聚合物纳米粒子杂化材料的制备与性能研究

聚合物纳米粒子杂化材料的制备与性能研究
聚合物纳米粒子杂化材料的制备与性能研究

聚合物纳米粒子杂化材料的制备与性能研究

韩荣敏

摘要:聚合物纳米粒子杂化材料由于能够同时表现聚合物与纳米粒子两个方面的特性

而受到广泛关注。本文介绍了聚合物纳米粒子杂化材料的概念,综述了聚合物纳米粒子杂化

材料的一些常用的制备方法,总结了由于纳米粒子的存在杂化材料在力学、光学、电、磁等

方面呈现出常规材料不具备的特性,并对其进行展望。

关键词:聚合物纳米粒子杂化材料制备性能

引言

聚合物材料在现代生活中应用广泛,具有各种各样的性能,如导电性聚合可以像金属材料一样应用于电学的各行各业,但是一些导电性聚合物如聚苯胺、聚吡咯等聚合物虽合成方法较简单,具有较高的导电率,但是很难像其他高分子聚合物那样易加工成型,且在高温和潮湿环境下不能长期使用[1],聚酯和聚酯纤维虽具有高模量、高强度、耐酸,耐热性等优点,但其因其可燃性而应用受到限制[2]。聚氯乙烯等一些树脂类聚合物在橡胶方面应用广泛,但其脆性大、热稳定性差,在热、氧气、光等环境下性能下降[3]。为了提高、优化各种聚合物的各种性能,用纳米粒子对其进行掺杂,得到聚合物纳米粒子杂化材料,这种材料能够充分体现聚合物的一些性能如密度小、强度高、耐腐蚀、易加工等特点,也能够体现纳米粒子所具有得体积效应、表面效应、量子尺寸效应、小尺寸效应,特别是还能够产生一些常规材料所不具备的新的性能,使其在生物、医药、化工、材料、电子、催化剂、传感器、生物等方面有着广阔的应用前景[4-6]。目前国内外许多科研工作者都通过高科技手段,采用纳米新技术以及先进的制造工艺,将纳米粒子用于聚合物和杂化材料的改性中,以提高其各种性能,并取得了许多可喜的研究成果。本文主要综述近年来聚合物纳米粒子杂化材料的几种主要的制备方法以及各种性能和应用情况。

1聚合物纳米粒子杂化材料的制备方法

聚合物纳米杂化材料的制备是探索高性能杂化材料的一条重要途径,材料的制备是性能研究的基础,因此,纳米杂化材料的制备是材料科学领域中重要研究的课题也是目前研究的一个热点。近年来发展建立起来的制备方法也多种多样,各种制备方法并非截然分开,有可能互相渗透,这些制备方法主要有溶胶凝胶法、共混法、自组装法、原位生成法、超声波法等。

1.1共混法

该方法是首先合成出各种形态的纳米粒子,再通过各种方式将其与有机聚合物混合[7]。此种方法的优点是,纳米粒子与聚合物的合成分步进行,可控制纳米粒子的形态、尺寸,方法简便经济、易于实现工业化,缺点是纳米粒子的比表面积和表面能极大,粒子之间存在较强的相互作用,极易产生团聚,失去纳米粒子的特殊性质;而聚合物本身粘度又较高,纳米粒子与聚合物很难达到理想的纳米尺度杂化。通常采用表面活性剂、偶联剂、表面覆盖、机

械化学处理和接枝等方法对纳米粒子进行处理,以提高纳米粒子在基质材料中的分散性、相容性和稳定性。此外,常采用加强搅拌混合,如超声波和高速搅拌等方式来提高纳米粒子在基质材料中的分散效果。共混法可分为溶液共混、乳液共混和熔融共混。

1.1.1溶液共混法

溶液共混是先将聚合物溶入溶剂中,加入纳米粒子,充分搅拌使之均匀分散,再除去溶剂而制备聚合物纳米粒子杂化材料的方法[8]。羊海棠等[9]用溶液共混法制备出PP/Si02杂化材料。

1.1.2熔融共混法

熔融共混法是将聚合物融体与纳米粒子共混而制备聚合物纳米杂化材料的一种常用方法。由于有些聚合物的分解温度低于熔点,不能用此种方法,使得适合该法的聚合物种类受到限制,在熔融共混过程中,熔体具有较高的粘度,纳米粒子在加热时碰撞机会增加,易于团聚,两相的混入和分散是相当困难的。为此,共混设备必须提供足够大的剪切力,使熔体产生足够的形变和流动,以利于纳米粒子及其团聚体的混入、破碎,分散。孙阁彪等[10]通过熔融共混法将经适当表面处理的纳米TiO2粒子均匀地分散在聚丙烯(PP)中,制备出PP/ TiO2聚合物纳米粒子杂化材料。任显诚等[11]通过对纳米级CaCO3粒子进行表面预处理和熔融共混工艺制备了PP/CaCO3聚合物纳米粒子杂化材料。

1.1.3乳液共混法

乳液共混法是先制备聚合物乳液(外乳化型或内乳化型),再与纳米粒子进行均匀混合,最后除去溶剂(水)而制备聚合物纳米粒子杂化材料的方法。外乳化法由于乳化剂的存在,一方面可以使纳米粒子更加稳定,分散更加均匀;另一方面也会影响杂化材料的一些物化性能,特别是对电性能影响较大。内乳化型既有外乳化的优点,又能克服外加乳化剂对材料电学光学性能的影响,性能更好。鲁德平等[12]以纳米A12O3为种子进行乙酸乙烯酯的乳液聚合,得到了PV Ac/A12O3聚合物纳米粒子杂化材料。

1.2溶胶-凝胶法

溶胶-凝胶法[13]是制备聚合物纳米粒子杂化材料应用最早的方法,指的是将硅氧烷或金属盐等前躯体溶于水或有机溶剂中形成均质溶液,在酸、碱或盐的催化作用下促使溶质水解,生成纳米粒子并形成溶胶[14],随着水解的缩聚反应的进行,溶胶的粘度进一步增加,最后成为凝胶。凝胶经过陈化、干燥成为干凝胶。溶胶-凝胶法的特点是可在温和的条件下进行,两相分散均匀,通过控制前驱物的水解-缩合来调节溶胶凝胶化过程,从而在反应早期就可以控制材料的表面与界面,有利于实现纳米甚至分子尺度上的杂化。该法目前存在的最大问题在于凝胶干燥过程中,由于溶剂、小分子、水的挥发可能导致材料内部产生收缩应力,影响材料的力学和机械性能。尽管如此,溶胶-凝胶法仍然是目前应用最多,也是较完善的方法之一。

1.3纳米粒子原位生成法

纳米粒子原位生成法是一种简单,高效的制备聚合物纳米粒子杂化材料的方法。这种方法是在聚合物网络中利用相应的前驱体,一步实现聚合物与纳米粒子的杂化[15]。这种方法的特点是,纳米粒子直接在聚合物基体中成核、生长,从而抑制了不必要的纳米粒子聚集。优点在于聚合物链中的官能团能够稳定生成的纳米粒子,可以有效地控制粒子的大小,阻止纳米粒子的团聚。另外,这种原位生成的纳米粒子通常和聚合物有很强的作用,一方面保证了纳米粒子在聚合物中良好的分散性和均一性,通常还可以作为聚合物的交联点来稳定聚合物,提高纳米复合材料的稳定性,这对于保护材料的稳定性和功能性来讲是非常重要的。缺点在于未反应的前驱体原料以及副产物会影响最终目标材料的性质。黄莹莹等[16]用原位聚合法制备不同含量纳米SiO2的PET/SiO2切片,并对其进行纺丝,结果显示含纳米SiO2的纤维有更好的可纺性和拉伸性能。

1.4单体原位聚合法

单体原位聚合法是将经过表面处理的纳米粒子加入到单体中,混合均匀,然后在适当条件引发单体发生聚合的方法[17]。原位聚合法可在水相中进行,也可在油相中进行。单体可进行自由基聚合,也可进行缩聚反应。该方法适用于大多数聚合物基纳米粒子杂化材料的制备。由于聚合物单体分子较小,粘度低,表面有效改性后的纳米粒子容易均匀分散,因此保证了体系的均匀性及各项物理性能[18]。典型杂化材料有SiO2/PMMA,TiO2/聚丙烯酸酯[19]等杂化材料。原位聚合法反应条件温和,制备的杂化材料中纳米粒子分散均匀,粒子的纳米特性完好无损,同时在聚合过程中,只经一次聚合成型,不需热加工,避免由此产生的降解,从而保持了基本性能的稳定。但原位聚合法的使用有较大的局限性,因为该方法仅适用于含有金属、硫化物或氢氧化物的胶体粒子,只有这些胶体粒子才能使单体分子在溶液中进行原位聚合,制得所需要的聚合物纳米粒子杂化材

