材料力学实验指导书

材料力学实验指导书
材料力学实验指导书

材料力学实验指导书

§3 扭转实验指导书

1、概述

工程中有许多承受扭转变形的构件,了解材料在扭转变形时的力学性能,对于构件的合理设计和选材是十分重要的。扭转变形是构件的基本变形之一,因此扭转实验也是材料力学基本实验之一。

2、实验目的

2.1测定低碳钢的扭转屈服强度s τ及抗扭强度b τ。

2.2测定铸铁的抗扭强度b τ。

2.3观察、比较低碳钢和铸铁在扭转时的变形和破坏现象,分析其破坏原因。

3、实验原理

对一确定形状试件两端施加一对大小为e M 的外力偶,试件便处于扭转受力状态,此时试件中的单元体处于如图3.1所示的纯剪应力状态。

图3.1纯剪应力状态

对单元体进行平衡分析可知,在与试样轴线成0

45角的螺旋面上,分别承受主应力τσ=1,τσ-=3的作用,这样就出现了在同一个试件的不同截面上τσσ=-=压拉的情形。这样对于判断材料各极限强度的关系提供了一个很好的条件。

图3.2为低碳钢Q235扭转实验扭矩T 和扭转角φ的关系曲线,图3.3为铸铁HT200试件的扭转实验扭矩T 和扭转角φ的关系曲线。图3.4为低碳钢和铸铁扭转破坏断口形式

图3.2低碳钢Q235扭转φ-T 曲线 图3. 3铸铁HT200扭转φ-T 曲线

由图 3.2低碳钢扭转φ-T 曲线可以看出,低碳钢Q235的扭转φ-T 曲线类似于拉伸的L F ?-曲线,有明显的弹性阶段、流动屈服阶段及强化阶段。在弹性阶段,根据扭矩平衡原理,由剪应力产生的合力矩需与外加扭矩相等,可得剪应力沿半径方向的分布ρτ为:

P I T

ρτρ*=

在弹性阶段剪应力的变化如图3.5所示

在弹性阶段剪应力沿圆半径方向呈线性分布,据此可得

P

P W T I r T ==*max τ 当外缘剪应力增加到一定程度后,试件的边缘产生流动现象,试件承受的扭矩瞬间下降,应力重新分布至整个截面上的应力均匀一致,称之为屈服阶段,在屈服阶段剪应力的变化如图3.6所示

称达到均匀一致时的剪应力为剪切屈服强度(s τ),其对应的扭矩为屈服扭矩,习惯上将屈服段的最低点定义为屈服扭矩,同样根据扭矩平衡原理可得:

图3.5 低碳钢扭转试件弹性阶段应力分布变化

图3.4低碳钢和铸铁扭转破坏断口形式

P s

P s s W T I T

434*3==

ρτ 应力均匀分布后,试件可承受更大的扭矩,试件整个截面上的应力均匀增加,直至试件剪切断裂,如图3.4所示,最大剪应力对应的扭矩为最大扭矩,定义最大剪应力为剪切强度。

P b b W T 43=

τ 通过以上的分析可知:在低碳钢的扭转时,可以得到剪切强度极限,但由于不同材料的破坏形式并不一致,其剪切强度的计算公式并不相同,鉴于此,为方便不同材料力学特性的比较,国标《金属扭转实验方法》(GB/T10128-1988)规定,材料的扭转屈服点和抗扭强度按公式P s s W T /=τ,P b b W T /=τ计算。需要注意的是,国标定义的强度为抗扭强度而非剪切强度。

由图3.2铸铁扭转φ-T 曲线可以看出,铸铁HT200的扭转φ-T 曲线类似于拉伸的L F ?-曲线,没有屈服阶段及强化阶段。从图3.1纯剪应力状态及图3.4铸铁扭转破坏断口形式可以看出,铸铁试件是沿与轴线成45°螺旋面方向被拉伸破坏的,也就是说,在图3.1纯剪应力状态单元体中,拉应力首先达到拉伸强度值。其抗扭强度的计算同低碳钢试件,且此时抗扭强度等于最大扭矩时的最大剪应力(即边缘剪应力)。

由以上分析可知:铸铁的扭转破坏是由于拉应力引起的拉伸破坏,通过扭转实验可间接测得铸铁试件的拉伸强度,但无法得到其剪切强度。

4、实验方案

4.1实验设备、测量工具及试件

YDD-1型多功能材料力学试验机(图1.8)、150mm 游标卡尺、标准低碳钢、铸铁扭转试件(图3.7)。 YDD-1型多功能材料力学试验机由试验机主机和数据采集分析系统两部分组成,主机部分由加载机构及相应的传感器组成,数据采集部分完成数据的采集、分析等。

试件采用两端为扁形标准扭转试件,按国标《金属扭转实验方法》(GB/T10128-1988)的规定制作,试件的两端与试验机的上、下扭转夹头相联接。为方便观测试件的变形,试验前需用游标卡尺测量出试件的最小直径(0d )。为方便观测试件的变形、观察实验现象实验前在试件上作一组如图3.7

图3.7 常用扭转试件

图3.6 低碳钢扭转试件屈服阶段应力分布变化

所示的矩形框标记。

4.2 装夹、加载方案

安装好的试件如图3.8所示。试件两端为扁形,

扭转试验时,试件的两端与试验机的上、下扭转夹

头相联接,夹头中间有矩形加载槽。上夹头通过花

键轴与扭矩传感器联接,花键轴在扭矩传感器中可

上下滑动,以适合安装试件。下夹头通过双键与试

验机的扭转轴相联接。扭转时,扭矩传感器固定不

动,扭转电机带动下夹头转动,试件受到扭转。

4.3 数据测试方案

扭矩通过上夹头-花键轴传至扭矩传感器,试件

的转角通过安装在扭转轴上的光电编码器转化为电

压方波信号,转轴每转过一个确定的角度,光电编

码器就输出一个方波信号,这样,通过记录方波的

数量就可以知道试件的转角,扭转时,数据采集系

统每检测到一个方波就记录一次数据,并将方波数

量代表的转角作为X 轴,扭矩作为Y 轴显示数据,

这样就得到了扭转试验的扭矩-转角曲线。

4.4 数据的分析处理

数据采集分析系统,实时记录试件所受的扭矩及转角,并生成扭矩、转角实时曲线。图3.9为实测低碳钢Q235扭转实测曲线,图3.10为实测铸铁HT200的扭转实测曲线。 在图3.9低碳钢Q235扭转实验曲线中,横坐标-试件的转角,纵坐标-试件所受的扭矩,从扭矩-转角曲线可以清晰地区别低碳钢扭转实验的弹性阶段、屈服阶段,并可方便地读取屈服扭矩、极限扭矩。

3.9实测低碳钢扭转φ T 曲线

1、3-扭转上下夹头, 2-扭转试件 , 4-左立柱,5-扭矩传感器 图3.8 扭转实验试件的装夹

得到相关数据后,依据实验原理,就可以得到所需要的力学指标。

5、完成实验预习报告

在了解实验原理、实验方案及实验设备操作后,就应该完成实验预习报告。实验预习报告包括:明确相关概念、预估试件的最大载荷、明确操作步骤等,在完成预习报告时,有些条件实验指导书已给出(包括后续的实验操作步骤简介)、有些条件为已知条件、有些条件则需要查找相关标准或参考资料。通过预习报告的完成,将有利于正确理解及顺利完成实验。

有条件的同学可以利用多媒体教学课件,分析以往的实验数据、观看实验过程等。

完成实验预习报告,并获得辅导教师的认可,是进行正式实验操作的先决条件。

6、实验操作步骤简介

6.1试件原始参数的测量及标距的确定

实验采用标准短试件,试件形状见图3.7,用游标卡尺在标距长度的中央和两端的截面处,按两个垂直的方向测量试件的直径,填入实验表格取三组数据平均值的最小值进行计算。计算出扭转试件的抗扭截面系数p W 。

为了更好的观察实验现象,实验前,在扭转试件表面制作一组矩形框标记,实验中应注意观察矩形框的变化。

6.2连接测试线路

按要求联接测试线路,一般第3通道选择测扭矩,第八通道选择测转角,第七通道进行扭转方向判断。连接试验机上的转角传感和扭转传感接口。联线时应注意不同类型传感器的测量方式及接线方式。联线方式应与传感器的工作方式相对应。

6.3设置数据采集环境

6.3.1进入测试环境

首先检测仪器。检测到仪器后,系统将自动给出上一次实验的测试环境。或通过文件-引入项目,引入所需要的采集环境。

6.3.2设置测试参数

测试参数是联系被测物理量与实测电信号的纽带,设置合理的测试参数是得到正确数据的前提。

图3.10实测铸铁扭转φ T 曲线

测试参数由系统参数、通道参数及窗口参数三部分组成。其中,系统参数包括测试方式、采样频率、报警参数、实时压缩时间及工程单位等;通道参数反映被测工程量与实测电信号之间的转换关系,由测量内容、转换因子及满度值等组成;窗口是指为了在实验中显示及实验完成后分析数据而设置的曲线窗口,曲线分为实时曲线及X-Y函数曲线两种。

第一项、系统参数

采样频率: 50-200Hz,每个脉冲为0.144度时建议选择200Hz。

测试方式:扭转测试。

实时压缩时间:300秒。

若进行反复扭转实验时需设置换向判断通道及报警通道。通常情况下8CH固定用于转角脉冲计数,7CH用于转角方向判断,反复扭转时可选择扭矩或转角通道作为报警通道,并选择相应的报警值。

需要注意的是:

1、传感器的接线一定要与通道的参数设置相对应,8CH固定用于转角测试。

2、报警通道与报警的选择与实验的类型有关,并需与试验机的控制方式相结合,在进行反复扭转实验时,需启动试验机扭转自动控制功能。

第二项、通道参数

通常选择3CH测扭矩,7CH进行扭转方向判断,8CH固定选择测转角。需要选择及输入的参数有:测量内容、工程单位、修正系数,并选择相应的满度值。

需要注意的是:

1、需将8CH(固定选择测转角)通道的测量内容设置为“脉冲计数”,且“脉冲计数”功能只有在系统参数中将测试方式设置为“扭转测试”时方可选择,且只有一个通道可选为“脉冲计数”。选为“脉冲计数”的通道需将其满度值设为5000mV,由于a、c均为0,显示值为5000*b,b为每个脉冲代表的转角。如当b=0.6时满度值指示值为3000,b=0.144时满度值指示值为720。

2、7CH为方向判断通道,测量内容选择为“电压测量”(或“数据采集内”),b可选为1,满度值为5000 mV。

第三项、窗口参数

可以开设两个数据窗口,左窗口为扭矩、转角的实时曲线窗口,右窗口为扭矩、转角的X-Y曲线窗口,并设定好窗口的其它参数如坐标等。坐标参数设置时,需对被测试件的极限扭矩及变形进行预估,这样可以得到较好的图形比例。

