20CrMnTi的工艺路线分析

20CrMnTi的工艺路线分析
20CrMnTi的工艺路线分析

20CrMnTi的工艺路线分析

20CrMnTi的工艺路线:下料→锻造→正火→机械粗加工→渗碳→淬火+低温回火→机械精加工

20CrMnTi(J9:30-42HRC)主要性能特点:为中淬透性低碳钢,具有良好的综合力学性能,低温冲击韧度较高,晶粒长大倾向小,冷热加工性能均较好。

该钢由于Cr、Mn、Ti多元复合合金化的作用,淬透性好油淬临界直径约40mm;渗碳淬火后,具有较高的耐磨性和高的强韧度,特别是低温冲击吸收能量比较高;钢的渗碳工艺性能好,晶粒长大倾向小,可直接淬火,变形也比较小。

其中锰,铬主要作用是提高渗碳钢的淬透性,以使较大尺寸的零件在淬火时芯部能获得大量的板条马氏体组织。另外还可以改善渗碳层参数。钛可以组织奥氏体晶粒在高温渗碳时的长大,能细化晶粒。

20CrMnTi钢一般可制造<300mm的高速、中载、受冲击和磨损的重要零件,如汽车、拖拉机变速箱齿轮,离合器轴和车辆上的伞齿轮及主动轴等,其他钢种如20Mn2TiB、20CrMnMo等和20CrMnTi 钢相近,有些方面优于20CrMnTi钢。

一下料

下料是指确定制作某个设备或产品所需的材料形状、数量或质量后,从整个或整批材料中取下一定形状、数量或质量的材料的操

作过程。

下料一般包括号料和划线等,号料就是根据板在钢材上画出构件的实样,并打上各种加工记号,为钢材的切割下料作准备。

划线是利用加工制作图、样杆、样板及钢卷尺进行划线。

划线的要领有两条:

1.划线作业场地要在不直接收日光及外界气温影响的室内,最好是开阔、明亮的场所。

2.用划针划线比用墨尺及划线用绳的精度高,划针可用砂轮磨尖,粗细度可达0.3mm左右。

二锻造

锻造是在锻压设备及工(模)具的作用下,使坯料或铸锭产生塑性变形,以获得一定几何尺寸、形状和质量的锻件的加工方法。

锻造方法有自由锻和模锻。

自由锻是利用冲击力或压力使加热好的金属在上、下抵铁之间产生变形。它适用于单件和小批量生产;特别适于重型、大型锻件生产。

模锻是利用模具使毛坯变形获得锻件的方法。常用的模锻设备有蒸汽-空气模锻锤、压力机等。它又分为锤上模锻,胎膜锻,压力机上模锻。适于小型锻件的成批大量生产。

拔长时的锻造比为 y拔=F0/F=L/L0

镦粗时的锻造比为 y镦=F/F0=H0/H

通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。经锻造以后晶粒大小形状发生了变化,改变了钢的组织,增加了锻造应力,提高了硬度,在机械加工前需预备热处理。相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。变形温度

按变形温度,锻造又可分为热锻(锻造温度高于坯料金属的再结晶温度)、温锻(锻造温度低于金属的再结晶温度)和冷锻(常温)。钢的开始再结晶温度约为727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻。

材料的原始状态有棒料、铸锭、金属粉末和液态金属。金属在变形前的横断面积与变形后的横断面积之比称为锻造比。正确地选择锻造比、合理的加热温度及保温时间、合理的始锻温度和终锻温度、合理的变形量及变形速度对提高产品质量、降低成本有很大关系。

一般的中小型锻件都用圆形或方形棒料作为坯料。棒料的晶粒组织和机械性能均匀、良好,形状和尺寸准确,表面质量好,便于组织批量生产。只要合理控制加热温度和变形条件,不需要大的锻造变形就能锻出性能优良的锻件。

铸锭仅用于大型锻件。铸锭是铸态组织,有较大的柱状晶和疏

松的中心。因此必须通过大的塑性变形,将柱状晶破碎为细晶粒,将疏松压实,才能获得优良的金属组织和机械性能。

经压制和烧结成的粉末冶金预制坯,在热态下经无飞边模锻可制成粉末锻件。锻件粉末接近于一般模锻件的密度,具有良好的机械性能,并且精度高,可减少后续的切削加工。粉末锻件内部组织均匀,没有偏析,可用于制造小型齿轮等工件。但粉末的价格远高于一般棒材的价格,在生产中的应用受到一定限制。

对浇注在模膛的液态金属施加静压力,使其在压力作用下凝固、结晶、流动、塑性变形和成形,就可获得所需形状和性能的模锻件。液态金属模锻是介于压铸和模锻间的成形方法,特别适用于一般模锻难于成形的复杂薄壁件。

不同的锻造方法有不同的流程,其中以热模锻的工艺流程最长,一般顺序为:锻坯下料;锻坯加热;辊锻备坯;模锻成形;切边;冲孔;矫正;中间检验,检验锻件的尺寸和表面缺陷;锻件热处理,用以消除锻造应力,改善金属切削性能;清理,主要是去除表面氧化皮;矫正;检查,一般锻件要经过外观和硬度检查,重要锻件还要经过化学成分分析、机械性能、残余应力等检验和无损探伤。

金属经过锻造加工后能改善其组织结构和力学性能。铸造组织经过锻造方法热加工变形后由于金属的变形和再结晶,使原来的粗大枝晶和柱状晶粒变为晶粒较细、大小均匀的等轴再结晶组织,使钢锭内原有的偏析、疏松、气孔、夹渣等压实和焊合,其组织变得更

加紧密,提高了金属的塑性和力学性能。

铸件的力学性能低于同材质的锻件力学性能。此外,锻造加工能保证金属纤维组织的连续性,使锻件的纤维组织与锻件外形保持一致,金属流线完整,可保证零件具有良好的力学性能与长的使用寿命采用精密模锻、冷挤压、温挤压等工艺生产的锻件,都是铸件所无法比拟的锻件是金属被施加压力,通过塑性变形塑造要求的形状或合适的压缩力的物件。这种力量典型的通过使用铁锤或压力来实现。铸件过程建造了精致的颗粒结构,并改进了金属的物理属性。在零部件的现实使用中,一个正确的设计能使颗粒流在主压力的方向。铸件是用各种铸造方法获得的金属成型物件,即把冶炼好的液态金属,用浇注、压射、吸入或其它浇铸方法注入预先准备好的铸型中,冷却后经落砂、清理和后处理等,所得到的具有一定形状,尺寸和性能的物件。

钢的可锻性

在锻造中常用可锻性这一名词表示金属材料在锻造时变形的难易程度。可锻性一般用塑性和变形抗力两个指标来衡量。高温下塑性好、变形抗力低的钢或合金,较容易锻造,由可锻性好;而塑性差、变形抗力大的钢或合金,锻造时易产生裂纹等缺陷,或所需设备吨位较大,锻造较困难,故可锻性差。在国外常评价各种钢及合金的相对可锻性。相应可锻性是基于各种合金在各自锻造温度范围内每消耗单位能量所得到的变形量,同时还考虑了合金在锻造工

艺条件下达到规定的急剧变形程度的困难性以及断裂倾向性。

可锻性对锻件成形和锻件质量有重要影响,了解和研究各种金属材料的可锻性,对于正确制定锻造工艺和确定锻造设备吨位具有重要意义。

杂质及合金元素对钢的塑性影响钢的高温塑性除与冶金质量和锻造热参数等因素有关外,主要取决于它的化学成分。

氧在钢中形成的氧化物夹杂如MnO,SiO2,Al2O3等,它们的熔点高,硬而脆,其数量、大小及分布情况对钢的塑性有一定影响。而FeO与FeS可形成低熔点(约930℃)共晶体,加剧钢的热脆性。氢含量高的钢锻造时易产生龟裂,并在冷却过程中易形成白点等缺陷。碳在锻造温度范围内,若能全部溶入奥氏体,则对钢的塑性影响不大。只有当钢的含碳量较高时,由于较多渗碳体甚至莱氏体从固溶体中析出,钢的塑性才大为下降。

锰在钢中可优先形成MnS(熔点为1620℃),从而减小钢的热脆性。当锰含量大于0.8%时,作为合金元素,促进晶粒长大,使钢容易产生过热。镍在冶炼过程中可提高钢的吸气能力,尤其是吸收氢的能力,促进钢中形成气泡或产生裂纹。

钛与硫形成TiS,其熔点高于FeS,可减轻高硫钢的热脆性。

钢锻后的性能

锻造加工能保证金属纤维组织的连续性,使锻件的纤维组织与锻件外形保持一致,金属流线完整,可保证零件具有良好的力学性能与

长的使用寿命。

三预先热处理--- 正火

定义:将钢加热至Ac3或Accm以上30~50℃保温,在空气中冷却,得到珠光体类组织的热处理工艺。

目的:①细化组织,消除热加工造成的过热缺陷,使组织正常化;

②提高普通结构零件的机械性能。③用于低碳钢,提高硬度,改善钢的切削加工性能;④用于中碳钢代替调制处理,为高频淬火做准备.⑤用于高碳钢可消除网状渗碳体,为球化退火做准备.

