基于SOLIDWORKS的齿轮泵设计

基于SOLIDWORKS的齿轮泵设计
基于SOLIDWORKS的齿轮泵设计

目录

1 引言 (1)

2 齿轮泵的设计 (1)

2.1 齿轮泵概述 (1)

2.2齿轮泵设计要求 (1)

2.2.1 齿轮泵工作参数要求 (1)

2.2.2 齿轮几何参数的要求 (3)

2.3 齿轮泵主要部件参数的确定 (4)

2.4 Solidworks建模 (5)

2.4.1 齿轮建模 (5)

2.4.2 箱体建模 (6)

2.4.3 Solidworks建模基本原则 (7)

2.4.4 装配体初步建模与后盖建模 (7)

2.4.5 轴、短轴的建模及后盖和箱体模型的编辑 (8)

2.4.6 键的建模及轴及箱体模型的编辑 (9)

2.4.7 连接件的选择和螺纹生成 (10)

2.4.8 密封件的选择...................................................... 错误!未定义书签。

3 齿轮的校核 (15)

4 齿轮泵的闭死容积和卸荷槽 (18)

4.1 闭死容积 (18)

4.2 卸荷槽 (19)

5 结束语 (20)

6 致谢 (20)

7 参考文献 (20)

1

1 引言

随着信息技术在各领域的迅速渗透,CAD/CAM/CAE 技术已经得到了广泛的应用,从根本上改变了传统的设计、生产、组织模式,对推动现有企业的技术改造、带动整个产业结构的变革、发展新技术、促进经济增长都具有十分重要的作用。

Solidworks 是一套基于Windows 的CAD/CAM/CAE 桌面集成系统,是由美国Solidworks 公司在总结和继承了大型机械CAD 软件的基础上,在Windows 环境下实现的第一个机械三维CAD 软件,于1995年11月研制成功。Solidworks 市场份额增长最快、技术发展最快、市场前景最好、性能价格比最优的软件。随着Solidworks 版本的不断提高、性能不断提高,Solidworks 已经能满足一般企业的一般需求了。

动画演示形象、直观,能表达文字或者叙述不易讲解清楚的复杂产品的内部结构,模拟产品的工作情况,达到与非专业人士交流设计思想的目的。建立运动机构模型,进行机构的干涉分析,跟踪零件的运动轨迹,分析机构中零件的速度、加速度、作用力、反作用力和力矩等,并用动画、图形、表格等多种形式输出结果,其分析结果可指导修改零件的结构设计或调整零件的材料。设计的更改可以反映到装配模型中,再重新进行分析,一旦确定优化方案,设计更改就可直接反映到装配模型中。此外还可以将零部件在复杂运动情况下的复杂载荷情况直接输出到主流有限元分析软件中以作出正确的强度和结构分析[5]。

2 齿轮泵的设计

2.1 齿轮泵概述

齿轮泵是靠相互啮合旋转的一对齿轮输送液体,分为外啮合齿轮泵和内啮合齿轮泵。泵工作腔由泵体、泵盖及齿轮的各齿槽构成。由齿的啮合线将泵吸入腔和排出腔分开。随着齿轮的转动,齿间的液体被带至排出腔,液体受压排出。

齿轮泵适用于输送不含固体颗粒的液体,可作润滑油泵、重油泵、液压泵和输液泵。所输送液体的粘度范围为s mm /10126 ,齿轮泵结构简单,维修方便[8] 2.2齿轮泵设计要求 2.2.1 齿轮泵工作参数要求 (1)流量

外啮合齿轮泵在没有泄露损失的情况下,每一转所排出的液体体积叫做泵的理论排量,以q t 表示。外啮合齿轮泵,一般两齿轮的齿数相同,所以

2 ()r ml b t a D b q b

a t /10tan 313123

22222-???

? ??

---=

βπ (1) 式中: b ——齿宽

D a ——齿顶圆直径 a ——齿轮中心距 t a ——基圆节距

β——基圆柱面上的螺旋角

不修正的标准直齿圆柱齿轮的齿轮泵的理论排量:

()r ml z bm q t /10cos 121123222

-???

?

??-+=αππ (2)

式中:m ——齿轮模数 z ——齿轮齿数 а——齿轮压力角 理论流量:

()m i n /10

3

l n q Q T T -?= (3)

式中n ——泵转速,单位 (r/min ) 实际流量:

()

m i n /l Q Q v T η= (4) 式中v η——泵的容积效率,一般取0.750.9,小流量泵取小值。 (2)转速

齿轮泵的转速不宜过高,由于离心力的作用,转速高液体不能充满整个齿间,以至流量减小并引起气蚀,增大噪声和磨损,对高粘性液体的输送影响更大,转速可按表1选取。 (3)效率

a

v P PQ

=

η (5) 表1 流体粘度与齿顶圆线速度

液体粘度()

s mm /2ν

12 45 76 152 300 520 760 线速度()s m u /max

5

4

3.7

3

2.2

1.6

1.25

式中:P ——泵进出口压力差()a mP

Q ——流量()s l /

3

a P ——轴功率()kw

齿轮泵的能量损失主要是机械损失和容积损失,水力损失很小,可忽略不计。容积损失主要式通过齿轮端面与侧板之间的轴向间隙,齿顶与泵体内孔之间的径向间隙和齿侧接触线的泄露损失,其中轴向间隙泄露约占总泄露量的75%―80%。机械效率9.08.0-=m η,大流量泵m η低。 2.2.2 齿轮几何参数的要求

(1) 齿数z 、模数m 和齿宽

齿数多,泵的外形尺寸大,但压力和流量脉动小。中低压齿轮泵对压力和流量脉动要求较严,通常取z=1225,高压泵为减小外形尺寸,一般取z=614,对流量脉动要求不高的粘性液体输送泵可取z=68。

中低压齿轮模数按表2选取。对工作压力大于10mP a 的高压泵,应考虑齿轮强度,需适当增大模数。

齿宽按表3确定。

表2 流量与模数

流量Q ()min /l 模数m ()mm

410

1.52 >1032

2.53 >3263

3.54 >63125

4.55

(4) 齿轮修正

齿轮泵采用压力角 20=α标准渐开线齿轮,齿数少于17时均有根切现象产生,使齿轮强度减弱,工作情况变坏,须作齿轮修正,修正方法与通常的齿轮修正方法略有不同,两齿轮的刀具移距取正值(即离开中心),修正后节圆处的齿侧间隙为0.08m,刀具切入齿轮的深度即齿高h=2.3m(ξ0.5)m ,修正齿轮的主要数据见表4。

表3 工作压力与齿宽

工作压力P ()a mP 齿宽b ()mm

<2 ()106-m

≥210 ()84-m >10

()63-m

4

表4 齿轮修正几何参数

几何参数

计算公式

齿数 z

实际中心距 ()1+=z m a

节圆直径 a D j =' 顶圆直径 ()3+=z m D a

根圆直径 ()m z D f 6.22-+=ξ 基圆直径 mz D b 9397.0= 基圆节距 m t b 9521.2=

啮合角 1

9397

.0arccos +='z z

α 移距系数 ()α

ααξtan 204.0--'=inv inv z

重叠系数

()()9521

.2sin 1cos 322α

αε+--+=

z z z z

齿顶厚度

()??

?

??-'++-+=c c inv inv z z m z s ναπ104.023

3

9397.0arccos

+=z z

inv c ν 2.3 齿轮泵主要部件参数的确定

本设计将设计一个直齿圆柱中低压齿轮泵由以上要求,综合考虑现初步确定一对啮合的齿轮齿数z=20,模数m=2.5,齿宽定为b=20,电机转速2000r/min2500r/min ,工作压力P=10a mP 。以上参数可能由于不符合(1)中要求。现回代以验证:

由公式(2),(3),(4):

())/(915.15/10cos 121123222

r ml r ml z bm q t =???