需要注意的是:

1、在扭转测试时,数据的记录方式是以脉冲为触发的,即使在普通绘图方式时,窗口的横坐标

是转角而不是时间,且转角只有正值,即使在反向扭转时,转角也是一直在增加的。

2、在进行反复扭转实验时,在X-Y方式下,转角有正负之分,正向扭转为正,反向扭转为负。

对比当前各参数与实际的测试内容是否相符,若相符进入“6.4.3 数据预采集”,如不符,则应选择正确的参数或通过引入项目的方式引入所需要的测试环境。

6.3.3数据预采集

6.3.3.1 采集设备满度值对应检查

检查采集设备各通道显示的满度值是否与通道参数的设定值相一致,如不一致,需进行初始化硬件操作,单击菜单栏中的“控制”,选择“初始化硬件”,就可以实现采集设备满度值与通道参数设置满度值相一致。

6.3.3.2 数据平衡、清零

单击菜单栏中的“控制”,选择“平衡”,对各通道的初始值进行硬件平衡,可使所采集到的数据接近于零,然后,单击菜单栏中的“控制”,选择“清除零点”,“清除零点”为软件置零,可将平衡后的残余零点清除。

由于传感器输出的电压在平衡时可能为一较高的电压,对于平衡范围较小的测试系统有时会超出采集系统的平衡范围,此时若信号经平衡后的数值过大,在“清除零点”时会有相应提示,且仪器的相应通道会有过载指示,说明通道的初始值过大,尤其是脉冲计数通道容易出现此情况,说明脉冲计数通道电压处于高电平,此时应启动扭转启动,然后停止,重新“平衡”、“清零”,观察“过载指示”是否清除,若未清除重复上述操作,直至“过载指示”清除为止。对于平衡前有过载指示,平衡后指示消失的情形,说明仪器本身记忆的初始平衡值过大,属正常情况。

6.3.3.3启动采样

单击菜单栏中的“控制”,选择“启动采样”,选择数据存储目录,便进入相应的采集环境,此时并没有采到数据,这是因为数据采集系统每检测到一个方波就记录一次数据,扭转电机没有起动时,光电编码器没有转角输出,采集系统并不记录数据。选择“正向扭转”,起动电机正向扭转,数据采集系统显示采集到的零点数据,X-Y图中,转角正向增加,用手扭动扭转上夹头,采集到的扭矩就产生了相应的变化,正向扭矩为正值,反之为负值。此时,选择“反向扭转”,起动电机反向扭转,X-Y 图中,转角负向减少。证明采集系统和设备均能正常工作。

单击菜单栏中的“控制”,选择“停止采样”,停止采集数据,并分析所采集的数据,确认所设置的各参数正确。

这样就完成了数据采集环境的设置。

6.4装夹试件

在确信设备和采集环境运行良好后,便可以进行试件的装夹,安装时,将试件的一端安装在上夹头内,下拉上夹头,使试件的另一端接近下夹头,通过控制电机正反向转动,调整下夹头位置,使试件可以方便的进入下夹头,向下轻推上夹头,松手后,依靠摩擦力保证上夹头不被拉回。反复扭转时,需使用夹头紧定螺钉。

这样便完成了试件的装夹。

6.5 加载测试

在试件装夹完毕,并确定数据采集系统能正常工作后,就可以进行加载测试了。具体操作步骤如下:

选择“控制”- “平衡”- “清除零点”- “启动采样”,选择好存储目录后便开始采集数据。实验时可以通过显示实时数据全貌窗口来观测试件扭转全过程,单击“显示数据全貌”图标,调入显示数据全貌窗口,重排显示窗口,选择被测通道,调整窗口坐标。然后选择“正向扭转”,开始数据采集,试件很快进入屈服阶段,并很快进入强化阶段。注意观察标距线的变化,横向标距线的距离不变,竖向标距线变成螺旋线而且间距变短。由于标距线的距离不断伸长,原来清晰的标距线变得不太

清晰。持续扭转,试件断裂后,将上夹头拉起,停止采集数据,停止扭转。取出断裂试件,观察端口形式及标距线的变化。注意观察实验各阶段现象及标记线的变化。

需要在实验过程中调节转速时,可以旋转“扭转调速”转轮:顺时针旋转电机转速加快,反之降低,直至停止。实验时可根据不同时验阶段进行相应调整。

反复扭转时,需启动扭转自动控制功能,并根据需要在测试过程中调整报警参数。

7、分析数据完成实验报告

7.1 验证数据

首先关闭 “显示数据全貌”窗口,在扭矩-转角窗口显示全部实验数据,并验证数据的正确性。从低碳钢扭转实验曲线中应能清晰地看到低碳钢扭转时的屈服及强化阶段,铸铁则无屈服阶段。

7.2读取数据

选择双光标,放大左图屈服阶段,读取屈服扭矩s T ,极限扭矩b T 及转角φ。

7.3 分析数据

将得到的实验数据填入到相应表格,屈服扭矩,极限扭矩,这样就得到了抗扭屈服强度,抗扭强度,剪切屈服强度以及剪切强度。

需要注意的是:

在分析数据时需特别注意区别抗扭强度与剪切将度的区别,抗扭强度的定义是针对荷载类型定义的,有利于不同材料间的相互比较,但无法反映性材料真实的应力状态。剪切强度是按材料破坏时的应力状态定义的,能够反映材料破坏时的真实应力状态,但不同材料破坏时的应力状态并不相同,计算时不同材料需根据材料的破坏特征确定计算公式。

7.4 完成实验报告

通过观察试验现象、分析试验数据就可以进行试验报告的填写了,依据实验原理,将所测得各参数带入相应的计算公式即可得到相应的力学指标。但在各参数的测量过程中,应明确各参数的准确定义,并尽可能减小测量误差。完成实验报告的各项内容。并总结试验过程中遇到的问题及解决方法。

8、实验注意事项

1、在紧急情况下,没有明确的方案时,请按急停按钮;

2、扭转实验的测试方式为“扭转测试”;

3、进行数据采集的第一步为初始化硬件,初始化完成后应确认采集设备的量程指示与通道参数的设定值一致;且平衡后各通道均无过载现象;

4、在进行通道参数设置时,需对测量内容为“脉冲计数”的通道进行复选确定。

5、在正式装夹试件实验前,需先打开扭转启动,手拧上夹头确定采集系统正常工作后进行试件装夹;

6、试件装夹时应先装上夹头再装下夹头。

§4 电测法测定材料的弹性模量E 和泊松比μ指导书

1、概述

弹性模量E (也称杨氏模量)是表征材料力学性能中弹性段的重要指标之一,它反映了材料抵抗弹性变形的能力。泊松比μ反映了材料在弹性范围内,由纵向变形引起的横向变形的大小。在对构件进行刚度稳定和振动计算、研究构件的应力和变形时,要经常用到E 和μ这两个弹性常数。而弹性模量E 和泊松比μ只能通过实验来测定。

2、实验目的

1、测定低碳钢的弹性模量E 和泊松比μ;

2、验证胡克定律;

3、了解电阻应变片的工作原理及贴片方式;

4、了解应变测试的接线方式。

3、实验原理

弹性模量E 和泊松比μ是反映材料弹性阶段力学性能的两个重要指标,在弹性阶段,给一个确定截面形状的试件施加轴向拉力,在截面上便产生了轴向拉应力σ,试件轴向伸长,单位长度的伸长量称之为应变ε,同样,当施加轴向压力时,试件轴向缩短。在弹性阶段,拉伸时的应力与应变的比值等于压缩时的应力与应变的比值,且为一定值,称之为弹性模量E ,εσ///0=?=L

L S F E 。 在试件轴向拉伸伸长的同时,其横向会缩短,同样,在试件受压轴向缩短的同时,其横向会伸长,在弹性阶段,确定材质的试件拉伸时的横向应变与试件的纵向应变的比值等于压缩时横向应变与试件的纵向应变的比值,且同样为一定值,称之为泊松比μ,

横纵横εεμ=??=00//L L L L 。 这样,弹性模量E 和泊松比μ的测量就转化为拉、压力和纵、横向应变的测量,拉、压力的测量原理同拉、压实验,应变的测量采用电阻应变片电测法原理。

电阻应变片可形象地理解为按一定规律排列有一定长度的电阻丝,实验前通过胶粘的方式将电阻应变片粘贴在试件的表面,试件受力变形时,电阻应变片中的电阻丝的长度也随之发生相应的变化,应变片的阻值也就发生了变化。实验中采用的应变片是由两个单向应变片组成的十字形应变花,所谓单向应变片,就是应变片的电阻值对沿某一个方向的变形最为敏感,称此方向为应变片的纵向,而对垂直于该方向的变形阻值变化可忽略,称此方向为应变片的横向。利用应变片的这个特性,在进行应变测试时,所测到只是试件沿应变片纵向的应变,其不包含试件垂直方向变形所引起的影响。对于单向电阻应变片而言,在其工作范围内,其电阻的变化与试件的变形有如下的关系:

ε应应K L

L K R R =?=?

(1) K 应称为电阻应变片的灵敏度系数,不同材料的电阻应变片灵敏度系数不同,常用

图4.1惠斯登电桥原理图 应变片的灵敏度系数应K 一般在2.1左右,即使同一批应变片的灵敏度系数也并非相同,例如,在该实验中所粘贴的电阻应变片的阻值Ω±=3.02.120R ,%119.2±=K 。通常应变片应变极限为ε≤2%,但有些特制的应变片其应变极限可达到20%。

由于常用钢材当应力达到弹性极限时,ε<0.2%,所以可以采用粘贴应变片的方式来测量试件的应变,这样对试件应变的测量就转化

成了对应变片R R /?的测量。常用的测量方式是采用

惠斯登电桥进行测量。其原理如图4.1所示。

电桥由四个桥臂电阻1R 、2R 、3R 、4R 组成,供桥

电压由A 、C 点输入,输出电压为DB U 。假定电桥的初始

状态为1R /2R =3R /4R ,此时电桥输出电压DB U =0,称之

为平衡电桥。极限情况为1R =2R =3R =4R =R 。

现在假定, 1R =2R =3R =4R ,电阻应变片1R 粘贴在被测试件上,其余应变片粘贴在非受力试件上,在不考虑非受力原因引起的应变片电阻变化时,认为其为恒定值。这样应变片1R 由于试件变形产生R ?的变化时,输出电压DB U 也会产生相应的变化,DB U ?,由于电桥初始状态为平衡电桥,即DB U =0,故有:

E R

R R R E R R R R R R E E R R R R E E U U U BC DC DB /24/24221 21221?+?=

?+?=?+-=+?+-=

-=? (2) 由于,R ?很小,所以4)/24(l =?+R R im ,因此 114

4/εε仪应应K K E K E R R U DB ==?=? (3)

通过计算机数据采集系统,对桥路输出的电压进行放大、离散采集及数据二次运算,就可以得到被测试件的应变ε。

1εε仪应K K =

调整应仪K K /1=,则,1εε=,

同样可以推导,电阻应变片2R 粘贴在被测试件上,其余应变片粘贴在非受力试件上时,有

2εε-=

当四个电阻应变片全部粘贴在被测试件上时,有

4321εεεεε-+-=

(4)

在实际测试中,把粘贴在试件上变形的应变片叫做工作片,把粘贴在非受力构件上在实验中不变形的应变片称之为补偿片,因为在实际的测试过程中,引起应变片电阻变化的不仅仅是ε,温度、湿度等的变化均能导致电阻应变片电阻的变化。例如,对于截面均匀的导体,当导体的材料温度一定时

()

S L T R αρ+=10

(5) 式(5)中,0ρ为材料在0℃时的电阻率,α为材料的电阻温度系数。

这些由非试件变形等原因导致的电阻变化,对于工作片和补偿片产生的影响往往是相同的,由式(4)可以看出,由于工作片与补偿片在不同的桥臂上,相同的变化量会相互抵消,所以在测试过程中通过将补偿片粘贴在与工作片具有相同材质的构件上,且与工作片处于相同的工作环境中,这样就可以使补偿片感知与工作片相同的环境变化,产生大致相同的电阻变化,从而减小由于在测试过程中环境变化导致的测试误差,其中最主要的是补偿由于温度变化引起电阻的变化,故通常称补偿片为温度补偿片。

这样通过给每一个工作片粘贴一个温度补偿片就可以减小由于环境变化引起电阻的变化而导致的测试误差,但这意味着随着工作片的增加,补偿片也需要等量的增加,这样就变得不方便和不经济,实际通常采用测量通道共用温度补偿片,通道分时切换测量的工作方式。但这种测量方式需有切换开关,采样速率较低。在较高速的多点采样时,多采用补偿通道的补偿方式,组桥时,工作应变片与补偿片分别与标准电阻组成独立的半桥,补偿通道等同于一独立通道,数据采集时,测量通道的数据与补偿通道的数据相减就可以起到补偿的作用,这样就可以实现多个工作片共用一个补偿片的补偿方式,习惯上称之为1/4桥。

在实际测试中,温度补偿片可以补偿由于环境

变化引起的误差,但有些误差是温度补偿片无法消

除的,例如在弹性模量实验轴向拉伸时,由于制作

精度及裝夹等原因会产生附加弯矩,使得在试件两

侧对称粘贴的应变片一侧大于理论值而另一侧小于

理论值,且误差两绝对值基本相等,根据桥路误差

补偿原理,此时采用单一通道半桥补偿时不仅无法

去掉该误差,反而将被测量的理论值补偿掉。对于

此类理论值相同,而误差方向相反的应变的测量,

桥臂为单片时,需采用全桥的补偿方式,在半桥或

1/4桥时需采用将两应变片串联起来组成一个桥臂

的工作方式,原理图如图4.2所示,图中,纵前R 为

粘贴在测试试件前侧的纵向应变片,补前R 为粘贴

图4.2应变片串联半桥补偿原理图

在补偿试件前侧的纵向应变片,其余以此类推,3R 、4R 为仪器内部提供的标准电阻,一般为120Ω。这样相对于只测单面应变片的测量方式就可以消除拉伸时由于试件附加弯曲等原因导致的试件前后面变形不均匀导致的误差。应变片在半桥补偿方式时测得的电阻的变化比值为R R R R /2/2?=?,等于测得的单片应变值,当组成1/4桥时,由于补偿电阻为仪器内置电阻,电桥为非平衡电桥,此时测得的应变值需根据串联后的阻值进行相应的修正,通常计算机数据采集系统均带应变片阻值修正功能,修正时只需输入串联后的阻值即可。实际上,影响应变测量的不仅有应变片的阻值,电阻应变片的灵敏度系数、导线电阻等均可对测试结果产生影响,在测试参数中输入相应的数值即可消除其带来的误差。

用游标卡尺测得试件的截面尺寸,从而得到试件的截面面积,通过拉压力传感器测得试件所受的荷载,用电阻应变片电测法得到试件的应变,将上述值代入到相应的公式,即可得到该材料的弹性模量E 和泊松比μ。

4、实验方案

4.1实验设备、测量工具及试件:

YDD-1型多功能材料力学试验机(图1.8)、150mm 游标卡尺、弹性模量泊松比试件(图

4.3)。

YDD-1型多功能材料力学试验机由试验机主机部分和数据采集分析两部分组成,主机部分由加载机构及相应的传感器组成,数据采集部分完成数据的采集、分析等。

试件采用矩形截面的钢制试件。试件两端有加载用的销孔,通过销轴及转接件连接在试验机上下夹头上,可以施加轴向拉、压力。在两个矩形面的中央,粘贴有45°电阻应变花,用以测量试件的纵、横向应变及验证45°方向应变与纵、横向应变的关系。另外在两侧面黏贴有电阻应变片,可用于偏心拉、压实验时验证各个位置的应变关系。

4.2 装夹、加载方案

安装好的试件如图4.4所示。实验时,弹模试件的两端通过销轴连接件与试验机的上下夹头相连接,可传递拉力或压力。下夹头下行时,试件受拉,下夹头上升时,试件受压。

图4.3 弹性模量泊松比实验试件尺寸

图4.4 安装好的弹模试件

弹模试件安装过程

(左图:将连接件安装在夹头上右图:将弹模试件安装在连接件上)需要注意的是:在单一拉伸加载时,为保证试件受力均匀,应将上夹头设置成同拉伸实验一样的铰接状态,而在交变加载时需将上夹头设置成同压缩实验一样的固接状态,以免在拉压转换时,连接上夹头的拉杆与试验机上横梁肋板挤压变形。

实验时拉、压加载的换向可通过控制油缸上、下行按钮实现,也可以通过设置通道报警功能自动换向。通过控制进油手轮的旋转来控制加载速度。

4.3 数据测试方案

拉、压力的大小测试同拉压试验。应变通过粘贴的电阻应变片测量,应变测量的相关原理及连线方式参见“应变测试及等强度梁实验”。为减小变形不对称的影响,实验中往往采用应变片串联的桥路方式。即将前后两相同方向的应变片串联起来以消除附加弯矩产生的影响。

4.4 数据的分析处理

数据采集分析系统,实时记录试件所受的力及应变,并生成力、变形实时曲线及力、应变X-Y曲线、纵向应变-横向应变X-Y曲线,图4.5为在YDD-1型多功能材料力学试验机上

测45#钢弹性模量E和泊松比 的实测曲线。中间窗口,荷载、应变实时曲线,右窗口,荷

载应变关系曲线,纵坐标-荷载,横坐标-纵向应变、横向应变,左窗口,纵、横向应变的关系曲线,纵坐标-横向应变,横坐标-纵向应变。

为了

验证所采集的数据为试件在弹性段的数据,采用按荷载分级处理数据的方式,以验证试件是否处于弹性变形阶段。读数时,采用单光标,以荷载值为分级标准,选取适当的级差,依次读取相应的荷载及应变。需要注意的是为了避免零点误差,第一级荷载一般不从零点开始,一般将荷载级差作为零点荷载。

将测得的数据代入到相应的公式,即可得到该材料的弹性模量E 和泊松比μ。 5、完成实验预习报告

在了解实验原理、实验方案及实验设备操作后,就应该完成实验预习报告。实验预习报告包括:明确相关概念、预估试件的最大载荷、明确操作步骤等,在完成预习报告时,有些条件实验指导书已给出(包括后续的实验操作步骤简介)、有些条件为已知条件、有些条件则需要查找相关标准或参考资料。通过预习报告的完成,将有利于正确理解及顺利完成实验。

有条件的同学可以利用多媒体教学课件,分析以往的实验数据、观看实验过程等。 完成实验预习报告,并获得辅导教师的认可,是进行正式实验操作的先决条件。

6、实验操作步骤简介

6.1试件原始参数的测量

实验采用圆柱体铣平试件,试件形状及尺寸见图4.3,用游标卡尺在粘贴应变片中部的两侧,多次测量试件的宽度B 和厚度H ,计算试件的截面面积S 。并查相关资料,预估其弹性段极限承载力。

6.2试件装夹

与拉伸试验试件的装夹类似,首先确定试验机的状态,单向拉伸时,上部转接套处于铰接状态,拉压交变加载时,上部转接套处于固接状态。下转接套安装在转换杆上,“进油手轮”关闭、“压力调整手轮”打开。

调整试验机下夹头的位置,操作步骤:关闭“进油手轮”,打开“调压手轮”,选择“油泵启动”,“油缸上行”,打开“进油手轮”,下夹头上行,此时严禁将手放在上、下夹头的任何位置,至合适位置后,关闭“进油手轮”。将上下夹头开口的位置对齐,将试件沿上下夹头的开口部位安装到上下夹头内。调整下夹头至拉伸位置使得试件加载凸台(或螺母)与夹头的间隙在2-3mm 时,关闭“进油手轮”,此时试件可以在夹头内灵活转动。关闭“调压手轮”,试件装夹完毕。

6.3连接测试线路

按要求联接测试线路,一般第一通道测

拉、压力,连接到试验机的拉、压力传感器接

图4.5 45#钢弹性模量E 和泊松比μ的实测曲线

图4.6 1/4桥接线方式

口上。其余通道选择测应变,应变的测试采用双片串联的方式,首先用短路线将两个纵向和两个横向应变片分别串连起来,包括补偿应变片,然后,采用快速插头连接的方式,将被测应变片依次联接到测试通道中,联接时注意应变片的位置与测试通道的对应关系,补偿方式可以采用共用补偿片(1/4桥),也可以采用自带补偿片(半桥)的方式。采用不同的补偿方式在选择通道参数时需对应不同桥路测量方式,1/4桥为方式1,半桥为方式2。1/4桥的接线方式如图4.6所示。

6.4设置数据采集环境

6.4.1进入测试环境

首先检测仪器。检测到仪器后,系统将自动给出上一次实验的测试环境。或通过文件-引入项目,引入所需要的采集环境。

6.4.2设置测试参数

测试参数是联系被测物理量与实测电信号的纽带,设置正确合理的测试参数是得到正确数据的前提。测试参数由系统参数、通道参数及窗口参数三部分组成。其中,系统参数包括测试方式、采样频率、报警参数、实时压缩时间及工程单位等;通道参数反映被测工程量与实测电信号之间的转换关系,由测量内容、转换因子及满度值等组成;窗口是指为了在实验中显示及实验完成后分析数据而设置的曲线窗口,曲线分为实时曲线及X-Y函数曲线两种。