20CrMnTi的正火工艺为:加热温度920~950摄氏度,保温,空冷 156~207HBS

加热温度在Ac3线以上,细化晶粒,消除组织缺陷,以获得珠光体+少量铁素体。

正火冷却速度比退火冷却速度稍快,因而正火组织与退火组织相比,组织中的珠光体量相对要多,且片层较细密,得到的珠光体邻域小,因此其机械性能也有所提高。正火后零件的强度和硬度比退火时要高,且随着含碳量的增加差别越显著。另外,正火炉外冷却不占用设备,生产率较高,因此生产中尽可能采用正火来代替退火。

正火之前工艺一般为锻造,锻造温度在1200左右,使晶粒粗大,正火加热温度比锻造低但零件也完全奥氏体化,因此得到的奥氏体晶粒较锻造细小,冷却到两相区时,从奥氏体中析出铁素体,由于

奥氏体晶粒细小,空冷后得到的铁素体与索氏体晶粒也很细小,使晶粒得以细化,机械性能也有所提高。

正火的应用场合

1.用于低碳钢

低碳钢由于退火后硬度太低,切削加工时产生粘刀的现象,切削性能差,正火后硬度略高于退火,韧性也比较好,可作为切削加工的预备热处理。

2.用于中碳钢

正火代替退火提高零件的力学性能,一些受力不大的工件,正火可替代调制处理作为最终热处理,简化热处理工艺;也可作为用感应加热方式进行表面淬火前的预备热处理。

3.用于工具钢、轴承钢等

过共析钢球化退火前进行一次正火,过共析钢正火加热到Accm以上,使原先成网状的渗碳体全部溶入到奥氏体中,然后用较快的速度冷却,抑制渗碳体在奥氏体晶界的析出,可消除或抑制网状碳化物的析出,从而得到球化退火所需的良好组织。

4.用于大型锻件

可作为最后热处理,从而避免淬火时较大的开裂倾向。

5.用于消除热加工的缺陷

中碳构钢铸、锻、扎件以及焊接件在加热加工后易出现粗大晶粒及带状组织。通过正火可以消除这些缺陷组织,达到细化晶粒,

均匀组织,消除内应力的目的。

四机械粗加工

1、在尽量短的时间内切除大部分多余材料。

2、为精加工提供定位精基准。

3、及时发现毛坯缺陷。

机械加工中粗加工余量的大小要看加工件的形状、大小、厚薄、长短来确定。一般来说,短粗、厚实的零件的加工余量可以少留一些,细而长、薄而大的零件的加工余量要多留一些。因为前者不太容易变形,而后者容易变形。

一般来说,粗加工是指去掉毛坯上铸造,锻造的不规则表皮,按照零件要求简单加工到加工余量在5毫米左右。之后精加工直接将材料加工到指定尺寸。加工设备可能是数控机床等的高级设备。

粗加工:加工方法一般为,粗车、粗刨、粗铣、钻、毛锉、锯断等,可见刀痕。应用在非配合尺寸或不重要的配合,用于一般要求,加工精度在IT13—IT8,Ra≤80—20.半精加工:加工方法为半精车、精车、精刨、精铣、粗磨,表面可见加工痕迹或加工痕迹不明显。加工精度在IT10—IT7,Ra≤10—2.5,用于重要配合。精加工:加工方法为精车、精刨、精磨、铰,加工精度在IT8—IT6,Ra≤1.25—0.32,用于精密配合。超精加工:加工方法为精

磨、研磨、镜面磨、超精加工,表面光泽或达到镜面。加工精度在IT6—IT5或更高,Ra≤0.16—0.01。主要用于量块、量仪和精密仪表、精密零件的光整加工

刀具材料的选择

刀具材料需满足一些基本要求:1.高硬度。刀具的最低硬度应在60HRC以上。对于碳素工具钢材料,在室温条件下硬度应在62HRC 以上。高速钢硬度为63HRC--70HRC以上。硬质合金刀具硬度为89HRC--93HRC。 2.高强度与强韧性。刀具在切削时受到很大的切削力和冲击力,一般刀具材料的韧性用冲击韧性Ak表示,反应刀具材料抗脆性和崩刀的能力。 3.较高的耐磨性和耐热性(刀具耐热性是衡量刀具切削性能的主要标志,通常用高温下高强度的性能来衡量,也称热硬性)一般刀具硬度越高,耐磨性越好。刀具金相组织中硬质点越多,颗粒越小,分布越均匀,则刀具耐磨性越好。刀具材料高温硬度越高,则耐热性越好,在高温抗塑性变形能力、抗磨损能力越强。 4.优良的导热性。刀具导热性好,表示切削产生的热量容易传导出去,降低了刀具切削部分的温度,减少了刀具磨损。刀具材料导热性好其抗耐热冲击和抗热裂纹性能也越强。 5.良好的工艺性与经济性。刀具不但具有良好的切削性能,本身还应易于制造,这要求刀具材料具有良好的工艺性。

刀具的角度

各种刀具都是由切削部分(刀头)和被夹持部分(刀体或刀柄)两

部分组成。两者既可以是一体的,也可以是由不同材料连接起来。前角:基面和前刀面的夹角。是刀具的锋利程度。我们把铁屑流经过的面成为前刀面。

后角:切削平面和后刀面的夹角。主要影响摩擦和刀具强度。

主偏角:主切削刃和刀具进给方向的夹角。影响刀具的强度,和影响背向力,主偏角减小,背向力越大,机床的消耗率也越大,并且主偏角还会影响表面粗糙度。

副偏角:副切削刃与进给方向的反方向的夹角即为副偏角。同样影响强度,摩擦,以及表面粗糙度。

刃倾角:是控制流屑的方向。主切削刃和基面的夹角。

切削硬度范围

不同的材料,其最佳切削性能所对应的硬度并不是一成不变的。不要太硬,太硬崩刀,不要太软,太软粘刀。

五渗碳

渗碳是将钢件在碳的活性介质中加热并保温,使碳原子渗入表层的一种表面化学热处理工艺。

目的:提高零件的表面硬度、耐磨性;高的接触疲劳强度和弯曲疲劳强度;心部保持良好的塑性与韧性.

根据所用渗碳剂在渗碳过程中聚集状态的不同,渗碳方法可以分为固体渗碳法、液体渗碳法及气体渗碳法三种。

(1)固体渗碳法

常用的固体渗碳温度为900-930摄氏度。因为据铁碳状态图,只有在奥氏体区域,铁中碳的浓度才可能在很大范围内变动,碳的扩散才能在单相的奥氏体中进行。900-930摄氏度这个温度恰好较渗碳钢的Ac3点稍高,保证了上述条件的实现。

(2)液体渗碳法

液体渗碳是在能够析出活性碳原子的盐浴中进行的渗碳方法。其优点是加热速度快,加热均匀,便于渗碳后直接淬火;缺点是多数盐浴有毒。

液体渗碳的温度一般为920-940摄氏度,其考虑原则和固体渗碳相同。

(3)气体渗碳法

气体渗碳是工件在气体介质中进行碳的渗入过程的方法,可以用碳氢化合物有机液体,如煤油、丙酮等直接滴入炉内汽化而得。

渗碳一般用于碳的质量分数为0.1%-0.3%的低碳钢和低碳合金钢。

加热温度为900---950的单相奥氏体区。因为在单相奥氏体区内,r--Fe中碳的极限溶解度为2.11%, --Fe中碳的极限溶解度仅为0.0218%,达不到渗碳浓度要求。

渗碳使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。渗碳后﹐钢件表面的化学成

分可接近高碳钢。工件渗碳后还要经过淬火﹐以得到高的表面硬度﹑高的耐磨性和疲劳强度﹐并保持心部有低碳钢淬火后的强韧性﹐使工件能承受冲击载荷。工件渗碳淬火后的表层显微组织主要为高硬度的马氏体加上残余奥氏体和少量碳化物﹐心部组织为韧性好的低碳马氏体或含有非马氏体的组织﹐但应避免出现铁素体。一般渗碳层深度范围为0.8~1.2毫米﹐深度渗碳时可达2毫米或更深。表面硬度可达HRC58~63﹐心部硬度为HRC30~42。渗碳淬火后﹐工件表面产生压缩内应力﹐对提高工件的疲劳强度有利。因此渗碳被广泛用以提高零件强度﹑冲击韧性和耐磨性﹐借以延长零件的使用寿命。

六淬火+低温回火

渗碳+淬火+低温回火为最终热处理。

表面:回火马氏体+颗粒状碳化物+残余奥氏体;

