20CrMnTi钢

20CrMnTi钢
20CrMnTi钢

材料特性

20CrMnTi钢属于合金渗碳钢、渗碳型塑料模具钢。该钢的渗碳与热处理工艺性能良好,在≤960℃时为细晶粒组织,在常用的渗碳温度下长期加热,晶粒无长大倾向,淬火后的残留奥氏体甚少,因此,该钢具有较高的强度和耐磨性,可加工性良好,主要性能与20CrNi钢相似。

抗拉强度≥1080MPa、屈服强度≥885MPa、伸长率≥10%、断面收缩率≥45%、冲击韧度≥69J/cm2、硬度≤207HBW,试样毛胚尺寸为15mm。

对20CrMnTi钢的齿轮胚料采取等温正火,可以消除粒状贝氏体组织,降低胚料正火后的印度,完全可以满足机械加工要求。从等温正火试验结果可以看出,该工艺具有工艺范围宽,工艺稳定等特点,等温正火温度为550-650℃,保温时间在30min以上,均可获得珠光体铁素体混合组织,且硬度在160-170HBW之间。显然该工艺有助于含Mo的20CrMnTi钢具有更广泛的使用。在常规正火工艺中,并非100%出现粒状贝氏体,给机械加工带来很大困难。据汽车用倒档齿轮、行星齿轮、半轴齿轮三项生产统计,约有40%出现此问题。

供货状态:正火、退火、高温回火,或不热处理态。

化学成分:

根据标准GB/T3077-1999该钢的化学成分(质量分数):C0.17%-0.23%、Si0.17%-0.37%、Mn0.80%-1.10%、Cr1.00%-1.30%、Ti0.04%-0.10%、P≤0.035%、S≤0.035%

该钢加工工艺路线为:

下料→锻造模胚→退火→机械粗加工→冷挤压成形→再结晶退火→机械精加工→渗碳→淬火、回火→研磨抛光→装配。

临界点温度

Ac1=740℃、Ac3=825℃、Ar1=650℃、Ar3=730℃

热处理规范

退火温度约860-880℃,出炉空冷,硬度≤217HBW.正火温度920-950℃,出炉空冷,硬度156-207HBW。淬火温度860-900℃,油冷,回火温度500-650℃,油冷以避免高温回火脆性。渗碳温度900-920℃,淬火温度820-850℃,油冷,硬度>60HRC;180-200℃×1.5h回火,空冷,表面硬度>60HRC,心部硬度35-40HRC。碳氮共渗温度840-860℃,共渗后直接淬火,淬火温度830-850℃,油冷,硬度≥60HRC。回火温度160-180℃,空冷,表面硬度58-62HRC。应用举例

1)压制铝套冷挤压模,D16、D20型压制钢丝绳铝套冷挤压模,原采用CrWMn钢淬火回火,硬度为45-50HRC,尽管硬度要求在冷挤压模中降低,但由于CrWMn钢组织中存在碳化物的不均匀性,易造成模具崩刃、开裂而早前失效,使用寿命仅为1000多件,有的仅几百件。当选用20CrMnTi钢制作这两种铝套冷挤压模,经950℃加热、盐水淬火后,不回火直接使用,模具硬度为46-48HRC,压制铝套2000多件,且仍在继续使用。2)国内也有不少应用低碳马氏体钢强烈淬火工艺制作冷作模具的实例

3)用于小型精密型腔嵌件,还可以用渗碳增加表面硬度,提高耐磨性

4)用于受磨损较大、受较大载荷及生产批量较大的模具。本文出处进口模具钢https://www.360docs.net/doc/b211434418.html,厂家

钢材交货状态分类

钢:含碳量在0.04%-2.3%之间(也有资料称0.03%-1.2%)的铁碳合金称为钢。为了保证其韧性和塑性,含碳量一般不超过1.7%。钢的主要元素除铁、碳外,还有硅、锰、硫、磷等。 1)硫:硫来源于炼钢的矿石与燃料焦炭。它是钢中的一种有害元素。硫以硫化铁(FeS)的形态存在于钢中,FeS和 Fe 形成低熔点(985℃)化合物。而钢材的热加工温度一般在1150~1200℃以上,所以当钢材热加工时,由于 FeS化合物的过早熔化而导致工件开裂,这种现象称为“热脆”。含硫量愈高,热脆现象愈严重,故必须对钢中含硫量进行控制。高级优质钢:S<0.02%~0.03%;优质钢:S<0.03%~0.045%;普通钢:S<0.055%~0.7%以下。 2)磷:磷是由矿石带入钢中的,一般说磷也是有害元素。磷虽能使钢材的强度、硬度增高,但引起塑性、冲击韧性显著降低。特别是在低温时,它使钢材显著变脆,这种现象称"冷脆"。冷脆使钢材的冷加工及焊接性变坏,含磷愈高,冷脆性愈大,故钢中对含磷量控制较严。高级优质钢: P<0.025%;优质钢: P<0.04%;普通钢:P<0.085%。 3)锰:锰是炼钢时作为脱氧剂加入钢中的。由于锰可以与硫形成高熔点(1600℃)的 MnS,一定程度上消除了硫的有害作用。锰具有很好的脱氧能力,能够与钢中的FeO成为MnO进入炉渣,从而改善钢的品质,特别是降低钢的脆性,提高钢的强度和硬度。因此,锰在钢中是一种有益元素。一般认为,钢中含锰量在0.5%~0.8%以下时,把锰看成是常存杂质。技术条件中规定,优质碳素结构钢中,正常含锰量是0.5%~0.8%;而较高含锰量的结构钢中,其量可达0.7%~1.2%。 4)硅:硅也是炼钢时作为脱氧剂而加入钢中的元素。硅与钢水中的FeO能结成密度较小的硅酸盐炉渣而被除去,因此硅是一种有益的元素。硅在钢中溶于铁素体内使钢的强度、硬度增加,塑性、韧性降低。镇静钢中的含硅量通常在0.1%~0.37%,沸腾钢中只含有0.03%~0.07%。由于钢中硅含量一般不超过0.5%,对钢性能影响不大。 1)冷轧薄钢板:碳:碳含量增加会使拉延能力变坏,因此绝大部分钢板都采用低碳钢。锰:锰的影响和碳相似,但适当的含量可以减轻硫的不良作用。磷、硅:磷和硅溶于铁素体引起强化并略影响塑性,降低拉延性能。 2)热轧钢板:选用冲压用热轧钢板时,既要考虑强度要求,也要考虑冲压性能。 碳:碳是对热轧钢板冲压性能影响最大的元素。对于冲压用的热轧钢板,一般不宜以增加碳的办法来提高强度,应采用添加合金元素来提高钢的强度。 硫:硫在钢中形成硫化物夹杂,在轧制中拉长,分割金属基体降低塑性,影响冲压性能。