? ??

-+=-αππ

m i n )

/(8.39min)/(83.31l l Q T -=

5

min)/(84.29min)/(87.2375.0l l Q Q Q T T -=?==υη

流量、排量和模数的关系符合表2的要求。 齿轮分度圆直径

)(502520mm D =?=

由表4可得:齿顶圆直径

)(5.57)3(mm z m D a =+=

故顶圆点的线速度

)/(02.660/22

max s m n D u a

=??=

π 要想通过表1确定max u 是否符合要求,就要先确定液压油的型号。

在液压泵、液压控制阀、液压缸(液压马达)以及油管等连接起来的密封液压系统中,能量的传递是通过液压油在流动过程中压力、流量变化来实现的。国内外的统计资料表明,液压系统的故障70%85%是由于液压油方面的原因引起的。在液压系统中,液压油的主要作用是:作为对系统中的能量进行控制、转换和传递的工作介质。此外,液压油还具有其他一些重要作用:润滑液压元件、减少机器的摩擦和磨损、防锈、传热、冲洗粉末等作用。

一般情况下,液压设备选用液压油时,应从工作压力、温度、工作环境 液压系统及元件的结构和材质、经济性等方面综合考虑。

对于本设计中的液压油的选定:

依据以上确定的工作参数,可以看出比较符合市场上的CBG1016液压泵,只不过CBG1016液压泵的工作压力为16a mP ,高于设计的工作压力,所以选择CBG1016的液压油可以很好满足工作要求。依据手册可以确定液压油的型号:

HM46,推荐黏度20s mm s mm /40/22-,适当减小黏度值可以大致符合表1对于齿顶圆最大线速度的要求。

齿宽的验证可以直接从表中看出符合要求。 2.4 Solidworks 建模 2.4.1 齿轮建模

首先安装Toolboxbrowser 插件。从工具菜单插件中选择Toolboxbrowser 选项,单击确定完成。通过该插件可以方便的进行参数化设计,对于一些标准件或参数标准化的零件无需重复大量的工作。下面用此插件进行齿轮的设计。 打开界面右侧的Toolboxbrowser,首先选择标准,在每个标准里面都有一系列标准件。由于软件版本的实际限制,标准系列里面没有GB ,现选择与GB 相近,且

6 通用性强的ISO 标准。打开此标准,选择传动零件里的齿轮传动,从列表里右键单击直尺圆柱齿轮,选择生成零件,弹出对话框,从此对话框里设定参数便可生成所设计的齿轮。见图1和图2。

图1 齿轮参数化设计界面

图2 齿轮

两次保存齿轮,并分别命名“齿轮_1”、“齿轮_2”。 2.4.2 箱体建模

第二步是箱体的设计,参照齿轮的尺寸,并按照通常齿轮泵箱体的形状设计如下:草图如图所视,然后建立“拉伸”特征,这里用了选择拉伸的方法,选择一定的轮廓进行拉伸,并且在不同的轮廓处选择不同的拉伸高度。

这样可以用一个

7

草图建立不同的拉伸特征组合起来。在后面上绘制草图,并建立拉伸切除特征,深度尺寸为齿轮厚度。 如图3所示。

图3 箱体

2.4.3 Solidworks 建模基本原则

基于三维设计的Solidworks 采用全相关技术,并在设计思路上支持自下而上和自上而下的方式。传统的设计方法往往从零件开始设计,画零件图,然后按尺寸把零件图画入装配体图,若设计零件较多,则尺寸数据太多容易出错。当零件在装配体中不合理时,需要返回更改,工作量很大,且容易有疏漏。基于Solidworks 的设计可以这样进行:

首先大致确定装配体形状和其中的主要关键零件,初步设计出表现装配体形状的基体零件,比如箱体,基座等零件,然后初步设计出关键零件,如本设计中的齿轮。

运用Solidworks 的虚拟装配功能把以上初步设计的零件装配起来。然后在装配体中确定剩余零件的粗略尺寸和数量。

在新建的零件图中作出零件模型,导入装配体中,在装配体中编辑零件尺寸和特征,使各部分配合完善,然后通过干涉检查确认各尺寸的配合是否干涉。 以上操作均可视化,非常直观方便,省去了头脑中建模和图纸中表达这一间接过程,直观准确且不易出错。 2.4.4 装配体初步建模与后盖建模

按照以上思路,新建一个装配体,命名为“齿轮泵装配体”

,把箱体设为固定

零件,然后把齿轮装入装配体。在这之后设计出齿轮泵体的后盖,新建一个零件草图,命名为“后盖”,并保存。建立一个较大的拉伸形成的矩形板并保存。把后盖插入装配体中,并建立平行配合。

在装配体中编辑“后盖”草图,选定箱体相平行面上的轮廓,单击“转换实体引用”按钮即可在草图上绘制和箱体配合的轮廓相同的草图。退出草图,然后从新编辑拉伸的轮廓就可生成需要的形状的轮廓。然后在后盖的另一面绘制草图并拉伸特征,最终完成零件的建模。单击“编辑零件”按钮退出零件编辑,并且注意及时保存,弹出的对话框提示确认装配体中相关联的零件已修改,见图4。

图4 后盖

图4 后盖

这里体现了全相关设计的优点和特征,在设计中任一处关于零件或装配体的修改都将保存在相应的零件或装配体中,无需逐个修改,这保证了准确性和快捷性,省去了反复修改的枯燥和易出现的疏漏[3]。

2.4.5 轴、短轴的建模及后盖和箱体模型的编辑

新建一个零件,并命名为“轴”。其径向尺寸,按参数化设计齿轮时设定的毂直径作为设计参考尺寸。轴向各部分轴向尺寸不必精确,轴插入装配体后,调整其余零件的透明度后观察轴的装配状态,然后在装配体中编辑轴的各部分轴向长度即可。另外切出退刀槽以利于润滑和装配。此轴结构较简单,不用作出轴肩。因为齿轮泵中齿轮与箱体内壁间隙为保证泵能正常吸油和排油,间距值很小,由装配误差来保证,故轴向移动靠箱体内壁即可约束。另外轴的径向力也作用在箱体和后盖上,所以箱体和后盖内壁需在加工时作一些特殊处理,保证硬度、强度和表面粗糙度,必要时加上轴瓦以使与轴接触处有滑动轴承的形式。轴的零件模

8

型见图5。

图5 主动齿轮的轴

轴的尺寸完全确定下来后在装配体中编辑后盖零件,在其中建立基准面,位臵由轴插入后盖的尺寸确定。在此基准面上绘制草图并建立“拉伸—切除”特征切出内孔以容纳轴。同样的做法,根据轴的径向尺寸确定箱体前面凸台上容纳轴的通孔尺寸。效果见图3。

建立一个新的零件,并命名为“短轴”,此轴作为从动齿轮的轴。把其设计为一个没有阶梯的光轴,这是为了加工方便,其直径定为25。拉伸特征的特征类型选为两侧对称,拉伸长度由后盖内孔深度尺寸作为参考。零件模型见图6。

2.4.6 键的建模及轴及箱体模型的编辑

“轴的模型确定之后确定键的选用。此处选择键7

8 GB/T 10962003。

按GB建立键的模型,并分别保存两次分别命名为“键_1”和“键_2”键选定之后在轴上切出键槽,首先确定基准面位臵,然后建立“拉伸—切除”特征,选择“完全贯穿”的切除条件,特征表现在图5和图6中。键的零件模型见图7。

新建一个装配体,命名为“装配体3”,把轴和键装配在一起,此举无建模意义,在于验证:在装配体中可以插入子装配体。

至此,齿轮泵的主要设计部分基本完成,由于箱体是铸件,故需要有铸件方面的要求。模具工具栏提供了常用的模具分析工具。最常用的有“拔模分析”和“拔模”工具。确定中性面后利用“拔模分析”工具确定需要拔模的面,然后利