心部:低碳合金钢,淬透性好,为回火马氏体+残余奥氏体+铁素体性能表面:具有较高的硬度、耐磨性以及疲劳强度;心部:具有良好的塑性与韧性

淬火

把钢加热到Ac3或Ac1以上,保温一定时间,以大于临界冷却速度的冷速冷却,从而获得马氏体或贝氏体组织的热处理工艺。

组织:主要为M、B或M+B的混合物

目的:提高零件的硬度、强度和耐磨性;如刃具、量具、模具等;

获得良好的综合力学性能;如各种机器零件;改善钢的物理和化学性能;如用高碳钢和磁钢制的永久磁铁、不锈钢和耐热钢。

为正确进行淬火,必须考虑以下三个因素:淬火加热温度,保温时间和冷却速度

1)淬火加热温度 820~850

2)保温时间淬火加热时间实际上是将试样加热到淬火温度所需的时间及在淬火温度停留所需时间的总和。

3)冷却速度应大于临界冷速,以保证获得马氏体组织,在这个前提下又应尽量缓慢冷却,以减小内应力,防止变形和开裂。

为了保证淬火效果,应选用适当的冷却介质。淬火冷却速度太快,奥氏体向马氏体转变剧烈、积收体缩,引起很大的内应力,容易造成齿轮的变形和开裂,由于20CrMnTi是合金钢,淬透性较好,故选择油冷减小冷却速度,防止淬火造成齿轮变形或开裂。时也能获得马氏同体组织,达到较高的硬度。回火

将淬火后的钢在A1以下温度加热、保温并以适当速度冷却。

回火的目的:1.提高淬火钢的淬硬性,降低脆性;2.降低或消除淬火引起的残余内应力;3.稳定组织和尺寸。

回火过程

(1)时效阶段(100℃以下):马氏体中碳原子偏距。

(2)回火第一阶段(80-250℃):马氏体分解及过渡碳化物析出。

(3)回火第二阶段(200-300℃):残余奥氏体分解。

(4)回火第三阶段(250-400℃):碳化物析出与转变。

(5)回火第四阶段(400℃以上):渗碳体的聚集长大与a相的再结晶。

回火按温度分类:低温回火(150-250℃)、中温回火(350-500℃)、高温回火(大于500℃)

(1)低温(150~250℃)

消除淬火应力,稳定组织,减少残余奥氏体的数量,达到所需要的性能。

低温回火时,工件表面马氏体中过饱和碳原子以碳化物的形式逐步析出,马氏体晶格畸变程度减弱,内应力有所降低。此时的回火组织由马氏体和碳化物组成,称为回火马氏体。虽然马氏体的分解使α- F e中碳的过饱和程度降低,钢的硬度相应下降,但析出的碳化物又对基体起强化作用,部分的残余奥氏体分解为回火马氏体,所以钢仍保持很高的硬度和耐磨性。同时芯部为原始组织淬火加低温回火所得到的低碳回火马氏体+残余奥氏体+铁素体,具有较好的韧性。

(2)中温回火(350-500℃)

中温回火后得到回火屈氏体组织,主要用于处理弹簧钢。

中温回火相当于一般碳钢及低合金钢回火的第三阶段温度区。此时,碳化物已经开始聚集,基体也开始恢复,第二类内应力趋于基

本消失,因此具有较高的弹性极限,又有较高的弹性和韧性。(3)高温回火(大于500℃)

这一温度区间回火的工件,常见有以下几类;

1.调制处理。即淬火加高温回火,以获得回火索氏体组织。这种处理称为调制处理,主要用于中碳钢或低合金结构钢已获得良好的综合机械性能。一般调制处理的回火温度选在600℃以上。

与正火处理相比,刚经调制处理后,在硬度相同条件下,钢的屈服强度、韧性和塑性明显的提高。

2.二次硬化型钢的回火。对一些具有二次硬化作用的高合金钢,如高速钢等,在淬火以后,需要利用高温回火来获得二次硬化的效果。

3.高合金渗碳钢的回火。高合金渗碳钢渗碳后,由于其奥氏体非常稳定,即在缓慢冷却条件下,也会转变成马氏体,并存在着大量的残余奥氏体。渗碳后进行高温回火的目的是使马氏体和残余奥氏体分解,使渗碳层中一部分碳和合金元素以碳化物的形式析出,并聚集球化,得到回火索氏体组织,使钢的硬度降低,便于切削加工,同时还可以减少后续淬火工序淬火后渗层中的残余奥氏体量。

七机械精加工

精加工是工件工艺的最后一道工序,是要求做到公差内的最后一次加工。

相对于粗加工:粗加工进给量大,效率高,精度低。精加工,进给量小,容易控制零件的尺寸精度和表面粗糙度。

粗加工余量大是为了快速达到需要的尺寸,效率占主导。而当需要达到某一个精度的时候,质量就是占主导的了,这时就需要降低切削量,提高精度。降低切削量主要是为了:

1、减低切削力,使加工中工件变形在一个可控范围内;

2、降低切削热,使工件的热变形最小;

3、通过减小加工余量,保护刀具,使刀具磨损减小,以保证加工质量;

4、通过减小加工余量,使工件的表面质量提高,并控制表面应变应力,从而获得好的表面质量。

5、从刀具方面,精加工刀具刀尖圆角小,强度不够,需要小的切削余量。

6、精加工需要更高的转速,需要将热量转移到切屑上,使用小的余量,可以在不使用切削液的情况下,保证刀具寿命及控制工件热变形。

生产管理:工艺路线的理解

生产管理:工艺路线的理解 工艺路线也称加工路线,是描述物料加工、零部件装配的操作顺序的技术文件,是多个工序的序列。工序是生产作业人员或机器设备为了完成指定的任务而做的一个动作或一连串动作,是加工物料、装配产品的最基本的 . 工艺路线也称加工路线,是描述物料加工、零部件装配的操作顺序的技术文件,是多个工序的序列。工序是生产作业人员或机器设备为了完成指定的任务而做的一个动作或一连串动作,是加工物料、装配产品的最基本的加工作业方式,是与工作中心、外协供应商等位置信息直接关联的数据,是组成工艺路线的基本单位。例如,一条流水线就是一条工艺路线,这条流水线上包含了许多的工序。 在传统的ERP系统中,工艺路线是生产加工、装配中的概念。实际上,工艺路线的概念应该扩展,应该延伸到包括管理过程。管理工作,或者管理作业,应该像生产作业那样,制定规范的作业流程、明确每项活动的时间定额和费用、每项活动涉及的工作中心等。 工艺路线是一种关联工作中心、提前期和物料消耗定额等基础数据的重要基础数据,是实施劳动定额管理的重要手段。 从性质上来讲,工艺路线是指导制造单位按照规定的作业流程完成生产任务手段。 在MRP中,可以根据产品、部件、零件的完工日期、工艺路线和工序提前期,计算部件、零件和物料的开工日期,以及子项的完工日期。 在CRP中,可以基于工序和工艺路线计算工作中心的负荷(消耗的工时)。因

此,工艺路线也是计算工作中心能力需求的基础。 根据在每一道工序采集到的实际完成数据,企业管理人员可以了解和监视生产进度完成情况。 工艺路线提供的计算加工成本的标准工时数据,是成本核算的基础和依据。 工艺路线如果没有与具体的物料加工关联,则这种工艺路线就是标准的工艺路线。一般情况下,工艺路线是与具体的物料加工关联在一起的,这时才能有准确的提前期数据。因此,工艺路线数据包括了加工的物料数据。 例如,空调器中的蒸发器、冷凝器部件的标准装配工艺路线的工序包括串U 型管、胀管、折弯、清洗、封管、气密测试、整理和包装入库等。U型管的加工顺序是:下料、弯管、切管、收管口和打毛刺等。 一般情况下,工艺路线数据主要包括工艺路线编码、工艺路线名称、工艺路线类型、制造单位、物料编码、物料名称、工序编码、工序名称、加工中心编码、是否外协、时间单位、准备时间、加工时间、移动时间、等待时间、固定机时、变动机时、固定人时、变动人时、替换工作中编码、生效日期、失效日期和检验标志等。 编写工艺路线的过程包括确定原材料、毛坯;基于产品设计资料,查阅企业库存材料标准目录;依据工艺要求确定原材料、毛坯的规格和型号;确定加工、装配顺序即确定工序;根据企业现有的条件和将来可能有的条件、类似的工件、标准的工艺路线和类似的工艺路线以及经验,确定加工和装配的顺序;选定工作