结构钢的淬透性曲线测定

结构钢的淬透性曲线测定(3学时) 一、实验目的 1、学会用末端淬火法测定钢的淬透性曲线。 2、学会确定钢的“临界淬透直径”的方法。 二、实验内容: 1、概述: 钢的淬透性是指钢在淬火时所能得到的淬硬层深度大小的能力,淬硬层是指有钢的表面至半马氏体区的深度。它决定了钢淬火后,从表面到心部硬度的分布情况。它是钢的一种热处理工艺性能,它已成为机械设计时合理的选择钢材和生产上正确制定热处理工艺的主要依据之一。 半马氏体区的深度取决于钢的含碳量,图5—1为不同含碳量的碳钢的半马氏体的硬度。由图可知半马氏体区的深度随含碳量的增加而有规律性的提高。 按国家标准规定淬透性的测定方法有以下两种: 1)、碳素工具钢淬透性试验法(GB227—63);按断口状态评定淬透性的一种方法 2)、结构钢末端淬透性试验法(GB225—63)。适用于碳素及一般合金结构钢。 本实验为结构钢末端淬透性试验。 图5—1 图5—2 图5—3 (1)、碳素工具钢淬透性试验法(GB227—63);按断口状态评定淬透性的一种方法,(2)、结构钢末端淬透性试验法(GB225—63)。适用于碳素及一般合金结构钢。 本实验为结构钢末端淬透性试验。 2、末端淬透性实验法: 末端淬透性试验通常用于测定碳素结构钢及一般合金结构钢的淬透性供实验用的试样,在标准中已作了规定,其尺寸与加工精度如 图5—2所示: 试样放在控温准确的电炉中加热,淬火加热温度应与该钢种标准技术条件中规定的淬火温度为准,保温时间为30分钟。加热试样自炉内取出至水淬开始时间不得超过5秒钟淬火时试样应放在特殊支架上冷却,如图5—3所示。试样支架必须保证在淬火过程水柱垂直向上喷射在试样末中心部位,试样顶端至喷水口距离为12.5毫米,喷水口直径为12.5毫米,在淬火过程中注意不能让水溅到试样侧面。为了保证冷却条件一致,必须事先调整好水柱的自由高度65±10毫米,支架上有水应事先擦干,淬火过程中水压要稳定,水淬时间不得少于10分钟。 淬火后的试样沿圆柱表面纵向相对的两边磨去0.3—0.5毫米的深度,以获得相互平行的两个面,便于测定硬度。在磨制过程中要进行冷却,以免试样回火影响硬度测量。进行硬

20CrMnTi渗碳钢和40Cr对比

20CrMnTi 与40Cr力学性能对比分析报告一:20CrMnTi是一种渗碳钢,齿轮钢,合金结构钢。渗碳齿轮钢通常为含碳量为0.17%-0.24%的低碳钢,多用于轴类零件并进行渗碳或进行调质但不能进行渗氮(注意渗氮常用于中合金钢,中碳含Cr钢,淬层深一般为0.1-0.3,表面硬度700-900HV),渗碳淬火后具有良好的耐磨性和抗弯强度,有较高的低温冲击韧度。汽车上多用其制造传动齿轮,是中淬透性渗碳钢中Cr Mn Ti 钢系列。其淬透性较高,在保证淬透情况下,具有较高的强度和韧性,常用于要求强度和韧性均较高的轴(如齿轮轴,蜗杆等)特别是具有较高的低温冲击韧性,但是在高温和腐蚀条件下工作的轴应选用耐热钢和不锈钢1Cr18Ni9Ti,在结构形状复杂的轴常选用球墨铸铁。20CrMnTi表面渗碳硬化处理用钢,它具有良好的加工切削性,加工变形微小,抗疲劳性能相当好。主要用途有:常用于齿轮,轴类,汽车三叉万向节,活塞类零配件以及汽车,飞机等各种特殊零件部位。20CrMnTi 淬火+低温回火后,综合力学性能和低温冲击韧度良好,渗碳后具有良好的耐磨和抗弯强度,热处理工艺简单,热加工和冷加工性较好,但高温回火时有回火脆性倾向。 20CrMnTi工艺路线为:下料,锻造,正火,粗加工,(渗碳,淬火+低温回火,)或调质,精加工或磨削。(锻造件优于同等条件下的铸件)一般渗碳层深度为0.8-1.2毫米,深度渗碳可达2毫米或更深,渗碳后表面硬度可达HRC58-63,心部硬度可达HRC30-42,渗碳可提高零件强度,耐磨性和冲击韧性,以延长零件寿命。 渗碳层深度范围工艺参数: 1.热处理后不需磨制零件:0.7-1.1;1.0-1.4;1.2-1.6mm 2.热处理后需磨制零件:0.6-1.0;0.8-1.2;1.0-1.4 轴表面淬火处理后的淬硬层深度与性能要求,工作条件及淬硬层深度之间的关系: 1.用于耐磨,载荷型不大条件下,淬硬层深度0.5-1.5; 2.用于耐磨载荷较大或有冲击载荷下,淬硬层深度2.0-6.5 3.用于抗疲劳,周期性弯曲或扭转下,淬硬层深度3.0-12. 2. 20CrMnTi特性及适用范围: 是性能良好的渗碳钢,淬透性较高,经渗碳+淬火+低温回火后具有硬而耐磨的表面与坚韧的心部,具有较高的低温冲击韧性,焊接性中等,正火后可切削性良好。用于制造截面<300mm的承受高速、中等或重载荷、冲击及摩擦的重要零件,如齿轮、齿圈、齿轮轴十字头等。是18CrMnTi的代用钢,广泛用作渗碳零件,在汽车.拖拉机工业用于截面在300mm以下,承受高速.中或重负荷以及受冲击.摩擦的重要渗碳零件,如齿轮.轴.齿圈.齿轮轴.滑动轴承的主轴.十字头.爪形离合器.蜗杆等, 20CrMnTi焊接性比40Cr好,40Cr焊接前注意预热,以防止因基体散热,造成焊缝内部激冷淬裂。焊接后调质前最好加一遍正火。结晶时易偏析,对结晶裂纹(一种热裂纹)比较敏感,在温度低时焊接时容易在弧坑和焊缝中凹下的部分开裂。含碳量较高,快冷时易得到对冷裂纹很敏感的淬硬组织(马氏体组织)。过热区在冷速较大时,很容易形成硬脆的高碳马氏体而使过热区脆化。

