2020高考数学 最后突破抢分:第5讲 简单几何体的再认识(表面积与体积)

2020高考数学 最后突破抢分:第5讲 简单几何体的再认识(表面积与体积)
2020高考数学 最后突破抢分:第5讲 简单几何体的再认识(表面积与体积)

第5讲简单几何体的再认识(表面积与体积

)

一、知识梳理

1.圆柱、圆锥、圆台的侧面展开图及侧面积公式

圆柱圆锥圆台侧面展开图

侧面积公式S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r+r′)l

名称

表面积体积

几何体

柱体(棱柱和圆柱)S表面积=S侧+2S底V=S底h

1

2

锥 体(棱锥和圆锥) S 表面积=S 侧+S 底

V =1

3

S 底h

台 体(棱台和圆台) S 表面积=S 侧+S 上+S 下

V =1

3

(S 上+S 下+

S 上S 下)h

球 S =4πR 2

V =4

3

πR 3

常用结论

1.正方体的外接球、内切球及与各条棱相切球的半径

(1)外接球:球心是正方体的中心;半径r =

32

a (a 为正方体的棱长).

(2)内切球:球心是正方体的中心;半径r =a

2

(a 为正方体的棱长).

(3)与各条棱都相切的球:球心是正方体的中心;半径r =22

a (a 为正方体的棱长).2.正

四面体的外接球、内切球的球心和半径

(1)正四面体的外接球与内切球(正四面体可以看作是正方体的一部分).

(2)外接球:球心是正四面体的中心;半径r =

64

a (a 为正四面体的棱长).

3

(3)内切球:球心是正四面体的中心;半径r

612

a (a 为正四面体的棱长).

二、教材衍化

1.已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为________.

解析:S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,

所以r 2=4,所以r =2.

答案:2 cm

2.

如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.

解析:设长方体的相邻三条棱长分别为a ,b ,c ,它截出棱锥的体积V 1=13×12×12a ×12b ×

12

c =

1

48

abc ,剩下的几何体的体积V 2=abc -

1

48

abc =

47

48

abc ,所以V 1∶V 2=1∶47.

答案:1∶47

一、思考辨析

判断正误(正确的打“√”,错误的打“×”)

(1)多面体的表面积等于各个面的面积之和.( )

(2)锥体的体积等于底面积与高之积.( )

(3)球的体积之比等于半径比的平方.( )

(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( )

(5)长方体既有外接球又有内切球.( )

答案:(1)√(2)×(3)×(4)√(5)×

二、易错纠偏

常见误区|K(1)不能把三视图正确还原为几何体而错解表面积或体积;

(2)考虑不周忽视分类讨论;

(3)几何体的截面性质理解有误;

(4)混淆球的表面积公式和体积公式.

1.已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为________m3.

4

5

解析:根据三视图可知该四棱锥的底面是底边长为2 m ,高为1 m 的平行四边形,四棱锥的高为3 m .故该四棱锥的体积V =1

3

×2×1×3=2(m 3).

答案:2

2.将一个相邻边长分别为4π,8π的矩形卷成一个圆柱,则这个圆柱的表面积是________.

解析:当底面周长为4π时,底面圆的半径为2,两个底面的面积之和是8π;当底面周长为8π时,底面圆的半径为4,两个底面的面积之和为32π.无论哪种方式,侧面积都是矩形的面积32π2,故所求的表面积是32π2+8π或32π2+32π.

答案:32π2+8π或32π2+32π

3.已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为________.

解析:因为过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为2

2,所以该圆柱的表面积为2×π×(

2)2+2

2π×2

2=

12π.

答案:12π

简单几何体的表面积与体积

第2节简单几何体的表面积与体积 最新考纲了解球、棱柱、棱锥、台的表面积和体积的计算公式. 知识梳理 1.多面体的表(侧)面积 多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和. 2.圆柱、圆锥、圆台的侧面展开图及侧面积公式 3.简单几何体的表面积与体积公式 [常用结论与微点提醒] 1.正方体与球的切、接常用结论 正方体的棱长为a,球的半径为R, ①若球为正方体的外接球,则2R=3a; ②若球为正方体的内切球,则2R=a; ③若球与正方体的各棱相切,则2R=2a.