第一项、系统参数

采样频率:“20-100Hz”,“拉压测试”,需要特别注意的是,测材料弹性模量和泊松比试验是一个非破坏性试验,需要通过设置报警通道来保护试件。试验时,当实测数据达到报警设定值时,油缸就会按照指定的要求反向运行或停止运行,报警通道一般设置为测力通道,报警值由试验预估最大荷载确定,例如,当控制最大纵向应变为800με时,所加的拉、压力应小于100KN,此时,设置报警参数上限为100KN,下限-100KN时,就可以保证最大应变不超过800με,以保证试件的安全。

第二项、通道参数

1CH测量试件所受的拉、压力,同拉、压试验设置相同的修正系数。另外,选出两个通道测量应变,对于设置为应力应变的通道需将其修正系数设置为“1”。点击“应力应变”进入应力应变测试参数设置,由于采用共用补偿片,需要输入桥路类型-选择“方式一”,当选择“方式一”时需要输入的参数有:应变计电阻、导线电阻、灵敏度系数、工程单位,并选择相应的满度值。应变通道的参数设置如图4.7所示。

图4.7 应变通道参数设置

第三项、窗口参数

可以开设三个数据窗口:

中间窗口:荷载、应变实时曲线;

右窗口:纵坐标-荷载,横坐标-纵向应变和横向应变;

左窗口:纵坐标-横向应变,横坐标-纵向应变。并设定好窗口的其它参数如坐标等。

6.4.3数据预采集

6.4.3.1 采集设备满度值对应检查

检查采集设备各通道显示的满度值是否与通道参数的设定值相一致,如不一致,需进行初始化硬件操作,单击菜单栏中的“控制”,选择“初始化硬件”,就可以实现采集设备满度值与通道参数设置满度值相一致。

6.4.3.2 数据平衡、清零

单击菜单栏中的“控制”,选择“平衡”,对各通道的初始值进行硬件平衡,可使所采集到的数据接近于零,然后,单击菜单栏中的“控制”,选择“清除零点”,“清除零点”为软件置零,可将平衡后的残余零点清除。

6.4.3.3启动采样

单击菜单栏中的“控制”,选择“启动采样”,选择数据存储的目录,便进入相应的采集环境,采集到相应的零点数据,此时启动油泵,选择“压缩上行”或“拉伸下行”,打开“进油手轮”,使下夹头上行或下行,此时所采集到的数据便会发生相应的变化,将下夹头调整到拉伸位置。此时从实时曲线窗口内便可以读到相应的力和位移的零点数据,证明采集环境和设备均能正常工作。单击菜单栏中的“控制”,选择“停止采样”,停止采集数据,并分析所采集的数据,确认所设置的各参数是否正确。

这样就完成了数据采集环境的设置。

6.5 加载测试

在确信采集环境和设备运行良好以后,便可以开始正式的加载测试了。首先设置试验机所处的状态,关闭“进油手轮”,关闭“调压手轮”,选择“拉压自控”、“油泵启动”、“拉伸下行”,前面已经设置好了采集环境,只需要“控制”、“平衡”、“清除零点”、“启动采样”,测试到零点数据。打开“进油手轮”进行拉伸加载,实验过程中通过进油手轮的旋转来控制加载速度。从中间窗口内可以读到试件所受的力以及试件的纵向应变和横向应变,至合适拉伸值时打开“压力控制手轮”,选择“压缩上行”,至力归零后,关闭“压力控制手轮”,通过“进油手轮”控制加载速度,进行压缩加载,至合适压缩值时打开“压力控制手轮”选择“拉伸下行”,至力归零后,关闭“压力控制手轮”,进行拉伸加载,通过旋转“进油手轮”控制加载速度。加载至合适值后,再卸载,进行压缩加载。这样循环测试到3-4组正确的数据后,在试件处于非受力的状态下就可以关闭“进油手轮”,停止采样。“油泵停止”,“拉压停止”,“自控停止”。这样就完成了加载测试的过程。

当然,也可以通过通道报警功能,控制拉压自动换向加载,由于在自动换向时,系统处于高压状态,试件有突然卸载现象。

7、数据分析

7.1 验证数据

首先回放一下试验加载的全过程,然后把数据调进来,显示全部数据,预览全部数据,观察数据的变化规律,验证数据的正确性。

7.2读取数据

弹性模量和泊松比电测试验采用分级读数的方式验证,共分5级,依据试验过程中的最大荷载,确定级差,为消除起始点误差的影响,一般将级差荷载作为零点荷载。通过数据移动及局部放大功能,显示所需要的一段数据,采用光标拖动与方向键微移光标相结合的方式,选取合适的荷载值,同时读取该荷载下的纵向应变和横向应变,填入试验表格,然后依次读取下一级的荷载及其对应的应变值,填入试验表格。

需要注意的是:由于采用拉、压双向加载测试,分析数据时需要分析两组数据,拉伸段,压缩段。对于用油压传感器测力的系统,测力通道需根据拉压段输入不同的系数。

7.3 分析数据

通过实验前的测量及实验后的数据读取就得到了所需要的数据,代入相应的公式或计算表格即可得到弹性模量E和泊松比μ。需要注意的是,由于采用拉、压双向加载测试,分析数据时需要分析两组数据,拉伸段、压缩段,并注意正反向数据的比对。

7.4 完成实验报告

通过观察试验现象、分析试验数据就可以进行试验报告的填写了,完成实验报告的各项内容。并总结试验过程中遇到的问题及解决方法。

8、实验注意事项

1、在紧急情况下,没有明确的方案时,请按急停按钮;

2、上夹头应处于活动铰状态,但不应旋出过长,夹头与上横梁间隙应在3-10mm之间;

3、在装夹试件确定油缸位置时,严禁在油缸运行时手持试件在夹头中间判断油缸的位置;

4、实验初始阶段加载要缓慢;

5、进行数据采集的第一步为初始化硬件,初始化完成后应确认采集设备的量程指示与通道参数的设定值一致;且平衡后各通道均无过载现象;

6、试件装夹及拆卸过程中应注意对应变片、接线板及测试线的保护。

7、在09年前的试验机上进行电测类实验时,实验操作人员可能未按照规定操作,没有及时关闭进油手轮而先停止数据采集时,试验机油缸活塞杆可能仍在向上或向下动作,此时容易造成试件特别是纯弯梁试件的不可逆损坏。因此进行如下升级:

在数据采集分析系统中增加了同步停止辅助功能,当实验人员首先停止数据采集时,数据采集分析系统自动发送一个电压控制信号,使运行中的试验机油缸活塞杆停止动作5秒钟并报警,提示操作人员关闭进油手轮,避免试件损坏。

注意:操作者仍然应该在关闭试验机后,停止数据采集。

材料力学实验指导书(拉伸、扭转、冲击、应变)

C 61`材料的拉伸压缩实验 一、实验目的 1.观察试件受力和变形之间的相互关系; 2.观察低碳钢在拉伸过程中表现出的弹性、屈服、强化、颈缩、断裂等物理 现象;观察铸铁在压缩时的破坏现象。 3.测定拉伸时低碳钢的强度指标(s 、b )和塑性指标(、);测定压 缩时铸铁的强度极限b。 4.学习、掌握电子万能试验机的使用方法及工作原理。 二、实验设备 1.微机控制电子万能试验机; 2.游标卡尺。 三、实验材料 拉伸实验所用试件(材料:低碳钢)如图1所示,压缩实验所用试件(材料:铸铁)如图2所示: d l l 图1 拉伸试件图2 压缩试件 四、实验原理 1、拉伸实验 低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-l曲线,即低碳钢拉伸曲线,见图3。 对于低碳钢材料,由图3曲线中发现OA直线,说明F正比于l,此阶段称为弹性阶段。屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。其中,B点为上屈服点,它受变形大小和试件等因素影响;

B 点为下屈服点。下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。测定屈服载荷Fs 时,必须缓慢而均匀地加载,并应用s =F s / A 0(A 0为试件变形前的横截面积)计算屈服极限。 图3 低碳钢拉伸曲线 屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。当载荷达到强度载荷F b 后,在试件的某一局部发生显著变形,载荷逐渐减小,直至试件断裂。应用公式b =F b /A 0计算强度极限(A 0为试件变形前的横截面积)。 根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率和端面收缩率 ,即 %100001?-= l l l δ,%1000 1 0?-=A A A ψ 式中,l 0、l 1为试件拉伸前后的标距长度,A 1为颈缩处的横截面积。 2、压缩实验 铸铁试件压缩过程中,通过力传感器和位移传感器进行数据采集,A/D 转换和处理, 并输入计算机,得到F-l 曲线,即铸铁压缩曲线,见图4。 图4 铸铁压缩曲 线

材料力学试验

第五章材料力学实验 5.1 拉伸 拉伸是材料力学最基本的实验,通过拉伸可以测定出材料一些基本的力学性能参数,如弹性模量、强度、塑性等。 一.实验目的 1.测定塑性材料的上下屈服强度R eH 、R eL 、抗拉强度R m 、断后延伸率A和截面收缩率Z;测定脆性材料的抗拉强度R m; 2.掌握用引伸计测定塑性材料的弹性模量的方法; 3.绘制材料的载荷-位移曲线; 4.观察和分析上述两种材料在拉伸过程中的各种现象,并比较它们力学性质的差异; 5.了解电子万能材料试验机的构造和工作原理,掌握其使用方法。 二.仪器、设备及试件 电子万能材料试验机,引伸计,游标卡尺等。 最常见的拉伸试件的截面是圆形和矩形,如图5.1-1(a)、(b)所示。 l)是待测部分的主体,其截面积为S0。按标试件分为夹持部分、过渡段和待测部分。标距( l)与其截面积(S0)之间的关系,拉伸试件可分为比例试件和非比例试件。按国家标准GB228-2002距( 的规定,比例试件的有关尺寸如下表5.1-1。 表5.1-1 三.实验原理