用“拔模”工具在相应面确定拔模角度。

9

SW画齿轮方法简介2

S O L I D W O R K 精确的绘制齿轮的方法 有有许许多多人人还还不不知知道道怎怎么么运运用用S S O O L L I I D D W W O O R R K K 去去绘绘制制比比较较逼逼真真的的齿齿轮轮。。其其实实S S W W 绘绘齿齿轮轮是是比比较较简简单单的的了了。。在在机机械械制制图图中中我我们们都都学学过过怎怎么么用用手手工工去去绘绘制制齿齿轮轮的的方方法法,,在在S S W W 软软件件里里也也是是一一样样的的运运用用;;也也许许多多人人都都已已忘忘掉掉手手工工是是怎怎么么绘绘制制齿齿轮轮的的了了,,没没有有关关系系了了现现在在我我带带大大家家回回顾顾一一次次吧吧!! 第一步:要是设计齿轮的话必须掌握齿轮的相关知识(查看相关书籍),下面是齿轮的一些常数关系式:

说明的就是:COSθ,这里的θ就是压力角、我国规定的标准确性压力角θ=20o。 第二步:根据公式就可以自己设计齿轮了,我们假设:模数m =1.5、齿数Z =40、COSθ =0.94、那么分度圆的直径D =60、齿顶圆的直径Da =63、齿根圆的直径Df =56.25、 基圆的直径J =56.4、在SW中绘草图如下:

图中说明一下:这图中的基圆?56.4和齿根圆?56.25尺寸比较接近,在图中不易看出、请放大就能看清楚,为了区分基圆为构造线及虑线: 左图绘法如下:(1)连接OA并取中心点O1为圆心,O1A为半径作弧交于基圆于 B点。

(2)以B 点为圆心,BA为半径作弧,在顶圆与基圆之间得到CD 弧。即为所求齿形的一部分; (3)在基圆与根圆之间,没有什么要求、只要作径向线就可以了;并以r=0.2m (m为模数)的小圆弧与根圆光滑相连即可得到半边齿形。 注意点:做到这一步时,大家有没有发现到r=0.2m不能被执行,我们要在这里用剪切命令把基圆剪掉还要把根圆也要剪掉一部分;这时我们以然不能圆弧,我们只有不作基圆与根圆的径向(如果作了再把它删除掉)。直接弧CD与根圆作r=0.2m的圆角就可以了。大家知道为什么会出现这种现象呢!这里面可有很深的机械专业知识在里面哦!!大家只要深入的研究下去就会发现模数m、齿数Z、基圆J以及根圆的关系。设计可不是乱来的哦!!!要是不想自己研究一下,那就在网上找问答吧! (4)画好了齿形的 一半,另一半用镜像命 令可以了;先要作好齿 距的弧线360o/40等 于9o再取弧度的四分 之一就是另一半弧了 (见左图),再把一些不要的线全删掉。

齿轮油泵课程设计

课程设计说明书 课程名称《工程图学综合实践》 设计名称齿轮油泵拆装测绘 设计时间 2011年10-12月 系别机电工程系 专业机械设计制造及自动化 班级 14班 姓名陈振明 指导教师邓宝清 2011 年 12 月12 日

目录 一、任务 (3) (一)本次课程设计内容 (3) (二)齿轮油泵简介 (3) (三)实际分配任务 (4) 二、进度表 (5) 三、课程设计过程 (5) (一)拆装与测绘 (5) (二)建模 (6) (三)装配与爆炸 (10) (四)绘制零件图 (13) (五)绘制装配图 (13) 四、本次课程设计的感受 (13) 附表 (14) 附图 (155) 主要参考文献 (21)

一、任务 (一)本次课程设计内容:齿轮油泵的拆装、测绘、建模及工程图绘制。 (二)齿轮油泵简介 1.齿轮油泵的工作原理 齿轮泵是用两个齿轮互啮转动来工作,对介质要求不高。一般的压力在6Mpa以下,流量较大。齿轮油泵在泵体中装有一对回转齿轮,一个主动,一个被动,依靠两齿轮的相互啮合,把泵内的整个工作腔分成两个独立的部分。右边为吸入腔,左边为排出腔,齿轮油泵在运转时主动齿轮带动被动齿轮旋转,当齿轮从啮合到脱开时在吸入侧就形成局部真空,液体被吸入。被吸入的液体充满齿轮的各个齿谷而带到排出侧,齿轮进入啮合时液体被挤出,形成高压液体并经泵排出口排出泵外。 图1 工作原理 齿轮油泵在正常工作时,具有一定的油压范围,为使工作油压不超过该额定压力,一般在泵盖上都有限压阀装置,它由螺塞、小垫片、弹簧、钢珠定位圈和钢珠组成。当油压超过额定压力时,高油压就克服弹簧压力,将钢珠阀门顶开,使润滑油自压油腔流回吸油腔,以保证整个润滑系统安全工作。其他零件,如填料、垫片、小垫片等起密封防漏作用。垫片的厚度大小不同,可以调节齿轮两侧面间隙的大小。 2.齿轮油泵的说明 本课程设计中所用到的齿轮油泵型号为CB-B2.5,是一种无侧板、三片式结构的外啮合低压齿轮油泵,它没有径向平衡结构和轴向间隙补偿装置,依靠间隙密封原理工作。该产品具有体积小、重量轻、结构简单,工作可靠、价格低廉、维护方便等优点,主要应用于各种机床液压系统及负载较小的液压传动系统中。

液压泵齿轮泵的工作原理

液压泵齿轮泵的工作原理: 1.齿轮泵是依靠泵缸与啮合齿轮间所形成的工作容积变化和移动来输送液体或使之增压的回转泵。 外啮合双齿轮泵的结构。一对相互啮合的齿轮和泵缸把吸入腔和排出腔隔开。齿轮转动时,吸入腔侧轮齿相互脱开处的齿间容积逐渐增大,压力降低,液体在压差作用下进入齿间。随着齿轮的转动,一个个齿间的液体被带至排出腔。这时排出腔侧轮齿啮合处的齿间容积逐渐缩小,而将液体排出。齿轮泵适用于输送不含固体颗粒、无腐蚀性、粘度范围较大的润滑性液体。 泵的流量可至300米3/时,压力可达3×107帕。它通常用作液压泵和输送各类油品。齿轮泵结构简单紧凑,制造容易,维护方便,有自吸能力,但流量、压力脉动较大且噪声大。齿轮泵必须配带安全阀,以防止由于某种原因如排出管堵塞使泵的出口压力超过容许值而损坏泵或原动机。 高真空齿轮泵工作原理:高真空齿轮泵依靠主从动齿轮的相互啮合把泵体分成吸油腔和压油腔。吸油腔由于相互啮合的轮齿逐渐脱开,密封工作容积逐渐增大,形成部分真空,因此油箱中的油液在外界大气压力的作用下,经吸油管进入吸油腔,将齿间槽充满,并随着齿轮旋转,把油液带到左侧压油腔内。在压油区一侧,由于轮齿在这里逐渐进入啮合,密封工作腔容积不断减小,油液便被挤出去,从压油腔输送到压力管路中去。 电动机运转时,推进装置随着主轴一起高速运转本推进装置相似于一轴流泵,其排空(抽真空)的速率远远大于齿轮啮合排空的速率,随着推进装置的推进作用,齿轮啮合的反泄露被阻滞,其形成的极限真空自然得到了大大的提高,处于较低位置的油液则被迅速吸入泵腔内,然后经排油腔被压入出口排出。 当油路中的阻力(压力)超过所设定的安全压力时,安全阀就启动,使排油腔的油回到吸油腔,从而保持压力不再上升,安全阀起过载保护作用 外齿轮泵有两根相同尺寸的啮合齿轮轴。驱动轴连接电机或减速机(通过弹性联轴器)并带动另一根轴。在重载型工业齿轮泵内,齿轮通常与轴为整体(一个部件),轴颈的公差很小。外齿轮泵的运行原理很简单。液体进入泵吸入端,被未啮合的齿间空穴吸入,然后在齿间空穴内被带动,沿齿轮轴外缘到达出口端。重新啮合的齿将液体推出空穴进入背压处。有三种常用的齿轮形式:直齿、斜齿和人字齿。这三种形式各有利弊,CB—B齿轮泵的结构,有不同的应用。直齿是最简单的形式,在高压工况下为最优应用,因为没有轴向推力,且输送效率较高。斜齿在输送过程中的脉动最小,且在较高速度运行时更加安静,不锈钢保温泵,因为齿的啮合是渐进式的。但是,由于轴向推力的作用,轴承材质的选用可能会造成进出口压差有限、处理粘度较低。因为轴向力会将齿轮推向轴承端面而摩擦,所以只有选用硬度较高的轴承材质或在其端面作特殊设计,才能应对这种轴向推力。为使齿轮泵的承压能力最大化,这些配合部件之间的间隙必须愈小愈好以