2.长方体的共顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2. 3.正四面体的外接球与内切球的半径之比为3∶1. 诊断自测 1.思考辨析(在括号内打“√”或“×”) (1)锥体的体积等于底面面积与高之积.() (2)球的体积之比等于半径比的平方.() (3)台体的体积可转化为两个锥体的体积之差.() (4)已知球O的半径为R,其内接正方体的边长为a,则R= 3 2a.() 解析(1)锥体的体积等于底面面积与高之积的三分之一,故不正确. (2)球的体积之比等于半径比的立方,故不正确. 答案(1)×(2)×(3)√(4)√ 2.(教材练习改编)已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为() A.1 cm B.2 cm C.3 cm D.3 2cm 解析由题意,得S 表 =πr2+πrl=πr2+πr·2r=3πr2=12π,解得r2=4,所以r=2(cm). 答案 B 3.(2016·全国Ⅱ卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为() A.12π B.32 3π C.8π D.4π 解析设正方体的棱长为a,则a3=8,解得a=2.设球的半径为R,则2R=3 a,即R= 3.所以球的表面积S=4πR2=12π. 答案 A 4.(2017·全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为() A.π B.3π 4 C. π 2 D. π 4

空间几何体的表面积与体积

§8.1 空间几何体的表面积与体积 基础自测 1.如图所示,在棱长为4的正方体ABCD-A 1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=4 1A 1B 1,则多面体P- BCC 1B 1的体积为 2.已知正方体外接球的体积为 3 32π,那么正方体的棱长等于 3.若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 . 4.三棱锥S-ABC 中,面SAB ,SBC ,SAC 都是以S 为直角顶点的等腰直角三角形,且AB=BC=CA=2,则三棱锥S-ABC 的表面积是 . 例1 如图所示,长方体ABCD-A 1B 1C 1D 1中,AB=a ,BC=b ,BB 1=c ,并且a >b >c >0.求沿着长方体的表面自A 到C 1 的最短线路的长. 例2 如图所示,半径为R 的半圆内的阴影部分以直径AB 所在直线为轴,旋转一周得到一几何体,求该几何体的表面积(其中∠BAC =30°)及其体积. 例3 如图所示,长方体ABCD —''''D C B A 中,用截面截下一个棱锥C — ''DD A ,求棱锥C —''DD A 的体积与剩余部分的体积之比.

例4 如图所示,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点,将△ADE与△BEC 分别沿ED、EC向上折起,使A、B重合,求形成的三棱锥的外接球的体积. 1.如图所示,在直三棱柱ABC- A1B1C1中,底面为直角三角形,∠ACB=90°,AC=6,BC=CC1=2.P是BC1上一动点,则CP+P A1的最小值是 . 2.如图所示,扇形的圆心角为90°,其所在圆的半径为R,弦AB将扇形分成两个部分,这两部分各以AO为轴旋转一周,所得旋转体的体积V1和V2之比为 3.如图,三棱锥A-BCD一条侧棱AD=8 cm,底面一边BC=18 cm,其余四条棱的棱长都是17 cm,求三棱锥A-BCD的体积. 4.如图所示,已知正四棱锥S—ABCD中,底面边长为a, 侧棱长为2a. (1)求它的外接球的体积; (2)求它的内切球的表面积.

2021年高考数学第一轮专题复习- 直线、平面、简单几何体——空间向量及其运算

第76课时:第九章 直线、平面、简单几何体——空间向量及其运算 课题:空间向量及其运算 一.复习目标:理解空间向量的概念、掌握空间向量的有关运算及其性质. 二.主要知识: 1.,a b 向量共线的充要条件: ; 2.三点共线: ; 3.三向量共面: ; 4.四点共面: ; 5.两向量夹角的范围 ; 三.课前预习: 1.如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点。若AB a =, AD b =,1AA c =,则下列向量中与BM 等的向量是 ( ) ()A 1122a b c -++ ()B 1122 a b c ++ ()C 1122 a b c - -+ ()D c b a +-21 21 2.有以下命题: ①如果向量,a b 与任何向量不能构成空间向量的一组基底,那么,a b 的关系是不共线; ②,,,O A B C 为空间四点,且向量,,OA OB OC 不构成空间的一个基底,那么点,,,O A B C 一定共面; C1

③已知向量,,a b c 是空间的一个基底,则向量,,a b a b c +-,也是空间的一个基底。 其中正确的命题是 ( ) ()A ①② ()B ①③ ()C ②③ ()D ①②③ 3.下列命题正确的是 ( ) ()A 若a 与b 共线,b 与c 共线,则a 与c 共线;()B 向量,,a b c 共面就是它们所在的 直线共面; ()C 零向量没有确定的方向; ()D 若//a b ,则存在唯一的实数λ使得a b λ=; 4.已知A 、B 、C 三点不共线,O 是平面ABC 外的任一点,下列条件中能确定点M 与点A 、B 、C 一定共面的是 ( ) ()A OM ++= ()B OM --=2 ()C OC OB OA OM 3121++= ()D OC OB OA OM 3 1 3131++= 四.例题分析: 例1.已知在正三棱锥ABC P -中,N M ,分别为BC PA ,中点,G 为MN 中点,求证: BC PG ⊥ G N A B C P M

