for j = boundary:ncol-boundary+1

if Corner(i,j)==1 %只关注候选点的八邻域

if CRF(i,j) > t*CRFmax && CRF(i,j) >CRF(i-1,j-1) ......

&& CRF(i,j) > CRF(i-1,j) && CRF(i,j) > CRF(i-1,j+1) ......

&& CRF(i,j) > CRF(i,j-1) && CRF(i,j) > CRF(i,j+1) ......

&& CRF(i,j) > CRF(i+1,j-1) && CRF(i,j) > CRF(i+1,j)......

&& CRF(i,j) > CRF(i+1,j+1)

count=count+1;%这个是角点,count加1

else % 如果当前位置(i,j)不是角点,则在Corner(i,j)中删除对该候选角点的记录

Corner(i,j) = 0;

end;

end;

end;

end;

% disp('角点个数');

% disp(count)

figure,imshow(Image); % display Intensity Image

hold on;

% toc(t1)

for i=boundary:nrow-boundary+1

for j=boundary:ncol-boundary+1

column_ave=0;

row_ave=0;

k=0;

if Corner(i,j)==1

for x=i-3:i+3 %7*7邻域

for y=j-3:j+3

if Corner(x,y)==1

% 用算数平均数作为角点坐标,如果改用几何平均数求点的平均坐标,对角点的提取意义不大

row_ave=row_ave+x;

column_ave=column_ave+y;

k=k+1;

end

end

end

end

if k>0 %周围不止一个角点

plot( column_ave/k,row_ave/k ,'g.');

end

end;

end;

三运行结果

1001特征点1002特征点

(三)Susan算子

一算法公式

(1)借助图3-1来解释Susan检测的原理,其中图片是白色背景,有一个颜色比较暗淡的矩形。用一个圆形模板在图像上移动,若模板内的像素灰度与模板中心的像素(被称为核Nucleus)灰度值小于一定的阈值,则认为该点与核Nucleus具有相同的灰度,满足该条件的像素组成的区域就称为USAN。在图片上有5个圆形区域。圆形区域表示的是掩码区域。把圆形区域内的每一个位置的像素值与圆心处的像素值相比较,那么圆中的的像素可以分为两类,一类是像素值与圆心处的像素值相近的,另一类是像素值与圆心的处的像素值相差比较大的。

图3-1 图3-2 如果将模板中各个像素的灰度都与模板中心的核像素的灰度进行比较,那么就会发现总有一部分模板区域和灰度与核像素的灰度相同或相似,这部分区域可以称为USAN。USAN区域包含很多与图像结构有关的信息。利用这种区域的尺寸、重心、二阶矩的分析,可以得到图像中的角点,边缘等信息。从上图所示,当核像素处在图像中的灰度一致区域时,USAN 的面积会达到最大。第e个模板就是属于这种情况。

(2)Susan进行角点检测时,遵循了常规的思路:使用一个窗口在图像上逐点滑动,在每一个位置上计算出一个角点量,再进行局部极大值抑制,得到最终的角点。我们这里使用的窗口是圆形窗口,最小的窗口是3×3的,此次使用的是37个像素的圆形窗口,如图3-2。

(3)在角点检测中,有两种类型的阈值,一种用来约束角点的数量,另一种用来约束角点的质量。当然,一个阈值不能完全做到只影响质量或数量,只是会有一个侧重点。阈值g 是角点质量的,尽管也会影响数量,但是相对来说更侧重于影响质量(角点的形状)。例如,g值减小,那么Susan会更加侧重于检测到更加“尖锐”的角点,所以,可以更加自己的实际需求来确定阈值g;而阈值t,是角点的数量,当t减小时,会检测到更多的角点,所以,阈值t可以在不影响角点质量的情况下,控制检测到的角点的数量,如果图像的对比度比较低,可以修改t值以适应变化。

下面简单叙述下利用Susan算子检测角点的步骤:

1:利用圆形模板遍历图像,计算每点处的USAN值。

2:设置一阈值g,一般取值为1/2(Max(n)),也即取值为USAN最大值的一半,进行阈值化,得到角点响应。

3:使用非极大值抑制来寻找角点。

通过上面的方式得到的角点,存在很大伪角点。为了去除伪角点,Susan算子可以由以下方法实现:

1:计算USAN区域的重心,然后计算重心和模板中心的距离,如果距离较小则不是正确的角点;

2:判断USAN区域的重心和模板中心的连线所经过的像素都是否属于USAN区域的像素,如果属于那么这个模板中心的点就是角点。

二 MATLAB代码

clear all;close all;clc;

img=imread('1001.jpg');

img=rgb2gray(img);

imshow(img);

[m n]=size(img);

img=double(img);

t=45; %模板中心像素灰度和周围灰度差别的阈值,自己设置

usan=[]; %当前像素和周围在像素差别在t以下的个数

%这里用了37个像素的模板

for i=4:m-3 %没有在外围扩展图像,最终图像会缩小

for j=4:n-3

tmp=img(i-3:i+3,j-3:j+3); %先构造7*7的模板,49个像素

c=0;

for p=1:7

for q=1:7

if (p-4)^2+(q-4)^2<=12 %在其中筛选,最终模板类似一个圆形

% usan(k)=usan(k)+exp(-(((img(i,j)-tmp(p,q))/t)^6));

if abs(img(i,j)-tmp(p,q))

c=c+1;

end

end

end

end

usan=[usan c];

end

end

g=2*max(usan)/3; %确定角点提取的数量,值比较高时会提取出边缘,自己设置

for i=1:length(usan)

if usan(i)

usan(i)=g-usan(i);

else

usan(i)=0;

end

end

imgn=reshape(usan,[n-6,m-6])';

figure;

imshow(imgn)

%非极大抑制

[m n]=size(imgn);

re=zeros(m,n);

for i=2:m-1

for j=2:n-1

if imgn(i,j)>max([max(imgn(i-1,j-1:j+1)) imgn(i,j-1) imgn(i,j+1) max(imgn(i+1,j-1:j+1))]);

re(i,j)=1;

else

re(i,j)=0;

end

end

end

figure;

imshow(re==1);