工艺路线的制定

图1 图2 第二节 工艺路线的制定 一、 定位基准的选择 1. 一般原则 (1) 选最大尺寸的表面为安装面(主要定位面,限制三个自由度),选最长距离的表面为 导向定位面(限制二个自由度),选最小尺寸的表面为支承面(限制一个自由度)。 如下图1所示,如果要求所加工的孔与端面M 垂直,显然用N 1面定位时加工精度最高。 (2) 首先考虑保证空间位置精度,再考虑保证尺寸精度。因为在加工中保证空间位置精度 有时要比尺寸精度困难得多。 如上图2所示的主轴箱零件,其主轴孔要求与M 面的距离为z ,与N 面的距离为x 。由于主轴孔在箱体两壁上都有,并且要求与M 面及N 面平行,因此要以M 面为安装面,限 制Z Y X r ))、、三个自由度,以N 面为导向面,限制X r 和Z )两个自由度。要保证这些空间位置, M 面与N 面必须有较高的加工精度。(位置公差是关联实际要素的方向或位置对基准所允许的变动全量。位置公差又分为定向公差(平行度、垂直度、倾斜度)、定位公差(同轴度、对程度、位置度)、跳动公差(圆跳动、全跳动)) (3) 应尽量选择零件的主要表面为定位基准,因为主要表面是决定该零件其他表面的基 准,也就是主要的设计基准。如上例中的主轴箱零件,M 面和N 面就是主要表面,许多表面的位置都是由这两个表面来决定的,因此选主要表面为定位基准,可使设计基准与定位基准重合。 (4) 定位基准应便于夹紧,在加工过程中稳定可靠。 2. 粗基准选择原则 (1) 保证相互位置要求的原则 (2) 保证加工表面加工余量合理分配的原则 (3) 便于工件的装夹原则 (4) 粗基准一般只能使用一次,应尽量避免重复使用

典型轴类零件加工工艺分析

6.4典型轴类零件加工工艺分析 6.4.1 轴类零件加工的工艺分析 (1)轴类零件加工的工艺路线 1)基本加工路线 外圆加工的方法很多,基本加工路线可归纳为四条。 ① 粗车—半精车—精车 对于一般常用材料,这是外圆表面加工采用的最主要的工艺路线。 ② 粗车—半精车—粗磨—精磨 对于黑色金属材料,精度要求高和表面粗糙度值要求较小、零件需要淬硬时,其后续工序只能用磨削而采用的加工路线。 ③ 粗车—半精车—精车—金刚石车 对于有色金属,用磨削加工通常不易得到所要求的表面粗糙度,因为有色金属一般比较软,容易堵塞沙粒间的空隙,因此其最终工序多用精车和金刚石车。 ④ 粗车—半精—粗磨—精磨—光整加工 对于黑色金属材料的淬硬零件,精度要求高和表面粗糙度值要求很小,常用此加工路线。 2)典型加工工艺路线 轴类零件的主要加工表面是外圆表面,也还有常见的特特形表面,因此针对各种精度等级和表面粗糙度要求,按经济精度选择加工方法。 对普通精度的轴类零件加工,其典型的工艺路线如下: 毛坯及其热处理—预加工—车削外圆—铣键槽—(花键槽、沟槽)—热处理—磨削—终检。 (1)轴类零件的预加工 轴类零件的预加工是指加工的准备工序,即车削外圆之前的工艺。 校直毛坯在制造、运输和保管过程中,常会发生弯曲变形,为保证加工余量的均匀及装夹可靠,一般冷态下在各种压力机或校值机上进行校值, (2) 轴类零件加工的定位基准和装夹

1)以工件的中心孔定位在轴的加工中,零件各外圆表面,锥孔、螺纹表面的同轴度,端面对旋转轴线的垂直度是其相互位置精度的主要项目,这些表面的设计基准一般都是轴的中心线,若用两中心孔定位,符合基准重合的原则。中心孔不仅是车削时的定为基准,也是其它加工工序的定位基准和检验基准,又符合基准统一原则。当采用两中心孔定位时,还能够最大限度地在一次装夹中加工出多个外圆和端面。 2)以外圆和中心孔作为定位基准(一夹一顶)用两中心孔定位虽然定心精度高,但刚性差,尤其是加工较重的工件时不够稳固,切削用量也不能太大。粗加工时,为了提高零件的刚度,可采用轴的外圆表面和一中心孔作为定位基准来加工。这种定位方法能承受较大的切削力矩,是轴类零件最常见的一种定位方法。 3)以两外圆表面作为定位基准在加工空心轴的内孔时,(例如:机床上莫氏锥度的内孔加工),不能采用中心孔作为定位基准,可用轴的两外圆表面作为定位基准。当工件是机床主轴时,常以两支撑轴颈(装配基准)为定位基准,可保证锥孔相对支撑轴颈的同轴度要求,消除基准不重合而引起的误差。 4)以带有中心孔的锥堵作为定位基准在加工空心轴的外圆表面时,往往还采用代中心孔的锥堵或锥套心轴作为定位基准,见图6.9所示。 锥堵或锥套心轴应具有较高的精度,锥堵和锥套心轴上的中心孔即是其本身制造的定位基准,又是空心轴外圆精加工的基准。因此必须保证锥堵或锥套心轴上锥面与中心孔有较高的同轴度。在装夹中应尽量减少锥堵的安装此书,减少重复安装误差。实际生产中,锥堵安装后,中途加工一般不得拆下和更换,直至加工完毕。 图 6.9 锥堵和锥套心轴 a)锥堵 b)锥套心轴

现代煤化工工艺路线总图

现代煤化工工艺路线总图煤化工工艺路线图

煤制甲醇典型工艺路线图 1、合成甲醇的化学反应方程式: (1)主反应: CO+2H2=CH3OH+102.5KJ/mol (2)副反应 2CO+4H2=CH3OCH3+H2O+200.2 KJ/mol CO+3H2=CH4+H2O+115.6 KJ/mol 4CO+8H2=C4H9OH+3H2O+49.62 KJ/mol CO2+H2=CO+H2O-42.9 KJ/mol 2、甲醇合成气要求氢碳比f=(H2-CO2)/(CO+CO2)≈2.05~2.10,由于煤炭气化所得到的水煤气CO含量较高,H2含量较低,因此水煤气须经脱硫、变换、脱碳调整气体组成,以达到甲醇合成气的要求。 3、CO变换反应 CO+H2O(g)=CO2+H2 (放热反应)

4、水煤气组分与甲醇合成气组分对比 气体种类气体组分(%) CO H2CO2CH4 水煤气37.350.0 6.50.3 甲醇合成 29.9067.6429.900.1 气 天然气制甲醇工艺流程图 1、合成甲醇的化学反应方程式: CH4+H2O=CH3OH+H2 2、甲醇合成气要求氢碳比f=(H2-CO2)/(CO+CO2)≈2.05~2.10,由于天然气甲烷含量较高,因此要对天然气进行蒸汽转化,生成以H2、CO和CO2位主要成分的转化气。由于蒸汽转化反应是强吸热反应,因此还要对天然气进行纯氧部分氧化以获取热量,使得蒸汽转化反应正常连续进行,最终达到甲醇合成气的要求。

3、蒸汽转化反应 CH4+H2O(g)=CO+H2(强吸热反应) 4、纯氧部分氧化反应 2CH4+O2=2CO+4H2+35.6kJ/mol CH4+O2=CO2+2H2+109.45 kJ/mol CH4+O2=CO2+H2O+802.3 kJ/mol 5、天然气组分与甲醇合成气组分对比 气体种 气体组分(%) 类 CO H2CO2CH4天然气----------- 3.296.2 甲醇合 29.9067.6429.900.1 成气 石油化工、煤炭化工产品方案对比(生产烯烃) 以天然气(或煤气)为原料的MTO技术流程

机械零件结构工艺性分析与工艺路线的拟定

目录 一、零件结构工艺性分析2 1. 零件的技术要求2 2.确定堵头结合件的生产类型3 二、毛坯的选择4 1.选择毛坯4 2.确定毛坯的尺寸公差4 三、定位基准的选择6 1.精基准的选择6 2.粗基准的选择6 四、工艺路线的拟定7 1.各表面加工方法的选择7 2.加工阶段的划分8 3.加工顺序的安排8 4.具体技术方案的确定9 五、工序内容的拟定10 1.工序的尺寸和公差的确定10 2.机床、刀具、夹具及量具的选择12 3.切削用量的选择及工序时间计算12 六、设计心得35 七、参考文献36

一、零件结构工艺性分析 1.零件的技术要求 1.堵头结合件由喂入辊轴和堵头焊接在一起。其中喂入辊 轴:材料为45钢。堵头:材料为Q235-A。且焊缝不得有夹渣、气孔及裂纹等缺陷。 2.零件的技术要求表:

2. 确定堵头结合件的生产类型 根据设计题目年产量为10万件,因此该左堵头结合件的生产类型为大批量生产。

二、毛坯的选择 1.选择毛坯 由于该堵头结合件在工作过程中要承受冲击载荷,为增强其的强度和冲击韧度,堵头选用锻件,材料为Q235-A,因其为大批大量生产,故采用模锻。喂入辊轴由于尺寸落差不大选用棒料,材料为45钢。 2.确定毛坯的尺寸公差 喂入辊轴: 根据轴类零件采用精轧圆棒料时毛坯直径选择可通过零件的长度和最大半径之比查的毛坯直径 206 L8.24 == R25 查表得毛坯直径为:φ55 根据其长度和直径查得端面加工余量为2。故其长度为206+2+2=210mm