合工大-solidworks课程设计说明书

课程设计 设计题目:圆锥-圆柱齿轮减速器姓名: 学号: 专业班级: 指导老师: 日期:

摘要 机械CAD/CAM是一门理论性与实践性都较强的综合性专业课,涉及的知识面广。在学习过程中,要综合运用基础理论,通过实训等环节来加深对课程的理解,获得机械CAD/CAM技术的基本理论和基础知识。本次课程设计旨在让学生掌握solidworks软件的基本操作,并能灵活使用此软件进行机械零件的设计,培养学生的创新意识、工程意识和动手能力。 Abstract Mechanical CAD/CAM is a both theoretical and practical strong comprehensive professional course, involving broad scope. In the process of learning, to the integrated use of basic theory, through training, to deepen the understanding of curriculum, mechanical CAD/CAM technology, the basic theory and basic knowledge. Curriculum design is aimed at students to master the basic operation of solidworks software, and can be flexible to use this software for the design of mechanical parts, cultivate students' innovation consciousness, engineering consciousness and practice ability.

CB-B16型外啮合齿轮泵齿轮副参数设计及其绘制(唐柑培)详解

机械原理综合实训课程 设计计算说明书 设计题目: 外啮合齿轮泵的设计 班级: 2013 级材料一班班 学号:201310112113 学生: 唐柑培 指导教师: 李玉龙 起止日期: 2015 年 5 月11 日至 2015 年5月22 日

成都学院(成都大学) 机械工程学院 【机械原理】综合实训课程任务书

目录 一、外啮合齿轮泵工作原理············ 二、电机型号以及减速装置的选型········ 三、齿轮副参数的确定·············· 四、齿轮绘制················· 五、设计小结················· 六、参考文献················

一、外啮合齿轮泵工作原理 外啮合齿轮泵简介 图 1 是外啮合齿轮泵的工作原理图。由图可见,这种泵的壳体内装有一对外啮合齿轮。由于齿轮端面与壳体端盖之间的缝隙很小,齿轮齿顶与壳体内表面的间隙也很小,因此可以看成将齿轮泵壳体内分隔成左、右两个密封容腔。当齿轮按图示方向旋转时,右侧的齿轮逐渐脱离啮合,露出齿间。因此这一侧的密封容腔的体积逐渐增大,形成局部真空,油箱中的油液在大气压力的作用下经泵的吸油口进入这个腔体,因此这个容腔称为吸油腔。随着齿轮的转动,每个齿间中的油液从右侧被带到左侧。在左侧的密封容腔中,轮齿逐渐进入啮合,使左侧密封容腔的体积逐渐减小,把齿间的油液从压油口挤压输出的容腔称为压油腔。当齿轮泵不断地旋转时,齿轮泵的吸、压油口不断地吸油和压油,实现了向液压系统输送油液的过程。在齿轮泵中,吸油区和压油区由相互啮合的轮齿和泵体分隔开来,因此没有单独的配油机构。 齿轮泵是容积式回转泵的一种,其工作原理是:齿轮泵具有一对互相啮合的齿轮,齿轮(主动轮)固定在主动轴上,齿轮泵的轴一端伸出壳外由原动机驱动,

Solidworks机械设计说明书

井冈山大学 Soildworks机械设计 机电工程学院 班级:11机制本二班 学号:110612029 姓名:罗斌 指导老师:康志成

目录 一、设计内容 (2) 二、齿轮传动总体设计 (4) 三、各齿轮的设计 (4) 1、结构尺寸设计 (4) 2、材料的选择,结构形式设计 (4) 3、3D软件设计零件 (6) 四、轴的设计 (7) 五、机架的设计 (8) 六、零件的装配 (9) 七、设计小结 (10) 八、参考资料 (10)

一、设计内容 1. 已知条件: 电机功率4kw ,小带轮转速n 1=960r/min, 传动比i=3.5,传动比允许误差≤±5%;轻度冲击;两班工作制。 2. 设计内容和要求。 1) V 带传动的设计计算。 2) 轴径设计。 取45号钢时,按下式估算: dmin=11003.1/3?≥n p ,并圆整; 3) V 带轮的结构设计。 选择带轮的材料、结构形式、计算基本结构尺寸; 4) 用3D 软件设计零件及装配图,并标注主要的特征尺寸; 5) 生成大带轮零件图(工程图),并标注尺寸、粗糙度等。 二、 V 带传动总体设计 1)确定计算功率。 由表13-8得工作情况系数K α=1.2,故 Pc=K α=1.2×4=4.8kw 2)选择V 带的带型。 根据带轮的功率Pc=4.8、小带轮的转速n 1=960r/min ,由图13-15查得此坐标位于A 型与B 型交界处,本次试验选用B 型。 3)求大、小带轮轮基准直径d ?、d ? 由表13-9,d ?应不小于125,现取d ?=140mm ,由式(13-9)得 d ?=(n ?/n ?) ×d ? (1-ε)=3.5×140×(1-0.02)=480.2

齿轮油泵设计说明书

绪论 一、课程设计容 根据齿轮油泵的工作原理和零件图,看懂齿轮油泵的全部零件图,并将标准件按其规定标记查出有关尺寸。应用AutoCAD软件绘制所有正式零件图,装配图(A3图纸幅面1),用UG绘制所有正式零件的三维图形。 二、齿轮油泵工作原理 齿轮油泵示意图 工作原理部分:齿轮油泵是依靠一对齿轮的传动把油升压的一种装配,泵体12有一对齿轮,轴齿轮15是主动轮,轴齿轮16是被动轮,如下图所示。动力从主动轮输入,从而带动被动轮一起旋转。转动时齿轮啮合区的左方形成局部真空,压力降低将油吸入泵中,齿轮继续转动,吸入的油沿着泵体壁被输送到啮合处的右方,压力升高,从而把高压油输往需要润滑的部位。 防渗漏:为使油泵不漏油,泵体和泵盖结合处有密封垫片13(垫片形状与泵体、泵盖结合面相同),主动轴齿轮伸出的一端处填料压盖防漏装置,由填料10、填料压盖9、

螺栓组(件18、件8)组成。 连接与定位:泵体与泵盖之间用螺钉18连接,为保证相对位置的准确,用定位销11定位。 齿轮油泵工作原理 拆装顺序:泵体---主动轴和被动轴---垫片、泵体—定位销—螺钉 ---填料---压盖 三、齿轮油泵零件之间的公差配合 1. 齿轮端面与泵体、泵盖之间为32K6; 2. 齿顶圆与泵体孔为Φ48H7/d7; 3. 主动轴齿轮、被动轴齿轮的两支承轴与泵体、泵盖下轴孔为Φ16H7/h6; 4. 填料压盖与泵体孔径为Φ32H11/d11。 四、齿轮油泵的其它技术要求 1. 装配后应当转动灵活,无卡阻现象; 2. 装配后未加工的外表面涂绿色。