三运行结果

1001特征点 1002特征点

(四)三种方法的比较:

(1)Moravec算子对斜边缘的响应很强,因为只考虑了每隔45度的方向变化,而没有在全部的方向上进行考虑;同时由于窗口函数是一个二值函数,不管像素点离中心点的距离,赋于一样的权重,因此对噪声响应也一般,最终对角点的定位较准确。

(2)Harris算子是一种有效的点特征提取算子,其优点总结起来有:

1:计算简单:Harris算子中只用到灰度的一阶差分以及滤波,操作简单。

2:提取的点特征均匀而且合理:Harris算子对图像中的每个点都计算其兴趣值,然后在邻域中选择最优点。实验表明,在纹理信息丰富的区域,Harris算子可以提取出大量有用的特征点,而在纹理信息少的区域,提取的特征点则较少。

3:稳定:Harris算子的计算公式中只涉及到一阶导数,因此对图像旋转、灰度变化、噪声影响和视点变换不敏感,它也是比较稳定的一种点特征提取算子。

Harris算子的局限性有:

1:它对尺度很敏感,不具有尺度不变性。

2:提取的角点是像素级的。

(3)Susan算子的特点有:

1:在用Susan算子对边缘和角点进行检测时不需要计算微分,这使得Susan算子对噪声更加鲁棒。

2:Susan检测算子能提供不依赖于模板尺寸的边缘精度。换句话说,最小USAN区域面积的计算是个相对的概念,与模版尺寸无关,所以Susan边缘算子的性能不受模版尺寸影响。

3:控制参数的选择很简单,且任意性小,容易实现自动化选取。

(五)心得体会

通过本次实验,我对特征点提取方法的计算原理及实现过程有了深刻的认识,在本次实验中,我遇到了很多困难,但是在同学们的帮助下,我们互相商讨,这些问题都一一得到了解决,在解决困难的过程中的编程能力得到了提高,对其所涉及到的知识的印象也得到了加深。

总之,感谢老师给了我这次锻炼自己的机会,之后还要继续学习研究MATLAB,提升自己的编程能力。

影像信息提取之——面向对象特征提取

同物异谱,同谱异物”会对影像分类产生的影响,加上高分辨率影像的光谱信息不是很丰富,还有经常伴有光谱相互影响的现象,这对基于像素的分类方法提出了一种挑战,面向对象的影像分类技术可以一定程度减少上述影响。 本专题以ENVI中的面向对象的特征提取FX工具为例,对这种技术和处理流程做一个简单的介绍。 本专题包括以下内容: ●面向对象分类技术概述 ● ENVI FX简介 ● ENVI FX操作说明 1、面向对象分类技术概述 面向对象分类技术集合临近像元为对象用来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据的空间,纹理,和光谱信息来分割和分类的特点,以高精度的分类结果或者矢量输出。它主要分成两部分过程:对象构建和对象的分类。 影像对象构建主要用了影像分割技术,常用分割方法包括基于多尺度的、基于灰度的、纹理的、基于知识的及基于分水岭的等分割算法。比较常用的就是多尺度分割算法,这种方法综合遥感图像的光谱特征和形状特征,计算图像中每个波段的光谱异质性与形状异质性的综合特征值,然后根据各个波段所占的权重,计算图像所有波段的加权值,当分割出对象或基元的光谱和形状综合加权值小于某个指定的阈值时,进行重复迭代运算,直到所有分割对象的综合加权值大于指定阈值即完成图像的多尺度分割操作。 影像对象的分类,目前常用的方法是“监督分类”和“基于规则(知识)分类”。这里的监督分类和我们常说的监督分类是有区别的,它分类时和样本的对比参数更多,不仅仅是光谱信息,还包括空间、纹理等对象属性信息。基于规则(知识)分类也是根据影像对象的属性和阈值来设定规则进行分类。 表1为三大类分类方法的一个大概的对比。

数字摄影测量复习题含答案

第五章数字影像与特征提取 1.什么是数字影像?其频域表达有什么作用? 答:①数字影像是以数字形式保存数字化航空、胶片影像的扫描影像 ②频域表达对数字影像处理是很重要的。因为变换后矩阵中元素的数目与原像中的相同。但其中很多是零值或数值很小,这就意味着通过变换、数据可以被压缩,使其能更有效的存储和传递;其次是影像分解力的分析以及许多影像处理过程。例如滤波、卷积以及在有些情况下的相关运算,在频域内可以更为有利的进行。其中所利用的一条重要关系就是在空间域内的一个卷积,相当于在频率域内其卷积函数的相乘,反之亦然。在摄影测量中所使用的影像的傅立叶谱可以有很大的变化,例如在任何一张航摄影像上总可以找到有些地方只含有很低的频率信息,而有些地方则主要包含高频信息,偶然的有些地区主要是有一个狭窄范围的带频率信息。 2.怎样根据已知的数字影像离散灰度值,精确计算其任意一点上的灰度值? 答::当欲知不位于矩阵(采样)点上的原始函数g(x,y)的数值时就需要内插,此时称为重采样 3.常用的影像重采样方法有哪些?试比较他们的优缺点 答:①常用的影像重采样方法有最邻近像元法、双线性插值、双三次卷积法 ②最邻近像元法最简单、计算速度快、且能不破坏原始影像的灰度信息,但几何精度较差; 双线性插值法虽破坏原始影像的灰度信息,但精度较高,较为适宜;

双三次卷积法其重采样中误差约为双线性插值的1/3,但较费时; 4.已知/4,4,为采 样间隔,用双线性插值计算gk,l 答:g(k,l)=W(i,j) g(i,j)+W(i+1,j) g(i+1,j)+W(i,j+1) g(i,j+1)+W(i+1,j+1) =(1- /4)(/4)*102+(/4/4*112+ 4(1- 4) *118+( /4)* ( /4)*126 =102+13/-1 5.什么是线特征?有哪些梯度算子可用于线特征的提取? 答:①线特征指影像的边缘与线,边缘可定义影响局部区域特征不相同的那些区域间的分界线,而线则可以认为是具有很小宽度的其中间区域具有相同影响特征的边缘对 ②常用方法有差分算子、拉普拉斯算子、LOG算子等