1.5自组装法

自组装是分子与分子在一定条件下,依赖非共价键分子间作用力自发连接成稳定的分子聚集体的过程[20]。分子自组装的原理是利用分子与分子或分子中某一片段与另一片段之间分子识别,相互通过非共价作用形成具有特定排列顺序的分子聚集体。它主要包括L-B 成膜技术、逐层自组装技术、和仿生合成。这里主要介绍L-B成膜技术。

LB膜法[22]是利用具有疏水端和亲水端的两亲分子在气液界面的定向性质,来制备聚合物纳米杂化材料。用LB膜法制备的纳米杂化材料,既具有纳米粒子特有的量子尺寸效应,还具有LB膜分子层次有序、膜厚可控、易于组装等优点。缺点是杂化基体多为分子量相对较低的有机聚合物,膜的稳定性相对较差[21]。通过改变成膜材料、纳米粒子的种类及制备条件,可以改变材料的光电特性,因此在微电子学、光电子学、非线性光学和传感器等领域有着十分广阔的应用前景。

1.6超声波法

超声波法[23]的原理是使用超声波震荡破坏较大团聚体中小微粒之间的库仑力或范德瓦尔斯力,使小颗粒分散到基质中。这种方法进行聚合物纳米粒子杂化材料的合成在实验室中较常用,它在搅拌状态下把纳米粒子加入到混合液中,然后通过超声波传递能量并使能量作用于较大的纳米微粒团聚体,来平衡纳米微粒之间的范德华力以及其他表面作用力从而破坏纳米粒子的团聚。超声波用于微细颗粒悬浮体的分散效果虽然较好,但耗能大,实际应用目前还存在许多问题,尚处于实验室研究阶段。从超声波的作用机理上分析,其对水

性混合物的分散效果较好,对高勃度的聚合物混合物效果不是很明显,随着科学技术的不断发展,超声波法将会实现工业化。

2聚合物纳米粒子杂化材料的结构表征

由于杂化材料具有比单一材料更多的可变结构参数,通过调节这些参数可以在很宽的范围内改变杂化材料的物性,但也是导致纳米杂化材料的结构研究比单一材料的更加复杂。聚合物纳米粒子杂化材料受纳米粒子的组成与含量,纳米粒子的聚集形态,聚合物包覆层的厚度,粒子与基体间的界面结构等结构参数的控制,下面简单介绍几种常用的结构表征手段。

2.1电子显微镜

电子显微镜包括扫描(SEM)电镜和透射(TEM)电镜两种,主要用于观察纳米粒子的形貌,在杂化材料中的分布情况,测量评估纳米粒子的粒径和粒子的分布,是表征纳米材料最直观,可靠的方法之一。如图一,用扫描电镜测聚甲基丙烯酸甲酯/Fe纳米粒子杂化材料[24],由图中可看到,材料表面很少看到Fe纳米粒子,说明杂化后的,纳米粒子往往陷入到表面下层。用透射电镜观察聚甲基丙烯酸甲酯/SiO2纳米粒子杂化材料,如图二所示,纯的纳米粒子呈

球形或类球形,极易团聚在一起,在杂化后,纳米粒子大小比较均匀,杂化材料呈现不规则行状,说明杂化后纳米粒子具有很好的分散性并且与聚合物发生了相互作用。

Figure 1The SEM image of PMMA nanocomposite

With Fe nanoparticles Figure 2(a) TEM images ofpureSi02

(b)PMMA-g-Si02

2.2红外光谱

红外光谱是研究表征分子结构的一种有效手段,可以用来研究分子的化学键情况。用于杂化材料表征时,在杂化前,聚合物和纳米粒子各自都表现出本身所特有的特征吸收峰,在杂化之后,从谱图中可以看到聚合物与纳米粒子本身的特征吸收峰,但是聚合物的一些伸缩振动吸收峰会发生变化,说明纳米粒子与聚合物成功地发生了杂化,形成了一定的化学键。例如聚苯胺与SiO2进行杂化[25],杂化前可以看到,在3446cm-1出现SiO2表面羟基的伸缩振动吸收峰,杂化之后,3446cm-1的吸收峰消失,在2274cm-1出现C-N=O的特征吸收峰,说明SiO2成功的与聚苯胺进行了杂化。

2.3 X射线光电子能谱

X射线光电子能谱(XPS)由于其对材料表面化学特性的高度识别能力,成为材料表面分析的一种重要技术手段,主要用来测量元素的化合价。如朱小红[26]用XPS测量聚酚藏花红/Pd纳米杂化材料,在XPS能谱中,在结合能分别为335.4 eV和341.1 eV处出现两个明显的峰,分别对应于Pd 3d5/2和Pd 3d3/2, 与聚酚藏花红杂化后,Pd 3d5/2的峰比大块的Pd金属的Pd 3d5/2的峰(334.9 eV )的位置要高0.5 eV, 即Pd 3d5/2的结合能处于零价的Pd金属和二价的Pd离子的结合能( 337.7 eV)之间。说明Pd纳米粒子主要是以零价存在于聚酚藏花红,少量以二价存在。

2.4 X射线衍射

X射线衍射传统地应用于测定晶体结构,目前也广泛用于纳米杂化材料晶型的测定与表

征。如下图三,在X衍射图中,ZnS纳米粒子粉末XRD的衍射峰都很宽,说明合成ZnS纳米粒子的尺寸很小,其2⊙值分别为28.5, 47.5 56.30,对应着立方闪锌矿结构的(111),(220)和(311)三个晶面,ZnS纳米粒子的晶型为立方闪锌矿结构。图中也显示了不同ZnS含量的纳米杂化材料的XRD曲线.我们也可以看出曲线中有(111), (220)和(311)晶面的衍射峰,而且峰强随ZnS含量的增加而增加,说明立方闪锌矿晶型ZnS纳米粒子成功的与聚合物进行了杂化.[27]

Figure 3XRD patterns of ME-capped ZnS NPs, polymer matrix and nanocomposites

with different ZnS NP contents (10 wt%, 20 wt%, and 30 wt%).

3聚合物纳米粒子杂化材料的性能与应用

聚合物纳米粒子杂化材料在基本性能上除了具有普通杂化材料所具有的共同特点之外还具有以下的特点:(1)可综合发挥各种组分的协同效能[28],这是其中任何一种材料都不具备。(2)性能的可设计性,可针对纳米杂化材料的性能需求进行材料的设计和制造[29]。聚合/纳米粒子杂化材料综合了聚合物与纳米粒子两方面的特性,在光学、电子、离子、机械、膜、保护涂层、催化剂、传感器、生物等方面有着、泛的应用[30-31],目前已成为材料学领域研究的热点。此外,聚合物/纳米粒子杂化材料方面的研究对开发具有高性能、有特殊功能的杂化材料具有重要意义[32-33]。

3.1力学性能

材料的力学性能包括冲击强度、拉伸强度、弯曲模量、断裂伸长等,是结构型材料的主要考察指标。在聚合物纳米粒子杂化材料中,由于纳米尺寸的分散相具有较大的比表面积和较高的表面能,且具有刚性,因此,填加纳米粒子增强材料的聚合物纳米杂化材料通常都具有比同组分的常规复合材料或者单组分聚合物材料的力学性能好。黄悦[34]等研究发现,用SiC/Si3N2;纳米粒子与低密度聚乙烯进行熔融共混,只需加入5%的纳米粒子增强材料,杂化材料的冲击强度和拉伸强度均成倍提高,断裂伸长率也有所增加.

