蒸馏工艺路线分析

蒸馏工艺路线分析
蒸馏工艺路线分析

1. 工艺路线

1.1 本装置的工艺路线特点与国内外先进水平对比

(1)本装置所加工的几种进口原油(俄罗斯、阿曼及沙轻)含盐量一般不超过60mgNaCl/l,装置设计采用长江(扬中)电脱盐设备公司吸收国外先进技术开发的二级高速电脱盐技术。确保原油脱后含盐≯3mgNaCl/l,含水≯0.2%,排水含油≯100ppm;

(2)初馏塔共有26层塔板,初侧与常一中返塔一起进常压塔34层,初馏塔采用提压方案,将原油中的轻烃在稍加压力的条件下溶于初顶油中,初顶油经泵升压后去稳定塔回收其中的轻烃,石脑油去作重整料,干气、液化气去焦化装置脱硫;

(3)常压塔选用板式塔,塔内件采用国内先进高效导向浮阀塔盘。常压塔内设50层塔板,抽出3条侧线,承担着石脑油、航空煤油、柴油的分离任务,设计常压拔出率为50.99%;

(4)根据生产方案要求,减压塔选用全填料内件。减压塔内设5段填料及相应的汽、液分布系统,设计减压拔出率为27.44%。全部采用国内最新技术,并配以重力型组合式液体分布器及气体分布器。为满足加氢裂化装置对原料中重金属含量、残炭、C7不溶物等指标的限制要求,优化了洗涤段液体分布器、洗涤油的喷淋量、洗涤段集油箱的设计。减压塔的进料段采用技术先进、性能优良的双切环向进料分布器,以减少减压塔进料段的雾沫夹带量,保证减压侧线产品质量,提高减压拔出率。减一线作柴油加氢料或与减二、三线合并去蜡油加氢。减压塔顶采用高效喷射式蒸汽抽真空+机械抽真空混合抽真空系统,在保证减顶真空度的前提下,降低装置能耗。减压塔顶的操作压力设计值为12mmHg(绝);

(5)通过系统化的减压蒸馏技术(干式减压塔、减压炉、低压降减压转油线和高效抽真空系统),使装置在生产高质量馏份油的同时,达到深拔节能的目的。采用“窄点”技术,对原油换热网络进行优化设计,充分利用装置余热,使原油换热终温达到295℃。并在不影响换热终温的前提下,利用合适温位的物流发生蒸汽供装置自用,回收低温余热,降低能耗。在初馏塔顶、常压塔顶和减压塔顶设置了注氨、注缓蚀剂、注水等防腐设施。加热炉采用热管式空气预热器,尽量降低加热炉排烟温度,使加热炉热效率达90%以上。采用大直径低速转油线及100%炉管吸收转油线热膨胀技术,减小减压转油线的压降及温降,从而降低减压炉的出口温度,延长减压炉的操作周期;

(6)本装置能耗为407.7MJ/t原油,国内常减压装置平均能耗在461~502MJ/t左右。国外常减压装置从文献上得到的资料来看最先进的能耗大约在440 MJ/t左右。因此本装置的能耗较低,在国内处于领先水平。

1.2基本原理

1.2.1概述

常减压蒸馏装置是原油加工的第一道工序,它一般包括电脱盐、初馏、常压蒸馏和减压蒸馏四部分。常压蒸馏一般可以切割出石脑油、煤油(或航空煤油)、柴油等产品;在减压蒸馏中可以切割出几个润滑油馏份或催化裂化或加氢裂化原料。剩下的减压渣油根据生产总流程的安排可有不同用途,如用做溶剂脱沥青原料、焦化原料、减粘裂化原料或直接出厂做燃料油。

根据目的产品的不同,常减压蒸馏装置可分为燃料型、燃料—润滑油型和燃料—化工型三种类型。这三者在工艺过程上并无本质区别,只是在侧线数目和分馏精度上有些差异。燃料-润滑油型常减压蒸馏装置因侧线数目多且产品都需要汽提,流程比较复杂;而燃料型、燃料—化工型则较简单。

1.2.1.1常减压蒸馏装置的工艺原理

加热混合物使其沸点较低的轻组份汽化和冷凝,进行粗略分离的操作称为蒸馏。蒸馏所得的冷凝物称为馏出物。水是纯物质,馏出物就是蒸馏水,而原油是不同沸点的复杂组份组成的混合物,馏出同样体积的馏出物可以有不同的沸点范围,不同沸点范围的馏出物称为馏份。一定温度下蒸馏出来的馏份就表示石油产品的馏程。

常减压蒸馏是指在常压和负压条件下,根据原油中各组份的沸点不同,把原油“切割”

成不同馏份的工艺过程。

1.2.1.2 脱水脱盐原理

原油中的盐大部分是溶于所含的水中,所以脱盐和脱水是同时进行的。由于含水的原油是一种比较稳定的油包水型的乳状液,因此脱盐、脱水过程的实质就是要破坏这种状态,使水聚结,达到油、水分离的目的。

电脱盐是通过在原油中注水,使原油中的盐份溶于水中,再通过注破乳剂,破坏油水界面和油中固体盐颗粒表面的吸附膜,然后借助高压电场的作用,使水滴感应极化而带电,通过高变电场的作用,带不同电荷的水滴互相吸收,融合成较大的水滴,原油和水的分离是靠油水两种互不相容液体密度不同进行沉降分离,它们的分离基本符合球形粒子在静止流体中自由沉降斯托克斯公式。

g d u 22218)(1νρρρ-=

其中: u——水滴沉降速度 m/s

d——水滴直径 m

1ρ——水的密度差 kg/m 3

2ρ——油的密度差 kg/m 3

ν——原油运动粘度 m 2/s

g——重力加速度 m/s 2

1.2.1.3 精馏原理及条件

加热混合物使其沸点较低的轻组份气化和冷凝,进行粗略分离的操作称为蒸馏。同时并多次运用部分气化和部分冷凝,使各组份达到精确分离的操作称为精馏。

按被加工介质的形态,精馏可分为液体精馏和气体精馏两类。常减压蒸馏装置是将原油分离为汽油、煤油、柴油、润滑油原料、化工原料和渣油,是属于分离馏份的液体精馏。

精馏的依据是液体混合物中各组份的挥发度(挥发度是指液体混合物中任一组份气化倾向的大小)有明显差异,即各组份的沸点不同。精馏的实质是气相多次冷凝,液相多次气化进行传热传质。

精馏过程必须具备的条件是:

(1) 必须有气液两相充分接触的场所,即塔板或填料;

(2) 必须提供给精馏塔气相回流和液相回流;

(3) 接触的气液两相必须存在温度差和浓度差。即液相必须温度低,轻组份含量高;气相必须温度高,重组份含量高;

(4) 每层塔板上气液两相必须同时存在,而且充分接触。

1.2.1.4 减压蒸馏原理

液体沸腾的必要条件是蒸汽压必须等于或大于外界压力,因此,降低外界压力就相当于降低液体沸腾时所需要的蒸汽压,也就是降低了液体的沸点,压力愈低,沸点降的愈低。如果采用抽真空的办法使蒸馏过程在压力低于大气压条件下进行,降低油品的沸点,把原油中的较高沸点组份,在低于其裂解温度的条件下,气化分馏出来,这就叫减压蒸馏。

(1)蒸汽喷射泵:

蒸汽喷射泵作用原理是静压能和动压能的转换。工作蒸汽经过拉阀尔型(扩缩)喷嘴时流速不断增加,压力能转换为动能。蒸汽在喷嘴出口处可达到极高的速度(1000~1400m/s),因而压力急剧下降,在喷嘴周围形成高度真空。在真空部位,不凝气进入混合器与蒸汽混合并进行能量交换,然后一起进入扩压管。工作蒸汽减速,不凝汽加速,最后两者速度一致。在扩压管后部动能又转变为压力能,混合气体的流速降低,压力升高直至出口。

(2)机械真空泵:

本装置机械真空泵是液环真空泵,属于容积变化式设计。叶轮在泵壳内偏心安装,叶轮

的转动会迫使工作液沿泵壳内壁形成一个与其同方向放置的液环。此时,会在两相邻叶片、叶轮轮毂和液环内表面之间形成一个被工作液密闭的“气腔”。随着叶轮的旋转,此气腔在泵的吸气区体积逐渐增大,其内部压力下降,从而将气体吸入泵内;与此相反,气腔在排气区体积逐渐减小,其内部压力上升,从而将气体排出泵外。

由于叶轮相对于旋转的液环是偏心的,液体在叶片之间的空间内往复运动,对泵送介质产生抽吸和压缩的作用。在吸气阶段,液环逐渐远离轮毂,将泵送介质沿轴向从吸气口吸入;在排气阶段,液环逐渐逼近轮毂,将泵送介质沿轴向从排气口排出。