第一章 二维零件图

第一章绘制三维零件图 第一节、泵盖 齿轮油泵泵盖如图所示。 具体建模步骤如下: 图 1-1 泵盖 一、整体建模 1、打开UG,新建模型。在菜单栏中选择“插入”\“设计特征”\“长方体”命令。系统弹出“长方体”对话框。如图1-2a所示。 2、在“类型”下拉表框中选择“两点和高度”选项,单击按钮弹出点对话框设置两点位置,相对于wcs坐标系第一点位置为(42,21,0)、第二点为(-42、-21、0),在“尺寸”选项中输入高度为10mm。点击确定建立一个长84mm、宽42mm、高10mm的长方体,完成如图1-2b所示

几何体设计说明书

几何体设计的说明书 目录 第一章主体模型的设计 第二章球铰链的设计 第三章杆的设计 第四章零件图的装配 第一章主体模型的设计

1打开SOLIDWORKS,新建里面选择零件图。点击前视基准面,选择前视基准 面。 ?显示发生更改,前视基准面对着您。 ?草图工具栏命令出现在 CommandManager 中。 ?此时在前视基准面上打开一张草图。 ?单击矩形(草图工具栏)。 2 若想开始矩形绘制,在草图原点的下方和左侧单击。 3 移动指针。注意指针现在显示矩形的当前尺寸。 4 若想完成矩形绘制,在草图原点的上面和左侧单击。您不必绘制精确尺寸。 5 释放矩形工具。 6.点击刚画成的草图,使边长为100. 7.点击退出草图。

8.选择拉伸,从(F)里选择草图基准面,方向一选择两侧对称,距离选择 100。点击确认,就会完成矩形的绘制。 9.以矩形的三个顶点建基准面1,点击正视于,然后选择草图绘制,绘制三 条对角线组成的三角形。退出草图,点击特征菜单里的拉伸切除按钮。从10 从(F)里选择草图基准面,方向一为给定深度,距离选择 100. 10.同理可以切除另一个面,在插入里选择基准轴,以刚切除的图形中的顶 点和底面见基准轴1.

11.点击特征里的圆周正列按钮。旋转参数选择基准轴1,角度为360﹒实 例数为3,要正列的特征选择阵列2.完成如右图。 12.选择建基准面,参考实体选择底面1和底边1,角度选择139.6235.建 基准面3.然后再建一个垂直于基准轴并且过顶点的基准面4.

13.在基准面3上绘制一个底边为棱锥底边,高为30的等边三角形。退出 草图。选择特征里面的放样按钮,轮廓选择草图5和棱锥顶点1。点击确认,完成放样2. 14.选择圆周正列按钮,旋转参数为基准轴1,角度为360,实例数为3,正 列的特征选择放样2.完成如下图所示图形。 15.以顶点1底边终点2,底边所对的顶点3建基准面14,在基准面14上 过顶点3做一条与棱边夹角为72.64.的辅助线1。 16.建基准面15,选择垂直于曲线,选择里选择线1和顶点3.,然后在基 准面15上绘制一个圆心为顶点3,半径为6的圆,和一条直径。点击草图绘制里面的圆命令。绘制出圆,然后点击直线命令绘制出直径。选择剪切命令,选择剪切到最近端,剪切掉半个圆,退出草图。

solidworks齿轮工程图画法

1、利用SolidWorks自带插件 “Toolbox”生成齿轮 对于出图与用于运动模拟的用户,可以用简化的“渐开线”齿轮代替,这样不但可以大大简化建模的时间,而且可以充分利用现有的计算机资源。在SolidWorks 的Toolbox插件中就有齿轮模块,下面就具体介绍一下这种方法。 (1)首先在插件中打开Toolbox插件,如图1所示。点击“确定”就可以在右边的“任务窗格”设计库中找到“Toolbox”了,如图2所示。 (2)目前虽然在“GB”中还没有齿轮,但就是可以用其她标准中的齿轮代替。下面就以“AnsiMetric”标准为例,介绍Toolbox中调用齿轮的方法。 在Toolbox的目录中通过“AnsiMetric”→“动力传动”→“齿轮”,在这里系统已经给出了常用的齿轮形式, 我们需要哪种形式的齿轮就可以生成哪种,如圆

柱直齿轮,这里翻译成了“正齿轮”。具体参数设置,如图3所示。 (3)通过一系列的设置,我们就可以得到想要的齿轮了,如果还达不到自己的要求,就可以在现有的齿轮基础上进行修改。如要孔板形式的齿轮,就可以用一个“旋转切除”命令与一个“拉伸切除”命令完成。具体操作如图4所示。接着再添加几个孔,如图5所示。

(4)这样这个齿轮就差不多完成了,如果用户齿轮有其她的形式,当然可以自己再做进一步的修改。修改完以后就可以保存了。注意这里建议用“另存为”,因为直接点击保存,系统会自动保存到Toolbox配置的路径中去,那就会添加不必要的麻烦。当然如果就想保存到Toolbox的配置路径,那么就直接保存即可。Toolbox的配置路径更改有很多方法,如可以在“选项”→“异型孔向导/Toolbox”→“配置”,也可以在菜单中找到,还可以在“设计窗格”→“设计库”→“预览

齿轮泵设计说明书

% 武汉科技大学 本科毕业设计(论文) · 题目:中高压外啮合齿轮泵设计 姓名: 专业: 学号: 指导教师: 【 武汉科技大学机械工程学院 二0一三年五月

目录 摘要.................................................................. I Abstract.......................................................................... II 1绪论. (1) 研发背景及意义 (1) 齿轮泵的工作原理 (2) 齿轮泵的结构特点 (3) 外啮合齿轮泵基本设计思路及关键技术 (3) 2 外啮合齿轮泵设计 (5) 齿轮的设计计算 (5) 轴的设计与校核 (7) 齿轮泵的径向力 (7) 减小径向力和提高齿轮轴轴颈及轴承负载能力的措施 (8) 轴的设计与校核 (8) 卸荷槽尺寸设计计算 (11) 困油现象的产生及危害 (11) 消除困油危害的方法 (13) 卸荷槽尺寸计算 (15) 进、出油口尺寸设计 (17) 选轴承 (17) 键的选择与校核 (17) 连接螺栓的选择与校核 (18) 泵体壁厚的选择与校核 (18) 总结 (19) 致谢 (20) 参考文献 (22)

摘要 外啮合齿轮泵是一种常用的液压泵,它靠一对齿轮的进入和脱离啮合完成吸油和压油,且均存在泄漏现象、困油现象以及噪声和振动。减小外啮合齿轮泵的径向力是研究外啮合齿轮泵的一大课题,为减小径向力中高压外啮合齿轮泵多采用的是变位齿轮,并且对轴和轴承的要求较高。为解决泄漏问题,低压外啮合齿轮泵可采用提高加工精度等方法解决,而对于中高压外啮合齿轮泵则需要采取加浮动轴套或弹性侧板的方法解决。困油现象引起齿轮泵强烈的振动和噪声还大大所短外啮合齿轮泵的使用寿命,解决困油问题的方法是开卸荷槽。 关键词:外啮合齿轮泵,变位齿轮,浮动轴套,困油现象,卸荷槽 (此毕业设计获得2013届优秀毕业设计荣誉,共有5张零件图,1张装配图,并且有开题报告、外文翻译、答辩稿,答辩ppt,保证让你的毕业设计顺利过关!先找份好的工作,不再为毕业设计而发愁!!!有需要零件图和装配图的同学请联系)