空间几何体的表面积和体积

空间几何体的表面积和体积 [基础要点] 1.圆柱的表面积公式: 2.圆锥的表面积公式: 3.圆台的表面积公式: 4.圆锥的体积公式: 5.棱锥的体积公式: 6.圆台的体积公式: 7.球的表面积公式: 8.球的体积公式: 题型一、柱体的体积、表面积公式 例1、直平行六面体的底面为菱形,过不相邻两条侧棱的截面面积为12,Q Q ,求它的侧面积 变式:如图是一个平面截长方体得剩余部分,已知4,3,AB BC ==5,8AE BF ==, 12C G =,求几何体的体积 题型二、锥体、球体的体积和表面积公式 例2、正四面体棱长为a ,求其外接球和内切球的表面积 变式:一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球,求: (1)圆锥的侧面积 (2)圆锥的内切球的体积 题型三、台体的表面积与体积公式 例3、如图,已知正三棱台111A B C ABC -的两底面边长分别为2和8,侧棱长等于6,求三棱台的体积V D1 O1C1 D C B1 B A1 A O H

变式:用一块矩形铁皮作圆台形铁桶的侧面,要求铁桶的上底半径是24㎝,下底半径为16㎝,母线长为48㎝,则矩形铁皮的长边长是多少? 题型四、实际问题与几何体面积、体积的结合 例4、如图示,一个容器的盖子用一个正四棱台和一个球焊接而成,球的半径为R ,正四棱台的上、下底面边长分别是2.5R 和3R ,斜高为0.6R , (1)求这个容器盖子的表面积(用R 表示,焊接处对面积的影响忽略不计) (2)若R=2㎝,为盖子涂色时所用的涂料每0.4kg 可以涂1㎡,计算为100个这样的盖子涂色约需要多少千克。(精确到0.1kg ) 变式:某人买了一罐容积为V 升、高为a 米的直三棱柱型罐装进口液体车油,由于不小心摔落地上,结果有两处破损并发生渗漏,它们的位置分别在两条棱上且距底高度分别为,b c 的地方(单位:米),为了减少罐内液油的损失,该人采用罐口朝上,倾斜灌口的方式拿回家,试问罐内液油最理想的估计能剩多少? [自测训练] 1、已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则T S 等于( ) A 、 19 B 、49 C 、 14 D 、 13 2、圆柱的轴截面是边长为5㎝的正方形ABCD ,从A 到C 圆柱侧面上的最短距离为( ) A 、10㎝ B 、 2 542 π+㎝ C 、52㎝ D 、2 51π+㎝ 3、棱锥的高为16㎝,底面积为2 512cm ,平行于底面的截面积为2 50cm ,则截面与底面的距离为( ) A 、5㎝ B 、10㎝ C 、11㎝ D 、25㎝

高考数学专题复习简单几何体的面积与体积

第5讲 简单几何体的面积与体积 一、选择题 1.长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球的面积为( ) A.7 2π B .56π C .14π D .64π 解析 设长方体的过同一顶点的三条棱长分别为a ,b ,c ,则??? ab =2, bc =3, ac =6,得??? a =2, b =1, c =3, 令球的半径为R ,则(2R )2=22+12+32=14,∴R 2=7 2, ∴S 球=4πR 2=14π. 答案 C 2.若等腰直角三角形的直角边长为3,则以一直角边所在的直线为轴旋转一周所成的几何体体积是( ) A .9π B .12π C .6π D .3π 解析 由题意知所得几何体为圆锥,且底面圆半径为3,高为3,故V =13·(π·32 )·3=9π. 答案 A 3.一个几何体的三视图如图所示,那么此几何体的侧面积(单位:cm 2)为( ).

A .48 B .64 C .80 D .120 解析 据三视图知,该几何体是一个正四棱 锥(底面边长为8),直观图如图,PE 为侧面△PAB 的边AB 上的高,且PE =5.∴此几何体的侧面积是S =4S △PAB =4×1 2×8×5= 80(cm 2). 答案 C 4.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ). A.2 6 B.36 C.23 D.22 解析 在直角三角形ASC 中,AC =1,∠SAC =90°,SC =2,∴SA =4-1=3;同理SB = 3.过A 点作SC 的垂线交SC 于D 点,连接DB ,因△SAC ≌△SBC ,故BD ⊥SC ,故SC ⊥平面ABD ,且平面ABD 为等腰三角形,因∠ASC =30°,故 AD =1 2SA = 32,则△ABD 的面积为1 2 ×1× AD 2-? ?? ?? 122 =24,则三棱锥的体积为13×24×2=26. 答案 A 5.某品牌香水瓶的三视图如下(单位:cm),则该几何体的表面积为 ( ).