1.2.1.5传质传热原理

气液两相充分接触时,高温气相中的重组份被冷凝放热,而下降的液相回流中的轻组份被加热气化,结果上升的气相被下降的液相冷却,气相中重组份不断被冷凝除去,液相轻组份不断气化而提浓,这就是传质传热过程。

1.2.2注剂的原理

原油中主要含有:碳(C)、氢(H)两种元素,约占原油的95~99%,还有部分氧、硫、氮及一些微量金属元素和非金属元素,如氯(Cl)、砷(As),它们是以化合物的形式存在于原油中的。

原油中的氯化物和硫化物在原油被蒸馏过程中受热分解或水解,产生氯化氢和硫化氢,还有有机酸(如:环烷酸)等腐蚀介质,造成设备和管线的腐蚀。在常减压蒸馏装置中,腐蚀可以发生在高温的重油部分,如:减压炉管、塔底等;也可以发生在低温轻油部位,如常减压塔顶冷凝冷却系统。为了减轻塔顶冷凝冷却系统的腐蚀,目前炼厂普遍采用“一脱三注”的防腐措施。其中“一脱”是指脱盐脱水,即原油电脱盐又叫原油蒸馏前的预处理;“三注”就是原油塔顶挥发线注氨、注缓蚀剂和注水。氨、缓蚀剂、破乳剂、脱盐剂统称为常减压蒸馏的辅助材料。

1.2.2.1注破乳剂的作用

原油电脱盐加入破乳剂的作用是破坏其乳化状态,在电场力作用下,使微小水滴聚成大水滴,使油水分离。因为含水原油多数以乳化液的形式存在,乳化液是一种非均相体系,就是一种液体(水)以极小的液滴分散在另一种液体(原油)之中,形成的胶体状态。在乳化液中,加入少量的化学破乳剂时,就能改变水滴表面保护膜的稳定性,使微小的水滴聚成较大的水滴,从而提高水滴的沉降速度,加速分离。

1.2.2.2注氨的作用

经脱盐的原油,可大大降低对装置的腐蚀程度,但是还有残余的氯化氢和原油中硫化物在蒸馏过程中分解生成的硫化氢存在,仍会造成较严重的腐蚀。因此,需要在塔顶挥发线上注氨。因为氨是碱性物质,可以中和冷凝之前的氯化氢和硫化氢等酸性物质,所以能够大大缓解设备的腐蚀。

1.2.2.3注缓蚀剂的作用

对原油采取了脱盐、注氨、注水措施后,塔顶系统的腐蚀基本上被控制了。但是氯化氢还不能在水冷凝前全部中和,况且还有硫化氢存在,所以在冷凝区仍有局部酸腐蚀,同时有氯化铵溶液存在,氯离子会破坏金属表面保护膜,加重腐蚀。由于缓蚀剂具有表面活性,吸附于金属表面形成一层抗水性保护膜,遮蔽金属同腐蚀介质的接触,能够使金属免受腐蚀。另外,缓蚀剂的表面活性作用能减小沉积物与金属表面的结合力,使沉积物疏松,为清洗带来了方便。

1.2.2.4注水的作用

注水可以洗去注氨时生成的氯化铵,防止氯化铵(固相)沉积在塔顶冷凝冷却设备中造成积垢堵塞。同时,注水可以降低常压塔顶馏出物中氯化氢和硫化氢的浓度。一般炼厂都注碱性水。注碱性水还可以起部分中和作用,减少腐蚀、减少氨用量。

1.3流程说明

1.3.1初馏系统

原油自装置外原油罐区来,经原油泵(P-1001/1.2)后,分两路送入脱前原油换热系统。

换热一路原油先后进入E-1001/1.2、E-1101、E-1102/1.2、E-1103/1.2、E-1104,分别与初顶油气、常三线油(六)、常二线油(三)、常顶循(一)、常三线油(五)换热;换热二路原油先后进入E-1001/3.4、E-1201/1.2、E-1202/1.2、E-1203、E-1204/1.2,分别与初顶油气、常顶循油(二)、常一线油(二)、减一线及减顶回流油、常二线油(二)换热。两路原油合并混合后进入电脱盐系统,混合后温度为124℃。

合并原油经过一级电脱盐、二级电脱盐后,温度降至120℃,分两路进入脱后换热系统。

换热一路脱盐原油先后进入E-1105、E-1106/1.2、E-1107/1.2、E-1108/1.2、E-1109/1.2、E-1110、E-1111/1.2、E-1112/1.2、E-1113/1~3、E-1114/1.2,分别与减三线油(二)、减渣(五)、常一线油(一)、常一中油、减渣(四)、减三线油(一)、常二线油(一)、常三线油(三)、减二中油(三)、减二中油(二)换热;换热二路脱盐原油先后进入E-1205/1.2、

E-1206、E-1207/1~3、E-1208/1~3、E-1209/1~3、E-1210 、E-1211/1.2,分别与减二线油、常三线油(四)、减一中油、减渣(三)、常二中油(二)、常三线油(二)、减渣(二)换热。两路脱盐原油换热后合并进入初馏塔(C-1001),混合后的脱盐原油为253℃(按纯液相计)。

初馏塔共26层塔盘。合并后的脱盐原油从初馏塔(C-1001)第4层塔板送入塔内蒸馏。初馏塔顶部的油气进入E-1001/1~4与原油换热到87℃,进入初顶空冷器(A-1001/1~10)冷凝冷却到60℃,再经初顶水冷器(E-1510/1~4)冷凝冷却到40℃后,进入初顶回流及产品罐(D-1002)进行气液分离。初顶不凝气从D-1002顶部送至初顶气分液罐(D-1009)作为常压加热炉(F-1001)的燃料,初顶气也可进入D-1007经压缩机升压后,去焦化装置脱硫;初顶油用初顶回流及产品泵(P-1002/1.2)从D-1002中抽出,一部分打回初馏塔顶作回流,另一部分送至轻烃回收部分回收其中的轻烃;D-1002中的水相与常顶回流及产品罐(D-1003)的水相一起作为含硫污水由常顶含硫污水泵(P-1023/1.2)送出装置。初侧线油从初馏塔的第16层(或第12层)塔板抽出,由初侧泵(P-1003/1.2)送到常压塔与常一中返塔线合并送入常压塔(C-1002)。初底油从初馏塔底抽出,经初底泵(P-1004/1.2)送入初底油换热系统换热。

初底油在换热前先分成两路,一路经E-1115/1.2与减二中油(一)换热;二路经E-1212/1.2、E-1213换热器分别与常二中油(一)、常三线油(一)换热;两路换热后的初底油合并进入E-1116/1~3与减渣(一)换热至295℃,再分八路送入常压炉(F-1001)加热,升温至358℃,进入常压塔第6层塔盘。

1.3.2常压系统

常压塔共50层塔盘,加热后初底油作为进料从第6层塔盘进入,汽提蒸汽由塔底通入。常压塔顶油气经常顶空冷器(A-1002/1~12)冷却冷凝至60℃,再经常顶水冷器(E-1511/1~4)冷凝冷却到40℃后送入常顶回流及产品罐(D-1003),在此进行气液分离。常顶不凝气从D-1003顶部送出,与自减顶分水罐来的减顶气混合后一起经压缩机入口分液罐(D-1007)分液并经常减顶气压缩机(K-1001/1.2)升压后送出装置,至焦化装置作进一步处理。需要时常减顶气可由压缩机入口分液罐(D-1007)直接去常减顶燃料气分液罐(D-1010),作为常压炉(F-1001)的燃料;常顶回流及产品泵(P-1005/1.2)将常顶油从D-1003中抽出,送出装置。必要时,部分常顶油还可打回常压塔顶部,与常顶循油合并进入常压塔作回流;常一线从常压塔第36层塔盘抽出,进入常压汽提塔(C-1003)上段,经以常三线为热源的重沸器(E-1501)重沸汽提蒸出轻组份后,由常一线泵(P-1006/1.2)抽出,经E-1107/1.2、E-1202/1.2换热器,分别与原油换热,并经常一线空冷器(A-1003/1.2)、常一线水冷器(E-1512)冷却到45℃后送出装置作航煤馏份;常二线从常压塔第24层塔盘抽出,进入常压汽提塔(C-1003)中段,经低压蒸汽汽提后,由常二线泵(P-1007)抽出,经E-1111/1.2、E-1204/1.2、E-1102/1.2换热器,分别与原油换热,再经常二线空冷器(A-1004/1.2)冷却至60℃后送出装置作柴油馏份;常三线从常压塔第16层塔盘抽出,去常压汽提塔(C-1003)下段,从C-1003下段底部由常三线泵(P-1008/1.2)抽出后,先经常一线重沸器(E-1501)为常一线重沸器提供热源,再先后进入E-1213、E-1210、E-1112/1.2、E-1206、E-1104、E-1101换热器,分