遥感信息智能化提取方法

遥感信息智能化提取方法 目前,大部分遥感信息的分类和提取,主要是利用数理统计与人工解译相结合的方法。这种方法不仅精度相对较低,效率不高,劳动强度大,而且依赖参与解译分析的人,在很大程度上不具备重复性。尤其对多时相、多传感器、多平台、多光谱波段遥感数据的复合处理,问题更为突出。在遥感影像相互校正方面,一些商业化的遥感图像处理软件,虽然提供了简单的影像相互校正和融合功能,但均是基于纯交互式的人工识别选取同名点,不仅效率非常低,而且精度也难于达到实用要求。因此,研究遥感信息的智能化提取方法对于提高遥感信息的提取精度和效率具有重要意义。 1.遥感图像分类 遥感图像分类是遥感图像处理系统的核心功能之一,它实现了基于遥感数据的地理信息提取,主要包括监督分类,非监督分类,以及分类后的处理功能。非监督分类包括等混合距离法分类(Isodata)等。监督分类包括最小距离(Minimum Distance)分类、最大似然(Maximum Likehood)分类、贝叶斯(Bayesian)分类、以及波谱角分类、二进制编码分类、AIRSAR散射机理分类等。 自动分类是计算机图像处理的初期便涉及的问题。但作为专题信息提取的一种方法,则有其完全不同的意义,是从应用的角度赋予其新的内容和方法。传统的遥感自动分类,主要依赖地物的光谱特性,采用数理统计的方法,基于单个像元进行,如监督分类和非监督分类方法,对于早期的MSS这样较低分辨率的遥感图像在分类中较为有效。后来人们在信息提取中引入了空间信息,直接从图像上提取各种空间特征,如纹理、形状特征等。其次是各种数学方法的引进,典型的有模糊聚类方法、神经网络方法及小波和分形。 近年来对于神经网络分类方法的研究相当活跃。它区别于传统的分类方法在于:在处理模式分类问题时,并不基于某个假定的概率分布,在无监督分类中,从特征空间到模式空间的映射是通过网络自组织完成的,在监督分类中,网络通过对训练样本的学习,获得权值,形成分类器,且具备容错性。人工神经网络 (ANN) 分类方法一般可获得更高精度的分类结果,因此 ANN方法在遥感分类中被广泛应用,特别是对于复杂类型的地物类型分类,ANN 方法显示了其优越性。如 Howald(1989)、McClellad(1989)、 Hepner(1990)、T.Yosh ida(1994)、K.S.Chen(1995)、J.D.Paola(1997) 等利用 ANN 分类方法对 TM 图像进行土地覆盖分类,在不同程度上提高了分类精度;Kanellopoulos(1992) 利用 ANN方法对 SPOT 影像进行了多达20类的分类,取得比统计方法更精确的结果;G.M.Foody(1996)用ANN对混合像元现象进行了分解;L.Bruzzone 等 (1997) 在 TM-5 遥感数据、空间结构信息数据、辅助数据(包括高程、坡度等)等空间数据基础下,用 ANN 方法对复杂土地利用进行了分类,比最大似然分类法提高了 9% 的精度。与统计分类方法相比较,ANN 方法具有更强的非线性映射能力,因此,能处理和分析复杂空间分布的遥感信息。2.基于知识发现的遥感信息提取

数字图像的特征提取

呵呵,看了半天,原来你只不过要求进行边缘检测就可以,然后再做阈值化而已,太简单了。按照下面做即可: void RobelEdgeDetect(LPBYTE lpDibTemp, LPBYTE lpDibSave,int width,int height) { int i,j; float R; float RCos,RSin; for(j=1;j =128) //阈值化 lpDibSave[j*width+i]=255; else lpDibSave[j*width+i]=0; } } ok,一切完成!!!其中,阈值化时,要跟你的图像具体情况而定,当然可以使用自适应阈值最 好了。

遥感专题讲座——影像信息提取(四、面向对象特征提取)

面向对象的影像分类技术 “同物异谱,同谱异物”会对影像分类产生的影响,加上高分辨率影像的光谱信息不是很丰富,还有经常伴有光谱相互影响的现象,这对基于像素的分类方法提出了一种挑战,面向对象的影像分类技术可以一定程度减少上述影响。 本小节以ENVI中的面向对象的特征提取FX模块为例,对这种技术和处理流程做一个简单的介绍。 本专题包括以下内容: ??●面向对象分类技术概述 ??●ENVI FX简介 ??●ENVI FX操作说明 1、面向对象分类技术概述 面向对象分类技术集合临近像元为对象用来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据的空间,纹理,和光谱信息来分割和分类的特点,以高精度的分类结果或者矢量输出。它主要分成两部分过程:影像对象构建和对象的分类。

影像对象构建主要用了影像分割技术,常用分割方法包括基于多尺度的、基于灰度的、纹理的、基于知识的及基于分水岭的等分割算法。比较常用的就是多尺度分割算法,这种方法综合遥感图像的光谱特征和形状特征,计算图像中每个波段的光谱异质性与形状异质性的综合特征值,然后根据各个波段所占的权重,计算图像所有波段的加权值,当分割出对象或基元的光谱和形状综合加权值小于某个指定的阈值时,进行重复迭代运算,直到所有分割对象的综合加权值大于指定阈值即完成图像的多尺度分割操作。 影像对象的分类,目前常用的方法是“监督分类”和“基于知识分类”。这里的监督分类和我们常说的监督分类是有区别的,它分类时和样本的对比参数更多,不仅仅是光谱信息,还包括空间、纹理等信息。基于知识分类也是根据影像对象的熟悉来设定规则进行分类。 目前很多遥感软件都具有这个功能,如ENVI的FX扩展模块、易康(现在叫Definiens)、ERDAS的Objective模块、PCI的FeatureObjeX(新收购)等。 表1为三大类分类方法的一个大概的对比。 类型基本原理影像的最小单元适用数据源缺陷 传统基于光谱的分类方 法地物的光谱信息 特征 单个的影像像元 中低分辨率多光谱 和高光谱影像 丰富的空间信息利 用率几乎为零 基于专家知识决策树根据光谱特征、空 间关系和其他上 下文关系归类像 元 单个的影像像元多源数据知识获取比较复杂 面向对象的分类方法几何信息、结构信 息以及光谱信息 一个个影像对象 中高分辨率多光谱 和全色影像 速度比较慢

遥感卫星影像数据信息提取.