3.2光学性能

3.2.1吸光特性

纳米粒子对一定波长的光具有良好的吸收性能,其吸光能力大大超过体相材料和大尺寸颗粒。由于聚合物纳米粒子杂化材料中纳米粒子能够保持本身的一些特性,利用这种特性制备的纳米杂化材料具有很强的吸光性能,可在许多方面加以应用。例如,在塑料制品表面涂上一层含有能吸收紫外线的聚合物纳米粒子杂化胶,这层透明涂层可以防止塑料老化。纳米氧化铝、氧化铁、氧化硅等纳米粒子具有很强的吸收中红外频段光线的特性,加入纤维做成织物后可以对人体释放的红外线起到屏蔽作用,可以增强保温作用。导电性和磁性纳米粒子

对不同波段的电磁波有强烈的吸收作用,因此与聚合物材料杂化后可以做成具有电磁波吸收性能的涂料、覆膜或结构材料,用于军事隐身防护材料制备。Dope等[35]采用熔融共混法制备出PMMA掺杂体积为70%的PMIvIA/SiO2聚合物纳米杂化材料,厚度为1.0mm的该材料,其吸光率达99%。

3.2.2吸波性能

纳米粒子由于其尺寸远小于红外线、雷达波的波长,对红外线、雷达波等不同波段的电磁波有强烈的吸收作用,这种特性在电磁波隐形和声隐形方面有重要的应用,可以制造出各种隐形材料。

3.2.3光致色变特性

利用半导体聚合物和纳米粒子杂化材料的光诱导电化学反应,可以制备光之变色材料,彩色显示材料等。如Colvin等人[36]利用PPV/CdSe纳米复合物的电致发光效应制备了发光二极管,发光的颜色取决于Cd/Se粒子的尺寸和所施加的光压。

3.3敏感性能

由于纳米粒子表面积大,表面活性能高,对周围环境极其敏感,可广泛用作敏感材料。环境(温度,气氛,光,湿度)的变化会引起纳米粒子电学,光学等行为的变化,而且纳米粒子在基体中的聚集结构也会发生变化,引起粒子协同性能的变化。因此可望利用纳米粒子制成敏感度高的小型化,低能耗,多功能传感器。如气体传感器,红外线传感器,压电传感器,温度传感器和光传感器。Bianconi等[37]以CdS对氧的化学吸附敏感的性质,制备出聚合物纳米粒子杂化材料,在采用电喷涂的方法制成了氧传感器,并且考察了在不同Cd:S 比率下传感器对氧的敏感程度,结果发现Cd:S的比率越高,对氧的化学吸附就越敏感.王姗等[38]制备的壳聚糖/CdS纳米杂化膜的荧光发射对水体中吡啶的存在十分敏感,这种杂化薄膜有望发展成为一种重要的水体系吡啶测定传感薄膜材料.

3.4催化性能

催化剂的催化活性与催化剂的比表面积成正比,而纳米粒子的高表面能又可以增强催化能力,因此具有大比表面积和高表面能的纳米杂化材料是非常理想的催化剂形式。纳米粒子与聚合物杂化之后,既可以保持纳米催化剂的高催化活性,又可以通过聚合物的分散作用提高纳米催化剂的稳定性。这种催化剂最显著的是光催化活性很高。相对于普通的催化剂只能吸收紫外光起到光催化作用,聚合物纳米粒子杂化催化剂却能在较微弱的可见光源下具有较高的光催化活性。如氧化锌纳米粒子与聚氯乙烯杂化催化剂在200—800nm范围内有强吸收[39],具有较强的催化活性。这可能是由于聚氯乙烯煅烧得到共轭聚合物上π-π*电子转移引起的[40],聚氯乙烯分解脱氯化氢变为π-π*共轭结构[41],共轭结构的聚合物是有效的电子给体,在自然光的作用下被激发,电子可以从共轭聚合物转移到无机半导体氧化锌纳米粒子上,电子在氧化锌纳米粒子上被捕获,就产生电子空穴的有效分离,增强光催化性能。

3.5电学性能

很多导电性纳米粒子与聚合物进行杂化可以制备聚合物杂化导电材料,如可以制成导电涂料、导电胶等,在电子工业上有广泛应用。纳米粒子常用金、银、铜等金属纳米粒子或者炭黑,某些金属氧化物纳米粒子也有应用。聚合物与纳米粒子进行杂化可以大大提高材料的电性能。导电聚合物与纳米粒子杂化的材料的电导率处于半导体电导率范围内,影响导电性能的因素很多,主要包括聚合物分子链的掺杂状态,氧化剂的种类,聚合物与纳米粒子之间的相互作用,纳米粒子的含量等。以聚苯胺纳米粒子杂化材料为例,由于樟脑磺酸离子对聚苯胺与间甲酚溶剂间的氢键作用,增加了共轭高分子链π共轭缺陷的规则性,从而提高了聚苯胺的电导率[42]。

3.6磁性能与应用

由于纳米粒子的小尺寸效应和久保效应,其磁性能与块状材料截然不同,10-25nm的铁

磁纳米粒子的矫顽力比相同的宏观材料大1000倍,而当矫顽力小于10nm时,矫顽力变为0,表现为超顺磁性。纳米粒子与聚合物进行杂化之后,能够保持其特有的磁性,因此聚合物杂化材料的磁性主要来源于磁性纳米粒子。这种材料在自旋极化设备等磁性材料方面具有潜在的应用,可以作为药物载体材料、磁性记录媒介材料、高频吸波材料、屏蔽材料等[43-45],也可以制成各种磁卡、磁流体,广泛应用于电声器件、阻尼器件、旋转密封等领域。这些材料中纳米相的矫顽力随温度的降低而增加,这是由于在较低的温度下自旋热激发能较低[46]。

wan等[47]研究表明随着纳米粒子的含量的提高,杂化材料的饱和磁化强度也会相应的增加。

4结论与展望

聚合物纳米粒子杂化材料同时具有聚合物和纳米粒子的优点,大大提高了聚合物的各种性能,还赋予杂化材料一些新的性质,使其在光、电、磁等领域具有独特的应用前景。目前各种聚合物纳米粒子杂化材料的研究已有不少报道,但是,在今后的研究中,一方面应更深入研究聚合物纳米粒子杂化材料的结构与性能的关系,探究改善各种性能的机理,以便提高杂化材料的可设计性,使聚合物纳米杂化材料的性能具有更大的可调性,另一方面,杂化材料新功能的开发以及原料种类、含量以及杂化条件对成品材料性能的影响都是以后研究的重点。

参考文献:

[1] Eastmond G C, Nguyen H C and Piret WGraft polymerization from glass surfaces[J],Polymer,chem.,rech, 2001,228:598-603.

[2]Asako Narita, Kensuke Naka, Yoshiki ChujoFacile, control of silica shell layer thickness on hydrophilic iron oxide nanoparticles via reverse micelle method,Colliods and Surfaces[J], Physi,chem, 2009,56: 46-48.

[3]Yi-Hsin Lien,Tzong-Ming Wu, Preparation and characterization ofthermosensitive polymers grafted onto silica-coated iron oxide nanoparticles[J],J. Colloid Interface Sci, 2008, 326:,517-521.

[4]Ling Li, Eugene Shi Guang Choo, Zhaoyang Liu,Junmin Xue,Double-layer silica core-shell nanospheres with superparamagnetic and fluorescentfunctionalities[J], Chem Phys L, 2008,461: 114-117.

[5]]Huan Ma, Lenore L. Dai,Synthesis of polystyrene-silica composite particles viaone-step nanoparticle-stabilized emulsion polymerization[J], J. Coll. Interface Sci,2009,333:807-811. [6]王华林,余锡宾,王长友等,PMTES/Si02有机无机杂化材料的研究[J],高分子材料科学与工程,2003,298:398-426.

[7]王维瑛,ZnO/Polymer纳米杂化材料的制备与性能研究[D],合肥工业大学博士论文,2010.

[8]欧宝丽,王文韫,聚合物/无机纳米复合材料的应用及其制备研究[J].实验室研究与探索,2008,27(1):26-28.

[9]羊海棠,杨瑞成,冯辉霞等,纳米二氧化硅粒子增韧聚丙烯的研究[N],甘肃工业大学学报,2003.29(2):34-36.

[10]孙阁彪,吴刚,徐瑞芬等,纳米TiO2的表面处理及聚丙烯/TiO2杂化体系的研究[J],2002,16(12):47-51.

[11]任显诚,白兰英,王贵恒.纳米级CaCO3粒子增韧增强聚丙烯的研究[J].中国塑料,2000 14(1):22-26.

[12]鲁德平,熊传溪等,以超微细A12O3作种子乙酸乙烯酷的乳液聚合的研究[J], 材料科学与工程,1995,19(2): 49-68.

[13] 江国栋,土庭慰,沈晓冬,Sol-Gel法制备纳米SnO2掺杂PMMA透明杂化材料[J],材料科学与工艺,2005,13(5):544-547.

[14]张志强,张保柱,李军平等,有机/无机纳米杂化材料P(MMA-BMA)-TiO2的制备和表征[J],材料科学与工程,2006, 29(3):291-293 .

[15]Celebi.S, Erdamar.A.K, Sennaroglu.A, Synthesis and Characterization of Poly (acrylic acid) Stabilized Cadmium Sulfide Quantum Dots[J] , Phys. Chem. B, 2007, 111: 12668-12675.

[16] 黄莹莹,叶忍记,吴嘉麟,纳米二氧化硅对涤纶拉伸性能的影响[J].合成纤维,2005, 34 (7): 20-23.

[17] 欧玉春,杨锋,漆宗能等,聚合物金属纳米粒子杂化材料的制备与应用[N],高分子学报,1997,41(2):213-217.

[18] 张晟卯,高永建,张治军等,聚合物SiO2纳米杂化材料在药物控制释放中的应用[J],应用化学,2002,19(9):914-920.