堵头: 1.公差等级: 由于堵头结合件用一般模锻工艺能够达到技术要求,确定该零件的公差等级为普通级。 2.重量: 锻件重量的估算按下列程序进行: 零件图基本尺寸-估计机械加工余量-绘制锻件图-估算锻件重量。并按此重量查表确定公差和机械加工余量 据粗略估计锻件质量: 11.6f Kg M = 3.形状复杂系数: 锻件外廓包容体重量按公式:2N d h 4 M π ρ= g g 计算 293 186.5101104 7.851021.65Kg N M π -= ?????= 形状复杂系数: f 11.6 0.5421.6M S M N === 故形状复杂系数为S2(一般)级。 4.锻件材质系数: 由于该堵头材料为Q235-A 所含碳元素的质量分数分别为C=0.14%—0.22%,小于0.65% 所含合金元素的质量分数分别为Si 0.3%≤、S 0.05%≤、P 0.045%≤故合金元素总的质量分数为0.3%0.05%0.045%0.395%3%++≤<%。故该锻件的材质系数为M1级。 5.锻件尺寸公差 根据锻件材质系数和形状复杂系数查得锻件尺寸公差为 ( 2.41.2+-) 。 6.锻件分模线形状: 根据该堵头的形装特点,选择零件轴向方向的对称平面为分模面,属于平直分模线。

工艺路线

工艺路线 工艺路线用来表示企业产品的在企业的一个加工路线(加工顺序)和在各个工序中的标准工时定额情况。是一种计划管理文件不是企业的工艺文件,不能单纯的使用工艺部门的工艺卡来代替。工艺卡主要是用来指定工人在加工过程中的各种操作要求和工艺要求,而工艺路线则强调加工的顺序和工时定额情况,主要用来进行工序排产和车间成本统计。 目录 设计拟定 类型分类 主要工艺路线 替代工艺路线 工程工艺路线 作用库存装配件累计提前期的基础 成本模块卷集装配件成本的依据 MRP模块进行能力计算和考核的根本 WIP实时记录和控制的基本条件 实现系统标准外协功能 准确定义物料清单 工艺路线管理 工艺路线,英文是Routing,是描述物料加工、零部件装配的操

作顺序的技术文件,是多个工序的序列。 工序是生产作业人员或机器设备为了完成指定的任务而做的一个动作或一连串动作,是加工物料、装配产品的最基本的加工作业方式,是与工作中心、外协供应商等位置信息直接关联的数据,是组成工艺路线的基本单位。例如,一条流水线就是一条工艺路线,这条流水线上包含了许多的工序。 在ERP系统中,工艺路线文件一般用以下内容进行描述:物品代码、工序号、工序说明、工作中心代码、排队时间、准备时间、加工时间、等待时间、传送时间、最小传送量、外协标识(Y/N)、标准外协费和工序检验标志(Y/N)等等字段。物料代码用来表示该工艺路线是针对何种物料的工艺路线。工序号用来表示该物料加工时需要经过多少个工序,该工序号应该按照加工顺序进行编排。工作中心代码,用来表示该工序在哪个工作中心中进行加工。排队时间、准备时间、加工时间、等待时间、传送时间五种作业时间,主要是用来描述工序的作业时间,以进行能力计算和车间作业排产。外协标识、标准外协费是指如果该工序(如电镀)对企业来说是进行外协加工的,需要在工艺路线中进行指定。 工艺路线主要包括如下数据:工序号、工作描述、所使用的工作中心、各项时间定额(如准备时间、加工时间、传送时间等)、外协工序的时间和费用。还要说明可供替代的工作中心、主要的工艺装备编码等,作为发放生产订单和调整工序的参考。 在传统的ERP系统中,工艺路线是生产加工、装配中的概念。实

步骤三:定义工艺路线选择

步骤三:定义工艺路线选择 关键词:工艺路线|工序|工作中心|成本中心|作业类型(Routing|Operation|Work center|cost center|Activity Type) 控制码|公式码|标准值码(Control Key|Formula Key|Standard value Key) 成本估算工艺路线选择的配置包括图8的5个部分,首先看看定义自动工艺路线的选择,如图9。 注意图9的选择ID 01,它包括1-4四个优先级,其中SP 1的Task List Type N表示普通的工艺路线(Tcode:CA01建立),SAP提供了多种工艺路线,比如还有重复生产使用的Rate routing(Tcode:CA21建立),Type R等,同样,如图9-[2],工艺路线的用途也被设置为多种: 1:Production, 2:Engineer, 3:Universal等 同时建立工艺路线时还被赋予了一个状态:1:Create建立;2:Release for order表示可以使用该工艺路线建立工单;3:Realse for costing表示可以用做成本估算; 4 :Release (General)通用。 状态通常用做审批,产品工程师建立好工艺路线后,经理审批后就可使用,一般正式的工艺路线的状态都被设置为4:Release (General),既然用于生产又能用于成本估算。

图9表示成本估算时工艺路线的首选ID为01的;工艺路线类型为N的,用于生产的,状态是被批准为通用的普通工艺路线。 产品成本估算(不仅仅包括标准成本估算,系统还提供其它成本估算形式用于不同目的)无非是料(BOM)工(涉及工艺路线,工序,工作中心,作业类型和成本中心)费(间接费用可通过成本核算单核算,实际上间接费用核算也可通过工艺路线,作业类型等来实现)层层汇总而来, 尽管作业成本法(ABC成本法)和资源性成本方法(RBC方法)认为产品的成本不应该硬性分为直接材料、直接人工和间接费用,目前多数ERP项目依旧喜欢采用标准成本核算体系,人工和各项间接费用等成本被隐藏在工艺路线中实现。 图10清晰表示了这个过程,一个产品一般最少对应一个工艺路线,工艺路线中包含一个或多个工序,每个工序在一个工作中心执行,一个工作中心唯一对应一个成本中心,一个工作中心最多可执行6个作业类型,每个作业类型则代表人工,机器折旧或其它间接费用,也就是说成本估算的直接材料展BOM卷算而来,直接人工和间接费用则通过产品对应工艺路线计算而来,因为产品下有半成品,半成品也有其工序,实际上工费也是层层上卷的。

20CrMnTi的工艺路线分析

20CrMnTi的工艺路线分析 20CrMnTi的工艺路线:下料,锻造,正火,机械粗加工,渗碳,淬火+低温回火,机械精加工 20CrMnTi为中淬透性低碳钢,具有良好的综合力学性能,低温冲击韧度较高,晶粒长大倾向小,冷热加工性能均较好。 其中锰,铬主要作用是提高渗碳钢的淬透性,以使较大尺寸的零件在淬火时芯部能获得大量的板条马氏体组织。另外还可以改善渗碳层参数。钛可以组织奥氏体晶粒在高温渗碳时的长大,能细化晶粒。 一下料 下料是指确定制作某个设备或产品所需的材料形状、数量或质量后,从整个或整批材料中取下一定形状、数量或质量的材料的操作过程。二锻造 锻造是在锻压设备及工(模)具的作用下,使坯料或铸锭产生塑性变形,以获得一定几何尺寸、形状和质量的锻件的加工方法。 锻造方法有自由锻和模锻。 自由锻是利用冲击力或压力使加热好的金属在上、下抵铁之间产生变形。它适用于单件和小批量生产;特别适于重型、大型锻件生产。 模锻是利用模具使毛坯变形获得锻件的方法。常用的模锻设备有蒸汽-空气模锻锤、压力机等。它又分为锤上模锻,胎膜锻,压力机上模锻。适于小型锻件的成批大量生产。 拔长时的锻造比为y拔=F0/F=L/L0

镦粗时的锻造比为y镦=F/F0=H0/H 通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。经锻造以后晶粒大小形状发生了变化,改变了钢的组织,增加了锻造应力,提高了硬度,在机械加工前需预备热处理。相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。 变形温度 按变形温度,锻造又可分为热锻(锻造温度高于坯料金属的再结晶温度)、温锻(锻造温度低于金属的再结晶温度)和冷锻(常温)。钢的开始再结晶温度约为727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻。 材料的原始状态有棒料、铸锭、金属粉末和液态金属。金属在变形前的横断面积与变形后的横断面积之比称为锻造比。正确地选择锻造比、合理的加热温度及保温时间、合理的始锻温度和终锻温度、合理的变形量及变形速度对提高产品质量、降低成本有很大关系。 一般的中小型锻件都用圆形或方形棒料作为坯料。棒料的晶粒组织和机械性能均匀、良好,形状和尺寸准确,表面质量好,便于组织批量生产。只要合理控制加热温度和变形条件,不需要大的锻造变形就能锻出性能优良的锻件。 铸锭仅用于大型锻件。铸锭是铸态组织,有较大的柱状晶和疏松的