别与初底油、原油换热,然后进入常三线空冷器(A-1005/1.2)冷却至60℃,与减顶油合并出装置。

常压塔共设三个中段循环回流。常顶循从第48层塔盘抽出,由常顶循环回流泵(P-1009/1.2)送至换热区,经换热器E-1103/1.2、E-1201/1.2,分别与原油换热至104℃返塔至第50层塔盘,必要时,常顶回流及产品泵打回的回流汇入常顶循返塔线,与其共同送入常压塔;常一中从第32层塔盘抽出,经常一中泵(P-1010)送至轻烃回收部分为稳定塔重沸器(E-1506)提供热源,然后进入换热区经E-1108/1.2与原油换热,再经常一中蒸汽发生器(E-1503)发生0.3MPa蒸汽后温度降至159℃,与初侧线合并返回常压塔第34层塔盘处;常二中从第20层塔盘抽出,由常二中泵(P-1011/1.2)送入换热区经E-1212/1.2、E-1209/1~3换热器,分别与初底油及原油换热,然后进入常二中蒸汽发生器(E-1504)发生1.0MPa 蒸汽后温度降至204℃,返回常压塔第22层塔盘处。

常底油经常底泵(P-1012/1.2)抽出,分八路进入减压炉(F-1002)加热至394℃,送入减压塔进行减压蒸馏。

1.3.3减压系统

减压塔为全填料干式减压塔。减压塔顶油气被减顶一级抽空器(EJ-1001/1.2)抽出;一级抽空器排出的不凝气、水蒸汽和油气进入减顶一级湿空冷器(A-1007/1~10)冷凝,冷凝的液相流入D-1004,气相被减顶二级抽空器(EJ-1002/1.2)抽出;二级抽空器排出的不凝气、水蒸汽和油气进入减顶二级湿空冷器(A-1008/1~6)冷凝,冷凝的液相流入D-1004,气相被机械抽空器(EJ-1004)抽出,进入液封罐,不凝气与减顶分水罐出来的减顶瓦斯合并后与常顶气一起进入压缩机入口分液罐(D-1007),分液后经常减顶气压缩机升压后送出装置。当机械抽空器不能正常工作时,减顶二级湿空冷器出来的气相由减顶三级抽空器(EJ-1003/1.2)抽出后,进入减顶三级湿空冷器(A-1009/1.2)冷凝至40℃,送入减顶分水罐(D-1004)分液。D-1004中的不凝气从顶部送出;减顶油由减顶油泵(P-1013/1.2)抽出与常三线合并出装置;分水罐分出的水由减顶含硫污水泵(P-1024/1.2)抽出与初常顶含硫污水一起送至新区三废处理装置进行处理。

减压塔设四条侧线。减一线由减顶回流及减一线泵(P-1014/1.2)从第Ⅰ段填料下集油箱抽出,一部分作为内回流进入第Ⅱ段填料上方,剩余部分经原油-减一线换热器(E-1203)换热后一路作为减一线出装置作加氢裂化原料,另一路经减顶回流空冷器(A-1006/1~4)、减顶回流水冷器(E-1513)冷却至50℃后返回第I段填料上作为减顶回流。减二线由减二线及减一中泵(P-1015/1.2)从减压塔第Ⅲ段下集油箱抽出,经E-1207/1~3换热至189℃后分两路,一路作为减一中返回减压塔第Ⅲ段上方;另一路经E-1205/1.2换热至132℃热出料去加氢裂化装置,或经E-1514冷却至90℃去加氢裂化罐区。减三线由减三线及减二中泵(P-1016/1.2)从减压塔第Ⅳ段填料下集油箱抽出,一部分作为洗涤油(也可由减压洗涤油泵(P-1034)抽出)返回至第V段填料上方,另一部分经E-1115/1.2、E-1114/1.2、E-1113/1~3换热,温度降至226℃后分两路,一路作为减二中返回减压塔第Ⅳ段填料上方,另一路经E-1110、E-1105换热至145℃去加氢裂化装置,或经E-1515冷却至90℃去加氢裂化罐区。减四线为减压过汽化油,从第V填料下集油箱自流进入减压过汽化油罐(D-1005)中,由减压过汽化油泵(P-1017/1.2)抽出循环至减压炉入口。

减渣从减压塔底部由减渣泵(P-1018/1.2)抽出,经E-1116/1~3、E-1211/1.2、E-1208/1~3、E-1109/1.2、E-1106/1.2换热降温至152℃去焦化装置作原料,或经E-1516/1~4冷却至95℃去罐区。

1.3.4轻烃回收系统

为了回收原油中的轻烃组份,本装置设置了轻烃回收部分。自初顶回流及产品泵来的初顶油经与稳定塔底石脑油换热至139℃后进入稳定塔(C-1005)第26层板(或第24层板、第28层板)。

稳定塔顶油气经稳定塔顶湿空冷器(A-1010/1.2.3)冷至40℃后进入稳定塔顶回流及产品罐(D-1006),罐顶分出的不凝气自压至常减顶压缩机出口,与升压后的常减顶气一起去焦化装置进行脱硫。稳定干气也可直接进入高压瓦斯分液罐(D-1008),分液后与高压瓦斯一起作为常、减炉的燃料;冷凝的液体由稳定塔顶回流及产品泵(P-1019/1.2)抽出分为两路,一路送至稳定塔顶作回流,另一路作为液化气送出装置。

稳定塔底重沸器(E-1506)由常一中作热源。

稳定塔底石脑油经稳定塔进料-塔底换热器(E-1505/1~4)与稳定塔进料换热至70℃再经稳定石脑油水冷器(E-1519/1.2)冷却至40℃后出装置。

1.3.5一脱三注系统

为了减少设备的腐蚀,设计采用“一脱三注”措施,除了二级电脱盐外,在初馏、常压和减压塔顶馏出线上分别注入缓蚀剂、氨水和水,在稳定塔顶注缓蚀剂,装置内设置了破乳剂、缓蚀剂和氨水的配制系统。

线棒工序工艺流程简介

定尺剪 卸钢链称重打捆机点数器 钢坯 大棒轧机倍尺剪夹尾器双转毂加热炉初轧中轧预精轧精轧机组水冷箱 工艺布置图

二高线 加 热 炉 钢坯出炉 2 4 8 6 10 12 14 15-16 17-18 6架粗轧机 1#剪 6架中轧机 2#剪 2架中轧机 4架预精轧机组 NTM RSM 集卷站