钢的淬透性曲线的测定

钢的淬透性曲线的测定 一、实验目的与要求 1.建立淬透性的概念,熟悉测定结构钢淬透性的方法。 2.了解淬透性及淬透性曲线在热处理工艺上的一些应用。 二、实验设备及材料 1. 设备:箱式电阻加热炉;端淬装置。 2. 材料:45钢和40Cr钢制成的标准端淬试样若干个。 三、实验原理 所谓钢的淬透性,是指钢在淬火时获得马氏体的能力。它是钢材本身固有的一个属性。 淬透性的大小是用淬透层深度来表示的。从理论上讲,淬透性应以全部马氏体(或含少量残余奥氏体)组织的深度来定。但实际土,要用测硬度的办法来确定这一深度很困难。因为当马氏体组织中含有少量非马氏体组织时,在硬度值上并无明显变化。只有当钢中含有50%马氏体组织时,硬度才会发生明显变化,且在宏观腐蚀时,此区域又是白亮层与未硬化区的分界,容易确认。因此,在实践中人为地把工件表面到半马氏体组织的深度作为淬透层深度。半马氏体组织的硬度主要取决于钢的含碳量。图1-3表明了含碳量与半马氏体组织硬度的关系。 钢的淬透性的大小对其热处理后的机械性能有很大的影响,对合理选材及正确制定热处理工艺都是十分重要的。 影响钢的淬透性的因素很多,如钢的化学成分、奥氏体化温度及钢的原始组织等。 应当指出,钢的淬透性与淬硬性是两个不同的概念。淬硬性是指钢淬火后获得马氏体的最大硬度值,与钢的含碳量有关,含磷量高,淬硬性相应就好。 四、实验内容及步骤 一)内容:45钢末端淬透性实验。 试样按GB225-63中规定了试样的形状和尺寸 (见图3-1)。

图3-1 端淬试验原理图 二)步骤: 1. 将试样按热处理工艺规范进行加热并保温后,迅速从炉中取出,放在顶端淬火器上(见图2-1)。同时打开喷水阀门进行喷水,喷水时间不应少于10分钟,水温应保持在10—30℃,自由水柱高度以65mm 为准 2. 淬火后将试样圆柱表面相对称的两侧各磨去0.4mm 的深度,以得到两个相互平行的平面。磨制过程中要进行冷却,以免试样产生回火而影响硬度的测量。 3. 用洛氏硬度计从试样末端起每隔1.5mm 测其硬度值。当硬度值下降趋于平稳时,可每隔3mm 测量一次。一般约测到40—50mm 处 4. 根据实验测得的数据,绘制硬度值(纵坐标)与水冷端距离(横坐标) 曲线,即钢的淬透性曲线,如图3-2所示。由于材料的化学成分有一定的波动,硬度值也在一定范围内变化,因此淬透性曲线通常为淬透性带。 至水冷端距离:mm 含碳量:% 图3-2 淬透性曲线 图 3-3 含碳量与半马氏体硬度的关系 钢的淬透性以“d HRC J ”表示。其中J 表示末端淬透性试验,d 表示距试样末端的距离,HRC 是指在距离d 处所测得的硬度值(即指该钢的半马氏体硬度)。末端淬火实验测得的淬透性曲线并不能直接用来确定钢的临界直径。而临界直径又是衡量钢的淬透性的重要标准。为此,还需借助其它图表进行换算。 5. 根据实验测得的d 值,再利用图3-4,查出钢的实际淬火临界直径D 临。 图3-4是圆棒700oC 时,在水中和油中淬火时,其截面不同位置与端淬距离的关系图。

20CrMnTi简介

20CrMnTi简介 20CrMnTi是渗碳钢,渗碳钢通常为含碳量为0.17%-0.24%的低碳钢。常作为齿轮钢用作制造汽车、摩托车、农用车、各种工程机械的传动齿轮,广泛应用于机械、汽车等行业。其淬透性较高,在保证淬透情况下,具有较高的强度和韧性,特别是具有较高的低温冲击韧性。20CrMnTi表面渗碳硬化处理用钢具有良好的加工性,加工变形微小,抗疲劳性能相当好。 ●化学成份 碳C:0.17~0.23 硅Si:0.17~0.37 锰Mn:0.80~1.10 铬Cr:1.00~1.30 硫S:允许残余含量≤0.035 磷P:允许残余含量≤0.035 镍Ni:允许残余含量≤0.030 铜Cu:允许残余含量≤0.030 钛Ti:0.04~0.10[2] ●力学性能:σb (MPa):≥1080(110) σs (MPa):≥835(85) δ5 (%):≥10 断面ψ (%):≥45 冲击功Akv (J):≥55 冲击韧性值αkv (J/cm2):≥69(7) 硬度:≤217HB 试样尺寸:毛坯尺寸为15mm ●20CrMnTi密度:7.8×103kg/m3 弹性模量:207GPa 泊松比:0.25 导热率:1.26×10-51/℃[3] 热处理规范:淬火:第一次880℃,第二次870℃,油冷;回火200℃,水冷、空冷。 金相组织:回火马氏体。 回火组织与性能的研究 20crMnTi钢是低碳低合金结构钢,该钢通常在化学热处理状态下使用。经渗碳或 碳氮共渗处理后,具有良好的耐磨性能和抗弯强度,以及较高的抗多次冲击能力。该钢 还可在调质状态下使用,其热处理工艺简单,热加工和冷加工性能均较好,在兵器工业 中,主要用来制造截面在30mm以下的承受中等载荷的零件,如履带车辆的左右分离 圈、同步器固定齿套等。

20crmnti热处理

20CrMnTi是渗碳钢,渗碳钢通常为含碳量为 0.17%- 0.24%的低碳钢.汽车上多用其制造传动齿轮.是中淬透性渗碳钢中Cr Mn Ti 钢.,在保证淬透情况下,具有较高的强度和韧性,特别是具有较高的低温冲击韧性.经渗碳淬火后具有硬而耐磨的表面与坚韧的心部,具有较高的低温冲击韧性,焊接性中等,正火后可切削性良好.广泛用于截面小于30mm承受高速、中等或重载及受冲击载荷和摩擦的重要渗碳零件,如汽车、拖拉机中的变速齿轮、凸轮、矿山机械使用的重载齿轮等,但往往由于齿轮热处理质量不过关,会造成加工困难、齿轮磨削中存在裂纹、组织和力学性能不合格等。 20CrMnTi齿轮钢要达到加工、使用所需性能必须进行热处理,目的是提高表面的硬度、耐磨性和疲劳强度,心部具有足够的强度和韧性。 一般齿轮加工的工艺路线如下。锻造→正火→齿形加工→渗碳→淬火、低温回火→喷丸→校正花键孔→磨齿[1]。一般齿轮毛坯采用锻造毛坯,经锻造以后晶粒大小形状发生了变化,改变了钢的组织,增加了锻造应力,提高了硬度,在机械加工前需预备热处理。 1预备热处理 通常20CrMnTi选用正火或调质处理作为预备热处理,其目的是降低钢的硬度,提高塑性,以利于切削加工;细化晶粒,均匀钢的组织及成分,改善钢的性能,为以后的热处理作准备;消除锻造应力,防止变形和开裂,保证齿形合格。 1.1正火 正火是将钢加热到Ac3以上30℃~50℃,保温足够的时间后出炉在空气中冷却到室温。对于一般的齿轮采用正火,正火可以减少碳和其他合金元素的成分偏析;使奥氏体晶粒细化和碳化物的弥散分布,以便在随后的热处理中增加碳化物的溶解量。由于正火的冷却速度较快,获得细小的片层状渗碳体珠光体,强度、硬度都较高,力学性能较好。然而正火工艺是空冷,对于尺寸较大零件,内外温差大冷却速度不稳定,在连续冷却时,过冷奥氏体在A1-550℃温度范围内分解为珠光体,在550℃-Ms温度范围内,因转变温度较低转变为贝氏体组织(即含碳量具有一定过