北京揽宇方圆信息技术有限公司 、 遥感卫星影像数据信息提取 北京揽宇方圆信息技术有限公司中科院企业,卫星影像数据服务全国领先。业务包括遥感数据获取与分发、遥感数据产品深加工与处理。按照遥感卫星数据一星多用、多星组网、多网协同的发展思路,根据观测任务的技术特征和用户需求特征,重点发展光学卫星影像、雷达卫星影像、历史卫星影像三个系列,构建由 26个星座及三类专题卫星组成的遥感卫星系统,逐步形成高、中、低空间分辨率合理配置、多种观测技术优化组合的综合高效全球观测和数据获取能力形成卫星遥感数据全球接收与全球服务能力。 (1光学卫星影像系列。 面向国土资源、环境保护、防灾减灾、水利、农业、林业、统计、地震、测绘、交通、住房城乡建设、卫生等行业以及市场应用对中、高空间分辨率遥感数据的需求,提供 worldview1、worldview2、worldview3、worldview4、quickbird、geoeye、 ikonos、pleiades、spot1、spot2、spot3、spot4、spot5、spot6、spot7、landsat5(tm、 landsat(etm、 rapideye、alos、Kompsat 卫星、北京二号、资源三 号、高分一号、高分二号等高分辨率光学观测星座。围绕行业及市场应用对基础地理信息、土地利用、植被覆盖、矿产开发、精细农业、城镇建设、交通运输、水利设施、生态建设、环境保护、水土保持、灾害评估以及热点区域应急等高精度、高重访观测业务需求,发展极轨高分辨率光学卫星星座,实现全球范围内精细化观测的数据获取能力。像国产的中分辨率光学观测星座。围绕资源调查、环境监测、防灾减灾、碳源碳汇调查、地质调查、水资源管理、农情监测等对大幅宽、快速覆盖和综合观测需求,建设高、低轨道合理配置的中分辨率光学卫星星座,实现全球范围天级快速动态观测以及全国范围小时级观测。

图像颜色特征提取原理

一、颜色特征 1 颜色空间 1.1 RGB 颜色空间 是一种根据人眼对不同波长的红、绿、蓝光做出锥状体细胞的敏感度描述的基础彩色模式,R、 G、B 分别为图像红、绿、蓝的亮度值,大小限定在 0~1 或者在 0~255。 1.2 HIS 颜色空间 是指颜色的色调、亮度和饱和度,H表示色调,描述颜色的属性,如黄、红、绿,用角度 0~360度来表示;S 是饱和度,即纯色程度的量度,反映彩色的浓淡,如深红、浅红,大小限定在 0~1;I 是亮度,反映可见光对人眼刺激的程度,它表征彩色各波长的总能量,大小限定在 0~1。 1.3 HSV 颜色模型 HSV 颜色模型依据人类对于色泽、明暗和色调的直观感觉来定义颜色, 其中H (Hue)代表色度, S (Saturat i on)代表色饱和度,V (V alue)代表亮度, 该颜色系统比RGB 系统更接近于人们的经验和对彩色的感知, 因而被广泛应用于计算机视觉领域。 已知RGB 颜色模型, 令M A X = max {R , G, B },M IN =m in{R , G,B }, 分别为RGB 颜色模型中R、 G、 B 三分量的最大和最小值, RGB 颜色模型到HSV 颜色模型的转换公式为: S =(M A X - M IN)/M A X H = 60*(G- B)/(M A X - M IN) R = M A X 120+ 60*(B – R)/(M A X - M IN) G= M A X 240+ 60*(R – G)/(M A X - M IN) B = M A X V = M A X 2 颜色特征提取算法 2.1 一般直方图法 颜色直方图是最基本的颜色特征表示方法,它反映的是图像中颜色的组成分布,即出现了哪些颜色以及各种颜色出现的概率。其函数表达式如下: H(k)= n k/N (k=0,1,…,L-1) (1) 其中,k 代表图像的特征取值,L 是特征可取值的个数,n k是图像中具有特征值为 k 的象素的个数,N 是图像象素的总数。由上式可见,颜色直方图所描述的是不同色彩在整幅图像中所占的比例,无法描述图像中的对象或物体,但是由于直方图相对于图像以观察轴为轴心的旋转以及幅度不大的平移和缩放等几何变换是不敏感的,而且对于图像质量的变化也不甚敏感,所以它特别适合描述那些难以进行自动分割的图像和不需要考虑物体空间位置的图像。 由于计算机本身固有的量化缺陷,这种直方图法忽略了颜色的相似性,人们对这种算法进行改进,产生了全局累加直方图法和局部累加直方图法。 2.2 全局累加直方图法 全局累加直方图是以颜色值作为横坐标,纵坐标为颜色累加出现的频数,因此图像的累加直方空间 H 定义为:

基于遥感数据的城市绿地信息提取研究进展

基于遥感数据的城市绿地信息提取研究进展1 吕杰,刘湘南 中国地质大学(北京)信息工程学院,北京 (100083) E-mail:jasonlu168@https://www.360docs.net/doc/b01235272.html, 摘要:本文对目前城市绿地信息提取研究现状进行了总结,对其中的利用航空遥感数据提取植被信息、卫星遥感提取植被信息、高分辨率遥感植被信息以及高光谱遥感植被信息研究进展进行了介绍,并从中分析提出遥感数据提取城市绿地信息存在的问题,对于存在的混合像元的问题,本文指出混合像元分解是解决存在问题的关键。 关键词:遥感,城市绿地,信息提取,混合像元 中图分类号:TP 7 1.引言 随着城市规模的不断扩大,自然环境正受到越来越严重的破坏,特别是大量的植被被高楼大厦取代,导致原有的生态系统严重失衡。而植被是环境的天然调节器,因此,无论在新城区还是老城区,绿化都显得尤其重要。对于土地资源极为珍贵的特大城市来说,良好的绿地规划方案可以有效地提高绿化生态环境效益。 另一方面,随着社会和经济的发展,城市化步伐在不断加快,城市规模日渐扩大,因此,城市正面临着一系列的生态和环境问题,例如城市热岛效应,沙尘暴等。为了解决这些问题,人们逐渐发现城市绿地对城市生态环境的改善有着不可替代的功效,为此,许多国家将城市绿化制定为城市可持续发展战略的一个重要内容,并将城市绿地作为衡量城市综合质量的重要指标之一。 利用遥感技术获取绿地信息成为快速、客观、准确的城市生态监测、评价、规划和管理的重要手段。目前可以利用的高分辨率遥感数据资料越来越多,高于lm 分辨率航天遥感影像和航空遥感影像己开始应用到资源调查和测图中。 2.城市绿地信息提取研究现状及存在问题 城市绿地是在人类较强干扰下生成的绿地景观,其生态效益不仅与绿地斑块的面积、空间分布有关,而且与构成绿地的植被类型密切相关(王伯荪,1987 )。90 年代后期,景观生态学理论和方法逐渐应用到对城市绿化的研究中,这些研究为城市植被研究提供了新的研究思路和方法(高峻等,2002 :李贞等,2000 )。城市植被遥感信息提取为城市植被景观生态分析提供基础数据,是遥感信息提取的重要研究方向,也是城市植被学研究的重要内容(王伯荪等,1998 )。 2.1 航空遥感影像用于植被信息提取 随着遥感技术的发展,航空影像图的信息提取比例尺已经达到了1:1000 ,由遥感图提取城市绿地率和绿化覆盖率,是一条比较成熟和现实的途径。2001 年5 月上海市已完成三次航空遥感城市绿地精细调查。2000 年山东省建设处委托中国国土资源航空物探遥感中心对山东省济南市、淄博、文登、荣成等地市进行了航空遥感城市绿化调查。大比例尺彩红外航空遥感图像具有信息量大、植物标志清楚等优点,它不仅被广泛用于植被调查,而且对植 1本课题得到国家863项目(2007AA12Z174)资助。

海面油膜高光谱遥感信息提取_陆应诚

收稿日期: 2008-03-10; 修订日期: 2008-09-30 基金项目:中国石油天然气股份有限公司科技预研项目“海域遥感油气勘探技术研究”(编号: 06-01C-01-08)和国家科技支撑计划(编号: 2006BAK30B01)。 第一作者简介: 陆应诚(1979— ), 男, 南京大学博士研究生, 主要从事高光谱遥感应用研究。E-mail: lycheng2003@https://www.360docs.net/doc/b01235272.html, 。 海面油膜高光谱遥感信息提取 陆应诚, 田庆久, 宋鹏飞, 李姗姗 南京大学 国际地球系统科学研究所, 江苏 南京 210093 摘 要: 针对辽东湾海域的Hyperion 高光谱遥感数据特点, 结合海面油膜光谱与Hyperion 影像特征, 对该数据进行水陆分离与最小噪声分离(minimum noise fraction, MNF)变换处理, 在辽东湾海域MNF 波段影像的2D 散点图中, 海面油膜的出现会在其边缘形成一个异常散点区域, 可区分油膜与干扰信息,结合提取的海面油膜端元的MNF 波谱, 通过混合调制匹配滤波(mixture tuned matched filtering, MTMF)技术, 成功地提取研究区海面油膜信息, 有效监测海面油膜信息, 为海洋环境监测提供新的技术手段。 关键词: 油膜, 高光谱, 遥感, Hyperion, 辽东湾 中图分类号: X55 文献标识码: A 1 引 言 在海洋石油的遥感监测与评估中, 海面油膜是遥感探测的一个重要对象, 多光谱、热红外、雷达等诸多遥感领域均对此有一定研究(Gonzalez 等, 2006; Fingas & Brown, 1997; Labelle & Danenberger, 1997; O’Briena 等, 2005), 由于海洋背景复杂, 海面大气影响、水体对电磁波的散射与吸收作用, 海面油膜遥感信息表现为弱信息;又由于海面油膜随来源、构成种类、油膜厚度、风化程度的不同表现为不确定的遥感影像特征;这些因素对海面油膜遥感信息提取存在一定的制约。随着高光谱遥感技术的发展(童庆禧, 2003), 针对海面油膜信息的高光谱遥感探测方法技术不断得到发展(Foudan, 2003)。Palme(1994)利用小型机载成像光谱仪(CASI)数据研究1993年Shetlands 群岛溢油事件中产生的油膜和其他油污信息, 指出440—900 nm 是可以用来进行溢油油膜信息提取的有效谱段;Foudan(2003)利用机载AVRIS 高光谱数据对Santa Barbara 海岸带的油污与海面油膜进行研究, 表明分散的石油在580nm 、700nm 具有反射峰, 厚油膜在近红外波段反射率要高于薄油膜, 600—900nm 具有最大的油膜遥感探测的可能性。比较分析混合光谱分解技术(spectral unmixing)、纯净像元指数(pixel purity index, PPI)、 光谱角度制图法(spectral angle mapper, SAM)、混合调制匹配滤波(mixture tuned matched filtering, MTMF)技术等方法在海面油膜信息提取上的特点。近年来, 国内学者也不断开展海面油膜遥感研究, 赵冬至等(2000)总结了柴油、润滑油和原油等3种油膜随厚度变化的光谱特征, 指出736nm 和774nm 对不同的油类具有相同的吸收特征;张永宁等(1999, 2000)测试了几种类型油的海面波谱, 认为在海洋溢油波谱特征中0.5—0.58μm 是不同油膜最高反射率的所在位置, 并利用A VHRR 和TM 数据识别海洋溢油;陆应诚(2008, 2009)的海面油膜实验表明随油膜厚度不同, 油膜光谱特征与响应原理表现不同。 本文以辽东湾双台子河口外海域为研究区, 结合海面油膜光谱特点与海面油膜Hyperion 遥感影像特征, 通过高光谱遥感MTMF 技术方法, 提取研究区海面油膜信息。 2 Hyperion 数据预处理 研究区在辽东湾双台子河口外海域, 该区是中国重要原油生产基地——辽河油田所在地, 近年来, 辽东湾海域油田的开采与运输为海洋环境带来一定的影响。 2007-05-06获取了研究区的一景美国EO-1卫