[19]KrishanM,WhiteJ,FoxMA et a1.Conjugated polymer nanocomposite:Systhesis,dielectric,and microwave absorption studies[J].J Chem Soc,1983,105(3):7002-7003.

[20] Whitesides,GM J],Mathias,C T ,Seto.G P,Molecular self-assembly andnanochemistry: a chemical strategy for the synthesis of nanostructures[J] ,Sci, 1991,254: 1312-1319.

[21] 王娟娟,晃小练,杨祖培,纳米ZnO/共轭聚合物杂化材料光催化性能研究[J],塑料科技,2004,68(4):42-47.

[22] 隋晓萌,聚合物ZnO复合材料的制备与发光性能研究[D],福建师范大学博士论文,2006.

[23] 李玲,龚克成,超声波在纳米材料合成中的应用[J],材料报道,1998,124(4):18-20.

[24]Wilson,J L,Poddar,P.P .Frey,H.Srikanth,N A, Synthesis and magnetic properties of polymer nanocomsite with embedded iron nanoparticle[J],Appl phy,2004,95:1439-1443.

[25]Rui-Juan Zhou Thomas Burkhart ,Mechanical properties and morphology of microparticle and nanoparticle-filled polyppropylene composite[J],Master Sci,2010,45:3016-3022.

[26]朱小红,电电沉积聚合物纳米粒子构造电化学传感器以及纳米电极的研究[D],中国技大学博士论文,2007.

[27] 程武荣,原位聚合法制备半导体纳米粒子/聚合物杂化光学材料[D],吉林大学硕士论文,2010.

[28]贺鹏,赵安赤,聚合物改性中纳米复合新技术[N],高分子通报,2001,46(1):74-86.

[29]Yushan Liu, Peng Liu, Zhixing Su, Core-shell attapulgite@polyaniline compositeparticles via in situ oxidative polymerization[J], Synthetic Metals, 2007,157: 585-591.

[30] 李立,聚碳酸酯/无机纳米杂化材料的制备与性能研究[D],苏州大学博士论文,2008.

[31] Sanchez C, Soler-Illia G J A A, Ribot F, Designed hybrid organic-inorganicnanocomposites from functional nanobuilding blocks[J], Chem Matey Review, 2001, 13:3061-3083.

[32] Schooner GS Hybrid sol-gel-derived polymers, Applications of multifunctional materials[J], Chem Mate Review, 2001,24: 3422-3435.

[33]Pyun J, Matyjaszewski K,Sinthesis of nanocomposite organic/inorganic hybridmaterials using controlled/"living" radical polymerization[J], Chem Matey Review, 2001,56: 3436-3448.

[34] LiangJ Z, Tougheningand reinforcing in rigid inorganic particulate filled

poly(propylene)[J], Sci,2002, 83:1547-1555.

[35] Wu S H, Phase, structure and adhesion in polymer blends: A criterion for rubber toughening[J], Polymer, 1985, 26 : 1855-1863.

[36] 黄锐,徐伟平,SiC/Si3N4纳米粒子增强增韧低密度聚乙烯性能研究[J],塑料工业,1997,98(3):106-110.

[37] Dope EJA, Mackenzie JD. Transparent silica gel-PMMA composition[J], J. Mater. Res. 1989 ,45:1018-1026.

[38]Colvin V L,Schlamp M C,Alivsatos A P.Light-emiting-dios made from cadmiumselenide nanocrystals and a semiconducting polymer[J].Nature,1994;37:354-357.

[39] Bianconi P A, Lin J, Strzelecki A R. Polymer-Nanoparticle Composite:Preparative Methods and Electronically Active M aterials[J],Taylor&Francis, 2007,68: 315-317.

[40]王姗,房喻,张颖等,聚丙烯/无机纳米杂化材料的研究[N],物理化学学报,2003,19(6): 514-518.

[41]高海霞,施利毅,成荣明等,纳米ZnO粒子共轭聚合物杂化材料光催化降解聚苯胺的研究[J],水处理技,2007,33(9):39-41.

[42]Anil K,Nupur, M. Photocatalytic oxidation of aniline using Ag-loaded TiO2suspension[J].Appl Catalysis A:General 2004,275(1-2):189-197.

[43]Paul A Van Hal,Marwijin P T Christiuans,etal.photoinduced electron transfer from conjugated polymers to TiO2[J],J Phys Chem B.1999,103(21):4352-4359.

[44]李鹏,官建国,张清杰,导电聚合物/磁性纳米复合材料的制备及其结构与性能[N],华东理工大学学报,2006,46(1):1246-1253.

[45] A Heilmann, Polymer Films with EmbeddedMetalNanoparticles[J] .Springer,NewYork,2003.

[46] J. C. Kaivin, M. K. Helin, Conductive performance in mixed organic-inorganic nanoparticles film[J], Polymer, 2003, 45(2): 632-638

[47]Wang,H J, Helon,K W, Charge carrier transfer dynamics of colloidal semiconductor nanoparticle[J],.J. Phys. Chem., 2003, 114(1): 6334-6341.

PREARTION CHARACTERISTICS OF POLYMER NANOPARTICLE HYBRID MATERIALS

Han Rong min

Abstract: The research of polymer nanoparticle hybrid materials has been widely studied, because they exhibit the advantages of both polymer and nanoparticle. Conception of polymer nanoparticle hybrid materials are introduced. Several methods of preparing polymer nanoparticle hybrid materials are reviewed. Mechanical, optical, electrical , and magnetic charactertics of the polymer nanoparticle hybrid materials are summarized, which are much different from traditional materials. At last, future of the polymer nanoparticle hybrid materials are prospected.

Key words: Polymer; Nanoparticle; Hybrid; Preparation; Properties

纳米材料应用特点

超细微粒、超细粉末,这些其实都是纳米材料的别称。它具有自己的一些性能特点,同时应用范围较广,例如生物医药、能源环保、化工等等行业。本文就给大家详细介绍一下。 一、应用 由于纳米颗粒粉体具有电、磁、热、光、敏感特性和表面稳定性等性能,显著不同于通常颗粒,故其具有广泛的应用前景。经过多年探索研究,已经在物理、化学、材料、生物、医学、环境、塑料、造纸、建材、纺织等许多领域获得广泛应用。下面为大家例举几个纳米材料的应用实例。 (1)纳米材料的用途十分的广泛,比如目前在许多医药领域使用了纳米技术,这样能使药品生产非常的精细,它直接利用原子或者分子的排布制造一些有特殊功能的药品。由于纳米材料所使用的颗粒比较小,所以这种药品在人体内的传输是相当方便的,有些药品会采用多层纳米粒子包裹,这种智能药物到人体后可直接并攻击癌细胞或者对有损伤的组织进行修复。纳米技术也可以用来监测诊少量血液,通过对人体中的蛋白质的分析诊断出许多种疾病。 (2)在家电方面,选用那么材料制成的产品有许多的特性,如具有抗菌性、防腐抗紫外线防老化等的作用。在电子工业方面应用那么材料技术可以从扩大其

产品的存储容量,目前是普通材料上千倍级的储器芯片已经投入生产并广泛应用。在计算机方面的应用是可以把电脑缩小成为“掌上电脑”,使电脑使用起来更为方便。在环境保护领域未来将出现多功能纳米膜。这种纳米膜能够对化学或生物制剂造成的污染进行过滤,从而改善环境污染。在纺织工业方面通过在原始材料中添加纳米ZnO等复配粉体材料,再通过经抽丝、织布,然后能够制成除臭或抗紫外线辐射等特殊功能的服装,这些产品可以满足国防工业要求。 (3)纳米材料技术现在已广泛应用于遗传育种中,该技术能够结合转基因技术并且已经在培育新品种方面取得了很大的进展。这种技术是通过纳米手段将染色体分解为单个的基因,然后对它们进行组装,这种技术整合成的基因产品的成功率几乎可以达到100%。经过实践证明,科研人员能够让单个的基因分子链展现精细的结构,并可以通过具体的操纵其实现分子结构改变其性能,从而形成纳米图形,这样就能使人们可以在更小的世界范围内、更加深的一种层次上进行探索生命的秘密。 (4)纳米材料技术在发动机尾气处理方面的应用,目前有一种新型的纳米级净水剂有非常强的吸附能力,它是一般净水剂的20倍左右。纳米材料的过滤装置,还能有效的去除水中的一些细菌,使矿物质以及一些微量元素有效的保留下来,经过处理后的污水可以直接饮用。纳米材料技术的为解决大气污染方面的问题提供了新的途径。这种技术对空气中的污染物的净化的能力是其它技术所不可替代的。 二、特点 当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的