简单几何体表面积

运用二 表面积 【例2】(1)(2019·山西高二月考(文))已知圆柱的轴截面为正方形,且圆柱的体积为54π,则该圆柱的侧面积为() A.27π B.36π C.54π D.81π (2)(2019·福建高三月考(文))《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图所示,则它的表面积为( ) A .2 B .422+ C .442+ D .642+ (3)(2019·安徽高二期末(文))如图,长度为1的正方形网格纸中的实线图形是一个多面体的三视图,则该多面体表面积为( ) A .1662+ B .1682+ C .1262+ D .1282+ 【答案】(1)B(2)D(3)D 【解析】(1)设圆柱的底面半径为r .因为圆柱的轴截面为正方形,所以该圆柱的高为2r .因为该圆柱的体积为54π,23π2π54πr h r ==,解得3r =,所以该圆柱的侧面积为2π236r r ?=π. (2)根据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三角形,两条直角2,斜边是2,且侧棱与底面垂直,侧棱长是2, ∴几何体的表面积12222222264 2.2 S =?+??=+故选:D .

(3)由三视图还原原几何体如图, 该几何体为四棱锥,底面是矩形,AD =4,AB =2,四棱锥的高为2. 则其表面积为S 111424222224221282222=?+ ??+???+??=+.故选:D . 【举一反三】 1.(2019·湖南高一期末)已知一个圆柱的高是底面圆半径的2倍,则该圆柱的侧面积与表面积的比值为( ) A.14 B.12 C.23 D.45 【答案】C 【解析】设圆柱底面圆的半径为r ,则高2h r =,该圆柱的侧面积为224r h r ππ?=,表面 积为222 426r r r πππ+=,故该圆柱的侧面积与表面积的比值为224263r r ππ=. 2.(2019·湖南高三期末(文))一个几何体的三视图如图所示,则该几何体的表面积为( ) A .2+2 B .2 C .1+22 D .5 【答案】A

空间几何体的表面积与体积教学设计教案

空间几何体的表面积与体积教学设计教案 1、教学目标 1、知识与技能(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系。(3)培养学生空间想象能力和思维能力。 2、过程与方法(1)让学生经历几何全的侧面展一过程,感知几何体的形状。(2)让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系。 3、情感与价值通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响。从而增强学习的积极性。 2、教学重点/难点重点:柱体、锥体、台体的表面积和体积计算难点:台体体积公式的推导 3、教学用具投影仪等、 4、标签数学,立体几何教学过程 1、创设情境(1)教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?引导学生回忆,互相交流,教师归类。(2)教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的?你能否计算?引入本节内容。

2、探究新知(1)利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面展开图(2)组织学生分组讨论:这三个图形的表面由哪些平面图形构成?表面积如何求?(3)教师对学生讨论归纳的结果进行点评。 3、质疑答辩、排难解惑、发展思维(1)教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式:(2)组织学生思考圆台的表面积公式与圆柱及圆锥表面积公式之间的变化关系。(3)教师引导学生探究:如何把一个三棱柱分割成三个等体积的棱锥?由此加深学生对等底、等高的锥体与柱体体积之间的关系的了解。如图: (4)教师指导学生思考,比较柱体、锥体,台体的体积公式之间存在的关系。(s’,s分别我上下底面面积,h为台柱高) 4、例题分析讲解(课本)例 1、例 2、例 35、巩固深化、反馈矫正教师投影练习 1、已知圆锥的表面积为 a ㎡,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为。 (答案:) 2、棱台的两个底面面积分别是245c㎡和80c㎡,截得这个棱台的棱锥的高为35cm,求这个棱台的体积。 (答案:2352cm3)

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和 体积公式汇总表 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 3.(1)圆柱的侧面展开图是一个 ,设底面半径为r ,母线长为l ,那么圆柱的底面积 =底S ,侧面积=侧S ,表面积S = 。 (3)圆锥的侧面展开图是一个 ,设圆锥的底面半径为r ,母线长为l ,那么它的底面积 =底S ,侧面积=侧S ,表面积S = 。 (4)圆台的侧面展开图是一个 ,设上、下底面圆半径分别为r '、r ,母线长为l ,那么上底面面积=上底S ,下底面面积=下底S 那么表面=S 。 4、正四面体的结论:设正四面体的棱长为a ,则这个正四面体的 (1)全面积:S 全2a ; (2)体积:3a ; (3)对棱中点连线段的长:a ; (4)对棱互相垂直。 (5)外接球半径:R= a ; (6)内切球半径; r= a 5、正方体与球的特殊位置结论; 空间几何体练习题 1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则 1V :2V 是( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1 2.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A. ππ221+ B. ππ421+ C. ππ21+ D. π π241+ 3.一个圆锥的展开图如图所示,其中扇形的圆心角为0120,已知 底面圆的半径为1,求该圆锥的体积。 4. 已知棱长为a ,各面均为等边三角形的四面体ABC S -,求它的表面积。

人教A版必修第二册《8.3 简单几何体的表面积与体积》练习卷(1)