遥感影像信息提取与分析_沈占锋

计算机世界/2006年/7月/31日/第B15版 技术专题 Taries软件主要应用于对高分辨率遥感影像的各种信息的处理、提取与分析,是具有自主知识产权的软件产品。 遥感影像信息提取与分析 沈占锋 近年来,一系列高分辨率卫星的相继上天,高分辨率卫星遥感的应用也因此成为可能,也凸现出遥感影像数据处理的重要性日益显现。遥感影像数据处理的主要内容就是对遥感数据(主要是高分辨率遥感影像数据)进行自动(半自动)图像处理分析,从而获取人们需要的信息。 Taries软件是具有自主知识产权的软件产品,由中科院遥感所国家遥感应用工程技术研究中心下属的空间信息关键技术研发部开发。Taries软件主要应用于对高分辨率遥感影像的各种信息的处理、提取与分析,其功能包括影像的预处理、影像分割、影像分类、特征提取与表达、特征分析、目标识别等。它是集矢量和栅格于一体化的软件系统。 Taries主要功能 1. 影像处理 (1)采用几何精纠正方法:建立基于空间投影理论与有限控制点的全局自适应方法,并建立基于控制点、线、面特征的局部自适应相结合的影像几何精纠正模型。 (2)实现多源遥感影像信息的特征级融合: 在像元级、高精度的多源遥感信息分析技术基础上,发展了各种特征估计器和融合评判规则,建立特征级的多源遥感信息融合的方法以及相应的算法。 2. 影像信息提取 (1)在复杂环境中的目标信息增强: 采用具有空间自适应能力的目标特征的信息增强模型与方法,特别是弱目标信息的增强方法,并对无关背景信息进行抑制。 (2)高分辨率影像分割: 基于空间特征(包括纹理特征、形状特征和动态特征)以及高维统计特征,采用面向特征的高分辨率影像分割技术(如基于模糊集理论、EM模型、Markov模型、MCMC模型、小波分析等)。 (3)基于智能计算模型的目标特征提取: 基于神经网络、支撑向量机等智能计算模型,研究和发展针对目标的纹理特征、结构特征的提取方法,并实现相应算法。 (4)目标识别与提取系统原型: 采用组件技术,研制开发目标识别与提取软件系统原型,包括影像精处理、目标单元分割与特征提取、目标识别等模块。 3. 矢量数据显示、处理与分析 (1)兼容ArcGIS SHP等矢量数据存储格式,能够采用系统的矢栅一体化数据模型对相应的矢量数据进行读取与显示。 (2)基于底层数据模型,能够实现基于Taries软件的矢量数据的修改功能,包括基本对象(点、线、面)的增、删、改等操作。 (3)基于相应的矢量数据建立拓扑关系,并在此基础上进行相应的空间分析功能(如最优路径查询分析等)。 (4)具有常规的矢量数据显示软件的基本功能,并可在此基础开发进一步的应用(如移动目标定位与车辆跟踪系统等)。 关键技术

遥感图像信息提取方法综述

遥感图像信息提取方法综述 遥感图像分析 遥感实际上是通过接收(包括主动接收和被动接收方式)探测目标物电磁辐射信息的强弱来表征的,它可以转化为图像的形式以相片或数字图像表现。多波段影像是用多波段遥感器对同一目标(或地区)一次同步摄影或扫描获得的若干幅波段不同的影像。 在遥感影像处理分析过程中,可供利用的影像特征包括:光谱特征、空间特征、极化特征和时间特性。在影像要素中,除色调/彩色与物体的波谱特征有直接的关系外,其余大多与物体的空间特征有关。像元的色调/彩色或波谱特征是最基本的影像要素,如果物体之间或物体与背景之间没有色调/彩色上的差异的话,他们的鉴别就无从说起。其次的影像要素有大小、形状和纹理,它们是构成某种物体或现象的元色调/彩色在空间(即影像)上分布的产物。物体的大小与影像比例尺密切相关;物体影像的形状是物体固有的属性;而纹理则是一组影像中的色调/彩色变化重复出现的产物,一般会给人以影像粗糙或平滑的视觉印象,在区分不同物体和现象时起重要作用。第三级影像要素包括图形、高度和阴影三者,图形往往是一些人工和自然现象所特有的影像特征。 1、遥感信息提取方法分类 常用的遥感信息提取的方法有两大类:一是目视解译,二是计算机信息提取。 1.1目视解译 目视解译是指利用图像的影像特征(色调或色彩,即波谱特征)和空间特征(形状、大小、阴影、纹理、图形、位置和布局),与多种非遥感信息资料(如地形图、各种专题图)组合,运用其相关规律,进行由此及彼、由表及里、去伪存真的综合分析和逻辑推理的思维过程。早期的目视解译多是纯人工在相片上解译,后来发展为人机交互方式,并应用一系列图像处理方法进行影像的增强,提高影像的视觉效果后在计算机屏幕上解译。 1)遥感影像目视解译原则 遥感影像目视解译的原则是先“宏观”后“微观”;先“整体”后“局部”;先“已知”后“未知”;先“易”后“难”等。一般判读顺序为,在中小比例尺像片上通常首先判读水系,确定水系的位置和流向,再根据水系确定分水岭的位置,区分流域范围,然后再判读大片农田的位置、居民点的分布和交通道路。在此基础上,再进行地质、地貌等专门要素的判读。 2)遥感影像目视解译方法 (1)总体观察 观察图像特征,分析图像对判读目的任务的可判读性和各判读目标间的内在联系。观察各种直接判读标志在图像上的反映,从而可以把图像分成大类别以及其他易于识别的地面特征。(2)对比分析 对比分析包括多波段、多时域图像、多类型图像的对比分析和各判读标志的对比分析。多波段图像对比有利于识别在某一波段图像上灰度相近但在其它波段图像上灰度差别较大的物体;多时域图像对比分析主要用于物体的变化繁衍情况监测;而多各个类型图像对比分析则包括不同成像方式、不同光源成像、不同比例尺图像等之间的对比。 各种直接判读标志之间的对比分析,可以识别标志相同(如色调、形状),而另一些标识不同(纹理、结构)的物体。对比分析可以增加不同物体在图像上的差别,以达到识别目的。(3)综合分析 综合分析主要应用间接判读标志、已有的判读资料、统计资料,对图像上表现得很不明显,或毫无表现的物体、现象进行判读。间接判读标志之间相互制约、相互依存。根据这一特点,可作更加深入细致的判读。如对已知判读为农作物的影像范围,按农作物与气候、地貌、土质的依赖关系,可以进一步区别出作物的种属;河口泥沙沉积的速度、数量与河流汇水区域