(完整版)纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性[ 1 ] ,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切[ 2 ] [ 3 ] 。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法 纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中通过直流放电使气体电离产生高温等离子体,从而使原料溶化和蒸发,蒸汽达到周围的气体就会被冷凝或发生化学反应形成超微粒。 2 化学制备方法 化学法是指通过适当的化学反应, 从分子、原子、离子出发制备纳米物质,它包括化学气相沉积法[5][6]、化学气相冷凝法、溶胶-凝胶法、水热法、沉淀法、冷冻干燥法等。化学气相沉积(CVD)是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程,该方法主要可分成热分解反应沉积和化学反应沉积。该法具有均匀性好,可对整个基体进行沉积等优点。其缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积门、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。

纳米抗菌材料国内外研究现状

1.国内外研究现状和发展趋势 (1)多尺度杂化纳米抗菌材料的国内外研究进展 Ag+、Zn2+和Cu2+等金属离子具有抗菌活性,且毒性小、安全性高而被广泛用作抗菌剂使用。但是,由于其存在易变色、抗菌谱窄、长效性差、耐热性和稳定性不好等缺点而成为其进一步发展的障碍。相比而言,纳米银、纳米金、纳米铜、纳米氧化锌等纳米材料则可以在一定程度上克服这些问题。例如纳米银,在抗菌长效性和变色性方面均比银离子(多孔纳米材料负载银离子)抗菌剂有显著改善,而且其毒性也更低(Adv. Mater.2010);关于其抗菌机理,被认为是纳米银释放出银离子而产生抗菌效果(Chem. Mater 2010,ACS Nano 2010)。纳米金也有类似的效果(Adv. Mater. ),尽管活性比纳米银稍差,但其对耐药菌株表现出良好的抗菌活性(Biomaterials 2012)。铜系抗菌材料可阻止“超级细菌”(NDM-1)的传播(Lancet .2010)。活性氧化物是使用时间最长、使用面最广泛的一类长效抗菌剂,其中氧化锌是典型代表,特别是近年来随着纳米技术的发展,一系列低维结构氧化锌的出现,为氧化锌系抗菌材料提供了极大的发展空间,由于其良好的安全性,氧化锌甚至可用于牙科等口腔材料(Wiley Znter Sci.,2010)。本项目相关课题组多年的研究发现,ZnO的形貌差异、结构缺陷和极化率等都会影响其抗菌活性(Phys. Chem. Chem. Phys. 2008);锌离子还可以与多种成分杂化,产生协同抗菌活性而提高其抗菌性能(Chin. J. Chem.2008, J. Rare Earths 2011)。 利用杂化纳米材料结构耦合所带来的协同作用提高纳米材料的抗菌活性是近年来的研究热点。例如:纳米铜与石墨烯杂化体系中存在显著的协同抗菌作用(ACS Nano2010)。用络氨酸辅助制备的Ag-ZnO杂化纳米材料,表现出良好的抗菌和光催化性能(Nanotechnology 2008);但是Ag的沉积量过大,催化活性反而有所降低(J. Hazard. Mater. 2011)。以壳聚糖为媒质,通过静电作用合成得到均匀的ZnO/Ag纳米杂化结构,结果显示,ZnO/Ag纳米杂化结构比单独的ZnO 和单独纳米Ag的抗菌活性都高,表现出明显的协同抗菌作用(RSC Adv. 2012)。Akhavan等用直接等离子体增强化学气相沉积技术,结合溶胶-凝胶技术

纳米材料的特性及相关应用

纳米材料的研究属于一种微观上的研究,纳米是一个十分小的尺度,而一些物质在纳米级别这个尺度,往往会表现出不同的特性。纳米技术就是对此类特性进行研究、控制。那么,关于纳米材料的特性及相关应用有哪些呢?下面就来为大家例举介绍一下。 一、纳米材料的特性 当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。按照这一原理,可以通过控制晶粒尺寸来获得不同能隙的硫化镉,这将大大丰富材料的研究内容和可望获得新的用途。我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以获得带隙和发光性质不同的材料。也就是说,通过纳米技术获得了全新的材料。纳米颗粒往往具有很大的比表面积,每克这种固体的比表面积能达到几百甚至上千㎡,这使得它们可作为高活性的吸附剂和催化剂,在氢气贮存、有机合成和环境保护等领域有着重要的应用前景。对纳米体材料,我们可以用“更轻、更高、更强”这六个字来概括。“更轻”是指借助于纳米材料和技术,我们可以制备体积更小性能不变甚至更好的器件,减小器件的体

积,使其更轻盈。如现在小型化了的计算机。“更高”是指纳米材料可望有着更高的光、电、磁、热性能。“更强”是指纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。 二、纳米材料的相关应用 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。 2、纳米陶瓷材料 传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使

Pd 介孔杂化碳纳米复合材料的制备及其电催化性能研究

Pd/介孔杂化碳纳米复合材料的制备及其电催化性能研究 谢乔桥,刘明珠,何建平 * (南京航空航天大学材料科学与技术学院,南京,211106,E-mail:jianph@https://www.360docs.net/doc/b23821870.html,)为提高直接甲醇燃料电池阴极催化剂的氧还原活性,本文使用低分子量的酚醛树脂为碳源,F127为模板剂,尿素为N 源,PdCl 2为Pd 源合成催化剂。通过溶剂蒸发诱导自组装法,经热聚合,高温热处理制得金属粒子均匀分散,结构高度有序的N 掺杂Pd/有序介孔碳复合材料。通过改变尿素的掺杂量以及煅烧温度等条件,寻找出最佳的制备N 掺杂的Pd/有序介孔碳复合材料的工艺方法。采用X 射线衍射仪(XRD)和透射电子显微镜(TEM)对复合材料进行结构表征,表明所制得的N-Pd-OMC 符合材料具有高度有序的介孔结构。如图1为Pd/介孔杂化碳复合材料的TEM 图,图中可看出复合材料呈高度有序的介孔结构。利用旋转圆盘装置,在饱和氧气的0.1mol/L KOH+3mol/L CH 3OH 电解液中,进行了氧还原线性伏安扫描,研究此类催化剂的电催化性能。图2为不同煅烧温度N-Pd-OMC 复合材料在0.1mol/L KOH+3mol/L CH 3OH 溶液中的线性扫描曲线,可以看出800℃煅烧条件下的催 化剂具有最优异的电催化性能。 图1Pd/介孔杂化碳复合材料的TEM 图 C u r r e n t /m A Potential/V 图2N-Pd-OMC 在700℃,800℃,900℃,1000℃煅烧条件0.1mol/L KOH+3mol/L CH 3OH 体系中的 线性扫描曲线 Fig.2LSV of N-Pd-OMC composites at 700℃,800℃,900℃,1000℃in the solution of 0.1mol/L KOH+3mol/L CH 3OH

磁性纳米材料的应用

磁性纳米材料的应用 磁性纳米颗粒是一类智能型的纳米材料,既具有纳米材料所特有的性质如表面效应、小尺寸效应、量子效应、宏观量子隧道效应、偶连容量高,又具有良好的磁导向性、超顺磁性类酶催化特性和生物相容性等特殊性质,可以在恒定磁场下聚集和定位、在交变磁场下吸收电磁波产热。基于这些特性,磁性纳米颗粒广泛应用于分离和检测等方面。 (一)生物分离 生物分离是指利用功能化磁性纳米颗粒的表面配体与受体之间的特异性相互作用(如抗原-抗体和亲和素 -生物素等)来实现对靶向性生物目标的快速分离。 传统的分离技术主要包括沉淀、离心等过程,这些纯化方法的步骤繁杂、费时长、收率低,接触有毒试剂,很难实现自动化操作。磁分离技术基于磁性纳米材料的超顺磁性,在外加磁场下纳米颗粒被磁化,一旦去掉磁场,它们将立即重新分散于溶液中。因此,可以通过外界磁场来控制磁性纳米材料的磁性能,从而达到分离的目的,如细胞分离、蛋白质分离、核酸分离、酶分离等,具有快速、简便的特点,能够高效、可靠地捕获特定的蛋白质或其它生物大分子。此外,由于磁性纳米材料兼有纳米、磁学和类酶催化活性等特性,不仅能实现被检测物的分离与富集,而且能够使检测信号放大,具有重要的应用前景。 通常磁分离技术主要包括以下两个步骤:( 1)将要研究的生物实体标记于磁性颗粒上;(2)利用磁性液体分离设备将被标记的生物实体分离出来。 ①细胞分离:细胞分离技术的目的是快速获得所需的目标细胞。传统的细胞分离技术主要是根据细胞的大小、形态以及密度差异进行分离,如采用微滤、超滤和超滤离心等方法。这些方法虽然操作简单,但是特异性差,而且纯度不高,制备量偏小,影响细胞活性。但是利用磁性纳米材料可以避免一定的局限性,如在磁性纳米材料表面接上具有生物活性的吸附剂或配体(如抗体、荧光物质和外源凝结素等),利用它们与目标细胞特异性结合,在外加磁场的作用下将细胞分离、分类以及对数量和种类的研究。 磁性纳米材料作为不溶性载体,在其表面上接有生物活性的吸附剂或其它配体等活性物,利用它们与目标细胞的特性结合,在外加磁场作用下将细胞分离。 温惠云等的地衣芽孢杆菌实验结果表明,磁性材料 Fe3O4 的引入对地衣芽孢杆菌的生长没有影响;Kuhara等制备了人单克隆抗体anti-hPCLP1,利用 anti-hPCLP1 修饰的磁纳米颗粒从人脐带血中成功分离了成血管细胞,PCLP1 阳性细胞分离纯度达到了 95%。 ②蛋白质分离:利用传统的生物学技术(如溶剂萃取技术)来分离蛋白质程序非常复杂,而磁分离技术是分离蛋白分子便捷而快速的方法。 基于在磁性粒子表面上修饰离子交换基团或亲和配基等可与目标蛋白质产生特异性吸附作用的功能基团 , 使经过表面修饰的磁性粒子在外加磁场的作用下从生物样品中快速选择性地分离目标蛋白质。 王军等采用络合剂乙二胺四乙酸二钠和硅烷偶联剂KH-550寸磁性Fe3O4粒 子进行表面修饰改性 , 并用其对天然胶乳中的蛋白质进行吸附分离。结果表明 , 乙二胺四乙酸通过化学键合牢固地结合在磁性粒子表面 , 并通过羰基与蛋白质反应, 达到降低胶乳氮含量的目的。 ③核酸分离 经典的DNA/RN分离方法有柱分离法和一些包括沉积、离心步骤的方法,这些方法的缺点是耗时多,难以自动化,不能用于分析小体积样品,分离不完全。