1.塑性材料弹性模量的测试 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。因此金属材料拉伸时弹性模量E 的测定是材料力学最主要最基本的一个实验。 测定材料弹性模量E 一般采用比例极限内的拉伸实验,材料在比例极限内服从虎克定律,其荷载与变形关系为: ES Fl l = ? (5.1-1) 若已知载荷F 及试件尺寸,只要测得试件标距内的伸长量Δl 或纵向应变即可得出弹性模量E 。 000 Fl F E lS S = =? (5.1-2) 本实验采用引伸计在试件预拉后,夹持在试件的标距范围内,并在弹性阶段测试;当进入过弹性阶段或屈服阶段,取下引伸计。其中塑性材料的拉伸实验不间断。 2.塑性材料的拉伸(低碳钢) 实验原理如图5.1-2(a )所示,首先,实验各参数的设置由PC 传送给测控中心后开始实验,拉伸时,力传感器和引伸计分别通过两个通道将式样所受的载荷和变形连接到测控中心,经相关程序计算后,再在PC 机上显示出各相关实验结果。 图5.1-2(b )所示是典型的低碳钢拉伸图。 当试件开始受力时,因夹持力较小,其夹持部分在夹头内有滑动,故图中开始阶段的曲线斜率 低碳钢的屈服阶段通常为较为水平的锯齿状(图中的B ′-C 段),与最高载荷B ′对应的应力称上屈服极限,由于它受变形速度等因素的影响较大,一般不作为材料的强度指标;同样,屈服后第一次下降的最低点也不作为材料的强度指标。除此之外屈服过程中的最小值(B 点)作为屈服强度R e L : el el F R S = (5.1-3) 当屈服阶段结束后(C 点),继续加载,载荷—变形曲线开始上升,材料进入强化阶段。若在这一阶段的某一点(如D 点)卸载至零,则可以得到一条与比例阶段曲线基本平行的卸载曲线。此时立即再加载,则加载曲线沿原卸载曲线上升到D 点,以后的曲线基本与未经卸载的曲线重合。可见

材料力学实验指导书

材料力学实验指导书 §5 梁弯曲正应力电测实验指导书 1、概述 梁是工程中常用的受弯构件。梁受弯时,产生弯曲变形,在结构设计和强度计算中经常要涉及到梁的弯曲正应力的计算,在工程检验中,也经常通过测量梁的主应力大小来判断构件是否安全,也可采用通过测量梁截面不同高度的应力来寻找梁的中性层。 2、实验目的 1、用应变电测法测定矩形截面简支梁纯弯曲时,横截面上的应力分布规律。 2、验证纯弯梁的弯曲正应力公式。 3、观察纯弯梁在双向交变加载下的应力变化特点。 3、实验原理 梁纯弯曲时,根据平面假设和纵向纤维之间无挤压的假设,得到纯弯曲正应力计算公式为: Z I My =σ 式中:M —弯矩 Z I —横截面对中性层的惯性矩 y —所求应力点的纵坐标(中性轴为坐标零点)。 由上式可知梁在纯弯曲时,沿横截面高度各点处的正应力按线性规律变化,根据纵向纤维之间无挤压的假设,纯弯梁中的单元体处于单纯受拉或受压状态,由单向应力状态的胡克定律E *εσ=可知,只要测得不同梁高处的ε,就可计算出该点的应力σ,然后与相应点的理论值进行比较,以验证弯曲正应力公式。 4、实验方案 4.1实验设备、测量工具及试件: YDD-1型多功能材料力学试验机(图1.8)、150mm 游标卡尺、四点弯曲梁试件(图5.1)。 YDD-1型多功能材料力学试验机由试验机主机部分和数据采集分析两部分组成,主机部分由加载机构及相应的传感器组成,数据采集部分完成数据的采集、分析等。 图5.1实验中用到的纯弯梁,矩形截面,在梁的两端有支撑圆孔,梁的中间段有四个对称半圆形分配梁加载槽,加载测试时,两半圆型槽中间部分为纯弯段,在纯弯段中间不同梁高部位、在离开纯弯段中间一定距离的梁顶及梁底、在加工有长槽孔部位的梁顶及梁底均粘贴电阻应变片。 4.2 装夹、加载方案 安装好的试件如图5.2所示。试验时,四点弯曲梁通过销轴安装在支座的长槽孔内,形成滚动铰支座。梁向下弯曲时,荷载通过分配梁等量地分配到梁上部两半圆形加载槽,梁向上弯曲时,荷载通 过分配梁等量地分配到梁下部两半圆形加载槽,分配梁的两个加载支滚,一个为滚动铰支座,一个为 图5.1 四点弯曲梁试件

材料力学实验报告册概要

实验日期_____________教师签字_____________ 同组者_____________审批日期_____________ 实验名称:拉伸和压缩试验 一、试验目的 1.测定低碳钢材料拉伸的屈服极限σs 、抗拉强度σb、断后延伸率δ及断 面收缩率ψ。 2.测定灰铸铁材料的抗拉强度σb、压缩的强度极限σb。 3.观察低碳钢和灰铸铁材料拉伸、压缩试验过程中的变形现象,并分析 比较其破坏断口特征。 二、试验仪器设备 1.微机控制电子万能材料试验机系统 2.微机屏显式液压万能材料试验机 3.游标卡尺 4.做标记用工具 三、试验原理(简述) 1

四、试验原始数据记录 1.拉伸试验 低碳钢材料屈服载荷 最大载荷 灰铸铁材料最大载荷 2.灰铸铁材料压缩试验 直径d0 最大载荷 教师签字:2

五、试验数据处理及结果 1.拉伸试验数据结果 低碳钢材料: 铸铁材料: 2.低碳钢材料的拉伸曲线 3.压缩试验数据结果 铸铁材料: 3

4.灰铸铁材料的拉伸及压缩曲线: 5.低碳钢及灰铸铁材料拉伸时的破坏情况,并分析破坏原因 ①试样的形状(可作图表示)及断口特征 ②分析两种材料的破坏原因 低碳钢材料: 灰铸铁材料: 4

6.灰铸铁压缩时的破坏情况,并分析破坏原因 六、思考讨论题 1.简述低碳钢和灰铸铁两种材料的拉伸力学性能,以及力-变形特性曲线 的特征。 2.试说明冷作硬化工艺的利与弊。 3.某塑性材料,按照国家标准加工成直径相同标距不同的拉伸试样,试 判断用这两种不同试样测得的断后延伸率是否相同,并对结论给予分析。 5

七、小结(结论、心得、建议等)6

材料力学实验指导书

《材料力学》实验指导书(土木工程) 铜陵学院土木建筑系实验中心 王明芳编 2012-2-22

力学实验规则及要求 一、作好实验前的准备工作 (1)按各次实验的预习要求,认真阅读实验指导复习有关理论知识,明确实验目的,掌握实验原理,了解实验的步骤和方法。 (2)对实验中所使用的仪器、实验装置等应了解其工作原理,以及操作注意事项。 (3)必须清楚地知道本次实验须记录的数据项目及其数据处理的方法。 二、严格遵守实验室的规章制度 (1)课程规定的时间准时进入实验室。保持实验室整洁、安静。 (2)未经许可,不得随意动用实验室内的机器、仪器等一切设备。 (3)作实验时,应严格按操作规程操作机器、仪器,如发生故障,应及时报告,不得擅自处理。 (4)实验结束后,应将所用机器、仪器擦拭干净,并恢复到正常状态。 三、认真做好实验 (1)接受教师对预习情况的抽查、质疑,仔细听教师对实验内容的讲解。 (2)实验时,要严肃认真、相互配合,仔细地按实验步骤、方法逐步进行。 (3)实验过程中,要密切注意观察实验现象,记录好全部所需数据,并交指导老师审阅。 四、实验报告的一般要求 实验报告是对所完成的实验结果整理成书面形式的综合资料。通过实验报告的书写,培养学习者准确有效地用文字来表达实验结果。因此,要求学习者在自己动手完成实验的基础上,用自己的语言扼要地叙述实验目的、原理、步骤和方法,所使用的设备仪器的名称与型号、数据计算、实验结果、问题讨论等内容,独立地写出实验报告,并做到字迹端正、绘图清晰、表格简明。

目录 实验一纯弯曲梁横截面上正应力的分布规律实验 (4) 实验二材料弹性模量E、泊松比μ的测定 (7) 实验三偏心拉伸实验 (12) 实验四等强度梁实验 (16) 实验五悬臂梁实验 (18) 实验六压杆稳定实验 (21) 实验七纯扭转实验 (25) 实验八电阻应变片灵敏系数测定实验实验 (28)

《材料力学实验指导书》解析

课程教案 课程名称: 任课教师: 所属院部:建筑工程与艺术学院 教学班级: 教学时间:2015—2016 学年第 1 学期湖南工学院

1 实验一 拉伸实验 一、本实验主要内容 低碳钢和铸铁的拉伸实验。 二、实验目的与要求 1.测定低碳钢的流动极限S σ、强度极限b σ、延伸率δ、截面收缩率ψ和铸铁的强度极限b σ。 2.根据碳钢和铸铁在拉伸过程中表现的现象,绘出外力和变形间的关系曲线(F L -?曲线)。 3.比较低碳钢和铸铁两种材料的拉伸性能和断口情况。 三、实验重点难点 1、拉伸时难以建立均匀的应力状态。 2、采集数据时,对数据的读取。 四、教学方法和手段 课堂讲授、提问、讨论、启发、演示、辩论等;实验前对学生进行实验的理论指导和提醒学生实验过程的注意事项。 五、作业与习题布置 1、低碳钢拉伸图分为几阶段?每一阶段,力与变形有何关系?有什么现象? 2、低碳钢和铸铁在拉伸时可测得哪些力学性能指标?用什么方法测得?

1 实验一 拉伸实验 拉伸实验是测定材料力学性能的最基本最重要的实验之一。由本实验所测得的结果,可以说明材料在静拉伸下的一些性能,诸如材料对载荷的抵抗能力的变化规律、材料的弹性、塑性、强度等重要机械性能,这些性能是工程上合理地选用材料和进行强度计算的重要依据。 一、实验目的要求 1.测定低碳钢的流动极限S σ、强度极限b σ、延伸率δ、截面收缩率ψ和铸铁的强度极限b σ。 2.根据碳钢和铸铁在拉伸过程中表现的现象,绘出外力和变形间的关系曲线(F L -?曲线)。 3.比较低碳钢和铸铁两种材料的拉伸性能和断口情况。 二、实验设备和仪器 万能材料试验机、游标卡尺、分规等。 三、拉伸试件 金属材料拉伸实验常用的试件形状如图所示。图中工作段长度l 称为标距,试件的拉伸变形量一般由这一段的变形来测定,两端较粗部分是为了便于装入试验机的夹头内。 为了使实验测得的结果可以互相比较,试件必须按国家标准做成标准试件,即 5l d =或10l d =。 对于一般板的材料拉伸实验,也应按国家标准做成矩形截面试件。其截面面积 和试件标距关系为l = l =A 为标距段内的截面积。 四、实验方法与步骤