人教A版必修第二册《8.3 简单几何体的表面积与体积》练习卷(1) 一、选择题(本大题共3小题,共15.0分) 1.如图,正方体ABCD?A′B′C′D′的棱长为4,动点E,F在棱AB上,且EF=2, 动点Q在棱D′C′上,则三棱锥A′?EFQ的体积() A. 与点E,F位置有关 B. 与点Q位置有关 C. 与点E,F,Q位置都有关 D. 与点E,F,Q位置均无关,是定值 2.某圆锥的母线长是4,侧面积是4π,则该圆锥的高为() A. √15 B. 4 C. 3 D. 2 3.半径为2cm的球的体积是() A. 8π 3cm3 B. 16π 3 cm3 C. 32 3 πcm3 D. 64 3 πcm3 二、填空题(本大题共11小题,共55.0分) 4.(1)已知正六棱柱的各棱长都为a,那么其体积是________. (2)若正四棱锥的高为6,侧棱长为8,则棱锥的体积为________. (3)如果一个圆柱、一个圆锥的底面直径和高都等于一个球的直径,那么圆柱、球、圆锥的体积 之比为________. 5.已知一个正三棱台的两个底面的边长分别为8和18,侧棱长为13,则这个棱台的侧面积为 ______ . 6.已知正四棱锥P?ABCD的体积为4 3 ,底面边长为2,则侧棱PA的长为_______. 7.一个六棱锥的体积为2√3,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面 积为?. 8.表面积为6π的圆柱,当其体积最大时,该圆柱的高与底面半径的比为______ .

9.若一个圆锥的轴截面是等边三角形,其面积为2√3,则这个圆锥的全面积为______ . 10.将边长为1的正方形以其一边所在直线为轴旋转一周,所得几何体的侧面积是________. 11.圆台两底面的半径分别为2和5,母线长是3√10,则它的轴截面的面积为____. 12.已知正三棱柱的各条棱长均为a,圆柱的底面直径和高均为b,若它们的体积相等,则a3:b3的 值为______. 13.已知三棱锥S?ABC中,SA=SB=SC=AB=AC=2,则三棱锥S?ABC体积的最大值为 ______ . 14.如图,在平面四边形ABCD中,AB丄AD,AB=AD=1,BC=CD=5,以 直线AB为轴,将四边形ABCD旋转一周,则所得旋转体的体积为______. 三、解答题(本大题共2小题,共24.0分) 15.正六棱锥的底面周长为24,斜高SH与高SO所成的角为30°. 求: (1)棱锥的高; (2)侧棱长.

空间几何体表面积与体积公式大全

空间几何体的表面积与体积公式大全 一、全(表)面积(含侧面积) 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥: ②圆锥: 3、台体 ①棱台: ②圆台: 4、球体 ①球: ②球冠:略 ③球缺:略 二、体积 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥 ②圆锥

3、台体 ①棱台 ②圆台 4、球体 ①球: ②球冠:略 ③球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高计算;而圆锥、圆台的侧面积计算时使用母线计算。 三、拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的。

分析:圆柱体积: 圆柱侧面积: 因此:球体体积: 球体表面积: 通过上述分析,我们可以得到一个很重要的关系(如图) += 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式 公式: 证明:如图过台体的上下两底面中心连线的纵切面为梯形。 延长两侧棱相交于一点。 设台体上底面积为,下底面积为 高为。 易知:∽,设, 则 由相似三角形的性质得:

即:(相似比等于面积比的算术平方根) 整理得: 又因为台体的体积=大锥体体积—小锥体体积 ∴ 代入:得: 即: ∴ 4、球体体积公式推导 分析:将半球平行分成相同高度的若干层(),越大,每一层越近似于圆柱,时,每一层都可以看作是一个圆柱。这些圆柱的高为,则:每个圆柱的体积= 半球的体积等于这些圆柱的体积之和。 ……

空间几何体的表面积和体积(教案)

41中高三数学第一轮复习—空间几何体的表面积和体积 一.命题走向 由于本讲公式多反映在考题上,预测008年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 二.要点精讲 1.多面体的面积和体积公式 表中S 表示面积,c ′、c 分别表示上、下底面周长,h 表斜高,h ′表示斜高,l 表示侧棱长。 2.旋转体的面积和体积公式 表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r 1、r 2分别表示圆台 上、下底面半径,R 表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:?? ?=++=++24 )(420 )(2z y x zx yz xy )2()1( 由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16 所以l =4(cm)。