工艺路线图

煤化工工艺路线图

煤制甲醇典型工艺路线图 1、合成甲醇的化学反应方程式: (1)、主反应: C O+2H2=C H3O H+102.5K J/m o l (2)、副反应 2CO+4H2=CH3OCH3+H2O+200.2 KJ/mol C O+3H2=C H4+H2O+115.6K J/m o l 4C O+8H2=C4H9O H+3H2O+49.62K J/m o l C O2+H2=C O+H2O-42.9K J/m o l 2、甲醇合成气要求氢碳比f=(H2-CO2)/(CO+CO2)≈2.05~2.10,由于煤炭气化所得到的水煤气CO含量较高,H2含量较低,因此水煤气须经脱硫、变换、脱碳调整气体组成,以达到甲醇合成气的要求。 3、CO变换反应 C O+H2O(g)=C O2+H2(放热反应) 4、水煤气组分与甲醇合成气组分对比

天然气制甲醇工艺流程图 1、合成甲醇的化学反应方程式: C H4+H2O=C H3O H+H2 2、甲醇合成气要求氢碳比f=(H2-CO2)/(CO+CO2)≈2.05~2.10,由于天然气甲烷含量较高,因此要对天然气进行蒸汽转化,生成以H2、CO和CO2位主要成分的转化气。由于蒸汽转化反应是强吸热反应,因此还要对天然气进行纯氧部分氧化以获取热量,使得蒸汽转化反应正常连续进行,最终达到甲醇合成气的要求。 3、蒸汽转化反应 C H4+H2O(g)=C O+H2(强吸热反应) 4、纯氧部分氧化反应 2C H4+O2=2C O+4H2+35.6k J/m o l C H4+O2=C O2+2H2+109.45k J/m o l C H4+O2=C O2+H2O+802.3k J/m o l 5、天然气组分与甲醇合成气组分对比

工艺路线详解

工艺路线的概念应该扩展到管理过程,像生产作业那样,制定规范的作业流程、明确每项活动的时间定额和费用、每项活动涉及的工作中心等。 工艺路线是一种关联工作中心、提前期和物料消耗定额等基础数据的重要基础数据,是实施劳动定额管理的重要手段。 从性质上来讲,工艺路线是指导制造单位按照规定的作业流程完成生产任务手段。 在MRP中,可以根据产品、部件、零件的完工日期、工艺路线和工序提前期,计算部件、零件和物料的开工日期,以及子项的完工日期。 在CRP中,可以基于工序和工艺路线计算工作中心的负荷(消耗的工时)。因此,工艺路线也是计算工作中心能力需求的基础。 根据在每一道工序采集到的实际完成数据,企业管理人员可以了解和监视生产进度完成情况。 工艺路线提供的计算加工成本的标准工时数据,是成本核算的基础和依据。

工艺路线如果没有与具体的物料加工 关联,则这种工艺路线就是标准的工艺路线。一般情况下,工艺路线是与具体的物料加工关联在一起的,这时才能有准确的提前期数据。因此,工艺路线数据包括了加工的物料数据。 例如,空调器中的蒸发器、冷凝器部件的标准装配工艺路线的工序包括串U型管、胀管、折弯、清洗、封管、气密测试、整理和包装入库等。U型管的加工顺序是:下料、弯管、切管、收管口和打毛刺等。 工艺路线数据主要包括工艺路线编码、工艺路线名称、工艺路线类型、制造单位、物料编码、物料名称、工序编码、工序名称、加工中心编码、是否外协、时间单位、准备时间、加工时间、移动时间、等待时间、固定机时、变动机时、固定人时、变动人时、替换工作中编码、生效日期、失效日期和检验标志等。 编写工艺路线的过程包括确定原材料、毛坯;基于产品设计资料,查阅企业库存材料标准目录;依据工艺要求确定原材料、毛

第四章 工艺路线的拟定

第三章毛坯的确定 第四章工艺路线的拟定 4.1定位基准的选择 制定机械加工工艺规程时,正确选择定位基准对保证零件表面的位置要求(位置尺寸和位置精度)和安排加工顺序都有很大的影响。用夹具装夹时,定位基准的选择还会影响到夹具的结构。因此,定位基准的选择是一个很重要的工艺问题。 用未加工的毛坯表面作定位基准,这种基准称为粗基准;用加工过的表面作定位基准,则称为精加工基准。 在选择定位基准时,是从保证工件精度要求出发的,因而分析定位基准选择的顺序就应从精基准到粗基准, 1.精基准的选择原则 1)基准重合原则 2)基准统一原则 3)自为基准原则 4)互为基准原则 5)保证工件定位准确、夹紧可靠、操作方便的原则 综上所述:该零件在加工外圆和内孔时,选用通用夹具装夹。在铣削平面和钻孔时采用专用夹具。 加工轴向内孔均为经济准原则、基准重合原则、基准统一原则,加工长102的左右端面时互为基准原则。加工φ90的左内孔时为自为基准原则。钻底座上的孔也均为基准统一原则。φ90的右内孔、2×φ91的内槽、长4的凹槽、M8的螺纹孔、长15的台阶、铣削平面为精基准原则。该工件在装夹时均符合保证定位准确、夹紧可靠、操作方便的原则。 2.粗基准的选择原则 为了保证加工表面与非加工表面之间的位置要求,应选非加工表面为粗基准; 合理分配各加工表面的余量; 粗基准应避免重复使用,在同一尺寸方向,通常只允许使用一次; 选作粗基准的表面应平整光洁,要避开锻造飞边和铸造浇冒口、分型面毛

第四章工艺路线的拟定 刺等缺陷,以保证定位基准、夹紧可靠; 轴向定位基准为端面 径向定位基准为中心线 综上所述:加工左端面,以右端面为粗基准。加工φ103外圆以φ139中心线作为粗基准。加工内孔时以工件的左右端面为定位基准,加工外圆以中心轴线作为定位基准。 4.2加工方法的确定 在市场经济的前提下,一切都是为能够创造出更多的财富和提高劳动率为目的,同样的加工方法的选择一般考虑的是在保证工件加工要求的前提下,提高工件的加工效率和经济性,而在具体的选择上,一般根据机械加工资料和人工的经验来确定。由于方法的多种多样,工人在选择时一般结合具体的工件和现场的加工条件来确定最佳的加工方案。 同样在该零件加工方法的选择中,我们根据工件的具体情况和现有的加工设备,确定方案如下(一般我们按加工顺序来阐述加工方案): 表4-1 加工方案的确定 序号加工表面加工精度表面粗糙度加工方案加工基准 1 长102的左端面IT8 Ra3. 2 粗车—半精车右端面 2 长102的右端面IT8 Ra3.2 粗车—半精车左端面 3 φ105的外圆IT7 Ra0.8 粗车—半精车—粗磨基准A和B 4 宽4的凹槽IT8 Ra3.2 粗车—半精车基准B 5 φ82的左内孔IT8 Ra3.2 粗车—半精车基准A 6 φ55的内孔IT8 Ra3.2 粗车—半精车基准A 7 φ90的左内孔IT7 Ra0.8 粗车—半精车—粗磨基准A 8 φ91的左右端面IT8 Ra3.2 粗车—半精车左右端面 9 φ82的内孔孔深IT8 Ra3.2 粗车—半精车左端面 10 φ91的左内槽IT8 Ra3.2 粗车—半精车基准A 11 长15的右端面IT8 Ra3.2 粗车—半精车左端面 12 φ90的右内孔IT7 Ra0.8 粗车—半精车—粗磨基准A

工艺路线样本

四、环氧丙烷产品工艺规划方案 4.1 产品产能规划方案 以丙烷、过氧化氢为原料, 采用直接氧化法工艺, 生产工业级环氧丙烷, 该工艺副产物为水。 表4-1本项目产品规格 注: 该产量以年开工300天计 表4-2 GB/T14491- 工业用环氧丙烷标准

4.2 产品工艺规划方案 4.2.1 基本工艺方案比较 当前世界上环氧丙烷生产技术主要有: 氯醇法, 共氧化法( 主要包括乙苯共氧化法( PO/SM法) , 异丁烷共氧化法( PO/TAB 法) ) , 直接氧化法( 主要包括过氧化氢直接氧化法( HPPO法) , 氧气直接氧化法, 氧气氢气直接氧化法) 。 4.2.2 原子利用率比较 化学反应追求的是反应选择性, 可是即使反应选择性达到100%, 这个反应过程中依然能够产生大量废物。为衡量一个化学反应中生成一定目标产物所伴生的废物量, 美国人Trost提出了”原子经济性”的概念。实现原子经济性的程度, 能够用原子利用率来衡量, 其定义为: 原子利用率=目标产物的量/按化学计量所得所有产物的量之 和×100%

表4-3 不同生产方法原子利用率比较 从表1-3能够看出, 在不考虑其它副反应情况下, 氧气直接氧化技术的原子经济性是最好, 所有原料均转化为产物, 紧随其后是双氧水法、氢氧化法及异丙苯法, 第三梯队为PO/MTBE法、PO/SM 法, 排名最后的氯醇法原子利用率最低。可是PO/MTBE法、PO/SM 法同时生产具有工业价值的联产品, 如果把联产品也计入, 其原子利用率高达90%, 远高HPPO法和CHP法, 仅次于直接氧化法, 这是工业认可原因之一。 4.2.3 氯醇工艺 氯醇法的基本生产原理是: 以丙烯和氯气为原料, 首先丙烯经