1、 一高线 1.1 一高线简介 线棒工序一高线作业区为线棒材复合生产线,其中线材生产线是国内最早引进的现代化高速线材生产线之一,其轧机关键设备从德国德马克公司引进,电控系统从瑞典ABB 公司成套引进。2001年底,酒钢公司又在原高线厂房成品跨增加大规格直条棒材精轧机、棒材高速上料系统及精整设备,使其成为即具备盘卷线材生产能力,又具备直条棒材生产能力的线、棒复合生产线。新建的棒材生产线关键设备达到世界领先水平,是国内第一条速度超过30m/s 的单线棒材生产线,其主要机械设备由意大利西马克公司引进,电控系统从德国西门子公司引进。一高线具有线、棒材共50万吨的年设计生产能力,其中高速棒材产能30万吨,高速线材产能20万吨,棒材捆重4吨,线材卷重1吨,目前已达到60万吨的能力,可进行线材和棒材的交替生产,以满足不同用户的需求。 一高线采用大断面连铸方坯,一火成材,大压缩率使组织均匀、致密,先进的自动张力控制和多活套无张力控制保证了轧件通条尺寸均匀,线材精轧机组采用大辊径碳化钨辊环,产品表面光洁美观,精轧前、精轧内和精轧后都采取了有效的轧件水冷措施,产品理化性能得以合理控制,其优良的加工使用性能得到了用户的一致好评。目前一高线可生产普通碳素钢、焊接用钢、中高碳钢和合金结构钢五大类钢钟,这些钢种都具有成熟的生产工艺和质量控制手段,投放市场以来深受用户的欢迎。 1.2 一高线工艺流程 生产时从原料库将150方、6米长(150mm ×150mm ×6000mm )的钢坯吊放到加热炉上料台架上,进行入炉加热,按加热工艺规定将钢坯加热好后,用出钢机将钢坯推出炉子进行轧制。 ⑴、 轧制?5.5mm ~?14mm 高速线材时,钢坯经9架粗轧机组、4架中轧机组、4架预精轧机组及10架线材精轧机组轧制出成品,然后立即进入4段水冷箱进行控制冷却,通过水冷将线材降至所需要的温度,进入吐丝机布圈后落在空冷运输辊道上,散卷线材在空冷辊道上完成最终相变,使机械性能和内部组织达到工艺需求,然后进行集卷、剪头、打包、检查、取样、挂标志牌,最后卸卷入库。 → →→ → → ⑵、 轧制?8mm ~?16mm 的光面直条或带肋钢筋时,钢坯经10架线材精轧机组轧制出成品;轧制?18mm ~?32mm 的光面直条或带肋钢筋时时,钢坯经4架预精轧机组轧制后,经运输导槽弯曲导送至2架棒材精轧机组轧制出成品。线材精轧机组和棒材精轧机组生产出来的各种规格的棒材产品,各自经过水冷箱喷水冷却,进行在线水冷降温,然后送至成品倍尺剪分段剪切,分段后的倍尺交替进入双转毂并经尾部制动器制动减速抛入冷床冷却。冷却后的倍尺,经输送辊道运输至冷剪剪成商品定尺。定尺进行检查、短尺及废次品剔出、计数与分离、收集、打捆、称重、挂标志牌、卸卷,最后用天车吊入成品库。 一高线轧制?8mm ~?32mm 的圆钢或螺纹棒材工艺流程 1.3 主要设备产能及性能指标 加热炉 功能:将钢坯加热至1050℃~1150℃ 技术性能:200m 2蓄热式步进加热炉,最大加热能力为每小时110吨,加热钢坯长度为5.7m~6.25m 。 主要特点:上海嘉德公司设计,烟台工业炉厂制造,燃烧介质为纯高炉煤气,这是酒钢公司第二座畜热式加热炉。 粗中轧 功能:将钢坯轧制成?52mm 的圆钢。 技术性能:1~4架轧辊直径600mm ,5~9架480mm ,中轧10~13架350mm 。 主要特点:太原矿山机械厂制造,水平二辊轧机,单线连续式布置,直流调速电机单独传动。 预精轧 功能:将粗中轧过来的红坯轧制成?17mm~?21.5mm 的圆钢。 技术性能:14~17架轧辊直径275mm 。 主要特点:德国德马克公司进口,14、16架为悬臂水平轧机,15、17架为悬臂立式机架,单线连续式布置,直流调速电机单独传动。

580万年原油常减压蒸馏装置工艺设计

580万/年原油常减压蒸馏装置工艺设计 (年处理量250+33*10=580万吨/年) 一.总论 1.1概述 石油加工是国民经济的主要产业以及国民经济的支柱产业之一,在国民经济中有着重要的地位。石油产品应用在国民经济中的各行各业,涉及到民用以及军用。石油已是一个国家懒以生存产品,是一个国家能否兴旺发达的有力支柱。 目前,国际原油供不应求,价格高居不下,原油供应紧张,并由原油所引发起不少主要产油地区的不稳定。我国是一个人口大国,石油的需求在近年来尤其紧张,并随着经济的发展,市场需求越来越大,石油产品利润很高。 本设计是以大港原油为加工原油,采用常减压蒸馏装置蒸馏加工(580万吨/年)原油,而分离出以汽油,煤油,轻柴油,重柴油以及重油为主要产品的各种油产品。本方法简单实用,处理量大,技术成熟,是目前国内外处理原油最主要的方法。 1.2文献综述 本设计是以课程设计、化工设计为基础,以课程中指导老师给出的数据为依据,参考《化工原理》、《化工设计》、《石油练制工艺学》、《石油化工工艺计算图表》《工程制图》等资料。采用原油常减压蒸馏装置工艺设计以生产重整原油,煤油,轻柴油,重柴油,重油等产品。所采用的方法是目前国内外最实用,最普遍,最成熟的原油加工方法。适用国内大中小企业等使用。 1.3设计任务依据 所设计任务是以指导老师给出的原油数据为依据。 所设计的设备参数是以一些权威书籍为参考。 1.4主要原材料 本设计主要的原材料主要有大港原油、水、电 1.5其它 本设计应设计应用在一些交通运输方便,市场需求大的附近。同时,生产过程中应与环境相给合,注重“三废”的处理,坚持国家可持续发展的战略,坚持和谐发展的道路,与时俱进。同时应注意到,废品只是一种放在待定时间与空间中的原材料,在另一些场所,它们又是一种原材料,因而,在生产过程中,应把“三废”综合利用。

生产管理:工艺路线的理解

生产管理:工艺路线的理解 工艺路线也称加工路线,是描述物料加工、零部件装配的操作顺序的技术文件,是多个工序的序列。工序是生产作业人员或机器设备为了完成指定的任务而做的一个动作或一连串动作,是加工物料、装配产品的最基本的 . 工艺路线也称加工路线,是描述物料加工、零部件装配的操作顺序的技术文件,是多个工序的序列。工序是生产作业人员或机器设备为了完成指定的任务而做的一个动作或一连串动作,是加工物料、装配产品的最基本的加工作业方式,是与工作中心、外协供应商等位置信息直接关联的数据,是组成工艺路线的基本单位。例如,一条流水线就是一条工艺路线,这条流水线上包含了许多的工序。 在传统的ERP系统中,工艺路线是生产加工、装配中的概念。实际上,工艺路线的概念应该扩展,应该延伸到包括管理过程。管理工作,或者管理作业,应该像生产作业那样,制定规范的作业流程、明确每项活动的时间定额和费用、每项活动涉及的工作中心等。 工艺路线是一种关联工作中心、提前期和物料消耗定额等基础数据的重要基础数据,是实施劳动定额管理的重要手段。 从性质上来讲,工艺路线是指导制造单位按照规定的作业流程完成生产任务手段。 在MRP中,可以根据产品、部件、零件的完工日期、工艺路线和工序提前期,计算部件、零件和物料的开工日期,以及子项的完工日期。 在CRP中,可以基于工序和工艺路线计算工作中心的负荷(消耗的工时)。因

此,工艺路线也是计算工作中心能力需求的基础。 根据在每一道工序采集到的实际完成数据,企业管理人员可以了解和监视生产进度完成情况。 工艺路线提供的计算加工成本的标准工时数据,是成本核算的基础和依据。 工艺路线如果没有与具体的物料加工关联,则这种工艺路线就是标准的工艺路线。一般情况下,工艺路线是与具体的物料加工关联在一起的,这时才能有准确的提前期数据。因此,工艺路线数据包括了加工的物料数据。 例如,空调器中的蒸发器、冷凝器部件的标准装配工艺路线的工序包括串U 型管、胀管、折弯、清洗、封管、气密测试、整理和包装入库等。U型管的加工顺序是:下料、弯管、切管、收管口和打毛刺等。 一般情况下,工艺路线数据主要包括工艺路线编码、工艺路线名称、工艺路线类型、制造单位、物料编码、物料名称、工序编码、工序名称、加工中心编码、是否外协、时间单位、准备时间、加工时间、移动时间、等待时间、固定机时、变动机时、固定人时、变动人时、替换工作中编码、生效日期、失效日期和检验标志等。 编写工艺路线的过程包括确定原材料、毛坯;基于产品设计资料,查阅企业库存材料标准目录;依据工艺要求确定原材料、毛坯的规格和型号;确定加工、装配顺序即确定工序;根据企业现有的条件和将来可能有的条件、类似的工件、标准的工艺路线和类似的工艺路线以及经验,确定加工和装配的顺序;选定工作