中国(GB)金属材料牌号表示方法

中国(GB)金属材料牌号表示方法简介 1 中国(GB)钢铁牌号表示方法简介 1.1 国际(GB)钢铁产品牌号表示方法概述 钢铁产品牌号表示方法,我国现有两个推荐性国家标准,即GB/T221—2000《钢铁产品牌号表示方法》和GB/T17616—1998《钢铁及合金统一数字代号体系》。前者仍采用汉语拼音、化学元素符号及阿拉伯数字相结合的原则命名钢铁牌号,后者要求凡列入国家标准和行业标准的钢铁产品,应同时列入产品牌号和统一数字代号,相互对照并列使用。 1)标准中常用化学元素符号见表1-1。 表1-1 常用化学元素符号 元素名称化学元素符号元素名称化学元素符号 铁Fe 铋Bi 锰Mn 铯Cs 铬Cr 钡Ba 镍Ni 镧La 钴Co 铈Ce 铜Cu 钐Sm 钨W 锕Ac 钼Mo 硼 B 钒V 碳 C 钛Ti 硅Si 铝Al 硒Se 铌Nb 碲Te 钽Ta 砷As 锂Li 硫S 铍Be 磷P 镁Mg 氮N 钙Ca 氧O 锆Zr 氢H 锡Sn 混合稀土RE 铅Pb 2)非合金钢、低合金钢和合金钢元素规定含量界限值(摘自GB/G/T13304-1991)见表1-2。 表1-2 合金元素规定含量界限值 合金元素规定含量界限值(质量分数)(%) 序号合金元素 非合金钢<低合金钢合金钢≥ 1 Al 0.10 -0.10 2 B 0.0005 -0.0005 3 Bi 0.10 -0.10 4 Cr 0.30 0.30~<0.50 0.50 5 Co 0.10 -0.10 6 Cu 0.10 0.10~<0.50 0.50 7 Mn 1.00 1.00~<1.40 1.40

8 Mo 0.05 0.05~<0.10 0.10 9 Ni 0.30 0.30~<0.50 0.50 10 Nb 0.02 0.02~<0.06 0.60 11 Pb 0.04 - 0.40 12 Se 0.10 - 0.10 13 Si 0.50 0.50~<0.90 0.90 14 Te 0.10 - 0.10 15 Ti 0.05 0.05~<0.13 0.13 16 W 0.10 - 0.10 17 V 0.04 0.04~<0.12 0.12 18 Zr 0.02 0.05~<0.12 0.12 19 La系(每种元素)0.02 .05~<0.12 0.05 20 其他规定元素(P、S、C、N)0.05 - 0.05 注:https://www.360docs.net/doc/b211434418.html,系元素含量,也可为混合稀土含量总量。 2.当Cr、Cu、Mo、Ni(Nb、Ti、V、Zr)四种元素,其中有两种、三种或四种元素同时被定在钢中时,对于低 合金钢,应同时考虑这些元素中每种元素的规定含量,所有这些元素的规定含量总和,应不大于规定两种、三种或四 种元素周期律中每种最高界限值总和的70%。如果这些元素的规定含量总和大于规定元素中每种元素最高界限值总和 的70%,即使这些元素每种元素规定量低于规定的最高界限值,也应划入合金钢。牌号采用的汉字及汉语拼音符号 见表1-3 表1-3 牌号采用的汉字及汉语拼音符号 采用的汉字及汉语拼音 采用符号字体位置 名称 汉字汉语拼音 碳素结构钢屈QU Q 大写牌号头 低合金高强度钢屈QU Q 大写牌号头 铆螺钢铆螺MAOLUO ML 大写牌号头 保证淬透性钢- - H 大写牌号尾 易切削钢易YI Y 大写牌号头 耐候钢耐NAI HOU NH 大写牌号尾 焊接用钢焊HAN H 大写牌号头 碳素工具钢碳TAN T 大写牌号头 (滚珠)轴承钢滚GUN G 大写牌号头 - -- -A 大写牌号尾 - - B 大写牌号尾 质量等级① - - C 大写牌号尾 - - D 大写牌号尾 - - E 大写牌号尾 铸钢铸钢ZHU GANG ZG 大写牌号头 灰铸钢灰铁HUI TIN HT 大写牌号头 球墨铁球铁QTU TIN QT 大写牌号头 可锻铸铁可铁KE TIN KT 大写牌号头 耐热铸铁热铁RE TIN RT 大写牌号头 耐磨铸铁磨铁MO TIN MT 大写牌号头

20CrMnTi钢的基本特性以及应用举例

20CrMnTi钢的基本特性以及应用举例 ⑴模具钢特性渗碳型塑料模具钢,渗碳与热处理工艺性能良好,在960℃以下为细晶粒组织,在常用的渗碳温度下长期加热,晶粒无长大倾向,淬火后的残余奥氏体甚少,因此有高的强度和耐磨性,切削性能良好,主要性能与20CrMnTi和20CrNi钢相似。 抗拉强度σ b ≥1080MPa,屈服强度σ s ≥885MPa,伸长率δ 5 ≥10%,断面收 缩率φ≥45%,冲击功A ku ≥55J,冲击韧性值α ku ≥69J/cm2,硬度≤207HB,试 样毛坯尺寸为15mm。 ⑵供货状态正火态。 ⑶化学成分(质量分数,%)C 0.17~0.23、Si 0.17~0.37、Mn 0.80~1.10、P 0.030、S 0.013、Cr 1.00~1.30、Ti 0.04~0.10、Cu 0.09。 ⑷临界点温度(近似值)M s =374℃。 ⑸淬火、回火规范奥氏体化温度880℃,时间25min,晶粒度7~8. ⑹钢的工艺路线下料→锻造模坯→退火→机械粗加工→冷挤压成型→再结晶退火→机械精加工→渗碳→淬火、回火→研磨抛光→装配。 对含Mo的20CrMnTi钢的齿轮坯料采取等温正火,可以消除粒状贝氏体组织,降低坯料正火后的硬度,完全可以满足机械加工要求。从等温正火试验结果可以看出,该工艺具有工艺范围宽、工艺稳定特点,与20CrMnTi钢相比,等温正火温度在550~650℃,保温时间在30min以上,均可获得珠光体和铁素体混合组织,且硬度在160~170HBS之间。显然该工艺有助于含Mo的20CrMnTi钢更广泛使用。 在常规正火生产中,并非100%出现粒状贝氏体,给机械加工带来很大困难。据汽车用倒车齿轮、行星齿轮、半轴齿轮3项生产统计,约有40%出现此问题。 ⑺典型应用举例 ①用于小型精密型腔嵌件,可以用渗碳增加表面硬度,提高耐磨性。 ②受磨损较大、受较大载荷、生产批量较大的模具。