几何体设计说明书

几何体设计说明书 1

文档仅供参考 几何体设计的说明书 目录 第一章主体模型的设计 第二章球铰链的设计 第三章杆的设计 第四章零件图的装配 第一章主体模型的设计 2

1打开SOLIDWORKS,新建里面选择零件图。点击前视基准面,选择前视基准 面。 ?显示发生更改,前视基准面对着您。 ?草图工具栏命令出现在 CommandManager 中。 ?此时在前视基准面上打开一张草图。 ?单击矩形 (草图工具栏)。 2 若想开始矩形绘制,在草图原点的下方和左侧单击。 3 移动指针。注意指针现在显示矩形的当前尺寸。 4 若想完成矩形绘制,在草图原点的上面和左侧单击。您不必绘制精确尺寸。 5 释放矩形工具。 6.点击刚画成的草图,使边长为100. 7.点击退出草图。 3

8.选择拉伸,从(F)里选择草图基准面,方向一选择两侧对称,距离选择100。点击 确认,就会完成矩形的绘制。 9.以矩形的三个顶点建基准面1,点击正视于,然后选择草图绘制,绘制三条对角 线组成的三角形。退出草图,点击特征菜单里的拉伸切除按钮。从 10 从(F)里选择草图基准面,方向一为给定深度,距离选择 100. 10.同理能够切除另一个面,在插入里选择基准轴,以刚切除的图形中的顶点和 底面见基准轴1. 4

11.点击特征里的圆周正列按钮。旋转参数选择基准轴1,角度为360﹒实例数 完成如右图。 为3,要正列的特征选择阵列2. 然后再建一个垂直于基准轴而且过顶点的基准面4. 5

13.在基准面3上绘制一个底边为棱锥底边,高为30的等边三角形。退出草 图。选择特征里面的放样按钮,轮廓选择草图5和棱锥顶点1。点击确认,完成放样2. 14.选择圆周正列按钮,旋转参数为基准轴1,角度为360,实例数为3,正列的特征 完成如下图所示图形。 选择放样2. 3做一条与棱边夹角为72.64.的辅助线1。 16.建基准面15,选择垂直于曲线,选择里选择线1和顶点3.,然后在基准面15 上绘制一个圆心为顶点3,半径为6的圆,和一条直径。点击草图绘制里面的圆命令。绘制出圆,然后点击直线命令绘制出直径。选择剪切命令,选择剪切到最近端,剪切掉半个圆,退出草图。 6

SolidWorks渐开线齿轮的绘制方法

现在中国使用SolidWorks软件的用户越来越多,对于一些初学者,在齿轮的绘制过程中会遇到很多问题。本文笔者就是针对这一主题而写,希望对那些还处于齿轮建模迷惑中的读者有一些抛砖引玉的作用,提高设计者的软件使用水平,开拓一条新的设计思路。阅读本文前,读者朋友应当先完成SolidWorks基本模块的学习,或者是有一定的软件使用经历和基础。 一、明确设计目的 齿轮在机械传动设计中是重要的传动零件,它有很多其他传动机构无法比拟的优点,如传动效率高(一般在0.9以上),传动平稳(斜齿轮尤为突出),传动力矩大,准确的瞬时传动比,寿命长,而且可以改变传动方向等,这些优点决定了齿轮在动力传动和运动传动中占有不可动摇的地位。一般齿轮的齿廓都是渐开线,那么如何在SolidWorks中绘制渐开线呢?在开篇之前先请读者思考一个问题:为什么要绘制精确的“渐开线”齿轮呢?是为了做运动模拟?出2D 的工程图?到C N C里进行加工?还是作为CAE的分析模型呢? 当然,如果我们的目的不同,那么我们的齿轮就有不同的绘制方法。请看下面的详细讲解。 二、简化齿轮的绘制 1.利用SolidWorks自带插件 “Toolbox”生成齿轮 对于出图和用于运动模拟的用户,可以用简化的“渐开线”齿轮代替,这样不但可以大大简化建模的时间,而且可以充分利用现有的计算机资源。在SolidWorks的Toolbox插件中就有齿轮模块,下面就具体介绍一下这种方法。 (1)首先在插件中打开Toolbox插件,如图1所示。点击“确定”就可以在右边的“任务窗格”设计库中找到“Toolbox”了,如图2所示。

(2 )目前虽然在“GB”中还没有齿轮,但是可以用其他标准中的齿轮代替。下面就以“AnsiMetric”标准为例,介绍Toolbox中调用齿轮的方法。 在Toolbox的目录中通过“AnsiMetric”→“动力传动”→“齿轮”,在这里系统已经给出了常用的齿轮形式,我们需要哪种形式的齿轮就可以生成哪种,如圆柱直齿轮,这里翻译成了“正齿轮”。具体参数设置,如图3所示。 (3)通过一系列的设置,我们就可以得到想要的齿轮了,如果还达不到自己的要求,就可以在现有的齿轮基础上进行修改。如要孔板形式的齿轮,就可以用一个“旋转切除”命令和一个“拉伸切除”命令完成。具体操作如图4所示。接着再添加几个孔,如图5所示。

齿轮泵三维设计报告

三维设计技术课程设计说明书设计题目:齿轮泵的三维设计 班级:2013级冶炼-2班 设计人员(按贡献大小排序): 吴迪 荣强 伟 朱宝 指导教师:王 2016年11月

一、设计任务概述:本设计主要围绕齿轮泵这个实例展开。液压油泵作为 一种重要的液压元件,其规格和型号比较繁多,传统的开发过程繁琐,效率低下、Solidworks是一款快捷的制图软件,克服了以上的不足之处,大大提高了设计人员的开发速度,本文将着重就Solidworks的实体建模、虚拟装配、爆炸式图等功能进行齿轮泵的设计。齿轮泵包含多个零部件,本设计巧妙的利用Solidworks这种综合运用多种建模方法和设计方法进行。 二、设计任务分工: 查找资料:吴迪 三维图设计:吴迪 二维图设计:吴迪、荣强 说明书书写:吴迪、荣强、伟、朱宝 齿轮泵工作原理分析:吴迪 设备的工作原理:外啮合齿轮泵是应用最广泛的一种齿轮油泵,一般齿轮泵通常指的就是外啮合齿轮泵。它主要有主动齿轮、从动齿轮、泵体、泵盖和安全阀等组成。泵体、泵盖和齿轮构成的密封空间就是齿轮泵的工作室。两个齿轮的轮轴分别装在两泵盖上的轴承孔,主动齿轮轴伸出泵体,由电动机带动旋转。 齿轮泵工作时,主动轮随电动机一起旋转并带动从动轮跟着旋转。当吸入室一侧的啮合齿逐渐分开时,吸入室容积增大,压力降低,便将吸人管中的液体吸入泵;吸入液体分两路在齿槽被齿轮推送到排出室。液体进入排出室后,由于两个齿轮的轮齿不断啮合,便液体受挤压而从排出室进入排出管中。主动齿轮和从动齿轮不停地旋转,泵就能连续不断地吸入和排出液体。泵体上装有安全阀,当排出压力超过规定压力时,输送液体可以自动顶开安全阀,使高压液体返回吸入管。

Solidworks课程设计报告书

景德镇陶瓷学院Solidworks课程设计 设计题目:Solidworks设计 专业:09材成(1)班 姓名:王群 学号:200910340128 指导老师:李如雄 二零一三年一月