棒材生产线工艺流程

轧钢生产工艺流程 1、棒材生产线工艺流程 钢坯验收→加热→轧制→倍尺剪切→冷却→剪切→检验→包装→计量→入库 (1)钢坯验收〓钢坯质量是关系到成品质量的关键,必须经过检查验收。 ①、钢坯验收程序包括:物卡核对、外形尺寸测量、表面质量检查、记录等。 ②、钢坯验收依据钢坯技术标准和内控技术条件进行,不合格钢坯不得入炉。 (2)、钢坯加热 钢坯加热是热轧生产工艺过程中的重要工序。 ①、钢坯加热的目的 钢坯加热的目的是提高钢的塑性,降低变形抗力,以便于轧制;正确的加热工艺,还可以消除或减轻钢坯内部组织缺陷。钢的加热工艺与钢材质量、轧机产量、能量消耗、轧机寿命等各项技术经济指标有直接关系。 ②、三段连续式加热炉 所谓的三段即:预热段、加热段和均热段。 预热段的作用:利用加热烟气余热对钢坯进行预加热,以节约燃料。(一般预加热到300~450℃) 加热段的作用:对预加热钢坯再加温至1150~1250℃,它是加热炉的主要供热段,决定炉子的加热生产能力。 均热段的作用:减少钢坯内外温差及消除水冷滑道黑印,稳定均匀加热质量。 ③、钢坯加热常见的几种缺陷 a、过热 钢坯在高温长时间加热时,极易产生过热现象。钢坯产生过热现象主要表现在钢的组织晶粒过分长大变为粗晶组织,从而降低晶粒间的结合力,降低钢的可塑性。 过热钢在轧制时易产生拉裂,尤其边角部位。轻微过热时钢材表面产生裂纹,影响钢材表面质量和力学性能。 为了避免产生过热缺陷,必须对加热温度和加热时间进行严格控制。 b、过烧 钢坯在高温长时间加热会变成粗大的结晶组织,同时晶粒边界上的低熔点非金属化合物氧化而使结晶组织遭到破坏,使钢失去应有的强度和塑性,这种现象称为过烧。 过烧钢在轧制时会产生严重的破裂。因此过烧是比过热更为严重的一种加热缺陷。过烧钢除重新冶炼外无法挽救。 避免过烧的办法:合理控制加热温度和炉内氧化气氛,严格执行正确的加热制度和待轧制度,避免温度过高。 c、温度不均 钢坯加热速度过快或轧制机时产量大于加热能力时易产生这种现象。温度不均的钢坯,轧制时轧件尺寸精度难以稳定控制,且易造成轧制事故或设备事故。 避免方法:合理控制炉温和加热速度;做好轧制与加热的联系衔接。 d、氧化烧损 钢坯在室温状态就产生氧化,只是氧化速度较慢而已,随着加热温度的升高氧化速度加快,当钢坯加热到1100—1200℃时,在炉气的作用下进行强烈的氧化而生成氧化铁皮。氧化铁皮的产生,增加了加热烧损,造成成材率指标下降。 减少氧化烧损的措施:合理加热制度并正确操作,控制好炉内气氛。 e、脱碳 钢坯在加热时,表面含碳量减少的现象称脱碳,易脱碳的钢一般是含碳量较高的优质碳素结

800万吨年大庆原油常减压蒸馏装置的工艺设计—方案设计与流程模拟

辽宁石油化工大学毕业设计(论文)Graduation Project (Thesis) for Undergraduate of LSHU 题目800万吨/年大庆原油常减压蒸馏装置的工艺设计—方案设计与流程模拟 TITLE Process Design of 8 Million t/a Atmospheric and Vacuum Distillation Unit for Daqing Crude Oil—Scheme Design and Process Simulation 学院化学化工与环境学部 School Liaoning Shihua University 专业班级加工1301班(化工1304班)Major&Class Chemical Engineering and Technology 1304 姓名武志涛 Name Zhitao Wu 指导教师刘洁/李文深Supervisor Jie Liu/Wenshen Li 2017年 6 月 3 日

论文独创性声明 本人所呈交的论文,是在指导教师指导下,独立进行研究和开发工作所取得的成果。除文中已特别加以注明引用的内容外,论文中不包含任何其他个人或集体已经发表或撰写过的研究成果。对本设计的工作做出重要贡献的个人和集体,均已在文中以明确方式标明并致谢。本声明的法律结果由本人承担。 特此声明。 论文作者(签名): 年月日

摘要 本次设计主要是对处理量为800万吨/年的大庆原油常减压蒸馏装置的工艺流程设计。运用化工模拟软件Aspen Plus对大庆原油蒸馏装置进行模拟优化,并运用软件Aspen Energy Analyzer 对常减压蒸馏装置的工艺流程进行全面的热集成分析。首先通过查阅文献得到原油的TBP曲线、API重度以及轻端组成等原油性质数据,在模拟计算过程中通过这些数据来生成油品的虚拟组分,从而对原油蒸馏装置进行准确的模拟,包括原油初馏、常压蒸馏、减压蒸馏三个重要过程。软件会得到原油蒸馏过程的运行数据,包括整个设备的物料平衡数据,初馏塔和常压塔的温度分布,压力对比和气液分布等。其次对常减压蒸馏工艺的全流程进行了热集成分析,采用夹点分析对冷、热流股进行匹配,生成初始换热网络,并对其进行改进优化。 本次设计模拟结果表明,原油蒸馏装置过程模拟的操作条件能反映常减压蒸馏装置操作的真实状况,设计所建立的工艺流程模拟数据可为实际生产的常减压操作提供理论依据。采用夹点技术通过热集成分析,通过改善夹点附近的流股匹配,减少穿越夹点的热流量,可以减少整个系统的公用工程消耗量,最终可获得最优的换热网络。 关键词:常减压蒸馏;流程模拟;夹点技术;换热网络;热集成

典型轴类零件加工工艺分析

6.4典型轴类零件加工工艺分析 6.4.1 轴类零件加工的工艺分析 (1)轴类零件加工的工艺路线 1)基本加工路线 外圆加工的方法很多,基本加工路线可归纳为四条。 ① 粗车—半精车—精车 对于一般常用材料,这是外圆表面加工采用的最主要的工艺路线。 ② 粗车—半精车—粗磨—精磨 对于黑色金属材料,精度要求高和表面粗糙度值要求较小、零件需要淬硬时,其后续工序只能用磨削而采用的加工路线。 ③ 粗车—半精车—精车—金刚石车 对于有色金属,用磨削加工通常不易得到所要求的表面粗糙度,因为有色金属一般比较软,容易堵塞沙粒间的空隙,因此其最终工序多用精车和金刚石车。 ④ 粗车—半精—粗磨—精磨—光整加工 对于黑色金属材料的淬硬零件,精度要求高和表面粗糙度值要求很小,常用此加工路线。 2)典型加工工艺路线 轴类零件的主要加工表面是外圆表面,也还有常见的特特形表面,因此针对各种精度等级和表面粗糙度要求,按经济精度选择加工方法。 对普通精度的轴类零件加工,其典型的工艺路线如下: 毛坯及其热处理—预加工—车削外圆—铣键槽—(花键槽、沟槽)—热处理—磨削—终检。 (1)轴类零件的预加工 轴类零件的预加工是指加工的准备工序,即车削外圆之前的工艺。 校直毛坯在制造、运输和保管过程中,常会发生弯曲变形,为保证加工余量的均匀及装夹可靠,一般冷态下在各种压力机或校值机上进行校值, (2) 轴类零件加工的定位基准和装夹

1)以工件的中心孔定位在轴的加工中,零件各外圆表面,锥孔、螺纹表面的同轴度,端面对旋转轴线的垂直度是其相互位置精度的主要项目,这些表面的设计基准一般都是轴的中心线,若用两中心孔定位,符合基准重合的原则。中心孔不仅是车削时的定为基准,也是其它加工工序的定位基准和检验基准,又符合基准统一原则。当采用两中心孔定位时,还能够最大限度地在一次装夹中加工出多个外圆和端面。 2)以外圆和中心孔作为定位基准(一夹一顶)用两中心孔定位虽然定心精度高,但刚性差,尤其是加工较重的工件时不够稳固,切削用量也不能太大。粗加工时,为了提高零件的刚度,可采用轴的外圆表面和一中心孔作为定位基准来加工。这种定位方法能承受较大的切削力矩,是轴类零件最常见的一种定位方法。 3)以两外圆表面作为定位基准在加工空心轴的内孔时,(例如:机床上莫氏锥度的内孔加工),不能采用中心孔作为定位基准,可用轴的两外圆表面作为定位基准。当工件是机床主轴时,常以两支撑轴颈(装配基准)为定位基准,可保证锥孔相对支撑轴颈的同轴度要求,消除基准不重合而引起的误差。 4)以带有中心孔的锥堵作为定位基准在加工空心轴的外圆表面时,往往还采用代中心孔的锥堵或锥套心轴作为定位基准,见图6.9所示。 锥堵或锥套心轴应具有较高的精度,锥堵和锥套心轴上的中心孔即是其本身制造的定位基准,又是空心轴外圆精加工的基准。因此必须保证锥堵或锥套心轴上锥面与中心孔有较高的同轴度。在装夹中应尽量减少锥堵的安装此书,减少重复安装误差。实际生产中,锥堵安装后,中途加工一般不得拆下和更换,直至加工完毕。 图 6.9 锥堵和锥套心轴 a)锥堵 b)锥套心轴