遥感技术的发展趋势及应用领域

遥感技术的发展趋势及应用领域 经过数周的学习,我们的"遥感技术"课程结束了,在这课程的学习中,我们收获了很多遥感方面的知识. 随着传感器技术、航空航天技术和数据通讯技术的不断发展,现代遥感技术已经进入一个能动态、快速、多平台、多时相、高分辨率地提供对地观测数据地新阶段。 美国NOAA2005-2015国际遥感研究报告提出,“在未来10年遥感工业强壮发展”。从遥感影像的普及性看主要的发展方向: 1、携带传感器的微小卫星发射与普及 为协调时间分辨率和空间分辨率这对矛盾,小卫星群计划将成为现代遥感的另一发展趋势,例如,可用6颗小卫星在2-3天内完成一次对地重复观测,可获得高于1m的高分辨率成像光谱仪数据。除此之外,机载和车载遥感平台,以及超低空无人机载平台等多平台的遥感技术与卫星遥感相结合,将使遥感应用呈现出一派五彩缤纷的景象。 2、地面高分辨率传感器的使用 商业化的高分辨率卫星为未来发展的趋势,目前已有亚米级的传感器在运行。未来几年内,将有更多的亚米级的传感器上天,满足1比5000甚至1比2000的制图要求。如美国的OrbView-5、韩国的KOMPSAT-2等 3、高光谱/超光谱遥感影像的解译 高光谱数据能以足够的光谱分辨率区分出那些具有诊断性光谱特征的地表物质,而这是传统宽波段遥感数据所不能探测的,使得成像光谱仪的波谱分辨率得到不断提高。从几十到上百个波段,光谱分辨率也向更小的数量级发展。 从遥感影像处理技术和应用水平上看,主要发展方向: 1)多源遥感数据源的应用 信息技术和传感器技术的飞速发展带来了遥感数据源的极大丰富,每天都有数量庞大的不同分辨率的遥感信息,从各种传感器上接收下来。这些数据包括了光学、高光谱和雷达影像数据。 2)定量化:空间位置定量化和空间地物识别定量化 遥感信息定量化,建立地球系统科学信息系统,实现全球观测海量数据的定量管理、分析与预测、模拟是遥感当前重要的发展方向之一。遥感技术的发展,最终目标是解决实际应用问题。但是仅靠目视解译和常规的计算机数据统计方法来分析遥感数据,精度总提不高,

遥感特征提取物具体步骤

1遥感影像通过亮度值或像元值的高低差异(反映地物的光谱信息)及空间变化(反映地物的空间信息)来表示不同地物的差异,这是区分不同影像地物的物理基础。目前影像都是基于数字,影像信息的提取方法的发展历程可分为如图1所示,目前这四类方法共存。 图1 影像信息提取发展阶段 非监督分类步骤监督分类步骤 2三大分类方法的对比 利用传统的遥感影像分类方法, 如监督分类或非监督分类, 易造成分类精度降低, 空间数据大量冗余以及资源的浪费,面向对象的分类方法正是为了处理这些问题而出现, 面向对象的分类方法是一种智能化的自 动影像分析方法,它的分析单元不再是单个像素,而是由若干个像素组成的像素群,即目标对象。面向对象的方法利用遥感影像结构信息和光谱信息, 并建立这些特征之间的层次关系的基础上, 对影像进行分类。面向对象分类方法的关键在于图像分割, 而图像分割方法多种多样, 如何选择科学合理的图像分割方法十分重要,实验证明多尺度图像分割方法综合了图像的光谱!形状!结构!纹理!相关布局等信息, 是目前较为理想的图像分割方法。(采用面向对象分类的方法,可使用专业遥感图像分类软件eCognition4.0) 3面向对象的分类方法

面向对象的技术流程图 3Envi_ENVI FX简介 全名叫“面向对象空间特征提取模块—Feature Extraction”,基于影像空间以及影像光谱特征,即面向对象,从高分辨率全色或者多光谱数据中提取信息,该模块可以提取各种特征地物如车辆、建筑、道路、桥、河流、湖泊以及田地等。该模块可以在操作过程中随时预览影像分割效果。该项技术对于高光谱数据有很好的处理效果,对全色数据一样适用。对于高分辨率全色数据,这种基于目标的提取方法能更好的提取各种具有特征类型的地物。一个目标物体是一个关于大小、光谱以及纹理(亮度、颜色等)的感兴趣区域。 应用于:1】从影像中尤其是大幅影像中查找和提取特征 2】添加新的矢量层到地理数据库 3】输出用于分析的分类影像 4】替代手工数字化过程 ENVI FX的操作可分为两个部分:发现对象(Find Object)和特征提取(Extract features),如图所示