纳米材料的一种制备方法

固液界面反应一水热晶化法制备二氧化锡纳米颗粒 一、简介 水热晶化法: 水热晶化法是合成无机纳米材料广泛采用的一种方法,装置简单,只需衬有聚四氟乙烯内胆的高压釜和加热设备(例如鼓风烘箱、油浴锅等)即可。在高温与溶剂自生高压的条件下,体系能够模拟自然界的成矿过程。水热晶化法的特点是适用范围广,可以用来制备各种金属氧化物、硫化物、磷酸盐等无机纳米材料。生产成本低,合成的材料纯度高,结晶度好。可以通过调节溶剂、物料配比、体系的pH值、有机添加剂等参数达到对粒径、形貌、结构的控制。 二氧化锡纳米材料的制备也常常运用水热晶化法。Chiu等人使用2-propanol 与蒸馏水作为混合溶剂,SnCl4?5H2O为锡源,在碱性条件下(pH=12)水热合成了3nm的SnO2纳米颗粒。Guo等人使用水热晶化法,通过调节SnCl4和NaOH的摩尔比,即体系的pH值,控制合成出空心微球、中空核-壳微球和纳米颗粒三种形态的二氧化锡。水热过程中,不同的结构导向剂也能控制二氧化锡的形貌结构。例如,Guo等人同样使用SnCl4玩为锡源,在CTAB模板剂的作用下,水热获得了棒状纳米二氧化锡。而Han等人换用环六亚甲基四胺作为结构导向剂,依旧使用SnCl4作为锡源,水热合成了核-壳结构的二氧化锡微球。Sun等人使用PVP(MW=30000)作为结构导向剂,并换用SnC12?2H2O作为锡源,双氧水预处理后,水热获得了蒲公英状二氧化锡。 在各种结构导向剂中,油酸分子由于能在颗粒表面选择性吸附,从而可以有效地引导各种结构的形成,并对纳米微粒起到稳定保护作用。 固液界面反应: 在纳米材料的制备过程中,通常会发生氧化、水解、沉淀等各种化学反应。利用在两相界面发生的化学反应来控制材料的合成引起了一定的关注。Kang等人利用水相与油相界面Sn2+的氧化反应制备出了不同粒径大小的二氧化锡纳米材料。由于水-油界面的存在,产物的结晶度比较高,尺寸分布也较窄。Deng等人使用PVP(MW=30000)作为保护试剂,乙二胺作为催化剂,过氧化氢作为氧化剂,室温下,利用单质锡块与水的界面发生的氧化反应,获得了由约3.8nm的纳米晶自组装形成的纳米球。纳米球的直径约为30nm,且具有良好的分散性。Wang 等人基于liquid-solid-solution(LSS)相转移原理合成了一系列纳米材料,其实也利用了界面间的化学反应。在这些利用界面反应控制纳米材料合成的文献中,有些纳米材料的制备其实也运用了水热晶化过程,综合利用了界面反应与水热晶化两者在材料控制合成方面的优势。 金属油酸盐是一种合成无机纳米材料比较理想的有机前驱物,它不能溶解于水或一些低碳醇(如乙醇)中,而会形成固液界面相。对于油酸锡而言,它又易发生水解反应。所以在本章中使用油酸锡作为锡源,利用固液界面反应-水热晶化过程来制备二氧化锡纳米材料。并且在油酸锡的水解过程中,可生成目前较受关注的油酸表面修饰结构导向剂。 二、实验步骤 所有原料均未作任何纯化处理,直接使用。首先,10mL去离子水中溶解

环氧树脂POSS纳米杂化材料的制备及其性能研究

环氧树脂/POSS 纳米杂化材料的制备及其性能研究 薛裕华,冯连芳**,王嘉骏,胡国华 (浙江大学 聚合反应工程国家重点实验室,杭州 310027) 多面体低聚倍半硅氧烷(polyhedral oligomeric silsesquioxane 简称POSS )是一种纳米尺度笼状结构的化合物,又称立方硅烷[1]。带反应官能团的POSS 可以和传统的聚合物形成有机/无机杂化材料,近年来在国际上受到广泛的关注[2]。环氧树脂(EP )是目前使用最广的工程树脂之一,但其韧性低和耐高温性差限制了它的使用。本文首先合成乙烯基多面体低聚倍半硅氧烷(OvPOSS )和环氧基低聚倍半硅氧烷(epoxy-POSS ),进一步原位聚合制备了EP/OvPOSS 复合材料和EP/epoxy-POSS 杂化材料。用XRD, SEM 和弯曲试验对其结构和性能进行了表征。 八乙烯基多面体低聚倍半硅氧烷(OvPOSS)由乙烯基三氯硅烷水解得到,再用过氧乙酸环氧化得到部分环氧化的多面体低聚倍半硅氧烷(epoxy-POSS)。用少量四氢呋喃将epoxy-POSS 完全溶解,然后与一定量的2-甲基戊二胺(Dytec A)和双酚A 缩水甘油醚(DGEBA)混合均匀,用超声波振荡半小时,常温真空抽提一小时以脱除溶剂四氢呋喃,先在60oC 下固化12小时, 100oC 下再固化1小时,合成路线如图1所示。EP/OvPOSS 复合材料用同样的方法制得。 H 2C CH Si Cl Cl o o o o + DGEBA H 2N NH 2 Dytec A + epoxy-POSS (1) (2) Fig.1 Schematic of formation of epoxy resin-POSS hybrids 将环氧树脂、EP/OvPOSS 复合材料和EP/epoxy-POSS 杂化材料的XRD 谱图进行了对比,如图2所示。EP/OvPOSS 复合材料的XRD 谱图在2θ=9.8o处存在着明显的POSS 结晶峰(图2A),是由于OvPOSS 与环氧树脂之间没有化学键连接,固化后OvPOSS 仍然以晶体形式存在。而EP/epoxy-POSS 杂化材料却没有明显的POSS 结晶峰(图2B), 并且17.8处的无定形峰也没有纯环氧树脂那么明显,表明epoxy-POSS 与环氧树脂之间以化学键连接, * 国家重点基础研究发展计划项目资助(2001CB711203)** 通讯联系人:冯连芳, E-mail :fenglf@https://www.360docs.net/doc/b23821870.html, 5 10 15 20 25 30 35 40 45 50 17.8 B A C 9.8 2 A: EP/3wt%OvPOSS B: EP/3wt%epoxy-POSS C: epoxy resin Fig. 2. XRD curves of: (A)EP/OvPOSS composites (B)EP/epoxy-POSS hybrids (C)epoxy resin