现代煤化工工艺路线总图

现代煤化工工艺路线总图煤化工工艺路线图

煤制甲醇典型工艺路线图 1、合成甲醇的化学反应方程式: (1)主反应: CO+2H2=CH3OH+102.5KJ/mol (2)副反应 2CO+4H2=CH3OCH3+H2O+200.2 KJ/mol CO+3H2=CH4+H2O+115.6 KJ/mol 4CO+8H2=C4H9OH+3H2O+49.62 KJ/mol CO2+H2=CO+H2O-42.9 KJ/mol 2、甲醇合成气要求氢碳比f=(H2-CO2)/(CO+CO2)≈2.05~2.10,由于煤炭气化所得到的水煤气CO含量较高,H2含量较低,因此水煤气须经脱硫、变换、脱碳调整气体组成,以达到甲醇合成气的要求。 3、CO变换反应 CO+H2O(g)=CO2+H2 (放热反应)

4、水煤气组分与甲醇合成气组分对比 气体种类气体组分(%) CO H2CO2CH4 水煤气37.350.0 6.50.3 甲醇合成 29.9067.6429.900.1 气 天然气制甲醇工艺流程图 1、合成甲醇的化学反应方程式: CH4+H2O=CH3OH+H2 2、甲醇合成气要求氢碳比f=(H2-CO2)/(CO+CO2)≈2.05~2.10,由于天然气甲烷含量较高,因此要对天然气进行蒸汽转化,生成以H2、CO和CO2位主要成分的转化气。由于蒸汽转化反应是强吸热反应,因此还要对天然气进行纯氧部分氧化以获取热量,使得蒸汽转化反应正常连续进行,最终达到甲醇合成气的要求。

3、蒸汽转化反应 CH4+H2O(g)=CO+H2(强吸热反应) 4、纯氧部分氧化反应 2CH4+O2=2CO+4H2+35.6kJ/mol CH4+O2=CO2+2H2+109.45 kJ/mol CH4+O2=CO2+H2O+802.3 kJ/mol 5、天然气组分与甲醇合成气组分对比 气体种 气体组分(%) 类 CO H2CO2CH4天然气----------- 3.296.2 甲醇合 29.9067.6429.900.1 成气 石油化工、煤炭化工产品方案对比(生产烯烃) 以天然气(或煤气)为原料的MTO技术流程

轧钢生产工艺流程介绍

轧钢生产工艺流程介绍 1、棒材生产线工艺流程 钢坯验收f加热f轧制f倍尺剪切f冷却f剪切f检验f包装f计量f入库 (1)钢坯验收=钢坯质量是关系到成品质量的关键,必须经过检查验收。 ①、钢坯验收程序包括:物卡核对、外形尺寸测量、表而质量检查、记录等。 ②、钢坯验收依据钢坯技术标准和内控技术条件进行,不合格钢坯不得入炉。 (2)、钢坯加热 钢坯加热是热轧生产工艺过程中的重要工序。 ①、钢坯加热的目的 钢坯加热的目的是提高钢的塑性,降低变形抗力,以便于轧制;正确的加热工艺,还可以消除或减轻钢坯内部组织缺陷。钢的加热工艺与钢材质量、轧机产量、能量消耗、轧机寿命等各项技术经济指标有直接关系。 ②、三段连续式加热炉 所谓的三段即:预热段、加热段和均热段。 预热段的作用:利用加热烟气余热对钢坯进行预加热,以节约燃料。(一般预加热 到 300?450°C) 加热段的作用:对预加热钢坯再加温至1150?1250°C,它是加热炉的主要供热段,决定炉子的加热生产能力。 均热段的作用:减少钢坯内外温差及消除水冷滑道黑印,稳定均匀加热质量。 ③、钢坯加热常见的几种缺陷 a、过热钢坯在高温长时间加热时,极易产生过热现象。钢坯产生过热现象主要表现在钢的组织晶粒过分长大变为粗晶组织,从而降低晶粒间的结合力,降低钢的可塑

性。过热钢在轧制时易产生拉裂,尤其边角部位。轻微过热时钢材表面产生裂纹, 影响钢材表而质M和力学性能。 为了避免产生过热缺陷,必须对加热温度和加热时间进行严格控制。 b、过烧 钢坯在高温长时间加热会变成粗大的结晶组织,同时晶粒边界上的低熔点非金属化 合物氧化而使结晶组织遭到破坏,使钢失去应有的强度和塑性,这种现象称为过 烧。 过烧钢在轧制时会产生严重的破裂。因此过烧是比过热更为严重的一种加热缺陷。 过烧钢除重新冶炼外无法挽救。 避免过烧的办法:合理控制加热温度和炉内氧化气氛,严格执行正确的加热制度和 待轧制度,避免温度过高。 ( C、温度不均 钢坯加热速度过快或轧制机时产量大于加热能力时易产生这种现象。温度不均的钢坯,轧制时轧件尺寸精度难以稳定控制,且易造成轧制事故或设备事故。 避免方法:合理控制炉温和加热速度;做好轧制与加热的联系衔接。 d、氧化烧损 钢坯在室温状态就产生氧化,只是氧化速度较慢而己,随着加热温度的升高氧化速度加快,当钢坯加热到1100-1200°C时,在炉气的作用下进行强烈的氧化而生成氧化铁皮。氧化铁皮的产生,增加了加热烧损,造成成材率指标下降。 减少氧化烧损的措施:合理加热制度并正确操作,控制好炉内气氛。 e、脱碳 钢坯在加热时,表面含碳量减少的现象称脱碳,易脱碳的钢一般是含碳量较高的优

机械零件结构工艺性分析与工艺路线的拟定

目录 一、零件结构工艺性分析2 1. 零件的技术要求2 2.确定堵头结合件的生产类型3 二、毛坯的选择4 1.选择毛坯4 2.确定毛坯的尺寸公差4 三、定位基准的选择6 1.精基准的选择6 2.粗基准的选择6 四、工艺路线的拟定7 1.各表面加工方法的选择7 2.加工阶段的划分8 3.加工顺序的安排8 4.具体技术方案的确定9 五、工序内容的拟定10 1.工序的尺寸和公差的确定10 2.机床、刀具、夹具及量具的选择12 3.切削用量的选择及工序时间计算12 六、设计心得35 七、参考文献36

一、零件结构工艺性分析 1.零件的技术要求 1.堵头结合件由喂入辊轴和堵头焊接在一起。其中喂入辊 轴:材料为45钢。堵头:材料为Q235-A。且焊缝不得有夹渣、气孔及裂纹等缺陷。 2.零件的技术要求表:

2. 确定堵头结合件的生产类型 根据设计题目年产量为10万件,因此该左堵头结合件的生产类型为大批量生产。

二、毛坯的选择 1.选择毛坯 由于该堵头结合件在工作过程中要承受冲击载荷,为增强其的强度和冲击韧度,堵头选用锻件,材料为Q235-A,因其为大批大量生产,故采用模锻。喂入辊轴由于尺寸落差不大选用棒料,材料为45钢。 2.确定毛坯的尺寸公差 喂入辊轴: 根据轴类零件采用精轧圆棒料时毛坯直径选择可通过零件的长度和最大半径之比查的毛坯直径 206 L8.24 == R25 查表得毛坯直径为:φ55 根据其长度和直径查得端面加工余量为2。故其长度为206+2+2=210mm

堵头: 1.公差等级: 由于堵头结合件用一般模锻工艺能够达到技术要求,确定该零件的公差等级为普通级。 2.重量: 锻件重量的估算按下列程序进行: 零件图基本尺寸-估计机械加工余量-绘制锻件图-估算锻件重量。并按此重量查表确定公差和机械加工余量 据粗略估计锻件质量: 11.6f Kg M = 3.形状复杂系数: 锻件外廓包容体重量按公式:2N d h 4 M π ρ= g g 计算 293 186.5101104 7.851021.65Kg N M π -= ?????= 形状复杂系数: f 11.6 0.5421.6M S M N === 故形状复杂系数为S2(一般)级。 4.锻件材质系数: 由于该堵头材料为Q235-A 所含碳元素的质量分数分别为C=0.14%—0.22%,小于0.65% 所含合金元素的质量分数分别为Si 0.3%≤、S 0.05%≤、P 0.045%≤故合金元素总的质量分数为0.3%0.05%0.045%0.395%3%++≤<%。故该锻件的材质系数为M1级。 5.锻件尺寸公差 根据锻件材质系数和形状复杂系数查得锻件尺寸公差为 ( 2.41.2+-) 。 6.锻件分模线形状: 根据该堵头的形装特点,选择零件轴向方向的对称平面为分模面,属于平直分模线。