工艺路线制定

1.设计任务 1.1题目:EQ140汽车转向器壳体工艺及夹具设计 1.2产品批量:2万件/年 1.3任务要求: EQ140汽车转向器壳体零件图; 毛坯图; 机械加工工艺卡片一套; 工艺装备设计-典型夹具结构装配图; 工艺装备的主要零件图; 设计说明书。 2.零件的分析 2.1零件的作用 采用动力转向系统的汽车转向所需的能量,在正常情况下,只有小部分是驾驶员提供的体能,而大部分是发动机(或电机)驱动的油泵(或空气压缩机)所提供的液压能(或气压能)。 用以将发动机(或电机)输出的部分机械能转化为压力能,并在驾驶员控制下,对转向传动装置或转向器中某一传动件施加不同方向的液压或气压作用力,以助驾驶员施力不足的一系列零部件,总称为动力转向器。而汽车转向器壳体是汽车转向器的一个重要组成部分。壳体的三维图如下: 2.2零件的工艺分析 汽车转向器一共有五个重要的加工表面,这些表面不仅要满足自身的精度等级和粗糙度等级,同时他们之间也有一定的位置要求。 2.2.1底面T3

底面的粗糙度要求是:的最大允许值为1.6。 采用的加工工艺方法是:粗铣半精铣精铣。 2.2.2侧面T1、T2 侧面的粗糙度要求是:的最大允许值为3.2。 采用的加工工艺方法是:粗铣半精铣精铣。 2.2.3主轴孔D3、D4 主轴孔的尺寸为,公差等级为IT7;主轴孔的粗糙度要求是:的最大允许值为1.6。 采用的加工工艺方法是:粗镗半精镗精镗。 2.2.4摇臂轴孔D1、D2 靠内摇臂轴孔D1的尺寸为,公差等级为IT8;靠内摇臂轴孔的粗糙度要求是:的最大允许值为1.6。 采用的加工工艺方法是:粗镗半精镗精镗。 靠外摇臂轴孔D2的尺寸为,公差等级为IT8;靠外摇臂轴孔的粗糙度要求是:的最大允许值为3.2。 采用的加工工艺方法是:粗镗半精镗精镗。 D1对D2的表面跳动量为0.10。 2.2.5摇臂轴外圆 摇臂轴外圆的基本尺寸是;摇臂轴外圆的粗糙度要求是:的最大允许值为6.3。 采用的加工工艺方法是:粗车半精车。 2.2.6 T1、T2对D3、D4垂直度0.05/100; T3对D1轴线的垂直度0.10/100; D1轴线和D3、D4轴线的垂直度0.05/100; T1 、T2同T3垂直度0.05/100; 2.2.7 和同轴度用工艺保证,即采用一次装夹加工成型的方法来进行。

工艺路线方案

一、零件的分析 (一)零件的功能 右转向节是CA1092汽车前轮导向及承载部分的关键零件之一,它与支臂、横拉杆及左转向节配套使用。由汽车方向盘通过其它传动连杆等直接传给转向节,其轴部与前轮相联。叉架部的主销孔,通过一个销轴与汽车前横桥相联。另外,叉架部的锥孔与转向杆相连,使汽车获得正常的灵活转向作用。 它所承受的作用力较复杂,即受到变载荷的弯曲变应力作用,又承受一定的冲击载荷和微小的扭转力矩。转向节上主销孔的中心线与节轴中心线的垂线有9°±15′的偏角,其主要作用使节轴作用好,转拐使汽车与地面有一偏角,使转拐灵活方便,安全可靠。 (二)零件的工艺分析 转向节是一个即复杂又典型的零件,它的特殊本质,孔与轴线在空 间交差分部,从零件图上看,工件φ41+0.039 主销轴孔的轴线与锥孔的轴 线、节轴的轴线三条轴线分部在空间三个方向上,且主销孔φ41+0.039 与 节轴轴线的垂线成9°±15′的角度。而φ41+0.039 的主销孔与φ29锥孔 的轴线在空间垂直交错。因此,在编制工艺规程时,要抓住这一特性, 合理解决这几个主要加工部位的轴线。在空间正确分布问题,从零件的 加工部位可以分为三个部分: 1)以主销孔φ41+0.039 0为中心的一组加工面,包括主销孔,φ67+0.3 的轴 承座,φ67平面,φ67孔表面,225两平面,及4-M6螺纹孔,112+0.35 。2)以节轴两顶尖孔为中心的一组加工表面,包括节轴各部尺寸,φ55 -0.030 -0.049 , φ85 0 -0.054 。 3)以φ29锥孔为中心的加工表面,包括锥孔、键槽及两个端面。 ① ②两主孔的轴线与节轴轴线的垂线满足9°±15′的要求。φ67孔的工 艺性不好,机加时操作复杂,加工刀具精度要求高。加工9°±15′的要求,工装需要复杂一些。 ③两主销孔轴线2-φ41有同轴度不大于0.012的要求。

第3章_机械加工工艺路线期末考试试题

例题3.1 在成批生产条件下,加工如例题3.1图所示零件,其机械加工工艺过程如下所述: ⑴在车床上加工整批工件的小端端面、小端外圆(粗车、半精车)、台阶面、退刀槽、小端孔(粗车、精车)、内外倒角; ⑵调头,在同一台车床上加工整批工件的大端端面、大端外圆及倒角; ⑶在立式钻床上利用分度夹具加工四个螺纹孔; ⑷在外圆磨床上粗、精磨1206h 外圆。 试列出其工艺过程的组成,并确定各工序的定位基准,画出各工序的工序简图,用符号标明加工面, 标明定位 基准面,用数字注明所消除的不定度(自由度)数,其它用文字说明、工艺过程分析到工步。 例题3.1图 解:工序I 车,(见例题3.1解答图a ),一次安装,工步为:(1)车端面; (2)粗车外圆;(3)车台阶面;(4)车退刀槽;(5)粗车孔;(6)半精车外圆; (7)精车孔; (8)外圆倒角; (9)内圆倒角。 工序Ⅱ车(见例题3.1解答图b ),一次安装,工步为:(1)车端面;(2)车外圆;(3)车内孔;(4)倒角。 工序Ⅲ钻(见例题3.1解答图c ),一次安装,4个工位,工步为:(1)钻4个孔;(2)攻4个螺纹孔。 工序Ⅳ磨(见例题3.1解答图d ),一次安装,工步为:(1)粗磨外圆;(2)精磨外圆。

例题 3.2指出例题3.2图零件结构工艺性不合理的地方,并提出改进建议。 例题3.2图 答:例题3. 2图a 底面较大,加工面积较大,加工量较大且不易保证加工质量,建议减少底面加工面的尺寸,如开一通槽。例题图3.2b 中孔的位置距直壁的尺寸太小,钻孔时刀具无法切入,安装也不方便,故应该增大其距离。 例3.6试拟定例题3.6图所示小轴的单件小批生产和大批大量生产的机械加工工艺规程,并分析每种方案的工艺过程组成。 例题3.6图 解:零件的机械加工工艺规程如例题3.6表a和b所示。 工序工序内容所用设备 1车一端端面,打中心孔 调头车另一端面,打中心孔 车床 2车大端外圆及倒角 调头车小端外圆及倒角 车床 3铣键槽、去毛刺铣床 工序工序内容所用设备 1铣端面,打中心孔铣端面打中心孔机床 2车大端外圆及倒角车床 3调头车小端外圆及倒角车床 4铣键槽键槽铣床 5去毛刺钳台 从表中可看出,随零件生产类型的不同,工序的划分及每一个工序所包含的加工内容是不同的。在例题表3.6a中,车完一个工件的大端外圆和倒角后,立即调头车小端外圆及倒角,这是一个工序。而在例题表3.6b中,是在车完一批工件的大端外圆和倒角后再调头车小端外圆和倒角,加工内容没有连续进行,故

机械加工工艺路线期末考试试题

例题 在成批生产条件下,加工如例题图所示零件,其机械加工工艺过程如下所述: ⑴在车床上加工整批工件的小端端面、小端外圆(粗车、半精车)、台阶面、退刀槽、小端孔(粗车、精车)、内外倒角; ⑵调头,在同一台车床上加工整批工件的大端端面、大端外圆及倒角; ⑶在立式钻床上利用分度夹具加工四个螺纹孔; ⑷在外圆磨床上粗、精磨1206h 外圆。 试列出其工艺过程的组成,并确定各工序的定位基准,画出各工序的工序简图,用符号标明加工面, 标明定位 基准面,用数字注明所消除的不定度(自由度)数,其它用文字说明、工艺过程分析到工步。 例题图 解:工序I 车,(见例题解答图a ),一次安装,工步为:(1)车端面; (2)粗车外圆;(3)车台阶面;(4)车退刀槽;(5)粗车孔;(6)半精车外圆; (7)精车孔; (8)外圆倒角; (9)内圆倒角。 工序Ⅱ车(见例题解答图b ),一次安装,工步为:(1)车端面;(2)车外圆;(3)车内孔;(4)倒角。 工序Ⅲ钻(见例题解答图c ),一次安装,4个工位,工步为:(1)钻4个孔;(2)攻4个螺纹孔。 工序Ⅳ磨(见例题解答图d ),一次安装,工步为:(1)粗磨外圆;(2)精磨外圆。