钢的淬透性测定

实验一:钢的淬透性测定 实验学时:3 实验类型:综合性实验 实验要求:必修 一、实验目的 (一)掌握钢的淬透性的实验方法,重点末端淬火法。 (二)了解化学成分、奥氏体化温度及晶粒度对钢的淬透性的影响。 二、实验内容、实验原理、方法和手段 (一)淬透性的概念及其影响因素 在实际生产中,零件一般通过淬火得到马氏体,以提高机械性能。钢的淬透性是指钢经奥氏体化后在一定冷却条件下淬火时获得马氏体组织的能力。常用淬透性曲线、淬硬层深度或临界淬透直径来表示。淬透性与淬硬性不同,它是淬硬层深度的尺度而不是获得的最大的硬度值。它决定淬火后从表面到心部硬度分布的情况。一般规定“由钢的表面至内部马氏体占50%(其余的50%为珠光体类型组织)的组织处的距离”为淬硬层深度。淬硬层越深,就表明该钢的淬透性越好。如果淬硬层尝试达到心部,则表明该钢全部淬透。 影响淬透性的因素很多,最主要的是钢的化学成分,其次为奥氏体化温度、晶粒度等等。钢的淬透性与过冷奥氏体稳定性有密切的关系。当奥氏体向珠光体转变的速度越慢,也就是等温转变开始曲线越向右移,钢的淬透性越大,反之就越小,可见影响淬透性的因素与影响奥氏体等温转变的因素是相同的。 溶入奥氏体的大多数合金元素除Co以外,都增加过冷奥氏体的稳定性,使曲线右移,降低临界冷却速度,提高钢的淬透性。 钢中含碳量对临界冷却速度的影响为:亚共析钢随含碳量的增加,临界冷却速度降低,淬透性增加;过共析钢随含碳量的增加,临界冷却速度增高,淬透性下降。含碳量超过1.2%~1.3%时,淬透性明显降低。 (二)淬透性的测定方法 淬透性的测定可以大致分为计算法和实验法两类。目前使用的方法还是实验法,它主要是通过测定标准试样来评价钢的淬透性。具体的试验方法有多种,现将其中通常采用的四种方法概述如下。

钢的淬透性影响因素

钢材的淬透性是指钢在一定条件下淬火时获得淬透层(马氏体层)深度的能力,主要与钢的过冷奥氏体稳定性和钢的临界冷却速度有关。 钢淬透性的影响因素 1.化学成分的组成:首先从元素来看,提高淬透性的元素有C、MN、P、SI、NI、CR、MO、B、CU、SN、AS、SB、BE、N;而降低淬透性的元素有S、V、TI、CO、NB、TA、W、TE、ER、S E;对淬透性影响不大的元素有(AI)。而这其中,尤以C元素影响最大,它有一个临界点,当碳含量大于百分之1.2的时候,钢材的冷却速度就升高,C曲线左移,淬透性也就发生下降。当碳含量小鱼百分之1.2的时候,随着钢中碳浓度的升高,其冷却速度也显著降低,那么C曲线也就发生右移,钢的淬透性也就增大了。 2.热处理过程中冷却介质的冷却特性和冷却速度:在热处理过程中,冷却速度的快与慢大大影响着钢的淬透性能的高低。简单来说,冷却速度快的,淬透性就提高,冷却速度慢的,淬透性就降低。我们常用的45钢就是一个很好的例子,在水中冷却时,可淬透11一20毫米,在油中冷却时,可淬透3.5―9.5毫米,这其中就是因为介质的不同导致其冷却速度的差异。 3.零件的加工尺寸大小:钢材产品尺寸的大小也在一定程度上影响着钢的淬透性的高低。 钢淬透性对变形量的淬裂性影响的大小 钢的淬透性对对变形的影响比较小而对于淬裂则影响非常大。 淬透性与淬硬性的区别 首先我们先来看下两个名词的定义。淬透性上面已经提到过了,而淬硬性又叫可硬性,是指钢在正常淬火条件下,以超过临界淬火速度冷却所形成的马氏体组织能够达到的最高硬度。它主要与钢的含碳量有关。更确切地说,它取决于淬火加热时固溶于奥氏体中的含碳量。其中,淬透性取决于其本身的内在因素(如化学成分、纯净度、晶粒度、组织均匀性等),而与外部因素无关;而钢的淬硬层厚度除取决于淬透性外,还与所采用的淬冷介质,工件尺寸、形貌、质量效应等外部因素有关。 影响钢的淬硬性的主要因素是; 1.钢的含碳量; 2.钢中Cr,Si,B等能提高淬透性的合金元素的含量.

钢材常见的交货状态

常见的钢材交货状态有热轧、控轧、正火、回火、退火、淬火、调质等 淬火:加热到相变点温度以上后,急剧冷却的工艺。提高材料的硬度,但降低韧性。 正火:加热到相变温度以上后,正常冷却(空气中)。 退火:加热到相变点温度以上后,缓慢冷却。消除淬火影响,消除应力,均匀成分。 回火:淬火后,再加热到某一温度(低于淬火温度),保温,然后冷却。均匀成分,稍降低硬度,大幅度提高韧性。 一般来说:先要退火、正火;消除原热处理影响。然后淬火,然后回火。 具体而言: 控轧即控制轧制。 也就是在调整钢的化学成分的基础上,通过控制加热温度,轧制温度,变形制度等工艺参数,控制奥氏体组织的变化规律和相变产物的组织形态,达到细化组织,提高强度和韧性的目的。 控轧式正火就是控制轧制,控制轧制温度,压下量,冷却速度,以及终轧温度等措施,使钢板的性能达到良好的强韧性配比 正火,又称常化,是将工件加热至Ac3或Accm以上30~50℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。正火与退火的不同点是正火冷却速度比退火冷却速度稍快,因而正火组织要比退火组织更细一些,其机械性能也有所提高。另外,正火炉外冷却不占用设备,生产率较高,因此生产中尽可能采用正火来代替退火。 正火的主要应用范围有:①用于低碳钢,正火后硬度略高于退火,韧性也较好,可作为切削加工的预处理。②用于中碳钢,可代替调质处理作为最后热处理,也可作为用感应加热方法进行表面淬火前的预备处理。③用于工具钢、轴承钢、渗碳钢等,可以消降或抑制网状碳化物的形成,从而得到球化退火所需的良好组织。④用于铸钢件,可以细化铸态组织,改善切削加工性能。⑤用于大型锻件,可作为最后热处理,从而避免淬火时较大的开裂倾向。⑥用于球墨铸铁,使硬度、强度、耐磨性得到提高,如用于制造汽车、拖拉机、柴油机的曲轴、连杆等重要零件。⑦过共析钢球化退火前进行一次正火,可消除网状二次渗碳体,以保证球化退火时渗碳体全部球粒化。 退火annealing 将工件加热到预定温度,保温一定的时间后缓慢冷却的金属热处理工艺。退火的目的在于:①改善或消除钢铁在铸造、锻压、轧制和焊接过程中所造成的各种组织缺陷以及残余应力,防止工件变形、开裂。②软化工件以便进行切削加工。③细化晶粒,改善组织以提高工件的机械性能。④为最终热处理(淬火、回火)作好组织准备。常用的退火工艺有:①完全退火。用以细化中、低