材料力学实验参考

实验一、测定金属材料拉伸时的力学性能 一、实验目的 1、测定低碳钢的屈服极限s σ,强度极限b σ,延伸率δ和面积收缩率ψ。 2、测定铸铁的强度极限b σ。 3、观察拉伸过程中的各种现象,并绘制拉伸图(l F ?-曲线)。 二、仪器设备 1、液压式万能试验机。 2、游标卡尺。 三、实验原理简要 材料的力学性质s σ、b σ、δ和ψ是由拉伸破坏试验来确定的。试验时,利用试验机自动绘出低碳钢拉伸图和铸铁拉伸图。对于低碳材料,确定屈服载荷s F 时,必须缓慢而均匀地使试件产生变形,同时还需要注意观察。测力回转后所指示的最小载荷即为屈服载荷s F ,继续加载,测得最大载荷b F 。试件在达到最大载荷前,伸长变形在标距范围内均匀分布。从最大载荷开始,产生局部伸长和颈缩。颈缩出现后,截面面积迅速减小,继续拉伸所需的载荷也变小了,直至断裂。 铸铁试件在极小变形时,就达到最大载荷,而突然发生断裂。没有流动和颈缩现象,其强度极限远低于碳钢的强度极限。 四、实验过程和步骤 1、用游标卡尺在试件的标距范围内测量三个截面的直径,取其平均值,填入记录表内。取三处中最小值作为计算试件横截面积的直径。 2、 按要求装夹试样(先选其中一根),并保持上下对中。 3、 按要求选择“试验方案”→“新建实验”→“金属圆棒拉伸实验”进行试验,详细操 作要求见万能试验机使用说明。 4、 试样拉断后拆下试样,根据试验机使用说明把试样的l F ?-曲线显示在微机显示屏 上。从低碳钢的l F ?-曲线上读取s F 、b F 值,从铸铁的l F ?-曲线上读取b F 值。 5、 测量低碳钢(铸铁)拉断后的断口最小直径及横截面面积。 6、 根据低碳钢(铸铁)断口的位置选择直接测量或移位方法测量标距段长度1l 。 7、 比较低碳钢和铸铁的断口特征。

《材料力学》实验报告

材料力学 实验报告 对应课程 学号 学生 专业 班级 指导教师 成绩总评 学年第学期

目录 1.低碳钢及铸铁拉伸破坏实验???????????????(3 ) 2.低碳钢及铸铁压缩破坏实验???????????????(8 ) 3.引伸计法测定材料的弹性模量??????????????( 12 ) 4.低碳钢及铸铁扭转破坏实验???????????????(15) 5.载荷识别实验?????????????????????( 19) 成绩总评定 : 拉伸压缩测E扭转载荷识别

低碳钢及铸铁拉伸破坏实验 实验日期: 同组成员: 一、实验目的及原理 二、实验设备和仪器 1、试验机名称及型号: 吨位: 精度: 2、量具名称: 精度: 三、实验步骤 (一)、低碳钢、铸铁拉伸实验步骤:

四、试样简图 低碳钢试样 实验前实验后试 样 简 图 铸铁试样 实验前实验后试 样 简 图

五、实验数据及计算 低碳钢拉伸试验 (一)试件尺寸 (a)试验前 试件标直径d0( mm )最小横截距 横截面 1横截面 2横截面 3面面积L0平平平A (1)(2)(1)(2)(1) ( 2)02 ( mm )均均均( mm ) (b)试验后 断后标断口直径 d 1 ( mm )距 L1 12平均( mm )断口(颈缩处)最小横截面面 积 A1 ( mm2 ) 屈服极限:强度极限:断后延伸率: F s s (MPa) A0 F b b (MPa) A0 ( L 1 L O ) 100% L0

A0 A1100% 断面收缩率: A0 铸铁拉伸试验 (a)试验前 试件标直径d0( mm )最小横截距 横截面 1横截面 2横截面 3面面积L0平平平A (1)(2)(1)(2)(1) ( 2)02 ( mm )均均均( mm ) (b)试验后 F b 强度极限:b(MPa ) (二)绘出低碳钢的“力—位移、及铸铁的“ 力-位移”曲线低碳钢铸铁

材料力学实验

材料力学实验 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

实验一实验绪论 一、材料力学实验室实验仪器 1、大型仪器: 100kN(10T)微机控制电子万能试验机;200kN(20T)微机控制电子万能试验机;WEW-300C微机屏显式液压万能试验机;WAW-600C微机控制电液伺服万能试验机 2、小型仪器: 弯曲测试系统;静态数字应变仪 二、应变电桥的工作原理 三、材料力学实验与材料力学的关系 四、材料力学实验的要求 1、课前预习 2、独立完成 3、性能实验结果表达执行修约规定 4、曲线图一律用方格纸描述,并用平滑曲线连接 5、应力分析保留小数后一到二位

实验二轴向压缩实验 一、实验预习 1、实验目的 I、测定低碳钢压缩屈服点 II、测定灰铸铁抗压强度 2、实验原理及方法 金属的压缩试样一般制成很短的圆柱,以免被压弯。圆柱高度约为直径的倍~3倍。混凝土、石料等则制成立方形的试块。 低碳钢压缩时的曲线如图所示。实验表明:低碳钢压缩时的弹性模量E和屈服极限σε,都与拉伸时大致相同。进入屈服阶段以后,试样 越压越扁,横截面面积不断增大,试样抗压能力也继续增强,因而得不 到压缩时的强度极限。 3、实验步骤 I、放试样 II、计算机程序清零 III、开始加载 IV、取试样,记录数据 二、轴向压缩实验原始数据 指导老师签名:徐

三、轴向压缩数据处理 测试的压缩力学性能汇总 强度确定的计算过程: 实验三轴向拉伸实验 一、实验预习 1、实验目的 (1)、用引伸计测定低碳钢材料的弹性模量E; (2)、测定低碳钢的屈服强度,抗拉强度。断后伸长率δ和断面收缩率; (3)、测定铸铁的抗拉强度,比较两种材料的拉伸力学性能和断口特征。 2、实验原理及方法 I.弹性模量E及强度指标的测定。(见图) 低碳钢拉伸曲线铸铁拉伸曲线 (1)测弹性模量用等增量加载方法:F o =(10%~20%)F s , F n =(70%~80%)F s 加载方案为:F 0=5,F 1 =8,F 2 =11,F 3 =14,F 4 =17 ,F 5 =20 (单位:kN) 数据处理方法: 平均增量法 ) , ( ) ( 0取三位有效数 GPa l A l F E m om ? ? ? = δ(1) 线性拟合法 () GPa A l l F n l F F n F E om o i i i i i i? ? ∑ - ∑? ∑ ∑ - ∑ = 2 2 ) ( (2)

材料力学实验

1,为何在拉伸试验中必须采用标准试件或比例试件,材料相同而长短不同的试件延伸率是否相同? 答:拉伸实验中延伸率的大小与材料有关,同时与试件的标距长度有关.试件局部变形较大的断口部分,在不同长度的标距中所占比例也不同.因此拉伸试验中必须采用标准试件或比例试件,这样其有关性质才具可比性. 材料相同而长短不同的试件通常情况下延伸率是不同的(横截面面积与长度存在某种特殊比例关系除外). 2, 分析比较两种材料在拉伸时的力学性能及断口特征. 答:试件在拉伸时铸铁延伸率小表现为脆性,低碳钢延伸率大表现为塑性;低碳钢具有屈服现象,铸铁无.低碳钢断口为直径缩小的杯锥状, 且有450的剪切唇,断口组织为暗灰色纤维状组织。铸铁断口为横断面,为闪光的结晶状组织。. 3,分析铸铁试件压缩破坏的原因. 答:铸铁试件压缩破坏,其断口与轴线成45°~50°夹角,在断口位置剪应力已达到其抵抗的最大极限值,抗剪先于抗压达到极限,因而发生斜面剪切破坏. 4,低碳钢与铸铁在压缩时力学性质有何不同? 结构工程中怎样合理使用这两类不同性质的材料? 答:低碳钢为塑性材料,抗压屈服极限与抗拉屈服极限相近,此时试件不会发生断裂,随荷载增加发生塑性形变;铸铁为脆性材料,抗压强度远大于抗拉强度,无屈服现象。压缩试验时,铸铁因达到剪切极限而被剪切破坏。 通过试验可以发现低碳钢材料塑性好,其抗剪能力弱于抗拉;抗拉与抗压相近。铸铁材料塑性差,其抗拉远小于抗压强度,抗剪优于抗拉低于抗压。故在工程结构中塑性材料应用范围广,脆性材料最好处于受压状态,比如车床机座。 5,试件的尺寸和形状对测定弹性模量有无影响?为什么? 答: 弹性模量是材料的固有性质,与试件的尺寸和形状无关。 6, 逐级加载方法所求出的弹性模量与一次加载到最终值所求出的弹性模量是否相同?为什么必须用逐级加载的方法测弹性模量? 答: 逐级加载方法所求出的弹性模量与一次加载到最终值所求出的弹性模量不相同,采用逐级加载方法所求出的弹性模量可降低误差,同时可以验证材料此时是否处于弹性状态,以保证实验结果的可靠性。 7, 试验过程中,有时候在加砝码时,百分表指针不动,这是为什么?应采取什么措施? 答:检查百分表是否接触测臂或超出百分表测量上限,应调整百分表位置。 8,测G时为什么必须要限定外加扭矩大小? 答:所测材料的G必须是材料处于弹性状态下所测取得,故必须控制外加扭矩大小。 9, 碳钢与铸铁试件扭转破坏情况有什么不同?分析其原因.

材料力学实验指导书

试验一岩石单轴抗压试验 一、试验的目的: 测定岩石的单轴抗压强度R c。当无侧限试样在纵向压力作用下出现压缩破坏时,单位面积上所承受的载荷称为岩石的单轴抗压强度,即试样破坏时的最大载荷与垂直于加载方向的截面积之比。 本次试验主要测定天然状态下试样的单轴抗压强度。 二、基本原理 岩石的单轴抗压强度是指岩石试样在单向受压至破坏时,单位面积上所承受的最大压应力: (MPa) 一般简称抗压强度。根据岩石的含水状态不同,又有干抗压强度和饱和抗压强度之分。 岩石的单轴抗压强度,常采用在压力机上直接压坏标准试样测得,也可与岩石单轴压缩变形试验同时进行,或用其它方法间接求得。 三、主要仪器设备 1、钻石机、切石机、磨石机或其他制样设备。 2、测量平台、角尺、放大镜、游标卡尺。 3、压力机,应满足下列要求: (1)压力机应能连续加载且没有冲击,并具有足够的吨位,使能在总吨位的10%—90%之间进行试验。 (2)压力机的承压板,必须具有足够的刚度,其中之一须具有球形座,板面须平整光滑。 (3)承压板的直径应不小于试样直径,且也不宜大于试样直径的两倍。如压力机承压板尺寸大于试样尺寸两部以上时,需在试样上下两端加辅助承压板。辅助承压板的