传统的注塑工艺及注塑成型的实际生产主要靠经验来反复调试和修改,这样不仅生产效率低,而且还浪费了大量的人力和物力[1]。随着计算机技术的发展,塑料注塑成型CAE技术在近10年内从理论研究到实际应用都取得了飞速的进步[2-8]。注塑CAE技术能预拟注塑成型时塑料熔体在模具型腔中的流动情况及塑料制品在模具型腔内的冷却、固化过程,在模具制造之前就能发现设计中存在的问题,改变了主要依靠经验和直觉,通过反复试模、修模来修正设计方案的传统设计方法,它可使设计人员避免设计中的盲目性,使工程技术人员在模具加工前完成试模工作,也可使生产操作人员预测工艺参数对制品外观和性能的影响,降低了模具的生产周期和成本,提高了模具质量。 本文利用商品化CAE软件Moldflow的MPI(Moldflow Plastic Insight)模块对扳手注塑,成型中的浇口位置、充填、流动、冷却等过程进行了分析模拟,预测了塑件可能产生的质量缺陷,并针对模拟结果分析缺陷产生的原因和影响因素。根据分析结果对注塑工艺条件进行优化,得到比较合理的参数。 一.分析前的准备 1.模型的准备本次课程设计选用的是扳手进行模流分析,扳手的三维造型用UG软件。零件造型结束后保存igs通用格式,导入到Moldflow CAD doctor对零件进行处理。三维造型cad图如下: 2.划分CAE网格模型软件Moldflow insighth中创建工程chongdianqi,再导入CAD doctor处理好的udm格式文件就可进行三角形网格的划分。这里采用的是双层面网格。

solidworks齿轮画法

1、首先新建一个零件。选择拉伸凸台/基体选项卡,选择前视基准面,绘制直径490的齿顶 圆。退出草图,点击两侧对称拉伸,输入拉伸厚度为140mm.如图1 图1 2、点击草图选项卡,选择第一步拉伸实体的任意平面,绘制直径470mm的齿根圆,和直径449.50mm的分度圆,并将分度圆变为构造线。点击齿顶圆,再点击草图选项卡下的转换实体引用(如图2)。再点击齿顶圆,变为构造线(如图3)。 图2图3 3、绘制渐开线:选择“样条曲线”中的“方程式驱动的曲线”,方程式类型为“参数性”。输入以 下函数:X t=d b/2?(t?sin(t)+cos(t)), Y t=d b/2/2?(sin(t)?t?cos(t)),这里d b= 441.656mm,t为极坐标角度(单位为弧度)t1=0,t2=1。单击确定按钮(如图4). 4、绘制中心线,以此中心线为镜像轴,对渐开线镜像(如图5)。 5、添加约束:按住ctrl键,选择上渐开线和分度圆,添加重合约束,同理,为下渐开线跟 分度圆,使之重合。再添加约束,使中心线始终作为两个渐开线的中线。对分度圆上渐开线添加尺寸约束,长度为15.70mm。修剪多余的线条,只保留齿槽轮廓线。对齿根圆

与渐开线倒角,半径为3.80mm(如图6)。退出草图,选择完全贯穿(如图7)。 图5 图6 图7 6、 圆周阵列齿槽:选择圆柱面为阵列基准,阵列特征为齿槽,阵列数为47,按回车键。 图4

7、切辐板:点击拉伸切除选项卡,选择圆柱面为基准面,绘制直径200mm和直径400mm 的圆(如图8),退出草图,拉伸切除深度为30mm生成一面辐板。选择镜像实体,镜像平面选择前视基准面,镜像特征为刚生成的辐板,点击确定,生成另一面的辐板。 8、打辐板孔:选择拉伸切除,基准面为圆柱面,绘制直径300mm构造线圆,在构造线圆 上绘制直径50mm的圆,退出草图,拉伸厚度为完全贯穿(如图9)。 9、阵列辐板孔:数目为6个(如图10)。 10, 轴孔跟键槽:选择拉伸切除,基准面为圆柱面,绘制如(图11)所示尺寸,退出草图,切除厚度为完全贯穿。 11、最终三维图如图12. 图8 图9 图10 图11

齿轮泵使用说明书

齿轮泵使用说明书 使用前必须遵守事项 ■本注意事项仅适用于本公司齿轮泵产品。 ■本说明书重点说明了产品使用方法。 ■为了充分发挥产品的性能,预防事故,并且使泵长时间正常运转需要定期检查各项部位,本产品安装测试前要仔细阅读本说明书。 ■为了安全不能随意改动本产品,修理,改动后发生事故,我公司不负责任。 ■要熟读本说明书上实际安装,运转,保修,检查等最终使用步骤。 ■长时间不使用时需要断电,放在通风干燥的地方保管。 ■对本产品有疑问时可以通过代理商或是办事处联系解决。 安全注意事项 ●使用产品(安装,运转,保修,检查)前要熟读本说明书上正确使用方法。 ●本说明书把安全注意事项以危险和注意区分说明。 ●齿轮泵禁止使用带有挥发性的油和危险性高的液体,如用以上液体漏出后容易引发火灾,环境污染等危险。 ●禁止使用漏油的泵,如泵出现漏油的现象,请尽快终止使用并替换或修理,如油漏到地面请尽快擦净,以免滑倒受伤。 ●齿轮泵使用温度范围在(-5℃~80℃),如超过以上温度密封件将失去其功能出现漏油等现象,请不要在超出以上温度范围下使用。 ●泵出油口部位的接头等配件要选择能够承受比泵最大压力大1.5倍的产品。 ●请按照说明书上的方法安装泵,设计管道。 齿轮泵的旋转方向是一致的,如安装不正确,驱动时容易磨损密封件,使油溢出。 ●泵的出油口部分一定要安装完成后驱动。 容易造成泵的损坏或是发生火灾等危险。 ●泵在驱动状态时请勿将出油管拆卸,容易使油溢出造成危险。 ●请勿拆卸泵上任何螺丝或配件。 ●出油管上请安装压力调节阀。 ●为了防止出现漏油现象,请确保使用压力低于泵的最高压力。 ●泵的表面温度较高时请勿用手背触摸,容易烫伤。 ●请勿踩踏泵。 ●泵需移动时要注意不要摔落。

齿轮泵设计说明书

齿轮泵设计说明书

文档仅供参考 武汉科技大学 本科毕业设计(论文) 题目:中高压外啮合齿轮泵设计姓名: 专业: 学号: 指导教师: 武汉科技大学机械工程学院 二0一三年五月

目录 摘要 (3) Abstract..........................................................................................................II 1绪论 (1) 1.1 研发背景及意义 (1) 1.2齿轮泵的工作原理 (2) 1.3 齿轮泵的结构特点 (4) 1.4外啮合齿轮泵基本设计思路及关键技术 (5) 2 外啮合齿轮泵设计 (5) 2.1 齿轮的设计计算 (5) 2.2 轴的设计与校核 (7) 2.2.1.齿轮泵的径向力 (7) 2.2.2减小径向力和提高齿轮轴轴颈及轴承负载能力的措施 (9) 2.2.3 轴的设计与校核 (10) 2.3 卸荷槽尺寸设计计算 (13) 2.3.1 困油现象的产生及危害 (13) 2.3.2 消除困油危害的方法 (15) 2.3.3 卸荷槽尺寸计算 (19) 2.4 进、出油口尺寸设计 (20) 2.5 选轴承 (20) 2.6 键的选择与校核 (21)

2.7 连接螺栓的选择与校核 (21) 2.8 泵体壁厚的选择与校核 (22) 总结 (23) 致谢 (24) 参考文献 (26) 摘要 外啮合齿轮泵是一种常见的液压泵,它靠一对齿轮的进入和脱离啮合完成吸油和压油,且均存在泄漏现象、困油现象以及噪声和振动。减小外啮合齿轮泵的径向力是研究外啮合齿轮泵的一大课题,为减小径向力中高压外啮合齿轮泵多采用的是变位齿轮,而且对轴和轴承的要求较高。为解决泄漏问题,低压外啮合齿轮泵可采用提高加工精度等方法解决,而对于中高压外啮合齿轮泵则需要采取加浮动轴套或弹性侧板的方法解决。困油现象引起齿轮泵强烈的振动和噪声还大大所短外啮合齿轮泵的使用寿命,解决困油问题的方法是开卸荷槽。 关键词:外啮合齿轮泵,变位齿轮,浮动轴套,困油现象,卸荷槽 (此毕业设计获得优秀毕业设计荣誉,共有5张零件图,1张装配图,而且有开题报告、外文翻译、答辩稿,答辩ppt,保证让你的毕业设计顺利过关!先找份好的工作,不再为毕业设计而发愁!!!有需要零件

solidworks大作业说明书样板

《工程设计工具》 自主设计说明书 产品名称尼康S210 照相机学号38071411 姓名郭宇 E_mail gy_xmts@https://www.360docs.net/doc/b0909340.html, 机械工程及自动化学院 2008年12月 25 日