20CrMnTi的工艺路线分析

20CrMnTi的工艺路线分析 20CrMnTi的工艺路线:下料,锻造,正火,机械粗加工,渗碳,淬火+低温回火,机械精加工 20CrMnTi为中淬透性低碳钢,具有良好的综合力学性能,低温冲击韧度较高,晶粒长大倾向小,冷热加工性能均较好。 其中锰,铬主要作用是提高渗碳钢的淬透性,以使较大尺寸的零件在淬火时芯部能获得大量的板条马氏体组织。另外还可以改善渗碳层参数。钛可以组织奥氏体晶粒在高温渗碳时的长大,能细化晶粒。 一下料 下料是指确定制作某个设备或产品所需的材料形状、数量或质量后,从整个或整批材料中取下一定形状、数量或质量的材料的操作过程。二锻造 锻造是在锻压设备及工(模)具的作用下,使坯料或铸锭产生塑性变形,以获得一定几何尺寸、形状和质量的锻件的加工方法。 锻造方法有自由锻和模锻。 自由锻是利用冲击力或压力使加热好的金属在上、下抵铁之间产生变形。它适用于单件和小批量生产;特别适于重型、大型锻件生产。 模锻是利用模具使毛坯变形获得锻件的方法。常用的模锻设备有蒸汽-空气模锻锤、压力机等。它又分为锤上模锻,胎膜锻,压力机上模锻。适于小型锻件的成批大量生产。 拔长时的锻造比为y拔=F0/F=L/L0

镦粗时的锻造比为y镦=F/F0=H0/H 通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。经锻造以后晶粒大小形状发生了变化,改变了钢的组织,增加了锻造应力,提高了硬度,在机械加工前需预备热处理。相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。 变形温度 按变形温度,锻造又可分为热锻(锻造温度高于坯料金属的再结晶温度)、温锻(锻造温度低于金属的再结晶温度)和冷锻(常温)。钢的开始再结晶温度约为727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻。 材料的原始状态有棒料、铸锭、金属粉末和液态金属。金属在变形前的横断面积与变形后的横断面积之比称为锻造比。正确地选择锻造比、合理的加热温度及保温时间、合理的始锻温度和终锻温度、合理的变形量及变形速度对提高产品质量、降低成本有很大关系。 一般的中小型锻件都用圆形或方形棒料作为坯料。棒料的晶粒组织和机械性能均匀、良好,形状和尺寸准确,表面质量好,便于组织批量生产。只要合理控制加热温度和变形条件,不需要大的锻造变形就能锻出性能优良的锻件。 铸锭仅用于大型锻件。铸锭是铸态组织,有较大的柱状晶和疏松的

钢的淬透性的测定

端淬试验机测定钢淬透性的方法 一、试验要求 1.了解测定淬透性的一般方法; 2.熟悉并利用端淬试验法测定钢的淬透性; 3.建立淬透性的概念及对热处理工艺的作用。 二、试验原理 钢的淬透性是表示钢获得马氏体的能力,是钢本身所固有的属性。 淬透性与淬硬性是两个概念,淬硬性是钢的表面由于马氏体转变所能得到最大硬度,它与钢的含碳量有关。 在生产实践中人们通常把工件表面到半马氏体组织区域的深度作为淬透层深度。钢的淬透性与淬火临界冷却速度有着密切的关系,而淬火临界冷却速度的大小又取决于钢的过冷奥氏体的稳定性,因此,凡是影响过冷奥氏体稳定性的诸因素,都会影响钢的淬透性。 淬透性的大小对钢材热处理的机械性能有很大的影响。如果工件被淬透了,则表里的组织和性能均匀一致,能充分发挥钢的机械性能的潜力,如工件未淬透,则表面的组织和性能存在差异,经回火后的屈服强度和冲击韧性较低。造成这种差别的重要原因在于:在淬火时,中心未淬透部分形成了非马氏体组织,回火后仍保持其片状组织特性;而在表面获得马氏体的部分,经回火后为粒状碳化物分布在铁素体基体上的混合组织,综合性能较好。 由上所述,淬透性的大小对钢材的合理选用及热处理工艺的正确制定都是十分重要的。 目前,测定钢的淬透性方法很多,常用的方法有两种: 三、淬透性的测定

1.断口法: 从淬透层和未淬透层的宏观断口观察,可以较明显的分成两部分,淬透层呈暗黑色。从硬度分布来看,因为碳钢的半马氏体区的硬度与碳含量有关(合金钢的半马氏体硬度一般比碳钢略高一些)见表1 不同含碳量半马氏体区硬度 表一 含碳量% 半马氏体区硬度HRC 含碳量% 半马氏体区硬度HRC 0.1 0.2 0.3 0.4 0.5 — 32 35 39 44 0.6 0.7 0.8 0.9 1.0 47 51 53 54 — 在同样尺寸同样冷却条件下,通过硬度测定,可以测出不同钢由表层至至中心的硬度分 布情况,比较它们截面上硬度分布曲线,就可以知道它们淬透层的深度及淬透性的好坏,图1为φ50毫米的40Cr 钢与40#钢水淬后的截面硬度分布曲线。

金属材料交货状态术语

金属材料交货状态术语 一、热轧状态 钢材在热轧或锻造后不再对其进行专门热处理,冷却后直接交货,称为热轧或热锻状态。 热轧(锻)的中止温度一般为800-900℃,之后一般在空气中自然冷却,因而热轧(锻)状态相当于正火处理。所不同的是因为热轧(锻)中止温度有高有低,不像正火加热温度控制严格,因而钢材组织与性能的波动比正火大。采用控制轧制,由于终轧温度控制很严格,并在终轧后采取强制冷却措施,因而钢的晶粒细化,交货钢材有教高的综合力学性能。无扭控冷热轧盘条比普通热轧盘条性能优越就是这个道理。 热轧(锻)状态交货的钢材,由于表面覆盖有一层氧化铁皮,因而具有一定的耐蚀性。 二、冷拉(轧)状态 经冷拉、冷轧等冷加工成型的钢材,不经任何热处理而直接交货的状态,称为冷拉或冷轧状态。与热轧(锻)状态相比,冷拉(轧)状态的钢材尺寸精度高,表面质量好、表面粗糙度低、并有较高的力学性能。 由于冷拉(轧)状态交货的钢材表面没有氧化皮覆盖,并且存在很大的内应力,极易遭受腐蚀或生锈,因而冷拉(轧)状态的钢