P A D O 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。 例2.如图,三棱柱ABC —A 1B 1C 1中,若E 、F 分别为AB 、AC 的中点,平面EB 1C 1将三棱柱分成体积为V 1、V 2的两部分,那么V 1∶V 2= ____ _。 解:设三棱柱的高为h ,上下底的面积为S ,体积为V ,则V=V 1+V 2=Sh 。 ∵E 、F 分别为AB 、AC 的中点, ∴S △AEF = 4 1S, V 1= 31h(S+4 1S+41?S )=127 Sh V 2=Sh-V 1= 12 5 Sh , ∴V 1∶V 2=7∶5。 点评:解题的关键是棱柱、棱台间的转化关系,建立起求解体积的几何元素之间的对应关系。最后用统一的量建立比值得到结论即可。 题型2:锥体的体积和表面积 例3.(2006上海,19)在四棱锥P -ABCD 中,底面是边长为2的菱形,∠DAB =60 ,对角线AC 与BD 相交于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成的角为60 ,求四棱锥P -ABCD 的体积? 解:(1)在四棱锥P-ABCD 中,由PO ⊥平面ABCD,得∠PBO 是PB 与平面ABCD 所成的角,∠PBO=60°。 在Rt △AOB 中BO=ABsin30°=1, 由PO ⊥BO , 于是PO=BOtan60°=3,而底面菱形的面积为23。 ∴四棱锥P -ABCD 的体积V= 3 1 ×23×3=2。 点评:本小题重点考查线面垂直、面面垂直、二面角及其平面角、棱锥的体积。在能力方面主要考查空间想象能力。 例4.(2006江西理,12)如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC , DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( ) A .S 1S 2 C .S 1=S 2 D .S 1,S 2的大小关系不能确定 C

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧21= ② 圆锥:l c S 底圆锥侧2 1 = 3 、 台体 ① 棱台:h c c S )(2 1 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2 、 锥体 ① 棱锥 ② 圆锥

3、 ① 棱台 ② 圆台 4、 球体 ① 球: r V 33 4 π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h ' 计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2 的圆柱形容器内装一个最大的 球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2 。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 4 23 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) + = 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(3 1 S S S S h V 下下 上 上台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1 由相似三角形的性质得: PF PE AB CD =

高考数学1.简单几何体专题1

高考数学1.简单几何体专题1 2020.03 1,下面的图形可以构成正方体的是() A B C D 2,正四棱台上,下底面边长为a,b,侧棱长为c,求它的高和斜高. 3,下列命题中正确的是 () A.由五个平面围成的多面体只能是四棱锥 B.棱锥的高线可能在几何体之外 C.仅有一组对面平行的六面体是棱台 D.有一个面是多边形,其余各面是三角形的几何体是棱锥 4,圆锥的侧面展开图是直径为a的半圆面,那么此圆锥的轴截面是() A.等边三角形B.等腰直角三角形 C.顶角为30°的等腰三角形D.其他等腰三角形 5,把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线 长10cm.求:圆锥的母长. 6,长方体ABCD-A1B1C1D1中,AB=2,BC=3,AA1=5,则一只小虫从A点沿长方 体的表面爬到C1点的最短距离是. 7,已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},

E={棱柱},F={直平行六面体},则 ( ) A .E F D C B A ????? B .A C B F D E ????? C .C A B D F E ????? D .它们之间不都存在包含关系 8,A 、B 为球面上相异两点,则通过A 、B 两点可作球的大圆有 ( ) A .一个 B .无穷多个 C .零个 D .一个或无穷多个 9,若一个几何体有两个面平行,且其余各面均为梯形,则它一定是棱台,此命题是否正确,说明理由. 10,长方体三条棱长分别是AA ′=1,AB=2,AD=4,则从A 点出发,沿长方体的表面到 C ′的最短矩离是 ( ) A .5 B .7 C .29 D .37 11,线段AB 长为5cm ,在水平面上向右平移4cm 后记为CD ,将CD 沿铅垂线方向向下移动3cm 后记为C ′D ′,再将C ′D ′沿水平方向向左移4cm 记为A ′B ′,依次连结构成长方体ABCD-A ′B ′C ′D ′. ①该长方体的高为 ; ②平面A ′B ′C ′D ′与面CD D ′C ′间的距离为 ; ③A 到面BC C ′B ′的距离为 .

三视图求几何体的表面积与体积

三视图求几何体的表面积与体积 一、选择题 1.若一个几何体的三视图如图所示,则此几何体的体积为( ) (A)112 (B)5 (C)9 2 (D)4 2.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( ) (A)6 (B)9 (C)12 (D)18 3.已知三棱锥S-ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC=2,则此棱锥的体积为( ) (B) (C) (D) 4.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( ) (A )6π (B )43π (C )46π (D )63π 5.将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为( ) 6 A 32

6.(2012·浙江高考文科·T3)已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是( ) (A)1 cm 3 (B)2 cm 3 (C)3 cm 3 (D)6 cm 3 7.某三棱锥的三视图如图所示,该三棱锥的表面积是( ) (A )28+ (B )30+ (C )56+ (D )60+ 8.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是 ( ) 侧(左)视图 俯视图

10.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是() (A)球 (B)三棱锥 (C)正方体 (D)圆柱 . 11.某几何体的三视图如图所示, 它的体积为() (A)12π (B)45π (C)57π (D)81π 12.某几何的三视图如图所示,它的体积为 (A)72π (B)48π (C)30π (D)24π 13.已知某几何体的三视图如图所示,