纳米材料的特性和应用

纳米材料的特性和应用 摘要本文简要介绍了纳米材料的分类及特性,并对纳米材料在化工、生物医学、环境、食品等领域的应用进行了综述,最后对纳米材料的发展趋势进行了展望。关键词纳米材料;分类;特性;应用;发展 1 引言 有科学家预言, 在21 世纪纳米材料将是“最有前途的材料”, 纳米技术甚至会超过计算机和基因学, 成为“决定性技术”。国际纳米结构材料会议于1992 年开始召开(两年一届) , 并且目前已有数种与纳米材料密切相关的国际期刊。德国科学技术部预测到2010 年纳米技术市场为14 400 亿美元, 美国政府自2000 年 克林顿总统启动国家纳米计划以来, 已经为纳米技术投资了大约20 亿美元。同时, 欧盟在2002~2006 年期间将向纳米技术投资10 多亿美元。日本2002 年的纳米技术开支已经从1997 年的1. 20 亿美元提高到7. 50 亿美元。 2 纳米材料及其分类 纳米材料(nano- material)又称为超微颗粒材料,由纳米粒子组成。粒子尺寸范围在1-100 nm 之间,它是由尺寸介于原子、分子和宏观体系之间的纳米粒子所组成的新一代材料。根据三维空间中未被纳米尺度约束的自由度计,将纳米材料大致可分成四种类型,即零维的纳米粉末(颗粒和原子团簇)、一维的纳米纤维(管)、二维的纳米膜、三维的纳米块体。 3 纳米材料的特性1 3.1 小尺寸效应 当纳米晶粒的尺寸与传导电子的德布罗意波长相当或更小时, 周期性的边界条件将被破坏, 使其磁性、内压、光吸收、热阻、化学活性、催化性及熔点等与普通粒子相比都有很大变化。如银的熔点约为900℃, 而纳米银粉熔点仅为100℃, 一般纳米材料的熔点为其原来块体材料的30%~50%。 3.2 表面效应 纳米晶粒表面原子数和总原子数之比随粒径变小而急剧增大后所引起的性质变化。纳米晶粒的减小, 导致其表面热、表面能及表面结合能都迅速增大, 致使它表现出很高的活性,如日本帝国化工公司生产的T iO2平均粒径为15 nm , 比

无机纳米相_纳米纤维素杂化纳米材料的研究进展

第48卷第1期 2014年1月生物质化学工程Biomass Chemical Engineering Vol.48No.1 Jan.2014 doi :10.3969/j.issn.1673-5854.2014.01.006 ·综述评论———生物质材料· 无机纳米相-纳米纤维素杂化纳米材料的研究进展 收稿日期:2013-09-16 基金项目:国家自然科学基金(31000276);福建省高校杰出青年人才基金(JA11071);福建省高校新世纪优秀人才基金(JA12088); 福建农林大学杰出青年人才基金(xjq201208) 作者简介:吴巧妹(1987—),女,福建三明人, 硕士生,主要从事植物纳米纤维素复合材料的研究*通讯作者:陈燕丹,博士,副教授,硕士生导师,主要研究方向是生物质材料的制备与功能化设计;E- mail :fjaucyd@163.com 。吴巧妹,陈燕丹*,黄彪,陈学榕 (福建农林大学材料工程学院,福建福州350002) 摘要:分别介绍了近年来利用贵金属纳米粒子、无机陶瓷纳米相(包括金属氧化物、金属硫化物、黏土类、纳米羟基磷灰石和纳米碳酸钙)、磁性纳米纤维素、 碳纳米相与纳米纤维素进行复合的研究进展,并建议加强对纳米纤维素基杂化材料的基础理论研究,改进现有制备方法并开发出更加节能减耗的新方法,以及更多极具应用前景的无机纳米材料实现优势互补的分子级复合,定向设计合成出适用不同场合、满足不同需求的高性能、多功能新型先进复合材料。 关键词:纳米纤维素;杂化纳米材料;无机纳米粒子;碳纳米相 中图分类号:TQ35;O636.1文献标识码:A 文章编号:1673- 5854(2014)01-0028-09Advances in Inorganic-nanocellulose Hybrid Nanomaterials WU Qiao-mei ,CHEN Yan-dan ,HUANG Biao ,CHEN Xue-rong (College of Materials Engineering ,Fujian Agriculture and Forestry University ,Fuzhou 350002,China ) Abstract :This paper summarized the recent R&D progresses on nanocellulose hybrid composites incorporated with noble metal nanoparticles ,nano ceramic compounds (including metal oxides ,metal sulfides ,nano-clay ,nano-hydroxyapatite ,nano-calcium carbonate ),magnetic nanoparticles and nano-carbon materials ,respectively.An overview on the challenge and development prospects of the nanocellulose-based hybrid composites was discussed ,too. Key words :nanocellulose ;hybrid nanocomposites ;inorganic nanoparticles ;nano-carbon materials 无机-有机杂化纳米材料是继单组分材料、复合材料和梯度功能材料之后的第四代新材料[1]。纳米纤维素是一种新型的生物纳米材料,具有特殊的结构特点和优良的性能。无机纳米相-纳米纤维素杂化纳米材料因兼具或超越了纳米纤维素和无机纳米材料单一组分的性能优点,而成为纳米纤维素复合材料的研究热点。利用物理、化学、生物方法制备获得的天然纳米纤维素依次为微纤丝化纤维素(MFC )或纳纤丝化纤维素(NFC )、纳米晶体纤维素(NCC )和细菌纳米纤维素(BNC )。以纳米纤维素作为结构增强相和兼具生物大分子模板效应的天然高分子基体,在绿色高性能纳米复合材料的设计组装中日益扮演重要角色。在过去的十几年里,国内外针对纳米纤维素的制备、表征、表面修饰及其复合材料开展了较多的研究工作[2-4]。目前,交叉结合纳米科学、化学、物理学、材料学、生物学及仿生学等学科,利用共混法、溶胶-凝胶法、插层法、模板组装法、非共价弱相互作用复合法和仿生矿化等方法,进一步将纳米纤维素优越的机械性能与功能性无机纳米材料进行优势互补,构筑结构可塑、稳定,集轻质和强韧于一身的新型无机纳米相-纳米纤维素杂化纳米材料,正在成为国内外科学家竞相开展的研究课题。本文主要针对国内外纳米纤维素与各种无机纳米相杂化复合,制备功能型纳米纤维素新材料的研究进展进行综述。

纳米材料的热学特性

纳米材料的热学特性 【摘要】:纳米材料的应用及其广泛,涉及到各个领域。本文将从纳米材料的热容,晶格参数,结合能,内聚能,熔点,溶解焓,溶解熵及纳米材料参与反应时反应体系的化学平衡等方面对纳米材料的热学性质的研究进行阐述,并对纳米材料热学的研究和应用前景进行了展望。 【关键词】:纳米材料热学特性发展前景 【正文】: (一)纳米材料 纳米材料是一种既不同于晶态,又不同于非晶态的第三类固体材料,通常指三维空间尺寸至少有一维处于纳米量级( 1 n m~1 0 0 n m)的固体材料。由于纳米材料粒径小,比表面积大,处于粒子表面无序排列的原子百分比高达l 5 ~5 0 %。纳米粒子的这种特殊结构导致其具有不同于传统材料的物理化学特性。 纳米材料的高浓度界面及原子能级的特殊结构使其具有不同于常规块体材料和单个分子的性质,纳米材料具有表面效应,体积效应,量子尺寸效应宏观量子隧道效应等,从而使得纳米材料热力学性质具有特殊性,纳米材料的各种热力学性质如晶格参数,结合能,熔点,熔解焓,熔解熵,热容等均显示出尺寸效应和形状效应。可见,纳米材料热力学性质在各方面均显现出与块体材料的差异性,研究纳米材料的热力学性质具有极其重要的科学意义和应用价值。 (二)热学特性 一热容 1996年,在低温下测定了纳米铁随粒度变化的比热,发现与正常的多晶铁相比,纳米铁出现了反常的比热行为,低温下的电子比热系数减50 %。1998年,通过研究了粒度和温度对纳米粒子热容的影响,建立了一个预测热容的理论模型,结果表明:过剩的热容并不正比于纳米粒子的比表面,当比表面远小于其物质的特征表面积时,过剩的热容可以认为与粒度无关。2002年,又把多相纳米体系的热容定义为体相和表面相的热容之和,因为表面热容为负值,所以随着粒径的减小和界面面积的扩大,将导致多相纳米体系总的热容的减小,二.晶格参数,结合能,内聚能 纳米微粒的晶格畸变具有尺寸效应,利用惰性气体蒸发的方法在高分子基体上制备了1. 45nm 的pd纳米微粒,通过电子微衍射方法测试了其晶格参数,发现Pd 纳米微粒的晶格参数随着微粒尺寸的减小而降低。结合能的确比相应块体材料的结合能要低。通过分子动力学方法,模拟Pd 纳米微粒在热力学平衡时的稳定结构,并计算微粒尺寸和形状对 晶格参数和结合能的影响,定量给出形状对晶格参数和结合能变化量的贡献研究表明:在一定的形状下,纳米微粒的晶格参数和结合能随着微粒尺寸的减小而降低,在一定尺寸时,球形纳米微粒的晶格参数和结合能要高于立方体形纳米微粒的相应量。 三纳米粒子的熔解热力学 熔解温度是材料最基本的性能,几乎所有材料的性能如力学性能,物理性能以及化学性能都是工作温度比熔解温度( T /Tm )的函数,除了熔解温度外,熔解焓和熔解熵也是描述材料熔解热力学的重要参量;熔解焓表示体系在熔解的过程中,吸收热量的多少,而熔解熵则是体系熔解过程中熵值的变化。几乎整个熔解热力学理论就是围绕着熔解温度,熔解熵和