材,其包装、储运均有较严格的要求。 三、正火状态 钢材出厂前经正火热处理,这种交货状态称正火状态。由于正火加热温度(亚共析钢为:AC3 + 30~50℃,过共析钢为:ACcm + 30~50℃)比热轧终止温度控制严格,因而钢材的组织、性能均匀。与退火状态的钢材相比,由于正火冷却速度较快,钢的组织中珠光体数量增多,珠光体层片及钢的晶粒细化,因而有较高的综合力学性能,并有利于改善低碳钢的魏氏组织和过共析钢的渗碳体网状,可为成品的进一步热处理做好组织准备。碳结钢、合结钢钢材常采用正火状态交货。某些低合金高强度钢14MnMoVBE、14CrMnMoVB钢为了获得贝氏体组织,也要求正火状态交货。四、退火状态 钢材出厂前经退火热处理,这种交货状态称为退火状态。退火的目的主要是为了消除和改善前道工序遗留的组织缺陷和内应力,并为后道工序做好组织和性能上的准备。合金结构钢、保证淬透性结构钢、冷镦钢、轴承钢、工具钢、汽轮机叶片用钢、铁素体型不锈耐热钢的钢材常用退火状态交货。 五、高温回火状态 钢材出厂前经高温回火热处理,这种交货状态称为高温回火状态。高温回火的回火温度高,有利于彻底消除内应力,提高塑性和韧性。碳结构、合金钢、保证淬透性结构钢钢材均可采用高温回火状态交货。某些马氏体型高强度不锈钢、高速工具钢和高强度合金

20CrMnTi焊接要求

20CrMnTi的焊接要求 20CrMnTi是渗碳钢,渗碳钢通常为含碳量为0.17%-0.24%的低碳钢.汽车上多用其制造传动齿轮.是中淬透性 渗碳钢中Cr Mn Ti 钢,其淬透性较高,在保证淬透情况下,具有较高的强度和韧性,特别是具有较高的低温冲击韧性.20CrMnTi表面渗碳硬化处理用钢.良好的加工性,加工变形微小,抗疲劳性能相当好.用途:用于齿轮,轴类,活塞类零配件等.用于汽车,飞机各种特殊零件部位. ●特性及适用范围:是性能良好的渗碳钢,淬透性较高,经渗碳淬火后具有硬而 耐磨的表面与坚韧的心部,具有较高的低温冲击韧性,焊接性中等,正火后可切削性良好。用于制造截面<30mm的承受高速、中等或重载荷、冲击及摩擦的重要零件,如齿轮、齿圈、齿轮轴十字头等。是18CrMnTi的代用钢,广泛用作渗碳零件,在汽车.拖拉机工业用于截面在30mm以下,承受高速.中或重负荷以及受冲击.摩擦的重要渗碳零件,如齿轮.轴.齿圈.齿轮轴.滑动轴承的主轴.十字头. 爪形离合器.蜗杆等。J857Cr低合金高强度钢焊条 J857Cr 低合金高强度钢焊条符合:GB E8515-G 相当:AWS E12015-G 说明:J857Cr是低氢钠型药皮的低合金高强度 ?焊前预热200 焊后回火500-700(或者是暗红色) ?这种低合金高强钢焊接性能好,回火脆性不敏感,在齿轮上堆焊修复: 1焊条的选择 考虑齿轮表面经过渗碳,平均含碳量为1%,为了保证堆焊轮齿的疲劳强度、冲击韧性、耐磨性、硬度等指标,采用抗冷、热裂缝能力较高的J506低氢焊条。 也可以选用D207铬锰焊条或D237铬钼钒焊条,焊后不用热处理,硬度HRC>5 0。 施焊前用汽油清洗焊接表面,烘干后彻底清除待焊部位的毛刺、铁锈、油污、水份等污物,使之露出金属光泽,防止产生氢气孔。同时应将焊条在烘箱内以2 00~250℃的温度烘干1~2 h,且随烘随用,彻底消除氢的来源。 2焊条直径的选择 焊条直径过大,容易造成未焊透或堆焊成形不良;为了防止根部未焊透,第一层施焊焊条直径要小。选择原则主要根据堆焊厚度选取,因为全齿高为13.5 mm,且齿顶宽度较窄,根据综合考虑,选择直径4 mm的焊条。 3焊接电流 焊接电流过大①容易产生咬边和烧穿等缺陷。②焊芯过热焊条药皮易脱落,降低电弧稳定性。③堆焊处金属组织发生转变,晶粒长大,使机械性能降低。 电流太小,电弧不稳定,容易造成未焊透和熔化不良,并产生夹渣、气孔等缺陷。实际操作中根据电弧吹力、熔池深浅、溶化速度、飞溅大小和堆焊形状来判断电流大小,并及时调整,保持最佳电流。 4电弧弧长 电弧长短对堆焊质量影响颇大,长弧施焊时,电弧燃烧不稳定,金属飞溅严重,熔深小且易未焊透,因此堆焊质量差,容易吸收空气中的氧和氮,易产生气孔、夹渣,因此宜采用短弧焊接,选择弧长为3 mm左右,不超过焊条直径,且以窄焊道为宜。

20CrMnTi热处理工艺

20CrMnTi 齿轮钢的热处理工艺 1. 前言 1.1 20CrMnTi 钢概述 20CrMnTi 是低碳合金钢,该钢具有较高的机械性能,零件表面渗碳 0.7-1.1mm 。在渗碳淬火低温回火后,表面硬度为58-62HRC ,心部硬度为30-45HRC 。 20CrMnTi 的工艺性能较好,锻造后以正火来改善其切削加工性。此外,20CrMnTi 还具有较好的淬透性,由于合金元素钛的影响,对过热不敏感,故在渗碳后可直 接降温淬火。且渗碳速度较快,过渡层较均匀,渗碳淬火后变形小。适合于制造 承受高速中载及冲击、摩擦的重要零件,因此根据齿轮的工作条件选用20CrMnTi 钢是比较合适的。经过910-940℃渗碳,870℃淬火,180-200℃回火后机械性能 的抗拉强度31100Mpa 、屈服强度3850Mpa 、延伸率310%、断面收缩率345%, 冲击韧性3680,硬度为58-62HRC 。 1.2 20CrMnTi 泵体齿轮的的工艺流程: 1.3 20CrMnTi 钢常见的热处理工艺 下料 锻造 正火 清洗 淬火回火 加工 渗碳 包装 清洗 检验