空间几何体的表面积和体积讲解及经典例题

空间几何体的表面积和体积 一.课标要求: 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 二.命题走向 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。 由于本讲公式多反映在考题上,预测2009年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 三.要点精讲 1.多面体的面积和体积公式 长。 2.旋转体的面积和体积公式 12

下底面半径,R 表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm 2 ,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:? ??=++=++24)(420 )(2z y x zx yz xy )2()1( 由(2)2 得:x 2 +y 2 +z 2 +2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2 =16 即l 2 =16 所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。 图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN , ∴Rt △A 1NA ≌Rt △A 1MA,∴A 1M=A 1N , 从而OM=ON 。 ∴点O 在∠BAD 的平分线上。 (2)∵AM=AA 1cos 3 π =3×21=23 ∴AO=4 cos πAM =223 。 又在Rt △AOA 1中,A 1O 2 =AA 12 – AO 2 =9- 29=2 9,

空间几何体的表面积与体积

§1.3 空间几何体的表面积与体积 §1.3.1 柱体、锥体、台体的表面积与体积 一、教材分析 本节一开始的“思考”从学生熟悉的正方体和长方体的展开图入手,分析展开图与其表面积的关系,目 的有两个:其一,复习表面积的概念,即表面积是各个面的面积的和;其二,介绍求几何体表面积的方 法,把它们展成平面图形,利用平面图形求面积的方法,求立体图形的表面积. 接着,教科书安排了一个“探究”,要求学生类比正方体、长方体的表面积,讨论棱柱、棱锥、棱台的 表面积问题,并通过例1进一步加深学生的认识.教学中可以引导学生讨论得出:棱柱的展开图是由平行 四边形组成的平面图形,棱锥的展开图是由三角形组成的平面图形,棱台的展形图是由梯形组成的平面 图形.这样,求它们的表面积的问题就可转化为求平行四边形、三角形和梯形的面积问题. 教科书通过“思考”提出“如何根据圆柱、圆锥的几何结构特征,求它们的表面积?”的问题.教学中可 引导学生回忆圆柱、圆锥的形成过程及其几何特征,在此基础上得出圆柱的侧面可以展开成为一个矩形, 圆锥的侧面可以展开成为一个扇形的结论,随后的有关圆台表面积问题的“探究”,也可以按照这样的思路 进行教学.值得注意的是,圆柱、圆锥、圆台都有统一的表面积公式,得出这些公式的关键是要分析清楚 它们的底面半径、母线长与对应的侧面展开图中的边长之间的关系,教学中应当引导学生认真分析,在 分别学习了圆柱、圆锥、圆台的表面积公式后,可以引导学生用运动、变化的观点分析它们之间的关系. 由于圆柱可看成上下两底面全等的圆台;圆锥可看成上底面半径为零的圆台,因此圆柱、圆锥就可以看 成圆台的特例.这样,圆柱、圆锥的表面积公式就可以统一在圆台的表面积公式之下. 关于体积的教学.我们知道,几何体占有空间部分的大小,叫做几何体的体积.这里的“大小”没有比较 大小的含义,而是要用具体的“数”来定量的表示几何体占据了多大的空间,因此就产生了度量体积的问题.度量体积时应知道:①完全相同的几何体,它的体积相等; ②一 个几何体的体积等于它的各部分体积 的和.体积相等的两个几何体叫做等积体.相同的两个几何体一定是等积体,但两个等积体不一定相同.体积 公式的推导是建立在等体积概念之上的. 柱体和锥体的体积计算,是经常要解决的问题.虽然有关公式学生已有所了解,但进一步了解这些公 式的推导,有助于学生理解和掌握这些公式,为此,教科书安排了一个“探究”,要求学生思考一下棱锥与 等底等高的棱柱体积之间的关系.教学中,可以引导学生类比圆柱与圆锥之间的体积关系来得出结论. 与讨论表面积公式之间的关系类似,教科书在得出柱体、锥体、台体的体积公式后,安排了一个“思考”,目的是引导学生思考这些公式之间的关系,建立它们之间的联系.实际上,这几个公式之间的关系, 是由柱体、锥体和台体之间的关系决定的.这样,在台体的体积公式中,令S′=S,得柱体的体积公式;令S′=0,得锥体的体积公式. 值得注意的是在教学过程中,要重视发挥思考和探究等栏目的作用,培养学生的类比思维能力,引 导学生发现这些公式之间的关系,建立它们的联系.本节的重点应放在公式的应用上,防止出现:教师在 公式推导过程中“纠缠不止”,要留出“空白”,让学生自己去思考和解决问题.如果有条件,可以借助于信 息技术来展示几何体的展开图.对于空间想象能力较差的学生,可以通过制作实物模型,经过操作确认来 增强空间想象能力. 二、教学目标 1.知识与技能 (1)了解柱体、锥体与台体的表面积(不要求记忆公式). (2)能运用公式求解柱体、锥体和台体的全面积. (3)培养学生空间想象能力和思维能力. 2.过程与方法 让学生经历几何体的侧面展开过程,感知几何体的形状,培养转化化归能力. 3.情感、态度与价值观 通过学习,使学生感受到几面体表面积的求解过程,激发学生探索创新的意识,增强学习的积极性.

