电容传感与指纹识别

电容传感与指纹识别
电容传感与指纹识别

电容传感和指纹识别

摘要:生物识别技术是基于人的生物特征进行个体识别的一项认证技术,现在主要有虹膜,视网膜,声音,人脸识别和指纹识别。其中指纹识别是生物识别技术中最为成熟的技术。它的稳定性,鉴别的唯一性,一直都被视为身份鉴别的可靠手段之一。本文章就当下比较流行的基于电容传感技术的指纹识别进行介绍并进行讨论。

关键字:电容传感技术,指纹识别。

Capacitance sensor and fingerprint recognition

01081441 KaiDu

Abstract:Biometric technology is based on the biological characteristics of human individual identification of a certification, and now there are iris, retina, voice, face recognition and fingerprint recognition. One fingerprint biometric technology is the most mature technology. Its stability, identification of unique, has long been regarded as a reliable means of identification. This article will introduces and discusses the more popular current capacitive fingerprint sensor technology .

keywords:fingerprint biometric technology,fingerprint recognition

0 引言

随着社会的进步,我们认识到信息的保密越来越重要。我们从很早就给家里的门和柜子上锁,现在我们会用遥控器去打开车门,会使用密码去保护电脑等等。这些都是我们经常用到的保密方式,但是同时也是不法分子“研究”的盗窃方式。我们需要一种可以唯一的识别个人的设备去保护我们的信息,指纹识别别在这个时候大放异彩了。而指纹识别在采集指纹时需要对微小的压力进行识别,这时候用电容传感技术是个不错的选择。

1.电容传感技术原理

电容式传感器是把被测量转换为电容量变化的一种传感器。它具有结构简单、灵敏度高、动态响应特性好、适应性强、抗过载能力大及价格低廉等优点。因此,可以用来测量压力、力、位移、振动、液位等参数。但电容式传感器的泄漏电阻和非线性等缺点也给它的应用带来一定的局限。随着电子技术的不断发展,特别是集成电路的广泛应用,这些缺点也得到了一定的克服,进一步促进了电容式传感器的广泛应用

C为

S—极板相对覆盖面积;

δ—极板间距离;εr—相对介电常数;

ε0 —真空介电常数,ε0 =8.85pF/m;

ε—电容极板间介质的介电常数。

1.1改变极板遮盖面积的电容传感器

图1是3种这类传感器的原理图,图1(a)中是利用角位移来改变电容器极板遮盖面积。假定当2块极板完全遮盖时的面积为S0,两极板间的距离为d,极板间介质的介电常数为ε。当忽略边缘效应时,该电容器的电容量为:

如果其中一块板极相对另一极板转过θ角,则极板间的相互遮盖面积为:

可见,此电容量的变化值和角位移成正比,以此用来测量角位移。

图1(b)中是利用线位移来改变电容器极板的遮盖面积的。如果初始状态极板全部遮盖,则遮盖面积S0=ab,当2块极板相对位移x时,则极板的遮盖面积变为S1=b(a-x)。在介电常数和极板距离不变时,电容量分别为:

可见,此电容量的变化值和线位移x成正比,用他来测量各类线位移。

图1(c)所示电容变换器是图1(b)所示电容器的变种。采用这种锯齿形电极的目的在于提高传感器的灵敏度。若锯齿数为n,尺寸如图1(b)所示不变,当运动齿相对于固定齿移动一个位移x时,则可得:

比较式(2)和式(3)可见,灵敏度提高了n倍。

2.2改变介质介电常数的电容传感器

图2是2种改变介质介电常数的电容式传感器的原理图。图2(a)常用来检测液位的高度,图2(b)常用来检测片状材料的厚度和介电常数。

图2(a)中由圆筒1和圆柱2构成电容器两极,假定部分浸入被测量液体中(液体应不能导电,若能导电,则电极需作绝缘处理)。这样,极板间的介质由2部分组成:空气介质和液体介质,由此而形成的电容式料位传感器,由于液体介质的液面发生变化,从而导致电容器的电容C也发生变化。这种方法测量的精度很高,且不受周围环境的影响。总电容C由液体介质部分电容C1和空气介质部分电容C2两部分组成:

x —电容器浸入液体中的深度;

R —同心圆电极的外半径;

r —同心圆电极的内半径;

ε 1 —被测液体的介电常数;

ε 2 —空气的介电常数。

当容器的尺寸和被测介质确定后,则h,R,r,ε1和ε2均为常数,令:

这说明,电容量C的大小与电容器浸入液体的深度x成正比。

图2(b)是在一个固定电容器的极板之间放入被测片状材料,则他的电容量为:

式中:S —电容器的遮盖面积;

d1 —被测物体上侧至电极之间的距离;

d2 —被测物体的厚度;

d3 —被测物体下侧至电极之间的距离;

ε 1 —被测物体上侧至电极之间介质的介电常数;

ε 2 —被测物体的介电常数;

ε 3 —被测物体下侧至电极之间介质的介电常数。

由于d1+d3=d-d2,且当ε1=ε3时,式(5)还可写为:

式中d —两极板之间的距离。

显然,在电容器极板的遮盖面积S,两极板之间的距离d,被测物体上下侧至电极之间介质的介电常数ε1和ε3确定时,电容量的大小就和被测材料的厚度d2及介电常数ε2有关。如被测材料介电常数ε2已知,就可以测量等厚教材料的厚度d2;或者被测材料的厚度d2已知,就可测量其介电常数ε2。这就是电容式测厚仪和电容式介电常数测量仪的工作原理。

1.3改变极板间距离的电容传感器

图3是这类传感器的原理图,图3(a)由2块极板构成,其中极板2为固定极板,极板1为与被测物体相连的活动极板,可上下移动。当极板间的遮盖面积为S,极板间介质的介电常数为ε,初始极板间距为d0时,则初始电容C0为:

当活动极板1在被测物体的作用下向固定极板2位移Δd 时,此时电容C为:

当电容器的活动极板1移动极小时,即Δd<

这时电容器的变化量ΔC才近似地和位移Δd成正比。其相对非线性误差为:

显然,这种单边活动的电容传感器随着测量范围的增大,相应的误差也增大。在实际应用中,为了提高这类传感器灵敏度、提高测量范围和减小非线性误差,常做成差动式电容器及互感器电桥组合结构,如图3(b)所示。两边是固定的电极板1和2,中间由弹簧片支承的活动极板3。2个固定极板与互感器两端及交流电源U相连接,活动极板连接端子和互感器中间抽头端子为传感器的输出端,该输出端电压ΔU随着活动极板运动而变化。若活动极板的初始位置距2个固定极板的距离均为d0,则固定极板1和活动极板3之间,固定2和活动极板3之间的初始电容相等,若令其为C0。当活动极板3在被测物体作用下向固定极板2移动Δd时,则位于中间的活动极板到两侧的固定极板的距离分别为:

由上述推导可知,活动极板和2个固定极板构成电容分别为:

当他们做成差动式电容器及互感器电桥组合结构时,其等效电容为:

虽然电容的变化量仍旧和位移Δd成非线性关系,但是消除了级数中的偶次项,使线性得

到改善。当时(在微小量检测中,如线膨胀测量等,一般都能满足这个条件),略去高次项,得:

比较式(9)和式(7)可见,灵敏度提高了1倍。

比较式(10)和式(8)可见,在1时,非线性误差将大大下降。

2.基于电容传感技术的指纹识别的原理

2.1指纹的特征

指纹识别学是一门古老的学科,它是基于人体指纹特征的相对稳定与唯一这一统计学结果发展起来的。实际应用中,根据需求的不同,可以将人体的指纹特征分为:永久性特征、非永久性特征和生命特征。

永久性特征包括细节特征(中心点、三角点、端点、叉点、桥接点等)和辅助特征(纹型、纹密度、纹曲率等元素),在人的一生中永不会改变,在手指前端的典型区域中最为明显,分布也最均匀。细节特征是实现指纹精确比对的基础,而纹形特征、纹理特征等则是指纹分类及检索的重要依据。人类指纹的纹形特征根据其形态的不同通常可以分为“弓型、箕型、斗型”三大类型,以及“孤形、帐形、正箕形、反箕形、环形、螺形、囊形、双箕形和杂形”等9种形态。纹理特征则是由平均纹密度、纹密度分布、平均纹曲率、纹曲率分布等纹理参数构成。纹理特征多用于计算机指纹识别算法的多维分类及检索。

非永久性特征由孤立点、短线、褶皱、疤痕以及由此造成的断点、叉点等元素构成的指纹特征,这类指纹有可能产生、愈合、发展甚至消失。

指纹的生命特征与被测对象的生命存在与否密切相关。但它与人体生命现象的关系和规律仍有待进一步认识。目前它已经成为现代民用指纹识别应用中越来越受关注的热点之

2.2指纹识别的主要技术

指纹识别技术主要涉及四个功能:读取指纹图象、提取特征、保存数据和比对。当然最重要的就是指纹的图像的采集的准确度,这和所使用的采集手段有关。

在一开始,通过指纹读取设备读取到人体指纹的图象,取到指纹图象之后,要对原始图象进行初步的处理,使之更清晰。

接下来,指纹辨识软件建立指纹的数字表示——特征数据,一种单方向的转换,可以从指纹转换成特征数据但不能从特征数据转换成为指纹,而两枚不同的指纹不会产生相同的特征数据。软件从指纹上找到被称为“节点”(minutiae)的数据点,也就是那些指纹纹路的分

叉、终止或打圈处的坐标位置,这些点同时具有七种以上的唯一性特征。因为通常手指上平均具有70个节点,所以这种方法会产生大约490个数据。

有的算法把节点和方向信息组合产生了更多的数据,这些方向信息表明了各个节点之间的关系,也有的算法还处理整幅指纹图像。总之,这些数据,通常称为模板,保存为1K大小的记录。无论它们是怎样组成的,至今仍然没有一种模板的标准,也没有一种公布的抽象算法,而是各个厂商自行其是。

最后,通过计算机模糊比较的方法,把两个指纹的模板进行比较,计算出它们的相似程度,最终得到两个指纹的匹配结果。

2.3电容传感技术的指纹采集

指纹识别所需电容传感器包含一个大约有数万个金属导体的阵列,其外面是一层绝缘的表面,当用户的手指放在上面时,金属导体阵列/绝缘物/皮肤就构成了相应的小电容器阵列。它们的电容值随着脊(近的)和沟(远的)与金属导体之间的距离不同而变化。

人类的指纹由紧密相邻的凹凸纹路构成,通过对每个像素点上利用标准参考放电电流,便可检测到指纹的纹路状况。每个像素先预充电到某一参考电压,然后由参考电流放电。电容阳极上电压的改变率与其上的电容成下面的比例关系:

Iref=C×dv/dt

处于指纹的凸起下的像素(电容量高)放电较慢,而处于指纹的凹处下的像素(电容量低)放电较快。这种不同的放电率可通过采样保持(S/H)电路检测并转换成一个8位输出,这种检测方法对指纹凸起和低凹具有较高的敏感性,并可形成非常好的原始指纹图像。

采用复杂的软件算法可以进行指纹识别。这种软件采集原始的指纹图像,将图像信息数字化并提取其中的细节模板,然后进行测试,确定提取的细节模板是否与参考模板吻合。单触型传感器与划擦型传感器的尺寸和成本都不一样。接触式传感器较大,通常有效接触面为15×15mm,可迅速地采集最大的指纹或拇指指纹。这种传感器易于使用,并可将整个指纹图像以500dpi(自动指纹识别标准)的精度进行快速传输。

这种传感器由256(列)×300(行)微型金属电极组成,每一列连接到一对S/H电路上。指纹图像依次逐行采集,每之接触的个金属电极均作为电容的一个极,与手指则是电容的另一个极。在器件表面有一层钝化层,作为两个电容极间的电介质层。将手指置于传感器上时,指纹上的凸起和低凹会在阵列上产生不同的电容值,并构成用于认证的一整幅图像。

划擦型传感器是一种新型指纹采集器件,要求用户将手指在器件上划过。划擦型传感器的优点是尺寸小(如富士通的MBF300尺寸仅为3.6×13.3 mm2)和成本低。这些器件主要用于移动设备的嵌入式安全识别应用,如手机和PDA。精密的图像重建软件以接近2000帧每秒的速度快速地从传感器上采集多个图像,并将每个帧的数据细节组织到一起。

结束语:有以上可见,基于电容传感技术的指纹识别,就是利用了电容的个参数的变化

去改变电容值,去构成识别信息。而且这种指纹识别有体积小,好点较少,成本低的优点,但是这种晶体电容传感技术的指纹识别容易损坏,而且要求手指要干净不能有汗或者手指脏。这方面还需要我们不断改进创新去制造更好的电容感应器件去填补这方面的不足。

参考文献:

[1]电容传感器的原理及应用蒙文舜,杨运经,刘云鹏西北农林科技大学生命科学学院

(完整版)第二章指纹识别的原理和方法

第二章指纹识别的原理和方法 指纹识别的采集及其参数[15] 指纹具有惟一性(随身携带、难以复制、人人不同、指指相异)。根据指纹学理论,将两人指纹分别匹配上12个特征时的相同几率仅为1/1050。指纹还具有终身基本不变的相对稳定性。指纹在胎儿六个月时已完全形成,随着年龄的增长,尽管人的指纹在外形大小、纹线粗细上会有变化,局部纹线之间也可能出现新细线特征,但从总体上看,同一手指的指纹纹线类型、细节特征的总体布局等无明显变化。指纹的这些特点为身份鉴定提供了客观依据。 指纹识别过程可以分为4个步骤:采集指纹图像、提取特征、保存数据和比对。通过指纹读取设备读取到人体指纹的图像,取到指纹图像之后,要对原始图像进行初步的处理,使之更清晰。指纹辨识软件建立指纹的数字表示特征数据,软件从指纹上找到被称为“节点”(minutiae)的特征点,这些数据(通常称为模板),保存为1K大小的记录。最后,通过计算机模糊比较的方法,把两个指纹的模板进行比较,计算出它们的相似程度,最终得到两个指纹的匹配结果。 2.2.1指纹图像的采集[16][17][18] 指纹采集模式主要分为“离线式”和“在线式”两种。所谓“离线式”就是指在指纹采集时,利用某些中间介质(如油墨和纸张)来获取指纹图像,在通过一定的技术手段将图像数字化输入计算机,它属于非实时采集。目前“离线式”采集方式在大多数场合已经消失。所谓“在线式”是通过与计算机联机的先进指纹传感器的专用指纹采集设备,将真实的人体指纹直接变成数字图像数据,实时传输给计算机。 基于指纹传感器的“在线式”实时采集设备以其操作简单、实时性强、采集效率高、图像质量好等优点,广泛应用于自动指纹识别领域。 指纹传感器是采集指纹的装置,是一切自动指纹识别系统的必备设备,从原理上,目前见到的指纹传感器分下面3类: (1)光学录入