刚度和平整度应满足压力机承压板的要求。 (4)压力机的校正与检验,应符合国家计量标准的规定。 三、操作步骤 1、试样制备 (1)样品可用钻孔岩芯或在坑槽中采取的岩块,在取样和试样制备过程中,不允许发生认为裂隙。 (2)试件规格:采用直径5厘米,高为10厘米的方柱体,各尺寸允许变化范围为:直径及边长为±0.2厘米,高为±0.5厘米。 (3)对于非均质的粗粒结构岩石,或取样尺寸小于标准尺寸者,允许采用非标准试样,但高径之比宜为2.0~2.5。 (4)试样制备的精度应満足如下要求: a沿试样高度,直径的误差不超过0.03cm; b试样两端面不平行度误差,最大不超过0.005cm; c端面应垂直于轴线,最大偏差不超过0.25°; d 方柱体试样的相邻两面应互相垂直,最大偏差不超过0.25°。 (4)试样含水状态处理 在进行试验前应按要求的含水状;制备试样时采用的冷却液,必须是洁净水,不许使用油液。 (5)对于遇水崩解、溶解和干缩湿胀的岩石,应采用干法制样 2、试样描述 描述内容包括:岩石名称、颜色、矿物成分、结构、风化程度、胶结物性质等;加荷方向与岩石试样内层理、节理、裂隙的关系及试样加工中出现的问题; 3、试样尺寸测量

材料力学实验指导书

一 拉伸试验 一、目的 1、测定低碳钢的流动极限(屈服极限)s σ,强度极限b σ,延伸率δ和面积收缩率?。 2、测定铸铁的强度极限b σ。 3、观察拉伸过程中的各种现象,并绘制拉伸图(l P ?-曲线)。 4、比较低碳钢(塑性材料)与铸铁(脆性材料)机械性质的特点。 二、设备 1、液压式万能试验机。 2、游标卡尺。 三、试样 试件可制成圆形或矩形截面。常用试样为圆形截面的。如图1-7所示。试件中段用于测量拉伸变形,此段的长度o l 称为“标矩”,两端较粗部分是装入试验夹头中的,便于承受拉力,端部的形状视试验机夹头的要求而定,可制成圆柱形(1-7),螺纹形(图1-8)或阶梯形(图1-9)。 试验表明,试件的尺寸和形状对试验结果会有所影响,为了避免此各种影响,使各种材料的力学性质的数值能互相比较,所以对试件的尺寸和形状都有统一规定。目前我国规定的试样

有标准试件和比例试件两种,具体尺寸见表1-1, 0. A是圆形或矩形截面面积。 试件 标距 ) (mm l o 截面面积 ) (2 mm A 圆形试件 ) ( mm d 直径 延伸率表示 符号标准试件 长100 78.5 10 10 δ 短50 78.5 10 sδ比例试件 长 3. 11A任意任意 10 δ 短 65 .5A任意任意 s δ 四、原理 材料的力学性质 s σ、 b σ、δ和?是由拉伸破坏试验来确定的,试验时,利用试验机的自动绘图器绘出低碳钢拉伸图(图-10)和铸铁拉伸图(图1-11)。 对于低碳材料,图1-10上的B-C为流动阶段,B点所对应的应力值称为流动极限。确定 流动载荷 s p时,必须缓慢而均匀地使试件产生变形,同时还需要注意观察。测力盘主针回 转后所指示的最小载荷(第一次下降的最小载荷)即为流动载荷 s p,继续加载,测得最大

材料力学扭转实验实验报告

扭 转 实 验 一.实验目的: 1.学习了解微机控制扭转试验机的构造原理,并进行操作练习。 2.确定低碳钢试样的剪切屈服极限、剪切强度极限。 3.确定铸铁试样的剪切强度极限。 4.观察不同材料的试样在扭转过程中的变形和破坏现象。 二.实验设备及工具 扭转试验机,游标卡尺、扳手。 三.试验原理: 塑性材料和脆性材料扭转时的力学性能。(在实验过程及数据处理时所支撑的理论依据。参考材料力学、工程力学课本的介绍,以及相关的书籍介绍,自己编写。) 四.实验步骤 1.a 低碳钢实验(华龙试验机) (1)量直径: 用游标卡尺量取试样的直径。在试样上选取3各位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均值中取最小值作为试样的直径。。 (2)安装试样: 启动扭转试验机,手动控制器上的“左转”或“右转”键,调整活动夹头的位置,使前、后两夹头钳口的位置能满足试样平口的要求,把试样水平地放在两夹头之间,沿箭头方向旋转手柄,夹紧试样。 (3)调整试验机并对试样施加载荷: 在电脑显示屏上调整扭矩、峰值、切应变1、切应变2、夹头间转角、时间的零点;根据你所安装试样的材料,在“实验方案读取”中选择“教学低碳钢试验”,并点击“加载”而确定;用键盘输入实验编号,回车确定(按Enter 键);鼠标点“开始测试”键,给试样施加扭矩;在加载过程中,注意观察屈服扭矩的变化,记录屈服扭矩的下限值,当扭矩达到最大值时,试样突然断裂,后按下“终止测试”键,使试验机停止转动。 (4)试样断裂后,从峰值中读取最大扭矩 。从夹头上取下试样。 (5)观察试样断裂后的形状。 1.b 低碳钢实验(青山试验机) (1)量直径: 用游标卡尺量取试样的直径。在试样上选取3各位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均值中取最小值作为试样的直径。 (2)安装试样: 启动扭转试验机,手动“试验机测控仪”上的“左转”或“右转”键,调整活动夹头的位置,使前、后两夹头钳口的位置能满足试样平口的要求,把试样水平地放在两夹头之间,s τb τb τ 0d S M b M 0d

材料力学实验指导书

工程力学实验指导书 主讲:林植慧 机械与汽车工程学院 SCHOOL OF MECHANICAL AND AUTOMOTIVE ENGINEERING

实验一, 二 低碳钢(Q235钢)、铸铁的轴向拉伸试验 一、实验目的与要求 1.观察低碳钢(Q235钢)和铸铁在拉伸试验中的各种现象。 2.测绘低碳钢和铸铁试件的载荷―变形曲线(F ―Δl 曲线)及应力―应变曲线(σ―ε曲线)。 3.测定低碳钢拉伸时的比例极限P σ,屈服极限s σ、强度极限b σ、伸长率δ、断面收缩率ψ和铸铁拉伸时的强度极限b σ。 4.测定低碳钢的弹性模量E 。 5.观察低碳钢在拉伸强化阶段的卸载规律及冷作硬化现象。 6.比较低碳钢(塑性材料)和铸铁(脆性材料)的拉伸力学性能。 二、实验设备、仪器和试件 1.微机控制电子万能试验机。 2.电子式引伸计。 3.游标卡尺。 4.低碳钢、铸铁拉伸试件。 三、实验原理与方法 材料的力学性能主要是指材料在外力作用下,在强度和变形方面表现出来的性质,它是通过实验进行研究的。低碳钢和铸铁是工程中广泛使用的两种材料,而且它们的力学性质也较典型。 试验采用的圆截面短比例试样按国家标准(GB/T 228-2002《金属材料 室温拉伸试验方法》) 制成,标距0l 与直径0d 之比为5100 0或=d l ,如图1-1所示。这样可以避免因试样尺寸和形状的影响而产生的差异,便于各种材料的力学性能相互比较。图中:0d 为试样直径,0l 为试样的标距。国家标准中还规定了其他形状截面的试样。 图 1-1 金属拉伸试验在微机控制电子万能试验机上进行,在实验过程中,与电子万能试验机联机的计算机显示屏上实时绘出试样的拉伸曲线(也称为F ―l ?曲线),如图1-2所示。低碳钢试样的拉伸曲线(图1-2a)分为弹性阶段,屈服阶段,强化阶段及局部变形阶段。如果在强化阶段

材料力学实验指导书(测量材料弹性模量E)

测量材料弹性模量E实验 一、实验名称 测定材料的弹性模量。 二、实验目的 1.掌握测定Q235钢弹性模量E的实验方法; 2.熟悉CEG-4K型测E试验台及其配套设备的使用方法。 三、实验设备及仪器 1.CEG-4K型测E试验台 2.球铰式引伸仪 四、试样制备 1. 试样:Q235钢,如图所示,直径d=10mm,标距L=100mm。 2、载荷增重ΔF=1000N(砝码四级加载,每个砝码重25N,初载砝码一个,重16N,采用1:40杠杆比放大) 五、实验原理 实验时,从F0到F4逐级加载,载荷的每级增量为1000N。每次加载时,记录相应的长度变化量,即为ΔF引起的变形量。在逐级加载中,如果变形量ΔL 基本相等,则表明ΔF与ΔL为线性关系,符合胡克定律。完成一次加载过程,将得到ΔL的一组数据,实验结束后,求ΔL1到ΔL4的平均值ΔL平,代入胡克定律计算弹性模量。即

EA l F l ? ? = ? ?001 .0 备注:引伸仪每格代表0.001mm。 六、实验步骤及注意事项 1.调节吊杆螺母,使杠杆尾部上翘一些,使之与满载时关于水平位置大致对称。 2.把引伸仪装夹到试样上,必须使引伸仪不打滑。 注意:对于容易打滑的引伸仪,要在试样被夹处用粗纱布沿圆周方向打磨一下。引伸仪为精密仪器,装夹时要特别小心,以免使其受损。采用球铰式引伸仪时,引伸仪的架体平面与试验台的架体平面需成45°左右的角度。 3.挂上砝码托。 4.加上初载砝码,记下引伸仪的初读数。 5.分四次加等重砝码,每加一次记录一次引伸仪的读数。注意:加砝码时要缓慢放手,以使之为静载,防止砝码失落而砸伤人、物。 6.实验完毕,先卸下砝码,再卸下引伸仪。 七、数据处理 1. 记录相关数据 分级加载初载一次加载二次加载三次加载四次加载引伸仪读数L0= L1= L2= L3= L4= 2.计算 (1)各级形变量的计算 分级加载一次加载二次加载三次加载四次加载平均值形变量ΔL1= ΔL2= ΔL3= ΔL4= ΔL平=