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 1、圆柱体: 表面积:2πRr+2πRh 体积:πR2h (R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体: 表面积:πR2+πR[(h2+R2)的平方根]

体积:πR2h/3 (r为圆锥体低圆半径,h为其高, 3、正方体 a-边长,S=6a2 ,V=a3 4、长方体 a-长,b-宽,c-高S=2(ab+ac+bc) V=abc 5、棱柱 S-底面积h-高V=Sh 6、棱锥 S-底面积h-高V=Sh/3 7、棱台 S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3 8、拟柱体 S1-上底面积,S2-下底面积,S0-中截面积 h-高,V=h(S1+S2+4S0)/6 9、圆柱 r-底半径,h-高,C—底面周长 S底—底面积,S侧—侧面积,S表—表面积C=2πr S底=πr2,S侧=Ch ,S表=Ch+2S底,V=S底h=πr2h 10、空心圆柱 R-外圆半径,r-圆半径h-高V=πh(R^2-r^2) 11、直圆锥 r-底半径h-高V=πr^2h/3

12、圆台 r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3 13、球 r-半径d-直径V=4/3πr^3=πd^3/6 14、球缺 h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6 = πh2(3r-h)/3 15、球台 r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6 16、圆环体 R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4 17、桶状体 D-桶腹直径d-桶底直径h-桶高 V=πh(2D2+d2)/12 ,(母线是圆弧形,圆心是桶的中心) V=πh(2D2+Dd+3d2/4)/15 (母线是抛物线形) 1.直线在平面的判定 (1)利用公理1:一直线上不重合的两点在平面,则这条直线在平面. (2)若两个平面互相垂直,则经过第一个平面的一点垂直于第二个平面的直线在第一个平面,即若α⊥β,A∈α,AB⊥β,则ABα. (3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面,即若A∈a,a⊥b,A∈α,b⊥α,则aα. (4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面,即若Pα,P∈β,β∥α,P∈a,a∥α,则aβ.

第六讲简单几何体的表面积与体积的计算

第六讲简单几何体的表面积与体积的计算第六讲简单几何体的表面积与体积的计算 一、四种常见几何体的平面展开图 1.正方体 沿正方体的某些棱将正方体剪开铺平,就可以得到它的平面展开图,这一展开图是由六个全等的正方形组成的,见图6—1。 图6─l只是正方体平面展开图的一种画法,还有别的画法(从略)。 2.长方体 沿长方体的某些棱将长方体剪开铺平,就可以得到它的平面展开图。这一展开图是六个两两彼此全等的长方形组成的,见图6—2。图6—2只是长方体平面展开图的一种画法,还有别的画法(从略)。 3.(直)圆柱体沿圆柱的一条母线和侧面与上、下底面

的交线将圆柱剪开铺平,就得到圆柱体的平面展开图。它由 一个长方形和两个全等的圆组成,这个长方形的长是圆柱底 面圆的周长,宽是圆柱体的高。这个长方形又叫圆柱的侧面 展开图。图6—3就是圆柱的平面展开图。 4.(直)圆锥体 沿圆锥体的一条母线和侧面与下底面圆的交线将圆锥 体剪开铺平,就得到圆锥的平面展开图。它是由一个半径为 圆锥体的母线长,弧长等于圆锥体底面圆的周长的扇形和一 个圆组成的,这个扇形又叫圆锥的侧面展开图。具体图形见 图6—4。二、四种常见几何体表面积与体积公式 1.长方体 长方体的表面积=2×(a×b+b×c+c×a) 长方体的体积=a×b×c(这里a、b、c分别表示长方体的长、宽、高)。 2.正方体 正方体的表面积=6×a2 正方体的体积=a3(这里a为正方体的棱长)。

3.圆柱体 圆柱体的侧面积=2πRh 圆柱体的全面积=2πRh+2πR2=2πR(h+R) 圆柱体的体积=πR2h(这里R表示圆柱体底面圆的半径,h表示圆柱的高)。 4.圆锥体 圆锥体的侧面积=πRl 圆锥体的全面积=πRl+πR2 母线长与高)。 三、例题选讲 例1 图6—5中的几何体是一个正方体,图6—6是这个正方体的一个平面展开图,图6—7(a)、(b)、(c)也是这个正方体的平面展开图,但每一展开图上都有四个面上的图案 没画出来,请你给补上。 分析与解:从图6—5和图6—6中可知:与;与;与互相

相关文档
最新文档