1.4 20CrMnTi 钢的相变点/℃ 1.5 热处理的总工艺曲线 热处理总工艺曲线 2. 20CrMnTi 齿轮正火处理工艺

2.1 正火目的 细化晶粒,消除组织缺陷,以获得珠光体+铁素体组织。并使加工硬度适中, 有利于切削。 2.2 正火设备 选用RX3箱式电炉参数见表 2.1 2.3 正火温度 20CrMnTi 钢AC3约为825℃,为促使奥氏体均匀化,增大过冷奥氏体稳定性, 选择的加热温度在930~950 ℃。 2.4 加热方法 采用到温加热的方法,是指当炉温加热到指定温度时,再将工件装进热处理 炉进行加热。这样做的原因是避免金属组织的出现不需要的相转变,加热速度快, 节约时间。便于小批量生产。 2.5 加热介质 加热介质为空气。 2.6 保温时间 选定的依据:加热时间可按下列公式进行计算:t =a ×K ×D , 式中t 为加 热时间(min ),K 为反映装炉时的修正系数,可根据表 2.2取K 为 1.4。a 为加热 系数min/mm ,加热系数a 可根据钢种与加热介质、加热温度进行取值,参数见 表2.3。D 为工件的有效厚度(mm ),由公式可知,工件厚度=(工件最厚处直径 +工件最薄处直径)/2。 可得t =a ×K ×D 。

钢的淬透性测定

实验钢的淬透性测定 一:定义: 钢的淬透性——指钢材被淬透的能力,或者说钢的淬透性是指表征钢材淬火时获得马氏体的能力的特性。应该注意,钢的淬透性与可硬性两个概念的区别。 淬透性系指淬火时获得马氏体难易程度。它主要和钢的过冷奥氏体的稳定性有关,或者说与钢的临界淬火冷却速度有关,可硬性指淬成马氏体可能得到的硬度,因此它主要和钢中含碳量有关。 二:淬透性影响因素 1:钢的化学成分: a):当加热温度低于Acm点时,含C量低于1%以下,随含碳量增加,临界冷却速度下降,淬透性提高,含C量高于1%时,则相反,当加热温度高于Ac3或Acm时,则随含碳量增加,临界冷却速度下降。 b):合金元素除Ti,Zr,和Co外所有元素提高淬透性。 2:奥氏体晶粒度: 奥氏体晶粒尺寸增大,淬透性提高。 3:奥氏体化温度: 提高奥氏体化温度,不仅使奥氏体晶粒粗大,促使碳化物及其它非金属夹杂物流入,并使奥氏体成分均匀化,提高过冷奥氏体稳定性,从而提高淬透性。 4:第二相及其分布: 奥氏体中未溶的非金属夹杂物和碳化物的存在以及其大小和分布,影响过冷奥氏体的稳定性,从而影响淬透性。

三:淬透性的实验测定方法 有两种方法,一种是临界直径法,另一种是端淬法。 1.临界直径法 一组由被测钢制成的不同直径的圆形棒按 规定淬火条件(加热温度,冷却介质)进行淬火, 然后在中间部位垂直于轴线截断,经磨光,制成 粗晶试样后,沿着直径方向瞄定自表面至心部的 硬度分布曲线。发现随着试样直径增加,心的出 现暗色易腐蚀区,表面为亮圈,且随着直径的继 续增大,暗区愈来愈大,亮圈愈来凶小。若与硬 度分布曲线对应地观察,则该二区的分界线正好 是硬度变化最大部位;若观察金相组织,则正好 是50%马氏体和非马氏体的混合组织区,愈向外 靠近表面,马氏体愈多,向里则马氏体急剧减少。 分界线上的硬度代表马氏体区的硬度,格罗斯曼 (Gmssmann)将此硬度称为临界硬度或半马氏体 硬度。 亮区就是淬硬层,暗区就是未淬硬层,把未出现暗区的最大试样直径称为淬火临界直径,则其含义为该种钢在该种淬火介质中能够完全淬透的最大直径。显然,在给定淬火条件下,淬火,临界直径愈大,即能完全淬透的试棒的直径愈大,因而钢的淬透性愈好。因此,可用淬透直径的大小来比较钢的淬透性的高低。临界直径Dx增大,淬透性增高。 但是上述临界直径Dx是在一定淬火条件(其中包括淬火介质的冷却能力)下测得的。因此,要用临界直径法来表示钢的淬遘性,必须标明淬火介质的冷却能力或淬火烈度。为了除去临界直径值中所包含的淬火烈度的因素,用单一的数值来表征钢的淬透性,引入了理想临界直径的概念。所谓理想临界直径就是在淬火

常用材料标记示例

引用材料标准: GB/T 342 冷拉圆钢丝、方钢丝、六角钢丝尺寸、外形、重量及允许偏差GB/T 343 一般用途低碳钢丝 GB/T 699 优质碳素结构钢 GB/T 700 碳素结构钢 GB/T 701 低碳钢热轧圆盘条 GB/T 702 热轧圆钢和方钢尺寸、外形、重量及允许偏差 GB/T 704 热轧扁钢尺寸、外形、重量及允许偏差 GB/T 705 热轧六角钢和八角钢尺寸、外形、重量及允许偏差 GB/T 706 热轧工字钢尺寸、外形、重量及允许偏差 GB/T 707 热轧槽钢尺寸、外形、重量及允许偏差 GB/T 708 冷轧钢板和钢带的尺寸、外形、重量及允许偏差 GB/T 709 热轧钢板和钢带的尺寸、外形、重量及允许偏差 GB/T 710 优质碳素结构钢热轧薄钢板和钢带 GB/T 711 优质碳素结构钢热轧厚钢板和宽钢带 GB/T 715 标准件用碳素钢热轧圆钢 GB/T 716 碳素结构钢冷轧钢带 GB/T 905 冷拉圆钢 GB/T 912 碳素结构钢和低合金结构钢热轧薄钢板和钢带 GB/T 1173 铸造铝合金 GB/T 1174 铸造轴承合金 GB/T 1175 铸造锌合金 GB/T 1176 铸造铜合金 GB/T 1177 铸造镁合金 GB/T 1220 不锈钢棒 GB/T 1221 耐热钢棒 GB/T 1222 热轧弹簧钢技术条件 GB/T 1298 碳素工具钢技术条件 GB/T 1299 合金工具钢技术条件 GB/T 1301 凿岩钎杆用中空钢 GB/T 1348 球墨铸铁件 GB/T 1527 铜及铜合金拉制管 GB/T 1528 铜及铜合金挤制管 GB/T 1591 低合金高强度结构钢 GB/T 1594 低合金高强度结构钢(没有) GB/T 2040 铜及铜合金板材 GB/T 2044 镉青铜板 GB/T 2045 铬青铜板 GB/T 2046 锰青铜板 GB/T 2047 硅青铜板 GB/T 2049 青铜板 GB/T 2059 铜及铜合金带材 GB/T 3070 压铸镁合金 GB/T 3077 合金结构钢 GB/T 3078 优质结构钢冷拉钢材技术条件

相关文档
最新文档