材料力学实验指导书0908资料

材料力学实验指导书 (2007版) 中国海洋大学工程学院土木工程实验中心 编者:郭卫国

学生实验守则 一、实验前要认真预习,明确实验内容、原理、目的、步骤和注意事项;课外 实验研究项目,实验前应拟定实验方案,并经实验室管理人员审查同意方 可实施; 二、学生在教师的指导下自主进行实验,要严格遵守仪器设备操作规程,节约 使用实验材料和水、电、气,如实记录实验现象、数据和结果,认真分析,独立完成实验报告; 三、爱护仪器设备及其他设施、物品,不得擅自动用与实验无关的仪器设备和 物品;不准擅自将实验室的物品带出室外;损坏或遗失仪器设备及其他设施、物品,应按学校有关规定进行赔偿; 四、实验完毕后,要及时关闭电源、水源、气源,清理卫生,将仪器设备和实 验物品复位,经指导老师检查合格后方可离开; 五、注意安全,熟悉安全设施和事故处理措施,实验过程中发现异常情况要及 时报告;发生危险时,应立即关闭电源、水源、气源,并迅速撤离;规范处理实验废液、废气和固体废弃物; 六、遵守纪律,必须按规定或预约时间参加实验,不得迟到、早退、旷课;保 持实验室安静,不准大声喧哗、嬉闹,不准从事与实验无关的活动;保持 实验室清洁,不准吸烟,不准随地吐痰、乱扔杂物。 前言 实验是进行科学研究的重要方法,科学史上许多重大发明是依靠科学实验而得到的,许多新理论的建立也要靠实验来验证。例如材料力学中应力-应变的线性关系就是胡克于1668年到1678年间作了一系列的弹簧实验之后建立起来的。不仅如此,实验对材料力学有着更重要的一面,因为材料力学的理论是建立在将真实材料理想化、实际构件典型化、公式推导假设化基础之上的,它的结论是否正确以及能否在工程中应用,都只有通过实验验证才能断定。在解决工程设计中的强度、刚度等问题时,首先要知道材料的力学性能和表达力学性能的材料常数,

材料力学实验报告

青岛黄海学院实验指导书 课程名称:材料力学 课程编码: 04115003 主撰人:吕婧 青岛黄海学院

目录 实验一拉、压实验 (1) 实验二扭转实验 (6) 实验三材料弹性模量E和泊松比μ的测定 (8) 实验四纯弯曲梁的正应力实验 (12)

实验一低碳钢拉伸实验 一、实验目的要求: (一)目的 σ、延伸率δ,截面收缩率ψ。 1.测定低碳钢的屈服极限σS,强度极限 b σ,观察上述两种材料的拉伸和破坏现象,绘制拉伸时2.测定铸铁的强度极限 b 的P-l?曲线。 (二)要求 1.复习讲课中有关材料拉伸时力学性能的内容;阅读本次实验内容和实设备中介绍万能试验机的构造原理、操作方法、注意事项,以及有关千分表和卡尺的使用方法。 2.预习时思考下列问题:本次实验的内容和目的是什么?低碳钢在拉伸过程中可分哪几个阶段,各阶段有何特征?试验前、试验中、试验后需要测量和记录哪些数据?使用液压式万能试验机有哪些注意事项? 二、实验设备和工具 1.万能实验 2.千分尺和游标卡尺。 3.低碳钢和铸铁圆形截面试件。 三、实验性质: 验证性实验 四、实验步骤和内容: (一)步骤 1.取表距L =100mm.画线 2.取上,中,下三点,沿垂直方向测量直径.取平均值

3.实验机指针调零. 4.缓慢加载,读出 s P .b P .观察屈服及颈缩现象,观察是否出现滑移线. 5.测量低碳钢断裂后标距长度1l ,颈缩处最小直径1d (二)实验内容: 1.低碳钢试件 (1)试件 (2)计算结果 屈服荷载 s P =22.1KN 极限荷载 b P =33.2KN 屈服极限 s σ=s P /0A =273.8MPa 强度极限 b σ=b P /0A =411.3MPa 延伸率 δ=(1l -0l )/0l *100%=33.24% 截面收缩率ψ=(0A -1A )/0A *100%=68.40% (3)绘制低碳钢P~ l ? 曲线

材料力学实验指导要点

专业: 学号: 姓名: 西南交通大学峨眉校区力学实验中心 一、学生实验须知 1.学生进入实验室,要严格遵守实验室的各项规章制度,服从指导教师的安排; 2.严禁在实验室大声喧哗和嬉戏; 3.保持实验室周围的整洁,不乱扔纸屑、果皮,不随地吐痰,严禁吸烟;4.实验前应预习实验内容,弄清实验目的、原理和方法; 5.实验过程中应严肃认真,严格按照规定步骤操作,自己动手完成,及时记录和整理实验数据,不得转抄他人数据,要培养自己严谨的科学态度和分析问题、解决问题的能力; 6.使用仪器设备时,应严格遵守操作规程,若发现异常现象应立即停止使用,并及时向指导教师报告。如果因违反操作规程(或未经许可使用)而造成设备损坏,应按学校有关规定赔偿损失。 7.实验结束后,应将仪器设备和桌凳整理好并归还原位,协助打扫实验室卫生,经指导老师检查合格后方能离开实验室; 8.学生应按时(最迟不超过一周时间)上交实验报告,以供老师批改统计成绩。 - 1 - 二、实验仪器设备介绍

(一)材料力学多功能组合实验台 材料力学多功能组合实验台(以下简称实验台)是方便学生自己动手做材料力学电测实验的设备,配套使用的仪器设备还有:拉压型力传感器、力&应变综合参数测试仪、电阻应变片、连接导线与梅花改刀等,并配有计算机接口,可实现数据的计算机自动采集与计算。一个实验台可做多个电测实验,功能全面,操作简单,实验台结构如图2-1所示。 图2-1 材料力学多功能组合实验台 实验台为框架式整体结构,配置有拉压型力传感器及标准测点应变计(在试件待测点表面粘贴的电阻应变片),通过力&应变综合参数测试仪(以下简称测试仪)实现力与应变的实时测量。实验台分前后两半部分,前半部分可做弯扭组合变形实验、材料弹性模量与泊松比测定实验、偏心拉伸实验、压杆稳定实验、悬臂梁实验、等强度梁实验;后半部分可做纯弯曲梁正应力测试实验、电阻应变片灵敏系数标定实验、组合叠梁实验等。 操作规程如下: (1) 将所作实验的试件通过有关附件连接到架体相应位置,连接拉压型力传感器和加载件到加载机构上。 (2) 连接拉压型力传感器电缆线到测试仪后面传感器输入插座,连接电阻应变片导线到测试仪的各个测量通道接线柱上。 (3) 打开测试仪电源,预热约20分钟左右,输入力传感器量程及灵敏度和应变片灵敏系数(一般首次使用时已调好,如实验项目及力传感器没有改变,可不必重新设置),在不加载(加力点上下未接触)的情况下将测力初值和应变初值调至零。 (4) 在初始值以上对各试件进行分级加载,转动手轮速度要均匀,记下各级力值和待测点各通道的应变值,若已与微机连接,则全部数据可由计算机进行分析处理。

材料力学实验指导书 (1)..

材料力学实验指导书 河北科技大学建筑工程学院 2005年2月

目录 实验一拉伸实验 (2) 实验二压缩实验 (7) 实验三纯弯曲梁的正应力实验 (10) 实验四材料弹性模量E和泊松比μ的测定 (14) 附录1 微控万能材料实验机 (19) 附录2 组合式材料力学多功能实验台 (20) 附录3 电测法的基本原理 (22)

实验一 拉伸试验 一、实验目的和实验要求 1.测定低碳钢拉伸时的强度性能指标:屈服应力s σ和抗拉强度b σ。 2.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。 3.测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。 4.绘制低碳钢和灰铸铁的应力应变图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。 5.学习和掌握材料的力学性能测试的基本实验方法。 二、实验原理 1.为了检验低碳钢拉伸时的机械性质,应使试样轴向受拉直到断裂,在拉伸过程中以及试样断裂后,测读出必要的特征数据(如;P S 、P b 、l 1、d l )经过计算,便可得到表示材料力学性能的四大指标:σs 、σb 、δ、ψ。 2.铸铁属脆性材料,轴向拉伸时,在变形很小的情况下就断裂,故一般测定其抗拉强度极限 σb 。 三、实验方法 按照国家标准《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 圆形截面试样和矩形截面试样均由平行、过渡和夹持三部分组成。平行部分的试验段长度l 称为试样的标距,按试样的标距l 与横截面面积A 之间的关系,分为比例试样和定标距试样。圆形截面比例试样通常取d l 10=或d l 5=,矩形截面比例试样通常取A l 3.11=或A l 65.5=,其中,前者称为长比例试样(简称长试样),后者称为短比例试样(简称短试样)。定标距试样的l 与A 之间无上述比例关系。过渡部分以圆弧与平行部分光滑地连接,以保证试样断裂时的断口在平行部分。夹持部分稍大,其形状和尺寸根据试样大小、材料特性、试验目的以及万能试验机的夹具结构进行设计。 1.测定低碳钢拉伸时的强度和塑性性能指标 实验开始后,观察实验软件绘出的拉伸过程中的σ-ε曲线,直至试件拉断,以测出低碳钢在拉伸时的力学性质。

材料力学拉伸试验

§1-1 轴向拉伸实验 一、实验目的 1、 测定低碳钢的屈服强度eL R (s σ)、抗拉强度m R (b σ)、断后伸长率A 11.3(δ10)和断面收缩率Z (ψ)。 2、 测定铸铁的抗拉强度m R (b σ)。 3、 比较低碳钢?5(塑性材料)和铸铁?5(脆性材料)在拉伸时的力学性能和断口特征。 注:括号内为GB/T228-2002《金属材料 室温拉伸试验方法》发布前的旧标准引用符号。 二、设备及试样 1、 电液伺服万能试验机(自行改造)。 2、 0.02mm 游标卡尺。 3、 低碳钢圆形横截面比例长试样一根。把原始标距段L 0十等分,并刻画出圆周等分线。 4、 铸铁圆形横截面非比例试样一根。 注:GB/T228-2002规定,拉伸试样分比例试样和非比例试样两种。比例试样的原始标距0L 与原始横截面积0S 的关系满足00S k L =。比例系数k 取5.65时称为短比例试样,k 取11.3时称为长比例试样,国际上使用的比例系数k 取5.65。非比例试样0L 与0S 无关。 三、实验原理及方法 低碳钢是指含碳量在0.3%以下的碳素钢。这类钢材在工程中使用较广,在拉伸时表现出的力学性能也最为典型。 ΔL (标距段伸长量) 低碳钢拉伸图(F —ΔL 曲线) 以轴向力F 为纵坐标,标距段伸长量ΔL 为横坐标,所绘出的试验曲线图称为拉伸图,即F —ΔL 曲线。低碳钢的拉伸图如上图所示,F eL 为下屈服强度对应的轴向力,F eH 为上屈服强度对应的轴向力,F m 为最大轴向力。 F —ΔL 曲线与试样的尺寸有关。为了消除试样尺寸的影响,把轴向力F 除以试样横截面的原始面积S 0就得到了名义应力,也叫工程应力,用σ表示。同样,试样在标距段的伸长ΔL 除以试样的原始标距LO 得到名义应变,也叫工程应变,用ε表示。σ—ε曲线与F —ΔL 曲线形状相似,但消除了儿何尺寸的影响,因此代表了材料本质属性,即材料的本构关系。

相关文档
最新文档