指纹识别系统

指纹识别系统 1.1 指纹识别系统原理 指纹识别系统的组成原理。如图1-1所示。图中的学习模块负责采集用户指纹数据,对指纹图像进行预处理,提取这些指纹的特征,作为将来的比对模板存人数据库。而识别模块则负责采集和处理指纹图像,在提取特征后与数据库中的指纹模板进行比对,然后判断是否匹配.得出结论。整个系统的核心就是图像处理、特征提取以及指纹比对。 图1-1 1.2 指纹采集与指纹图像处理方法 目前,主要的指纹采集方法有两种:一种是光学采集器;另一种是用半导体传感器。光学采集器采集指纹是通过把手指沾上油墨后按在白纸上,然后用摄像机把图像转换为电信号。光学采集受外界干扰小、采集精度较高,但是数据量较大,因此处理时问较长。而对于半导体传感器来说,手指的温度、湿度对其测量结果有影响,但是数据量不大,处理比较方便。随着半导体技术的发展,半导体传感器的成本低、体积小、方便集成等优点逐步体现,它已逐步代替光学采集器。指纹鉴定过程的第一个阶段是指纹图像的采集阶段,也就是指纹模板的录A阶段。为了初步确定图像预处理方法,我们必须首先了解指纹传感器获得的图像的尺寸和质量。根据不同的指纹传感器,我们设计不同的方案进行图像采集,并将从各个图中提出特征点储存到数据库中,来产生“活模板”,为后面的指纹鉴定做准备。 指纹图像处理是整个指纹识别过程的核心。常见的指纹图像处理包括滤波增强、二值化、细化、提取特征点四个步骤。在采集指纹图像的过程中,由于采集环境,皮肤表面的性质,采集设备的差异等各种因素的影响,采集的图像会不同程度的受到各种噪声的干扰,从而影响了采集图像的质量。所以实际的指纹图像首先通过一个滤波增强来改善图像的质量,恢复

指纹识别的原理和方法

指纹识别的原理和方法 一、概述 指纹识别的背景知识 我们手掌及其手指、脚、脚趾内侧表面的皮肤凸凹不平产生的纹路会形成各种各样的图案。这些纹路的存在增加了皮肤表面的摩擦力,使得我们能够用手来抓起重物。人们也注意到,包括指纹在内的这些皮肤的纹路在图案、断点和交叉点上各不相同,也就是说,是唯一的。依靠这种唯一性,我们就可以把一个人同他的指纹对应起来,通过对他的指纹和预先保存的指纹进行比较,就可以验证他的真实身份。这种依靠人体的身体特征来进行身份验证的技术称为生物识别技术,指纹识别是生物识别技术的一种。 目前,从实用的角度看,指纹识别技术是优于其他生物识别技术的身份鉴别方法。这是因为指纹各不相同、终生基本不变的特点已经得到公认。 最早的指纹识别系统应用与警方的犯罪嫌疑人的侦破,已经有30多年的历史,这为指纹身份识别的研究和实践打下了良好的技术基础。特别是现在的指纹识别系统已达到操作方便、准确可靠、价格适中的阶段,正快速的应用于民用市场。 指纹识别系统通过特殊的光电转换设备和计算机图像处理技术,对活体指纹进行采集、分析和比对,可以迅速、准确地鉴别出个人身份。 系统一般主要包括对指纹图像采集、指纹图像处理、特征提取、特征值的比对与匹配等过程。现代电子集成制造技术使得指纹图像读取和处理设备小型化,同时飞速发展的个人计算机运算速度提供了在微机甚至单片机上可以进行指纹比对运算的可能,而优秀的指纹处理和比对算法保证了识别结果的准确性。 指纹自动识别技术正在从科幻小说和好莱坞电影中走入我们实际生活中,就在今天,您不必随身携带那一串钥匙,只需手指一按,门就会打开;也不必记住那烦人的密码,利用指纹就可以提款、计算机登录等等。 指纹识别技术主要涉及四个功能:读取指纹图像、提取特征、保存数据和比对。 在一开始,通过指纹读取设备读取到人体指纹的图像,取到指纹图像之后,要对原始图像进行初步的处理,使之更清晰。 接下来,指纹辨识软件建立指纹的数字表示——特征数据,一种单方向的转换,可以从指纹转换成特征数据但不能从特征数据转换成为指纹,而两枚不同的指纹不会产生相同的特征数据。软件从指纹上找到被称为―节点‖(minutiae)的数据点,也就是那些指纹纹路的分叉、终止或打圈处的坐标位置,这些点同时具有七种以上的唯一性特征。因为通常手指上平均具有70个节点,所以这种方法会产生大约490个数据。 有的算法把节点和方向信息组合产生了更多的数据,这些方向信息表明了各个节点之间的关系,也有的算法还处理整幅指纹图像。总之,这些数据,通常称为模板,保存为1K大小的记录。无论它们是怎样组成的,至今仍然没一流种模板的标准,也没一流种公布的抽象算法,而是各个厂商自行其是。 最后,通过计算机模糊比较的方法,把两个指纹的模板进行比较,计算出它们的相似程度,最终得到两个指纹的匹配结果。 指纹识别的原理和方法 二. 取得指纹图象 1.取象设备原理 取像设备分成两类:光学、硅晶体传感器和其他。

浅析光学指纹仪与电容式指纹仪的区别问题

浅析光学指纹仪与电容式指纹仪的区别问题 [导读]指纹仪是利用手指指纹特征“人各不同,终生不变”的特点进行身份识别的一种电子仪器,该仪器工作原理包括采集指纹图像、提取指纹特征、保存数据和进行指纹比对四个功能。其中读取指纹图像是指纹仪最基本最重要的功能。通过利用手指指纹凹凸不平的纹形来进行成像,通常我们把凸出的纹形称为“嵴”,而凹下去的纹形成称为“峪”,而指纹采集的过程本质上是指纹成像的过程。其原理是根据嵴与峪的几何特性、物理特征和生物特性的不同,以得到不同的光学或者电流电阻反馈信号,根据反馈信号的量值利用不同算法的图像处理算法来绘成指纹图像,然后再次指纹图像基础上通过指纹识别算法软件来进行指纹特征的提取和指纹特征码的比对。 目前常用的指纹采集设备有三种,光学式、电容/电感式、生物射频式。其中,光学指纹采集器是最早的指纹采集器,是使用最为普遍的。后来电容式指纹仪也同样广泛运用到了不同的行业领域。也就对应分为了不同的产品认证系统。 1.金融柜员指纹身份认证系统 2.银行金库指纹身份认证系统 3.车辆调度指纹身份认证系统 4.公安警用指纹识别系统 5.考生指纹身份认证系统 6.驾校培训指纹管理系统 7.医疗社保指纹管理系统 8.OA办公指纹身份验证系统 9.网络指纹身份验证系统 下面是对于两种种类指纹仪的区别介绍:

一、光学指纹仪 指昂科技ZWY-010光学指纹仪在安防、社保、交通、医院、教育等领域均有广泛应用. 1.识别方式:采用活体光学式识别窗口 2.应用范围:安防系统、社保系统、银行系统、金融身份识别、考勤系统 3.产品特性:流线型的产品设计,桌面式的产品使用方式,更加人性化; 4.自主优势:独家开创3款不同指纹传感器可互换使用,更多选择。 5.硬件特点:指纹识别认证到人,安全准确、使用方便; 识别速度:超快指纹识别速度; 识别率:全球领先指纹算法,对干、湿、脏、油渍手指均可识别; 6.数据传输快捷; 轻巧设计,便于携带; 耐磨、防震抗破坏性强、抗静电干扰。 7.软件功能具备windows系统登录功能; 可用于电脑屏幕锁定; 可实现文件加密、解密; 二、电容式指纹仪 指昂ZWY-020电容式指纹仪采用目前国际领先的半导体面式指纹传感器,各项性能指标皆处于领先地位,轻触成像,操作简单、快捷,指纹图像品质清晰,有效提高识别率。为满足不同用户需求,公司提供多种通讯接口,可扩展性强,以及配套的SDK开发包,可轻松嵌入原有系统中,有效减少开发工作量。以下是指昂ZWY-020电容式指纹仪的特性说明。

电容式液位传感器课程设计 1

电容式智能液位仪

目录 目录 摘要 (2) 1.导言 (3) 2.传感器 (4) 2.1理想的电容式传感器 (4) 2.2电路模型 (5) 2.3传感器特性 (6) 2.4传感器结构 (7) 3.硬件电路设计 (11) 3.1硬件电路划分 (11) 3.2单片机的选用 (11) 3.3直流充放电式电容测量电路设计 (13) 3.4信号调理电路设计 (14) 3.5单片机电路及模数转化电路设计 (15) 3.6通信电路设计 (16) 4.系统软件设计 (18) 4.1编程环境与编程语言 (18) 4.2软件总体设计 (18) 5.电容测量电路的实验结果和分析 (19) 5.1实验过程及结果 (19) 5.2实验分析 (21) 参考文献 (22) 摘要

设计一种多功能智能化液位检测装置,采用A Tmega8作为硬件电路核心,以圆柱形电容探头为液位检测传感器,利用电容频率转换原理将电容变化为频率变化,利用单片机检测频率,软件计算液位高度。本装置具有机械去液面波动,用软件进行温度修正、线性校正、用户自校正,通信和多液体选择等功能。 本文主要创新之处是提出一种适合于波动液面液位检测的智能液位仪,具有温度补偿、用户自校正和通信等功能。本文设计了高度为100cm的柱形电容液位检测传感器,电容器具有结构简单,电路实现容易,利用555振荡电路实现了电容到频率的转换,利用程序实现频率到高度转换,理论正确可靠,推算过程合理,利用软件分段修正减小了线性误差。在电容的两端装有液位缓冲器,采用机械的方式减小液面波动。由实验测试可知,本液位检测装置性能稳定,检测可靠,测量精度达到1cm, 分辨率可0.1cm,达到车载式喷雾机液位检测的要求。利用此方案可根据需要设计各种量程的液位检测装置,适用性较广。 ·2· 1.导言

光学式指纹识别技术

瑞丰汇科技(技术推广)所提供的各种款式『光学触控式指纹辨识』解决方案, 其主要的设计都是强调以准确、稳定和容易使用、优越的影像质量、完全的可信赖性为基础, 因此针对传统光学式的指纹辨识取像模块的优缺点,取其优点,舍其缺点, 让产品可以更容易被一般消费者接受与使用, 故而研发出独门的技术, 这个技术以光线穿过特殊设计"3D光学指压版",由于指纹的波峰波谷与光线产生"光学3D"效应,经由 image sensor接收其指纹的光讯号,进而产生出3D影像,在搭配特有之算法,进行指纹辨识,让整个传统『厚重的光学指纹辨识模块』达到超薄的目标,这个技术本公司称为3D TouchPrint?。李先生138(光学式指纹识别技术) 23276110 优点 『3D TouchPrint?』, 对于瑞丰汇科技(技术推广)所开发的各类型之『光学触控式指纹辨识』模块, 在市场上相对于不同技术所开发出来的指纹辨识模块, 具有十大优点: 1、轻松触压, 不用学习, 使用者登录容易。 2、世界最薄面型光学式指纹辨识模块, 可应用于各种手持装置。 3、超高解像力,超低影像扭曲率, 影像信息不失真。 4、以现有CCM架构生产, 良率高, 容易大量制造。 5、特殊表面处理可解决干指头不易登录问题。

6、抗静电,耐摩擦可适用各种环境。 7、低成本, 高性能。(高性价比) 8、安全系数高,无须为登录率牺牲安全性, 并可抗2D假指纹。 9、系统安装容易─NB 随插随用无须安装Driver 10、完全与Windows兼容─兼容Amcap架构无升级版本之问题。 以上之优点, 让瑞丰汇科技(技术推广)所开发出的各种模块, 非常适合于不同应用领域之系统产品, 如: 笔记本电脑、个人计算机、AIO计算机、随身碟、电子门锁、门禁系统、人员差勤、汽车电子锁、电子收款机、网络认证、个人行动助理、智能型移动电话、智能卡、在线游戏的安全认证机制…等相关产品。

指纹传感器

题目:指纹传感器及其应用 班级:电子科学与技术 学号:080260117 080260122 姓名:廉晓洋唐辉 时间:2009.11.4

摘要 指纹是手指表面皮肤凸凹不平形成的纹路,由多种脊状图形构成。指纹特征即手指表面脊和沟组成平滑纹理模式,其随机性很强。研究表明:指纹特征具有唯一性、稳定性特点,据此可实现身份识别。 考虑到指纹表面积较小,且存在磨损,获取优质指纹图像较困难,特别在指纹脊图像中表现更明显,这样,势必会造成所采集指纹图像质量难以保障,导致自动识别指纹系统判读困难。目前开发的硅电容指纹图像传感器对获取高质量指纹图像提供了良好的技术保障,具有很好实用价值。同时,更先进的指纹图像传感器亦在研发,目的是获得足够的指纹细节,并使指纹图像达到较高分辨力,提高指纹识别准确性、可靠性。 一半导体指纹图像传感器的概况

始于1998年的半导体指纹传感器应用多种新颖技术手段实现指纹图像采集,包括半导体电容式传感器、半导体压感式传感器(其表层是富有弹性的压感介质材料,依指纹凹凸转化为相应电信号,并产生具有灰度级指纹图像)、半导体温度感应传感器(通过感应压在设备上的脊和远离设备的谷间温度差异获取指纹图像)等,其中,应用最广泛的是硅电容式指纹传感器。与光学设备多采用人工调整改善图像质量不同,半导体指纹传感器采用自动控制技术调节指纹图像像素行及指纹局部范围敏感程度,在不同环境下结合反馈信息生成高质量图像。由于提供了局部调整能力,即使对比度差的图像(如手指压得较轻的区域)也能被有效检测到,并在捕捉瞬间为这些像素提高灵敏度,生成高质量指纹图像。半导体指纹传感器优点为图像质量较好、一般无畸变、尺寸较小、易集成于各种设备。下面主要介绍常用的硅电容式指纹传感器基本原理及特性。 二原理及特性 硅电容式指纹图像传感器技术基础是电容值检测。与光学传感器扫描指纹不同,硅电容式指纹传感器通过测量传感器与手指接触/非接触所产生电流变化(电子度 量)检测有无指纹,并根据指纹峰、谷等纹理信息实现高可靠性图像搜索。