常减压蒸馏装置研究现状与概述——250万吨年常减压蒸馏装置常压系统工艺设计【文献综述】

文献综述 化学工程与工艺 常减压蒸馏装置研究现状与概述——250万吨/年常减压蒸馏装置常压系 统工艺设计 [前言] 本课题的主要内容是对年处理量250万吨常减压蒸馏装置常压系统进行工艺设计。 常减压蒸馏是石油加工的“龙头装置”,后续二次加工装置的原料及产品都是由常减压蒸馏装置提供。常减压蒸馏主要是通过精馏过程,在常压和减压的条件下,根据各组分相对挥发度的不同,在塔盘上汽液两相进行逆向接触、传质传热,经过多次汽化和多次冷凝,将原油中的汽、煤、柴馏分切割出来,生产合格的汽油、煤油、柴油及渣油等。 石油又称原油,是从地下深处开采的棕黑色可燃粘稠液体。由碳和氢化合形成的烃类构成石油的主要组成部分,含硫、氧、氮的化合物对石油产品有害,在石油加工中应尽量除去。不同产地的石油中,各种烃类的结构和所占比例相差很大,但主要属于烷烃、环烷烃、芳香烃三类。通常以烷烃为主的石油称为石蜡基石油;以环烷烃、芳香烃为主的称环烃基石油;介于二者之间的称中间基石油。我国主要原油的特点是含蜡较多,凝固点高,硫含量低,镍、氮含量中等,钒含量极少。除个别油田外,原油中汽油馏分较少,渣油占三分之一。组成不同类的石油,加工方法有差别,产品的性能也不同,应当物尽其用。 石油炼制工业是国民经济最重要的支柱产业之一,是提供能源,尤其是交通运输燃料和有机化工原料的最重要的工业。据统计,全世界总能源需求的大部分依赖于石油产品,汽车,飞机,轮船等交通运输器械使用的燃料几乎全部是石油产品,有机化工原料主要也是来源于石油炼制工业,用于生产有机化工原料也占了小部分。 [主题] 国内外现状 石油是重要的能源之一,世界的工业生产和经济运行都离不开石油,但是,石油不能直接作为产品使用,必须经过各种加工过程,炼制成多种在质量上符合使用要求的石油产品。 世界炼油厂平均规模不断提高,从1982年的491万吨/年提高到2008年的653万吨/年。全球最大的25家炼油公司合计炼油能力为25.72万吨/年,占世界炼油总能力的60.1%。全球炼油能力大于等于2000万吨/年的炼厂共19座,合计炼油能力达5.13亿吨/年[1]。

20CrMnTi的工艺路线分析

20CrMnTi的工艺路线分析 20CrMnTi的工艺路线:下料,锻造,正火,机械粗加工,渗碳,淬火+低温回火,机械精加工 20CrMnTi为中淬透性低碳钢,具有良好的综合力学性能,低温冲击韧度较高,晶粒长大倾向小,冷热加工性能均较好。 其中锰,铬主要作用是提高渗碳钢的淬透性,以使较大尺寸的零件在淬火时芯部能获得大量的板条马氏体组织。另外还可以改善渗碳层参数。钛可以组织奥氏体晶粒在高温渗碳时的长大,能细化晶粒。 一下料 下料是指确定制作某个设备或产品所需的材料形状、数量或质量后,从整个或整批材料中取下一定形状、数量或质量的材料的操作过程。二锻造 锻造是在锻压设备及工(模)具的作用下,使坯料或铸锭产生塑性变形,以获得一定几何尺寸、形状和质量的锻件的加工方法。 锻造方法有自由锻和模锻。 自由锻是利用冲击力或压力使加热好的金属在上、下抵铁之间产生变形。它适用于单件和小批量生产;特别适于重型、大型锻件生产。 模锻是利用模具使毛坯变形获得锻件的方法。常用的模锻设备有蒸汽-空气模锻锤、压力机等。它又分为锤上模锻,胎膜锻,压力机上模锻。适于小型锻件的成批大量生产。 拔长时的锻造比为y拔=F0/F=L/L0

镦粗时的锻造比为y镦=F/F0=H0/H 通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。经锻造以后晶粒大小形状发生了变化,改变了钢的组织,增加了锻造应力,提高了硬度,在机械加工前需预备热处理。相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。 变形温度 按变形温度,锻造又可分为热锻(锻造温度高于坯料金属的再结晶温度)、温锻(锻造温度低于金属的再结晶温度)和冷锻(常温)。钢的开始再结晶温度约为727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻。 材料的原始状态有棒料、铸锭、金属粉末和液态金属。金属在变形前的横断面积与变形后的横断面积之比称为锻造比。正确地选择锻造比、合理的加热温度及保温时间、合理的始锻温度和终锻温度、合理的变形量及变形速度对提高产品质量、降低成本有很大关系。 一般的中小型锻件都用圆形或方形棒料作为坯料。棒料的晶粒组织和机械性能均匀、良好,形状和尺寸准确,表面质量好,便于组织批量生产。只要合理控制加热温度和变形条件,不需要大的锻造变形就能锻出性能优良的锻件。 铸锭仅用于大型锻件。铸锭是铸态组织,有较大的柱状晶和疏松的

工艺路线的制定

图1 图2 第二节 工艺路线的制定 一、 定位基准的选择 1. 一般原则 (1) 选最大尺寸的表面为安装面(主要定位面,限制三个自由度),选最长距离的表面为 导向定位面(限制二个自由度),选最小尺寸的表面为支承面(限制一个自由度)。 如下图1所示,如果要求所加工的孔与端面M 垂直,显然用N 1面定位时加工精度最高。 (2) 首先考虑保证空间位置精度,再考虑保证尺寸精度。因为在加工中保证空间位置精度 有时要比尺寸精度困难得多。 如上图2所示的主轴箱零件,其主轴孔要求与M 面的距离为z ,与N 面的距离为x 。由于主轴孔在箱体两壁上都有,并且要求与M 面及N 面平行,因此要以M 面为安装面,限 制Z Y X r ))、、三个自由度,以N 面为导向面,限制X r 和Z )两个自由度。要保证这些空间位置, M 面与N 面必须有较高的加工精度。(位置公差是关联实际要素的方向或位置对基准所允许的变动全量。位置公差又分为定向公差(平行度、垂直度、倾斜度)、定位公差(同轴度、对程度、位置度)、跳动公差(圆跳动、全跳动)) (3) 应尽量选择零件的主要表面为定位基准,因为主要表面是决定该零件其他表面的基 准,也就是主要的设计基准。如上例中的主轴箱零件,M 面和N 面就是主要表面,许多表面的位置都是由这两个表面来决定的,因此选主要表面为定位基准,可使设计基准与定位基准重合。 (4) 定位基准应便于夹紧,在加工过程中稳定可靠。 2. 粗基准选择原则 (1) 保证相互位置要求的原则 (2) 保证加工表面加工余量合理分配的原则 (3) 便于工件的装夹原则 (4) 粗基准一般只能使用一次,应尽量避免重复使用

线棒工序工艺流程简介

一高线工艺布置图 加热炉 初轧 中轧 预精轧 精轧机组 水冷箱 吐丝机 控冷辊道 集卷 线材打包机

二高线工艺布置图 6架粗轧机1#剪 6架中轧机2#剪2架中轧机4架预精轧机组

1、一高线 1.1 一高线简介 线棒工序一高线作业区为线棒材复合生产线,其中线材生产线是国内最早引进的现代化高速线材生产线之一,其轧机关键设备从德国德马克公司引进,电控系统从瑞典ABB公司成套引进。2001年底,酒钢公司又在原高线厂房成品跨增加大规格直条棒材精轧机、棒材高速上料系统及精整设备,使其成为即具备盘卷线材生产能力,又具备直条棒材生产能力的线、棒复合生产线。新建的棒材生产线关键设备达到世界领先水平,是国内第一条速度超过30m/s的单线棒材生产线,其主要机械设备由意大利西马克公司引进,电控系统从德国西门子公司引进。一高线具有线、棒材共50万吨的年设计生产能力,其中高速棒材产能30万吨,高速线材产能20万吨,棒材捆重4吨,线材卷重1吨,目前已达到60万吨的能力,可进行线材和棒材的交替生产,以满足不同用户的需求。 一高线采用大断面连铸方坯,一火成材,大压缩率使组织均匀、致密,先进的自动张力控制和多活套无张力控制保证了轧件通条尺寸均匀,线材精轧机组采用大辊径碳化钨辊环,产品表面光洁美观,精轧前、精轧内和精轧后都采取了有效的轧件水冷措施,产品理化性能得以合理控制,其优良的加工使用性能得到了用户的一致好评。目前一高线可生产普通碳素钢、焊接用钢、中高碳钢和合金结构钢五大类钢钟,这些钢种都具有成熟的生产工艺和质量控制手段,投放市场以来深受用户的欢迎。 1.2 一高线工艺流程 生产时从原料库将150方、6米长(150mm×150mm×6000mm)的钢坯吊放到加热炉上料台架上,进行入炉加热,按加热工艺规定将钢坯加热好后,用出钢机将钢坯推出炉子进行轧制。