例题指出例题图零件结构工艺性不合理的地方,并提出改进建议。 例题图 答:例题3. 2图a 底面较大,加工面积较大,加工量较大且不易保证加工质量,建议减少底面加工面的尺寸,如开一通槽。例题图中孔的位置距直壁的尺寸太小,钻孔时刀具无法切入,安装也不方便,故应该增大其距离。 例试拟定例题图所示小轴的单件小批生产和大批大量生产的机械加工工艺规程,并分析每种方案的工艺过程组成。 例题图 解:零件的机械加工工艺规程如例题表a和b所示。 工序工序内容所用设备 1车一端端面,打中心孔 调头车另一端面,打中心孔 车床 2车大端外圆及倒角 调头车小端外圆及倒角 车床 3铣键槽、去毛刺铣床 工序工序内容所用设备 1铣端面,打中心孔铣端面打中心孔机床 2车大端外圆及倒角车床 3调头车小端外圆及倒角车床 4铣键槽键槽铣床 5去毛刺钳台 从表中可看出,随零件生产类型的不同,工序的划分及每一个工序所包含的加工内容是不同的。在例题表中,车完一个工件的大端外圆和倒角后,立即调头车小端外圆及倒角,这是一个工序。而在例题表中,是在车完一批工件的大端外圆和倒角后再调头车小端外圆和倒角,加工内容没有连续进行,故是两个工序。

工艺路线制定

工艺路线制定 一、加工方法的选择 零件上各表面精度和表面质量要求一般都不是只用一种方法一次加工就能达到的,对主要表面进行几次加工,由粗到精逐步提高; 在选择加工方法时首先应选定主要表面最后加工手法,然后再选定最后加工前的一系列准备工序的加工方法和顺序 工艺路线确定后,仍要综合考虑工序对技术要求的影响 二、阶段的划分 依据工序性质不同划分粗、细、精加工阶段: 粗加工:主要去除大部分余量,提高生产力为主要矛盾 细加工:达到一般技术要求,使各次要表面达到要求,为主要表面精加工作准备; 精加工:达到零件全部技术要求,余量小、精度高 划分阶段有以下好处: 全部表面进行粗加工,便于及早发现内部缺陷; 在安装和搬运过程中可减少加工表面损伤; 合理选择设备; 工艺路线是否要划分严格程度主要由工件变形对精度影响程度来确定 三、工序的集中与分散 工序集中原则,使每个工序中包括尽可能多的内容,因而使总工序数减少;分散原则相反。集中与分散主要看批量、设备、工装和技术水平而定; 集中:很多表面在一个工序中加工便于保证较高的位置精度。 四、基准选择 1.设计基准 设计基准:零件图上的一个面、线或点,据以标定其他面、线、点的位置; 2.工艺基准 工艺基准:包括原始基准、定位基准、测量基准 a.原始基准:使在工序单中(或其他工艺文件)据以标定被加工表面位置的面、线、点 标定被加工表面位置尺寸称原始尺寸; b.定位基准:是工件上的一个面,当工件在夹具上或机床上定位时,它使工件在原始尺 寸的方向上获得确定位置; c.测量基准:是一个面,面上的母线或点据以测量被加工表面的位置(注意加工次序) 3.原始基准的选择 原始基准和实际基准重合,原始尺寸可直接按零件图要求来标注,但必须指出,原始基准和设计基准重合,零件的加工顺序必须按零件尺寸标注方式安排; 原始基准和设计基准不重合,原始尺寸要进行换算,所以公差要压缩; 4.选择原始基准的原则 和设计基准重合以避免换算和压缩公差;

20CrMnTi的工艺路线分析

20CrMnTi的工艺路线分析 山东科技大学材料科学与工程学院金属材料工程2011-4班 郝建(201101130411) 20CrMnTi的工艺路线:下料→锻造→正火→机械粗加工→渗碳→淬火+低温回火→机械精加工 20CrMnTi(J9:30-42HRC)主要性能特点: 为中淬透性低碳钢,具有良好的综合力学性能, 低温冲击韧度较高,晶粒长大倾向小,冷热加工 性能均较好。 该钢由于Cr、Mn、Ti多元复合合金化的作 用,淬透性好油淬临界直径约40mm;渗碳淬火 后,具有较高的耐磨性和高的强韧度,特别是低 温冲击吸收能量比较高;钢的渗碳工艺性能好,晶粒长大倾向小,可直接淬火,变形也比较小。 其中锰,铬主要作用是提高渗碳钢的淬透性,以使较大尺寸的零件在淬火时芯部能获得大量的板条马氏体组织。另外还可以改善渗碳层参数。钛可以组织奥氏体晶粒在高温渗碳时的长大,能细化晶粒。 20CrMnTi钢一般可制造<300mm的高速、中载、受冲击和磨损的重要零件,如汽车、拖拉机变速箱齿轮,离合器轴和车辆上的伞齿轮及主动轴等,其他钢种如20Mn2TiB、20CrMnMo等和20CrMnTi钢相近,有些方面优于20CrMnTi钢。 一 下料 下料是指确定制作某个设备或产品所需的材料形状、数量或质量后,从整个或整批材料中取下一定形状、数量或质量的材料的操作过程。 二 锻造 锻造是在锻压设备及工(模)具的作用下,使坯料或铸锭产生塑性变形,以获得一定几何尺寸、形状和质量的锻件的加工方法。 锻造方法有自由锻和模锻。 自由锻是利用冲击力或压力使加热好的金属在上、下抵铁之间产生变形。它适用于单件和小批量生产;特别适于重型、大型锻件生产。 模锻是利用模具使毛坯变形获得锻件的方法。常用的模锻设备有蒸汽-空气模锻锤、压力机等。它又分为锤上模锻,胎膜锻,压力机上模锻。适于小型锻件的成批大量生产。 拔长时的锻造比为y拔=F0/F=L/L0 镦粗时的锻造比为y镦=F/F0=H0/H 通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。经锻造以后晶粒大小形状发生了变化,改变了钢的组织,增加了锻造应力,提高了硬度,在机械加工前需预备热处理。相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。

工艺路线编制规则

Q/FH.G0907-2003 工艺路线编制规则 1范围: 本标准规定了工艺路线编写的原则,主加工单位确定的原则及其任务、工艺路线格式及批准。 本标准适用于我厂计划内的军品及名品。 2规范性引用文件 Q/FH6.2-2003工艺文件管理制度第2部分管理用工艺文件格式及其填写规则 Q/FH6.3-2003工艺文件管理制度第3部分工艺规程格式及编制规则 3管理职能 3.1工艺路线是指产品或零、部件再生产过程中,有毛坯准备到成品包装入库的全部工艺过程的先后顺序。 3.2工艺路线是设计工艺规程的依据,是提高产品质量,提高生产率,均衡组织生产,合理利用设备的保证。 3.3工艺路线规定了产品生产分工,协调单位之间周转关系,它是领取图纸、技术文件及下达生产任务的依据。 4一般规定 4.1工艺路线以产品为单位拟制,综合反映零、部件从加工到装配的全部工艺过程,着重反映每个件号在各加工中的流程顺序。

4.2工艺路线内容栏,按工艺方法填写,写下料,机加,热处理等字样,一般不写分厂代号。其表面处理涵义为电镀、涂覆其含义为喷涂4.3设计工艺路线时,要严格依据工艺总方案的规定,保证工艺路线合理、正确。 4.4下列情况不编入工艺路线: a)毛坯生产过程和主制单位内部加工的各工序; b)零、组件排故。 4.5重要件、关键件的标记 4.5.1关键件在零件序号前用“关键件”表示,可用“G”表示,并用粗方格括起来。 4.5.2重要件在零件序号前用“重要件”表示,可用“Z”表示,并用粗方格括起来。 5主加工单位确定原则及任务 5.1主加工单位是指产品零、部、组件在制造、装配、封存的全部工艺过程中,担负主要任务的单位。 5.2主加工单位确定的基本原则:“总体为主”、“质量控制”、“工序集中”三原则。 5.2.1依据全厂的工艺布局和分厂职责一般以负责产品总装任务的分厂担任该产品零部件的主加工单位。 5.2.2从控制质量的角度考虑,选择能有效的控制零部件生产过程中的质量关键的单位担任主加工单位。 5.2.3从工作量的角度考虑,以承担该零部件加工工序最集中,工作

相关文档
最新文档