指纹识别系统设计

指纹识别系统设计题目:指纹识别系统设计 专业:电气工程及其自动化 学生姓名:陈 指导教师:黄

摘要 指纹作为人体的重要特征具有长期不变性和唯一性已经成为生物识别领域的重要手段通过指纹特征来鉴别人的身份的技术正在得到越来越广泛的应用随着指纹检测技术和指纹识别算法的不断改进指纹识别技术还将在越来越多的部门得到更广泛的应用。针对指纹的唯一性和终身不变性的特点.提出了一种基于FPS200固态指纹传感器和TMS320VC5402 DSP 芯片的快速指纹识别系统,促使指纹识别设备向小型化、嵌入式、自动化方向发展;对系统的组成原理、指纹采集和指纹图像处理力法进行了分析;结合FPS200和TMS320VC5402芯片的特性,对系统硬件核心和图像采集电路做了详细介绍,并给出系统硬件设计方案、软件设计流程;实验结果表明.系统指纹采集效率高,识别速度快,识别结果准确可靠;该系统性能稳定.实用性强,应用范围广泛。 关键词:指纹识别;TMS320VC5402;DSP;指纹采集;图像处理

Abstract As the uniqueness and constancy of fingerprint ,a quick fingerprint recognition system based on fingerprint sensor FPS200 and DSP chip TMS320VC5402 is presented. The composing principles of the system , fingerprint collection and fingerprint image processing methods are introduced particular .with the characteristics of FPS200 TMS320VC5402 ,the core of the hardware collecting circuit and the designs of the hardware and software are introduced in details. The results of experiments indicated that this system works with great fingerprint collection efficiency, high recognition speed and credible recognition results because of the stead performance and practicability the system will have wide application area .

光学指纹仪的工作原理

光学指纹扫描仪的工作原理 指纹扫描仪系统有两项基本工作:一是需要获得手指的图像,二是需要确定该图像中的嵴纹和波谷是否与以前扫描图像中的嵴纹和波谷相吻合。 获得一个人的指纹图像有多种方法。现在最常用的方法就是光学扫描和电容扫描。这两种扫描方法以完全不同的方式工作,但都会得到同一种图像。下面就主要说一下光学指纹扫描仪的工作原理。 光学扫描仪的核心部件是电荷耦合设备(CCD),这与数码相机和摄像机中使用的光传感器系统是相同的。CCD 只不过是一组光敏二极管(称为光敏器件),这种器件在光子的作用下可以产生电信号。每个光敏器件记录一个像素,即一个代表射中该点的光束的微小圆点。明暗像素共同构成了扫描场景(例如一个手指)的图像。通常,在扫描仪系统中有一个模数转换器,用来处理模拟电子信号以产生该图像的数字表现形式。 扫描仪配有光源,通常为一组发光二极管,用来照亮手指的嵴纹。当你将手指放在玻璃板上时,扫描过程就开始了,CCD相机便将指纹照片拍摄下来。实际上CCD系统产生的是手指的倒像,较暗的区域代表较多反射光线(手指的嵴纹),较亮的区域代表较少的反射光线(手指的波谷)。 在比较指纹与存储数据之前,扫描仪处理器要确保CCD拍摄到了清晰的图像。它会检查像素暗度的平均值或者一个小样本的整体值,如果图像整体太暗或太亮,该次扫描便会被放弃。于是扫描仪调整曝光时间以允许更多或者更少的光线进入,再扫描一次。 如果暗度合适,扫描仪系统会继续检查图像的清晰度(指纹扫描的锐度)。处理器将查看在图像上沿垂直和水平方向移动的若干直线。如果与嵴纹垂直的线由非常暗的像素和非常亮的像素交互组成,那么就意味着指纹图像有很好的清晰度。 在处理器发现图像清晰并且曝光正确的情况下,它会继续将捕获的指纹与文件上的指纹进行比较。我们很快将了解这个过程,但是首先让我们来看看另一种主要的扫描技术——电容扫描仪。 对于其他系统来说有很多的优点。例如: 伪造物理特征比伪造身份证要难很多。 不可能像猜出密码一样猜测出指纹图案。 不会像遗失出入卡一样遗失指纹、虹膜或者声音。 不会像忘记密码一样忘记指纹。 然而,虽然指纹扫描仪很有效,但不排除它们有出错的可能性。实际上它们确实有一些缺点。光学扫描仪不能每次都区分开指纹图像和指纹本身,而电容扫描仪有时可能被一个指纹模型欺骗。如果某人获得了某授权用户的指纹,这个人就可以骗过扫描仪。最坏的情况,罪犯甚至可能砍下某人的手指以进入扫描仪安全系统。一些扫描仪还有另外的脉冲和热传感器来检测手指是否是真的,而不是一个模型或者肢解手指,但是这些系统甚至也可能被真实手指的明胶指纹模型欺骗。 要使这些安全系统更可靠,一个不错的方法是:将传统的认证方法如密码(同ATM需要银行卡和PIN号码一样)与生物学分析法结合起来。但是如果遗失了信用卡或者无意中告诉了别人您的秘密PIN号码,还可以办理新的卡或者更改密码。但是如果某人盗取了您的指纹,您的余生就真的很不幸了。您没办法得到新的指纹。因此,除非您能完全确定所有的副本已经毁灭了,不然您就再也不能使用指纹作为一种身份识别形式。 尽管有着重大缺点,指纹扫描仪和生物安全系统仍不失为身份识别的极好方法。将来,它们

指纹传感器 FPC 1011F

FPC指纹传感器介绍: 指纹解决方案最重要的地核心部位就是---指纹传感器,传感器是整个系统优劣的基础。大部分半导体传感器实际使用性能不稳定,传感器性能的主要因素是能否保证每次都取得稳定的指纹图象,一般的半导体传感器采用直接测量法,直接探测手指信号(电场,电容)由于直接探测的信号很微弱,甚至探测不到,所以造成无法稳定取得指纹图象,也就无法分析识别指纹。 瑞典FINGERPRINT CARDS AB(简称FPC)采取了独创的反射式测量法,就象回声原理一样,我们发出的声音越大,回声就越大,这就实现了增强探测信号。保证取得稳定清晰的指纹图象,由于探测信号增强就带来了另一个好处,芯片表面的保护膜可以做得更厚(比同类厚10-25倍),拥有更厚的保护层这就意味着有更强,耐磨性(>100万次)和抗静电(大于15KV)甚至可达20KV,反之因为直接测量法探测到的信号本来就微弱,所以芯片表面的保护膜就无法做得很厚,抗静电性和耐磨性就无法达到实际需求。瑞典FPC在日本,美国,欧洲都取得了技术专利 ,关于FPC指纹传感器独特的反射式测量法FPC的信号通过的路径: 如下: 信号主动从金属外框两边发射---探测指纹信号---穿过保护层---被接收指纹信号.仅一次信号穿过保护层,减少了信号因传递而减弱,信号再经独立的晶圆体放大后经过内部的A/D转换,从而输出高质量的数字指纹图像。反射式测量法不仅提高了传感器的信号检测性能,不受保护层厚度增加而影响,并有效 防止用户直接接触内部CMOS电路,造成损坏。 FPC指纹传感器特点: 一、抗静电:大于15千伏,达到国际4 IEC 61000-4-2 标准 二|、耐磨性:超过100万次,