目录 一、概述 (3) 1. 设计来源 (3) 2. 产品简介 (3) 二、产品零件列表 (3) 三、产品特点 (5) 1. 生产、生活 (5) 2. 零件固定 (5) 3. 零件的开启、关闭 (7) (1)电池盖 (7) (2)A/V 盖 (9) 4. 一些细节 (10) 四、工程图 (12) 五、总结 (13)

一、概述 1.设计来源 当初最开始是想做一个我非常喜欢的高达的模型,尽管我接到了游标卡尺,但还是没法量出那些复杂的曲面,无奈之下才想起了做相机,做的时候发现做并不难,但要是想做得非常好就很难了,于是我就以做得非常好为目标开始了我的相机模型。 2.产品简介 这款照相机轻薄便于携带,而且有800万的高像素,配色鲜艳、时尚,王力宏代言。 二、产品零件列表 1.按键OK 11.闪光灯21.内存卡 2.按键圆12.开关指示灯 3.按键DELETE 13.镜头盖×2 4.按键MODE 14.镜头内 5.按键MENU 15.镜头外 6.按键PICTURE 16.开关 7.按键远近17.快门 8.A/V 盖18.壳前 9.电池盖19.壳后 10.感光器20.电池

三、产品特点 1.生产、生活 我做的这款相机考虑到生产的时候的可行性和日常生活的使用中的安全性,所以设置了许多的圆角。 2.零件固定 零件里有许多类似这样的突出的小长方体,是为了防止安装好的零件在里面随意转动,也同时可以防止零件脱落

solidworks齿轮工程图画法

1.利用SolidWorks自带插件 “Toolbox”生成齿轮 对于出图和用于运动模拟的用户,可以用简化的“渐开线”齿轮代替,这样不但可以大大简化建模的时间,而且可以充分利用现有的计算机资源。在SolidWorks 的Toolbox插件中就有齿轮模块,下面就具体介绍一下这种方法。 (1)首先在插件中打开Toolbox插件,如图1所示。点击“确定”就可以在右边的“任务窗格”设计库中找到“Toolbox”了,如图2所示。 (2)目前虽然在“GB”中还没有齿轮,但是可以用其他标准中的齿轮代替。下面就以“AnsiMetric”标准为例,介绍Toolbox中调用齿轮的方法。 在Toolbox的目录过“AnsiMetric”→“动力传动”→“齿轮”,在这里系统已经给出了常用的齿轮形式,我们需要哪种形式的齿轮就可以生成哪种,如圆柱

直齿轮,这里翻译成了“正齿轮”。具体参数设置,如图3所示。 (3)通过一系列的设置,我们就可以得到想要的齿轮了,如果还达不到自己的要求,就可以在现有的齿轮基础上进行修改。如要孔板形式的齿轮,就可以用一个“旋转切除”命令和一个“拉伸切除”命令完成。具体操作如图4所示。接着再添加几个孔,如图5所示。

(4)这样这个齿轮就差不多完成了,如果用户齿轮有其他的形式,当然可以自己再做进一步的修改。修改完以后就可以保存了。注意这里建议用“另存为”,因为直接点击保存,系统会自动保存到Toolbox配置的路径中去,那就会添加不必要的麻烦。当然如果就想保存到Toolbox的配置路径,那么就直接保存即可。Toolbox的配置路径更改有很多方法,如可以在“选项”→“异型孔向导/Toolbox”→“配置”,也可以在菜单中找到,还可以在“设计窗格”→“设计库”→“预

齿轮泵研究的现状与发展

齿轮泵研究硇坝状与发展 安徽理工大学栾振辉 摘要:综合分析了国内外齿轮泵的研究现状,针对齿轮泵所存在的缺点,介绍了作者研制的卫星齿轮泵、平衡式复合齿轮泵及无啮合力齿轮泵的工作原理及结构特点。研究表明,这些新研制的齿轮泵均保留了普通齿轮泵的优点,同时还具有各自的特点,可广泛用于液压传动系统中。 关键词:齿轮泵;现状;研究进展 Ah血翟ct:Thispaperoutlinescurrentresearchsituationsofdomesticandforeigngearpl婶andpointsoutproblemswithexis曲ggearpumps.Thethreenewlydevelopedonesbytheauthorareintroduced,whichhaveindividuald:i鲥II{弘isl捌featuresbesidesremainingadvantagesofoIdirla巧gearpumps,andcanbewidelyusedinhydraulica-ansmissionsystems.Keywords:gearpumps;currentsituation;newresearchachievement 齿轮泵是液压传动系统中常用的液压元件,在结构上可分为外啮合齿轮泵和内啮合齿轮泵2大类。外啮合齿轮泵的优点是结构简单、尺寸小、重量轻、制造维护方便、价格低廉、工作可靠、自吸能力强、对油液污染不敏感等。缺点是齿轮承受不平衡的径向液压力,轴承磨损严重,工作压力的提高受到限制;流量脉动大,导致系统压力脉动大,噪声高。内啮合齿轮泵结构紧凑、尺寸小、重量轻,并且由于齿轮同向旋转,相对滑动速度小、磨损轻微、使用寿命长、流量脉动远比外啮合齿轮泵小,因而压力脉动和噪声都比较小。内啮合齿轮泵允许使用较高的转速,可获得较高的容积效率。但是内啮合齿轮泵同样存在着径向液压力不平衡的问题,限制了其工作压力的进一步提高。另外,齿轮泵的排量不可调节,在一定程度上限制了其使用范围。 1齿轮泵研究现状 由于齿轮泵在液压传动系统中应用广泛,因此,吸引了大量学者对其进行研究。目前,国内外学者关于齿轮泵的研究主要集中在以下方面:(I)齿轮参数及泵体结构的优化设计u01;(2)齿轮泵间隙优化及补偿技术[401;(3)困油冲击及卸荷措施[8-91;(4)齿轮泵流量品质研究[10_121;(5)齿轮泵的噪声控制技术[131;(6)轮齿表面涂覆技术[14];(7)齿轮泵的变量方法研究[153;(8)齿轮泵的寿命及其影响因素研究[16071;(9)齿轮泵液压力分析及其高压化的途径[18—90;(10)水介质齿轮泵基础理论研究[20-21J。‘ 提高齿轮泵的工作压力是齿轮泵的一个发展方向,而提高工作压力所带来的问题是:(1)轴承寿命大大缩短;(2)泵泄漏加剧,容积效率下降。产生这2个问题的根本原因在于齿轮上作用了不平衡的径向液压力,并且工作压力越高,径向液压力越大。 目前,国内外学者针对以上2个问题所进行的研究是:(1)对齿轮泵的径向间隙进行补偿;(2)减小齿轮泵的径向液压力,如优化齿轮参数、缩小 程才能显现出来 PDM系统数据库的数据积累是从零起步的,在PDM系统上线推广使用前,应最大限度地将企业的历史数据整理后批量导入到PDM数据库,供设计时重用。同时随着系统的使用,物料数据和描述文档的不断积累,我们可以在PDM系统下快速 《起重运输机械》2005(6)查找设计数据,提高零部件重用度,其效益将逐渐显现出来: 作者地址:大连市西岗区八一路169号华锐大厦大起大重集团公司 邮编:116013

相关文档
最新文档