年产150万吨常减压蒸馏装置常压系统工艺设计【文献综述】

文献综述 化学工程与工艺 年产150万吨常减压蒸馏装置常压系统工艺设计 [前言] 石油又称原油,是从地下深处开采的棕黑色可燃的粘稠性液体,主要是各种烷烃、环烷烃、芳香烃的混合物。由碳和氢化合形成的烃类是石油的主要组成部分,大约占95%~99%,其中含硫、氧、氮的化合物对石油产品有害的,在石油加工中应该尽量除去。不同产地的原油中,各种烃类所占的比例和结构相差较大,但是基本上为烷烃、环烷烃、芳香烃三类。石蜡基石油通常以烷烃为主的石油;环烃基石油以环烷烃、芳香烃为主;介于二者之间的称中间基石油。我国主要原油的特点是含蜡较高,凝点较高,庚烷沥青质含量较低,硫含量低,镍氮含量中等,钒含量极少,相对密度大多在0.85~0.95之间,属于偏重的常规原油。个别油田除外,原油中汽油馏分含量较少,渣油占三分之一。组成不同类的石油,加工方法有差别,产品的性能也不同。 原油精馏装置是炼油企业的“龙头”装置,在炼油工业中算得上是第一道工序,是原油加工的基础。其拔出率高低和能量的综合利用程度体现在石化企业的效益上,因此,开展常压精馏装置的研究很有意义跟价值的。 原油常减压蒸馏作为原油的一次加工工艺,在原油加工总流程中占有重要作用在炼厂具有举足轻重的地位,其运行的好坏直接影响到后续的加工过程。其中重要的分离设备—常压塔的设计,是能否获得高收率、高质量油的关键。近年来常减压蒸馏技术和管理经验不断创新,装置节能消耗显著,产品质量提高。但与国外先进水平相比,仍存在较大的差距,装置能耗仍然偏高,分馏精度和减压拔出深度偏低,对含硫原油的适应性差等。进一步提高常减压装置的操作水平和运行水平,显著日益重要,对提高炼油企业的经济效益也具有重要意义。[主题] 原油蒸馏一般情况下包括三道工序:①原油预处理:将原油中的水和盐脱出。②常压蒸馏:近似常压下的条件下馏出汽油、煤油(或喷气燃料)、轻柴油、重柴油直馏馏分,塔底剩余的是常压渣油(即重油)。③减压蒸馏:原油中350℃以上的高沸点馏分是润滑油馏分和催化裂化、加氢裂解等的原料,但是由于在高温下会发生分解反应,所以只能在减压和较低温

工艺路线图

煤化工工艺路线图

煤制甲醇典型工艺路线图 1、合成甲醇的化学反应方程式: (1)、主反应: C O+2H2=C H3O H+102.5K J/m o l (2)、副反应 2CO+4H2=CH3OCH3+H2O+200.2 KJ/mol C O+3H2=C H4+H2O+115.6K J/m o l 4C O+8H2=C4H9O H+3H2O+49.62K J/m o l C O2+H2=C O+H2O-42.9K J/m o l 2、甲醇合成气要求氢碳比f=(H2-CO2)/(CO+CO2)≈2.05~2.10,由于煤炭气化所得到的水煤气CO含量较高,H2含量较低,因此水煤气须经脱硫、变换、脱碳调整气体组成,以达到甲醇合成气的要求。 3、CO变换反应 C O+H2O(g)=C O2+H2(放热反应) 4、水煤气组分与甲醇合成气组分对比

天然气制甲醇工艺流程图 1、合成甲醇的化学反应方程式: C H4+H2O=C H3O H+H2 2、甲醇合成气要求氢碳比f=(H2-CO2)/(CO+CO2)≈2.05~2.10,由于天然气甲烷含量较高,因此要对天然气进行蒸汽转化,生成以H2、CO和CO2位主要成分的转化气。由于蒸汽转化反应是强吸热反应,因此还要对天然气进行纯氧部分氧化以获取热量,使得蒸汽转化反应正常连续进行,最终达到甲醇合成气的要求。 3、蒸汽转化反应 C H4+H2O(g)=C O+H2(强吸热反应) 4、纯氧部分氧化反应 2C H4+O2=2C O+4H2+35.6k J/m o l C H4+O2=C O2+2H2+109.45k J/m o l C H4+O2=C O2+H2O+802.3k J/m o l 5、天然气组分与甲醇合成气组分对比

工艺路线样本

四、环氧丙烷产品工艺规划方案 4.1 产品产能规划方案 以丙烷、过氧化氢为原料, 采用直接氧化法工艺, 生产工业级环氧丙烷, 该工艺副产物为水。 表4-1本项目产品规格 注: 该产量以年开工300天计 表4-2 GB/T14491- 工业用环氧丙烷标准

4.2 产品工艺规划方案 4.2.1 基本工艺方案比较 当前世界上环氧丙烷生产技术主要有: 氯醇法, 共氧化法( 主要包括乙苯共氧化法( PO/SM法) , 异丁烷共氧化法( PO/TAB 法) ) , 直接氧化法( 主要包括过氧化氢直接氧化法( HPPO法) , 氧气直接氧化法, 氧气氢气直接氧化法) 。 4.2.2 原子利用率比较 化学反应追求的是反应选择性, 可是即使反应选择性达到100%, 这个反应过程中依然能够产生大量废物。为衡量一个化学反应中生成一定目标产物所伴生的废物量, 美国人Trost提出了”原子经济性”的概念。实现原子经济性的程度, 能够用原子利用率来衡量, 其定义为: 原子利用率=目标产物的量/按化学计量所得所有产物的量之 和×100%

表4-3 不同生产方法原子利用率比较 从表1-3能够看出, 在不考虑其它副反应情况下, 氧气直接氧化技术的原子经济性是最好, 所有原料均转化为产物, 紧随其后是双氧水法、氢氧化法及异丙苯法, 第三梯队为PO/MTBE法、PO/SM 法, 排名最后的氯醇法原子利用率最低。可是PO/MTBE法、PO/SM 法同时生产具有工业价值的联产品, 如果把联产品也计入, 其原子利用率高达90%, 远高HPPO法和CHP法, 仅次于直接氧化法, 这是工业认可原因之一。 4.2.3 氯醇工艺 氯醇法的基本生产原理是: 以丙烯和氯气为原料, 首先丙烯经

400万吨年常减压蒸馏装置工艺设计

400万吨/年常减压蒸馏装置工艺设计 摘要 随着原油供需矛盾趋紧和原油价格持续走高,中国石化炼油企业原油采购日益重质化,造成部分常减压蒸馏装置的减压系统超负荷,蜡渣油分割不清,蜡油馏分流失到渣油当中,渣油量的增大又造成炼油厂重油装置能力吃紧和不必要的能量消耗,部分企业还不得以出售渣油,削弱了加工重质原油的应有效益。为了缓解加工原油变重对二次加工装置的影响,提高重油加工装置的营运水平,充分发挥原油采购重质化的效益,提高蒸馏装置减压系统的拔出水平显得尤为重要。 常压蒸馏是石油加工的“龙头装置”,后续二次加工装置的原料,及产品都是由常减压蒸馏装置提供。常减压蒸馏主要是通过精馏过程,在常压和减压的条件下,根据各组分相对挥发度的不同,在塔盘上汽液两相进行逆向接触、传质传热,经过多次汽化和多次冷凝,将原油中的汽、煤、柴馏分切割出来,生产合格的汽油、煤油、柴油及蜡油及渣油等。 本文以400万吨/年常减压蒸馏装置为例,着重介绍了大港原油的炼制。以及常减压装置的生产流程和设计计算方法等。 关键词:精馏过程;传质传热;汽液两相

ABSTRACT With crude oil, the contradiction between supply and demand and continuing tightening crude oil prices high, China petrochemical refining enterprise crude oil purchasing increasingly heavy qualitative, caused part often vacuum distillation device pressure system overload, wax, residual segmentation is not clear, oil fractions of loss to the residue, residual amount of increase and caused heavy oil refinery capacity and unnecessary device tight energy consumption, part of the enterprise also shall not sell residual, weaken the processing of heavy oil should benefit. In order to alleviate processing crude oil weight to the influence of two processing equipment, improve the service level of heavy oil processing device, give full play to purchase heavy crude oil qualitative benefits, and improve the system of the reduced pressure distillation unit draw level is particularly important. Atmospheric distillation is oil processing "leading device", the subsequent two processing device of raw materials, and products are often provided by vacuum distillation device. Often vacuum distillation is mainly through the distillation process in atmospheric pressure and reduced pressure conditions, according to the various

相关文档
最新文档