光学活体指纹技术原理

活体指纹技术 活体指纹技术“魔镜”是由韩国VIRDI集团自主研发,中国区产品销售由厦门沃尔迪信息技术有限公司负责。 “魔镜”以高清成像为技术基点,采用了当今最先进的技术与配备。“魔镜”采用韩国进口的COMS采集仪,DPI高达500,三棱镜采用日本HOYA镜片,配以美国专利高精光路设计,确保采集的指纹图像超凡精确清晰,同时,魔镜应用全球领先的金指码指纹算法可实现对图像更为精细与智能的处理,二者结合,最终实现对指纹的采集与匹配丝毫不差。另外,“魔镜”采用的暗背光成像技术抗强光干扰能力远远优于市面普遍采用的常亮背光成像技术,即使在复杂的强光环境下也能清晰成像,不会出现常亮背光成像带来的曝光过度而寿命不足的问题。 “魔镜”从人体静电、微动态图像变化、光谱等多种生物特性上得到启发,运用当今先进的生物、光电、计算机科技,通过人体静电检测、多种指纹成像实现全方位防假,将一切不符合人体生物特征的假指纹排除在外,以高端的指纹技术确保用户使用的极致安全。 静电检测,阻绝无人体静电特征假指纹。人体本身携带静电,但人体所带静电与其他物质所带静电有所不同,“魔镜”就是利用静电容量技术侦测指纹所带静电,让一切不具人体静电特征的假体指纹无所遁形。 微动态捕捉成像,彻底排除平面无变化指纹。人体皮肤组织弹性丰富,指纹

在接触采集窗时会形成一个细微的动态扩缩变化,“魔镜”对这一动态变化进行连续拍摄捕捉,形成多次成像比对,消除涂层、纸片等一切不符合手指动态变化特征的假指纹开门的可能性。 光谱成像,以人体物质构成特征高效区分假体指纹。利用每种原子独有的特征谱线,“魔镜”捕捉人体组织构成化学元素放射出的特殊光谱成像进行比对,以不可模仿的人体特征实现对人体指纹的唯一识别,让橡胶、涂层、硅胶倒模等一切与人体组织不同物质构成的假体指纹无机可乘。

电容式导电液体液位传感器

传感器课程设计说明书 电容式导电液体液位传感器Capacitive conductive liquid level sensor 学院名称:机械工程学院 专业班级: 学生: 学生学号: 指导教师: 指导教师职称:教授 2012年 1 月

电容式导电液体液位传感器 专业班级:**** 学生:**** 指导老师:**** 职称:**** 摘要在工业自动化生产过程中,为了实现安全快速有效优质的生产,经常需要对液位进行测量,继而进行自动调节、智能控制使生产结果更趋完善。 通常进行液位测量的方法有二十多种,分为直接法和间接法。直接液位测量法是以直观的方法检测液位的变化情况,如玻璃管或玻璃板法。然而随着工业自动化规模的不断扩大,因其方法原始、就地指示、精度低等逐渐被间接测量方法取代。目前国外工业生产中普遍采用间接的液位测量方法,如浮子式、液压式、电容法、超声波法、磁致伸缩式、光纤等。其中电容式液位测量价格低廉、结构简单,是间接测量方法中最常用的方法之一。 本设计采用一种简单方便的电容式液位测量方法,电容式传感器是将被测非电量的变化转化为电容变化量的一种传感器,它具有结构简单、分辨力高、可实现非接触测量,并能在高温、辐射和强烈震动等恶劣条件下工作等优点,是很有发展前途的一种传感器。 本电容式液位测量设计方式是用等径的长直圆筒容器,液位的高低正比于导电液体与测杆中导电金属铜之间电容的大小,通过测量电路的转换,就可以很方便地测量出液面的位置。 此课程设计的目的是为了熟练掌握电容传感器的基本知识和各种测量电路的原理运用;基本掌握测量液位方法的基本思路和方法;能够利用所学的基本知识和技能,解决简单的传感器测量问题;培养综合利用传感器进行测量设计的能力。 关键词:液位测量电容式传感器测量电路电容传感器测量

指纹识别系统(文献综述)

指纹识别方法的综述 摘 要: 对在指纹的预处理和特征提取、指纹分类、指纹的匹配过程中的方向图、滤波器、神经网络等关 键性原理和技术做了详细的说明,并对在各个过程中用到的方法做了进一步的比较,讨论了各种方法的优越性。 0 引 言 自动指纹识别是上世纪六十年代兴起的,利用计算机取代人工来进行指纹识别的一种方法。近年 来,随着计算机技术的飞速发展,低价位指纹采集仪的出现以及高可靠算法的实现,更使得自动指纹识 别技术越来越多地进入到人们的生活和工作中,自动指纹识别系统的研究和开发正在成为国内外学术 界和商业界的热点。相对于其他生物特征鉴别技术例如语音识别及虹膜识别,指纹识别具有许多独到 的优点,更重要的是它具有很高的实用性和可行性,已经被认为是一种理想的身份认证技术,有着十分 广泛的应用前景,是将来生物特征识别技术的主流。 1 指纹取像 图 1 是一个自动指纹识别系统AFIS(Automated Fingerprint Identification System) 的简单流程。 → → → ↓ ↑ ———— 将一个人的指纹采集下来输入计算机进行处理是指纹自动识别的首要步骤。指纹图像的获取主要利用设备取像,方便实用,比较适合AFIS 。利用设备取像的主要方法又利用光学设备、晶体传感器和超声波来进行。光学取像设备是根据光的全反射原理来设计的。晶体传感器取像是根据谷线和脊线皮肤与传感器之间距离不同而产生的电容不同来设计的。超声波设备取像也是采用光波来取像,但由于超声波波长较短,抗干扰能力较强,所以成像的质量非常好。 2 图像的预处理与特征提取 无论采取哪种方法提取指纹,总会给指纹图像带来各种噪声。预处理的目的就是去除图像中的噪 音,把它变成一幅清晰的点线图,以便于提取正确的指纹特征。预处理是指纹自动识别过程的第一步, 它的好坏直接影响着指纹识别的效果。常用的预处理与特征提取( Image Preprocessing and Feature Ex 2 t raction) 方法的主要步骤包括方向图计算、图像滤波、二值化、细化、提取特征和后处理。当然这些步骤 可以根据系统和应用的具体情况再进行适当变化。文献[ 1 ]提出了基于脊线跟踪的方法能够指纹取像 图像预处理 特征提取 指纹识别 数据库管理