(完整版)图像特征特点及常用的特征提取与匹配方法

图像特征特点及常用的特征提取与匹配方法 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1) 颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2) 颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡 的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3) 颜色矩

图像特征提取总结

图像常见xx方法简介 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一、颜色特征 (一)特点: 颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。 一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。 由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的xx与匹配方法 (1)颜色直方图 其优点在于: 它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于: 它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间: RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:

直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。 在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于: 图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。 (4)颜色聚合向量 其核心思想是: 将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。 (5)颜色相关图 二纹理特征 (一)特点: 纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行

遥感提取特征点

遥感影像特征点提取

一、 基于Moravec 算子的特征点提取 1. Moravec 算子的原理及算法公式 该算子是通过逐像元量测与其邻元的灰度差,搜索相邻像元之间具有高反差的点,具体方法有以下几种。 (1)计算各像元的有利值,如图所示,在5×5的窗口内沿着图示四个方向分别计算相邻像元间灰度差之平方和V 1,V 2,V 3,及V 4,取其中最小值作为该像元的有利值: 其中: 式中, j i G ,代表像元j i P ,的灰度值,W 为以像元计的窗口大小,如图所示,n m W ,5,=为像元在整块影像中位置序号。 (2)给定一个阈值,确定待定点的有利点。如果有利值大于给定的阈值,则将该像元作为候选点。阈值一般为经验值。 (3)抑制局部非最大。在一定大小窗口内(例如5×5,7×7,,9×9像元等),将上一步所选的候选点与其周围的候选点比较,若该像元的有利非窗口中最大值,则去掉;否则,该像元被确定为特征点,这一步的目的在于避免纹理丰富的区域产生束点,用于抑制局部非最大的窗口大小取决于所需的有利点密度。 综上所述,Moravec 算子是在四个主要方向上选择具有最大—最小灰度方差的点作为特征点。 2. 基于MATLAB 的算法编程 clear all;close all;clc img=double(imread('1001.jpg')); [h w]=size(img); imshow(img,[]) imgn=zeros(h,w); n=4; for y=1+n:h-n for x=1+n:w-n sq=img(y-n:y+n,x-n:x+n); V=zeros(1,4); }V ,V ,V ,min{V 4321min =IV ∑+-=i j i j i G G V 21-,1,4)(∑++-=i j i j i G G V 21,1,3)(∑+-=i j i j i G G V 21,,2)(∑+-=i j i j i G G V 2,1,1)(;1,,-+-=k m k m i ;1,,-+-=k n k n j 。2/W k =

遥感图象处理与信息提取方法的研究

第23卷2004年 第4期 12月 吉林地质 JILINGEoLoGY V01.23。No.4 Dec.,2004遥感图象处理与信息提取方法的研究 吕诚然1,刘斌2,谢红3,杨国东4,于小平4 (1.吉林省地矿测绘院,吉林长春130062;2.辽宁省第二测绘院,辽宁沈阳110034; 3.陕西省基础地理信息中心.陕西西安7l0054;4.吉林大学地球探测科学与技术学院,吉林长春130026) [摘要]在图象预处理中,为了研究不同处理方法的效果,分别采用了灰度变换、图象平滑和图象锐化等方法,经过比较发现,不同的增强方法对不同的特征地物的效果有明显的差异;在图象信息提取时,分别使用最小距离法、比值法和组合比等方法,采用不同波段的图象组合进行运算,可以依次突出不同的地物信息,从而达到了信息自动识别的目的。 [关键词]遥感图象;信息提取;数字图象处理 [中图分类号]P627[文献标识码]A[文章编号]1001—2427(2004)04—0060—04 利用计算机自动识别技术(即模式识别)从遥感图象上提取信息不仅省时省力,而且效率高,目前已成为遥感图象信息提取的主要发展趋势:从遥感图象上提取信息一般要经过图象恢复、图象预处理和信息提取几个过程。图象的恢复一般包括辐射校正和几何校正。 1遥感信息提取发展现状 遥感信息的提取主要有两种方法,一种是目视解译,它依靠人工从遥感图象中获取特定目标的地物信息;另一种方法是借助于计算机的自动判别,并提取特定的地物信息。两者相比,很明显前者耗费了大量的人力、物力和时间,而后者只需在计算机处理后的遥感图象上做少量的目视解译工作就可以达到目的。但在20世纪70年代至80年代,软件技术尚不成熟,遥感信息提取就主要是依靠遥感工作者作目视解译来完成。随着计算机的普及和软件水平的提高,从事遥感研究的学者们开始利用新的技术手段来提取遥感信息。在国内这种探索分3方面:①新方法的完善和发展,如分形理论、小波变换、人工神经网络等方面进行研究,使遥感图象的分类不仅注重光谱特征,而且也从多分辨率的空间上进行分类和信息提取;②结合不同的应用发展了各种专题信息提取并加入人的知识,许多已在实际应用中取得好的效果;③随着新传感器的出现,也研制了专用图象处理软件,如合成孔径雷达(S多ntheticApertureRadar缩写为SAR)图象处理的专门软件。 2存在的问题 当人类进入信息时代并跨人空间时代的门槛之时,各种运行于空间、翱翔于空中的遥感平台连续不断地提供着各种信息。而我们对遥感信息的认识和利用程度则远远落后于通过空间和航空系统收集信息的速度。 同时,由于经济的飞速发展、资源的逐渐耗竭和全球环境的变化,要求人类走可持续发展的道路。为了适应这种需求,遥感技术被广泛地应用于国民经济的各个领域。这种趋势要求遥感信息提取手段向自动化、智能化方向发展。’ [收稿日期]2004一08—19;[修订日期]2004—12-08 [作者简介]吕诚然(1950一),男,吉林长春人,吉林省地矿测绘院院长,高级工程师.

相关文档
最新文档