指纹识别-光学及电容传感器优劣对比报告

1、光学指纹传感器简介 (1) 1.1光学指纹传感器的原理 (1) 1.2光学指纹传感器的优缺点 (1) 1.3光学指纹传感器的应用 (2) 1.4光学指纹传感器最新动态 (2) 1.5 楼宇对讲厂家使用指纹识别状况 (2) 2、半导体指纹传感器简介 (2) 2.1半导体指纹传感器的基本原理 (3) 2.2半导体指纹传感器的分类 (3) 2.3半导体指纹传感器的优缺点 (3) 2.4半导体指纹传感器的特征及发展方向 (3) 3、指纹传感器主要性能指标 (3) 4、光学与电容式指纹传感器性能比较 (4) 5、指纹传感器发展重点 (5) 纹传感器(又称指纹Sensor)是实现指纹自动采集的关键器件。指纹传感器按传感原理,即指纹成像原理和技术常见主要分为两类,光学指纹传感器和半导体指纹传感器。 1、光学指纹传感器简介 1.1光学指纹传感器的原理 光学指纹传感器已经有近30年的历史,主要是利用光的折摄和反射原理,将手指放在光学镜片上,手指在内置光源照射下,光从底部射向三棱镜,并经棱镜射出,射出的光线在手指表面指纹凹凸不平的线纹上折射的角度及反射回去的光线明暗就会不一样。用棱镜将其投射在电荷耦合器件上CMOS或者CCD上,进而形成脊线(指纹图像中具有一定宽度和走向的纹线)呈黑色、谷线(纹线之间的凹陷部分)呈白色的数字化的、可被指纹设备算法处理的多灰度指纹图像。 1.2光学指纹传感器的优缺点

目前国内的有厂家可以生产光学指纹传感器,光学指纹传感器优点主要表现为经历长期实用检验、系统稳定性较好、成本亦较低、能提供分辨力为500 dpi( dot per inch)的图像。特别是能实现较大区域的指纹图像采集,有效克服大面积半导体指纹传感器价格昂贵缺点。该传感器局限性主要体现三个方面: A.假手指:用塑胶制成的假手指,能够在光学传感器上得到与真手指非常相近的指纹图像(解决红外线) B.体积较大:随着光学技术发展,一些新颖的技术手段亦已应用于指纹图像的采集,这样,能显着减小光学指纹传感器的体积(如:纤维光束微型三棱镜矩阵) C.长期效果不好:于潜在指印方面,不但会降低指纹图像的质量,严重时,还可能导致两个指印重叠,显然,难以满足实际应用需要。此外,台板涂层及CCD阵列会随时间推移产生损耗,可能导致采集的指纹图像质量下降。。 1.3光学指纹传感器的应用 光学指纹传感器的优点主要表现为抗静电能力强、系统稳定性较好、使用寿命长,灵敏度特别的高,并能提供高分辨率的指纹图像,技术也最成熟。故现在多家公司都大量使用,主要用于指纹门锁,保险箱,汽车指纹防盗。 1.4光学指纹传感器最新动态 2015年美国CES展上,一款拥有2000PPI超高分辨率的光学指纹采集器吸引了全球手机厂商的目光。这款由中国印象认知推出的名为UTFIS的超薄型光学指纹传感器,分辨率超越了目前市面上主流的电容式指纹传感器,是苹果手机指纹识别芯片的四倍。且厚度仅有1.5mm。 UTFIS不仅继承了传统光学指纹传感器的优点,同时还通过超高的分辨率,实现了电容式指纹传感器所无法达到的安全级别。指纹的特征通常可分为三级。一级特征表示指纹的纹型、流向等宏观特征;二级特征表示指纹的Galton 细节,即纹线的分叉点、端点等特征;三级特征则是更高分辨率上的纹线属性,例如纹线的偏移、宽度、汗孔、边缘形状、断裂、褶皱、伤疤,以及其他的永久性特征。使用第三级特征,至少要求指纹采集的分辨率达到1000ppi。而UTFIS通过MAPIS技术获得2000ppi的采集分辨率,改变了传统指纹采集器匹配细节点的缺陷,成功实现汗孔识别,使得在智能手机上实现“三级特征”指纹识别的难题迎刃而解。性能优越的UTFIS芯片必将开辟出一个属于光学指纹识别的欣欣市场,重新赢得投资市场及手机厂商的青睐。 1.5 楼宇对讲厂家使用指纹识别状况 有接触指昂和指安两家模组生产厂家,此两家采用的识别算法芯片都是用晟元的指纹算法芯片,传感器基本是使用瑞典的FPC。楼宇对讲厂家目前有珠海竞争和柔乐的内外贸产品有采用光学指纹传感器模块。指昂的销售人员讲道,竞争每个月和其拿上K的量用在其出口欧盟产品上。还有一家指晶有自主的算法芯片,模组是自已开发生产。 2、半导体指纹传感器简介 半导体指纹传感器主要是利用电容、电场(也即我们所说的电感式)、温度、压力的原理实现指纹图像的采集。具有价格低、体积小、识别率高等优点,但稳定性稍欠缺一些,常用于手机、电脑、汽车或房屋安全识别。

关于指纹传感器的调查报告

关于指纹传感器的调查报告 指纹传感器是获取指纹图像的专用器件,用以实现指纹自动采集,在自动指纹识别系统中起着关键作用。指纹传感器是指纹图像的自动采集和生成部分,是指纹识别产品的数据输入端。绝大多数指纹传感器通过光学扫描、半导体热敏、半导体电容等三种主要传感技术采集指纹图像。 指纹传感器的发展现状 我国生物(指纹)识别技术发展相对于美国、日本要晚10-20年的时间,指纹识别产品在我国最早出现是在90年代初期,当时只是寥寥数十家,而产业化起步应该是2000年以后。 到2000年,随着移动存储设备等数码类产品的大量使用,指纹技术与数码类产品结合应用的局面才铺开,所以指纹识别产业在我国,目前仍处于形成阶段,如果说2004年之前处于从点到线的状态,那么2004年之后指纹产业开始了从线到面的发展。 早期的指纹图像采集主要运用油墨按印等物理方式,如果油墨及纸张质量有问题,或按压压力不均,或按压位置、方向差异,或手指损伤、变形等,都会导致采集的指纹图像质量不理想,进而影响该技术应用。为克服物理方式的缺点,发展光学传感器、半导体传感器、超声波传感器等对获取高质量指纹图像提供了良好的技术保障,具有很好实用价值。同时,更先进的指纹图像传感器亦在研发,目的是获得足够的指纹细节,并使指纹图像达到较高分辨力,提高指 纹识别准确性、可靠性。 指纹传感器分类、原理及优缺点: 指纹传感器按传感原理,即指纹成像原理和技术,分为光学指纹传感器、半导体电容传感器、半导体热敏传感器、半导体压感传感器、超声波传感器和射频RF传感器等。 目前指纹传感器只要分为以下几类,同时也是较为常见的指纹传感器: 1 光学指纹传感器 始于1971年的光学传感器是研究最早、应用最广泛的指纹图像传感器。其技术关键是光的全反射,手指置于加膜台板,照射到压有指纹的玻璃表面时,反射光经电荷耦合器件转换为相应电信号,并传输后端进一步处理。其中,反射光强度取决于两方面因素:压在玻璃表面指纹的脊和谷的深度、皮肤与玻璃间的油脂和水分。 由于光线经玻璃照射到谷的区域后在玻璃与空气的界面发生全反射至CCD,而射向脊的光线被脊与玻璃的接触面吸收或者漫反射到其他地方,这样,即可利用CCD将有深色脊和浅色谷构成的指纹图像转换成数字信号。当然,为获得较高质量的指纹图像,还需采用自动或手工方式调整图像亮度等。 光学指纹图像传感器优点主要表现为经历长期实用检验、系统稳定性较好、成本亦较低、能提供分辨力为500dpi的图像。能实现较大区域的指纹图像采集,有效克服大面积半导体指纹传感器价格昂贵缺点。但指纹图像采集区域较大时所需焦距亦较长,采集设备体积需随之增大,否则会导致采集的图像边缘线形发生扭曲。 该传感器局限性主要体现于潜在指印方面(潜在指印是手指在台板上按完后留下的),不但会降低指纹图像的质量,严重时,还可能导致2个指印重叠,显然,难以满足实际应用需要。此外,台板涂层及CCD阵列会随时间推移产生损耗,可能导致采集的指纹图像质量下降。 随着光学技术发展,一些新颖的技术手段亦已应用于指纹图像的采集,这样,能显著减小光学指纹传感器的体积。例如:将纤维光束垂直照射指纹表面,探测其反射光;或将含有微型棱镜矩阵的表面安装于弹性平面,手指压该表面时,脊和谷压力的不同导致微型棱镜表面改变,这种变化通过棱镜的光反射体现出来,进而实现指纹图像采集。 光学指纹传感器特有的高安全系数使得其运用极为广泛,从事该技术开发及应用的企业较多,中科院长春光机所和美国Identix是其中较突出的开发公司。目前,应用最广泛的是

电容式液位传感器

嘉兴学院毕业设计(论文)外文翻译 原文题目: Capacitive Liquid Level Sensor 译文题目:电容式液位传感器 学院名称:机电工程学院专业班级:电气081班学生姓名:毛勇 电容式液位传感器 这篇申请包含了1990年1月18日提交的辑07/466,936号描述的电容式液位传 感器和1990年1月18日提交的辑07/466,938号描述的容性液界面传感器共同 专利申请材料。 1.本发明的背景 本发明涉及到的是电容式液位传感器。这种液位传感器发现被许多的仪器使 用,其中一个用于从要分析的样品或试剂的容器里的液体中退出的机器人探测 器,就用到了该传感器。 在这样的机器人系统,它有容器内液位水平的知识,这样用于退出液体的探 测器能够被控制,以尽量减少与容器的内容接触。这种方式可以减少样品和试剂 之间的交叉污染,使清洗探头这样的尖端工作变得更为简单。在这种机器人系统 的探测器引入液体容器,最好保持低于液体的表面。 为了实现这一目标,各种液位传感器已被开发。这些就是所谓的电容式液 位传感器。这些都是基于任何导体都有有限电容的事实。当探测器真的接触液体, 液体的高介电常数和更大的表面面积会增加探测器的电容。这些电容的变化可以 相当小,因此敏感的检测设备是必需的。 现有技术已知的设备,适用于检测像桥梁,RC或LC振荡器和频率计计数 器(包括外差),锁相环,过零间对米,一个RC或LC滤波器的幅度变化,通过 一个RC或LC电路的相移的变化这样微小变化的电容。 其中现有的液位传感器是美国金士顿公司第3391547专利,使液罐的电容液 位探测器公诸于世。他采用了电容式探测器,置于液体中,作为电桥电路的一条

基于单片机指纹识别系统设计

任务书 课程设计题目:指纹识别 功能简述: 1)根据所学的知识和能力,设计程序可以实现根据指纹的大小、形状等特征,识别出不同的指纹。 2)利用按键标志当前指纹识别的状态,例如录入状态,识别状态,清楚状态;利用液晶1602能够显示当前指纹识别的状态信息。 3)利用继电器,对当前信息的判断,例如提醒当前指纹识别错误;利用蜂鸣器和LED等提醒当前指纹识别是否正确

目录 第一章绪论…………………………………………………….. 1.1、指纹识别中的基本概念…………………………………1.2 指纹识别的发展前景………………………………………1.3、指纹识别课题设计的内容与意义……………………….. 第二章方案选择……………………………………………… 2.1 系统原理图设计……………………………………………2.2方案说明……………………………………………………… 2.3 方案比较……………………………………………………2.4 方案选择………………………………………………………第三章硬件设计………………………………………………3.1 AT89C52单片机设计……………………………………… 3.2 电源电路设计………………………………………………3.3 按键控制部分电路…………………………………………3.4 LED指示灯电路………………………………………… 3.5 蜂鸣器电路……………………………………………… 3.6 指纹传感器模块………………………………………… 第四章软件程序设计…………………………………………. 4.1程序流程图………………………………………………… 4.2程序…………………………………………………………. 第五章调试…………………………………………………… 5.1硬件调试……………………………………………………. 5.2软件调试……………………………………………………

指纹识别程序和原理图

#include #include #define uchar unsigned char #define uint unsigned int #define Dbus P0 #define buffer1ID 0x01 #define buffer2ID 0x02 #define queren 0x88 #define tuichu 0x84 #define shanchu 0x82 sbit B0=B^0; sbit B7=B^7; sbit jidianqi=P3^6; sbit RS=P2^2; sbit RW=P2^1; sbit E1=P2^0; sbit LEDK=P3^4; //控制背光 sbit SCLK=P2^3; sbit IO=P2^5; sbit RST=P2^4; uchar code ta[8]={0x00,0x51,0x09,0x10,0x05,0x02,0x11,0xbe}; uchar data a[7]; // 秒分时日月星期年 uchar dz[4]; //存键输入值 uchar mima[7]; uchar mimaID[6]={1,2,3,4,5,6}; uchar data K; uchar data Key; uint PageID; uchar data querenma; uchar sum[2]; int summaf,summas; uchar code nian[]={"年"}; uchar code yue[]={"月"}; uchar code ri[]={"日"};

基于STM32单片机开发光学指纹识别模块

基于STM32单片机开发光学指纹识别模块(FPM10A)全教程收藏人:共同成长888 2014-05-08 | 阅:25 转:0 | 来源 | 分享 基于STM32单片机开发光学指纹识 别模块(FPM10A)全教程 1.平台 首先我使用的是奋斗 STM32 开发板 MINI板 光学指纹识别模块(FPM10A)

2.购买指纹模块,可以获得三份资料 1.简要使用说明 2.使用指纹模块的功能函数 3.FPM10A用户手册. 3.硬件搭建 根据使用说明:FPM 10A使用标准的串口与外界通信,默认的波特率为57600,可以与任何单片机,ARM,DSP等带串口的设备进行连接,请注意电平转换,连接电脑需要进行电平转换,比如MAX232电路。 FPM10A光学指纹模块共有5个管脚 1 为 VCC 电源的正极接 3.6V – 5.5V的电压均可。 2 为 GND 电源的负极接地。 3 为 TXD 串口的发送。 4 为 RXD 串口的接收。 5 为 NC 悬空不需要使用。 奋斗板上已经有5V的管脚,可以直接供给指纹模块, 这里需要注意的是,指纹模块主要通过串口进行控制,模块和STM32单片机连接的时候,需要进行电平转换, 这样只要把这个转接板插入STM32,接上5V的电,就可以工作了,将模块的发送端接转接板的接收端,接收端接转接板的发送端。 这样,我们的硬件平台就搭建好了! 4.模块的测试工作 模块成功上电后,指纹采集窗口会闪一下,表示自检正常,如果不闪,请仔细检查电源,是否接反,接错等。指纹模块使用120MHZ的DSP全速工作,工作时芯片有一些热,经过严格的测试,这是没有问题的可以放心使用,在不使用的时候可以关闭电源,以降低功耗。 5.现在我们要进入编程环节了 指纹模块主要是通过串口进行控制,所以这里我们需要用到单片机的串口模块。

相关文档
最新文档