纳米材料的制备与合成

纳米材料的合成与制备 (1) 摘要 (1) 关键词 (1) The synthesis and preparation of nanomaterials (1) Abstract (1) Keywords (1) 引言 (1) 1纳米材料的化学制备 (1) 1.1纳米粉体的湿化学法制备 (1) 1.2纳米粉体的化学气相法制备 (2) 1.2.1气体冷凝法 (2) 1.2.2溅射法 (2) 1.2.3真空蒸镀法 (2) 1.2.4等离子体方法 (3) 1.2.5激光诱导化学气相沉积法(LICVD) (3) 1.2.6爆炸丝方法 (3) 1.2.7燃烧合成法 (3) 1.3纳米薄膜的化学法制备 (4) 1.4纳米单相及复相材料的制备 (4) 2纳米材料的物理法制备 (5) 2.1纳米粉体(固体)的惰性气体冷凝法制备 (5) 2.2纳米粉体的高能机械球磨法制备 (5) 2.3纳米晶体非晶晶化方法制备 (6) 2.4深度塑性变形法制备纳米晶体 (6) 2.5纳米薄膜的低能团簇束沉积方法(LEBCD)制备 (6) 2.6纳米薄膜物理气相沉积技术 (6) 3纳米材料的应用展望 (7) 4 总结 (7) 参考文献 (8)

纳米材料的合成与制备 摘要本文综述了近年来在纳米材料合成与制备领域的一些最新研究进展,包括纳米粉体、块体及薄膜材料的物理与化学方法制备。从纳米材料合成和制备的角度出发,较系统的阐述了纳米材料合成与制备的最新研究进展,包括气相法,液相法及固相法合成与制备纳米材料;并介绍了纳米材料在高科技领域中的应用展望。 关键词纳米材料,合成,制备 The synthesis and preparation of nanomaterials Abstract This paper summarized the recent years in the field of nanometer material synthesis and preparation of some of the latest research progress, including nano powder, bulk and thin film materials preparation physical and chemical methods. From the perspective of nano material synthesis and preparation, systematically expounds the synthesis and the latest progress in the preparation of nanometer materials, including gas phase, liquid phase method and solid phase synthesis and preparation of nano materials; And introduces the application of nanomaterials in the field of high-tech prospects. Keywords nano materials, synthesis, preparation 引言 纳米材料是晶粒尺寸小于100nm的单晶体或多晶体,由于晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,因而使纳米材料有许多不同于一般粗晶材料的性能,如强度硬度增大、低密度、低弹性模量、高电阻低热导率等。正是因为纳米材料具有这些优良性能,因此纳米材料在今后一定有着广泛的应用。本文系统地阐述纳米材料的结构、性能、制备以及应用,以获得对纳料材料更为深刻和全面的理解。[1] 纳米材料的制备科学在当前纳米材料科学研究中占据极为重要的地位。新的材料制备工艺和过程的研究与控制对纳米材料的微观结构和性能具有重要的影响.纳米材料的合成与制备包括粉体、块体及薄膜材料的制备。 1纳米材料的化学制备 1.1纳米粉体的湿化学法制备 湿化学法制备工艺主要适用于纳米氧化物粉体,它具有无需高真空等苛刻物理条件、易放大的特点,并且得到的粉体性能比较优异。 上海硅酸盐所在采用共沉淀法、乳浊液法、水热法图等湿化学法制备氧化错

杂化纳米材料

材料的制备与技术 姓名:李菁 学号:20134209204

杂化纳米复合材料的介绍及研究进展 摘要:有机-无机杂化纳米材料由于小尺寸和兼具有机、无机材料的各种优良性质, 在许多领域都有巨大的应用潜质。本文对杂化纳米复合材料的简介,制备方法,表征方法以及研究进展进行了说明。 有机一无机杂化材料(OIHMs)是20世纪80年代中期以来迅速发展的新的边缘研究领域。它是无机化学、有机化学、介观物理与材料科学等多学科渗透交叉的结果,这种杂化材料综合了无机材料、有机材料和纳米材料的优良特性,已在高技术领域如纤维光学、波导、非线性光学、微电子印刷电路等方面得到应用,也将在低密度、高强度、高韧性材料,光电传感材料,磁性材料等领域得到应用。OIHMs系指有机和无机材料在纳米级的杂化。包括在有机基质上分散无机纳米粒子和在无机材料中添加(通常为纳米材料)纳米级有机物。该种材料综合了无机、有机和纳米材料的特性,正成为一个新兴的极富生命力的研究领域,吸引着众多的研究者[1]。这种材料的优势主要表现在:①无机网络中引入有机相增加其柔韧性,赋予无机材料新的性能;②在有机聚合物中引入无机相提高其强度、模量、耐磨性等;③制备性能独特的新型材料,如热塑性材料等。[2]1.杂化纳米材料的基本简介 杂化纳米材料是通过溶胶-凝胶技术制造的。溶胶-凝胶技术是指有机或无机化合物经过溶液、溶胶、凝胶固化,再经热处理而得到氧化物或其它化合物的方法。 呈玻璃态。20世纪30~70年代,化19世纪中叶,正硅酸乙酯水解形成的SiO 2 学家、矿物学家、陶瓷学家、玻璃学家等分别通过溶胶-凝胶技术制备出了各自的研究对象,核化学家利用溶胶-凝胶技术制备了核燃料,避免了危险粉尘的产生。 20世纪80年代是溶胶-凝胶技术发展的高峰时期,发展了胶体溶胶-凝胶过程、无机聚合物溶胶-凝胶过程、复合溶胶-凝胶过程等3种主要溶胶-凝胶技术,合成了许多可工业化的溶胶-凝胶前驱体,不仅有无机前驱体,也有大量的有机前驱体。主要用于制备粉体材料、薄膜材料、块体材料、纤维材料等。用溶胶-凝胶技术将有机功能分子或聚合物掺入到无机网络中,可克服陶瓷、玻璃的缺陷,

纳米材料的制备以及表征教学总结

纳米材料的制备以及表征 纳米科技作为21世纪的主导科学技术,将会给人类带来一场前所未有的新的工业革命。纳米科技使我们人类认识和改造物质世界的手段和能力延伸到原子和分子。纳米材料是目前材料科学研究的一个热点,纳米材料是纳米技术应用的基础。科学家们正致力于研究对纳米材料的组成、结构、形态、尺寸、排列等的控制,以制备符合各种预期功能的纳米材料。 低维纳米材料因其具有独特的物理化学特性以及在各个同领域的广泛应用 而受到国内外许多科研小组的广泛关注。钒氧化物纳米材料因为具有良好的催化性能、传感特性及电子传导特性而成为研究低维纳米材料物理化学现象的理想体系。尤其是对钒氧化合物纳米线、纳米带、纳米管的结构与性能的研究日益深入。另外,稀土正硼酸盐纳米材料因其独特的发光性能、电磁性能引起了广大科研小组的浓厚兴趣,是低维纳米材料领域研究的一个热点内容。 1.绪论 1.1纳米材料的发展概况 早在60年代,东京大学的久保良吾(Kubo)就提出了有名的“Kubo效应”, 认为金属超微粒子中的电子数较少,而不遵守Femri统计,并证实当结构单元变得比与其特性有关的临界长度还小时,其特性就会发生相应的变化。70年代末80年代初,随着干净的超微粒子的制取及研究,“Kubo效应”理论日趋完善, 为日后纳米技术理论研究打下了基础。人们对纳米颗粒的结构、形态和特性进行了比较系统的研究,描述金属微粒费密面附近电子能级状态的久保理论日趋完善,并且用量子尺寸效应成功地解释了超微粒子的某些特性[3]。最早使用纳米颗粒 制备三维块体试样的是德国萨尔兰大学教授H.Gletier,他于1984年用惰性气体蒸发、原位加压法制备了具有清洁表面的纳米晶Pd、cu、Fe等[4],并从理论及性能上全面研究了相关材料的试样,提出了纳米晶材料的概念,成为纳米材料的创始者。1987年美国Argon实验室sigeel博士课题组用相同方法制备了纳米陶 瓷TIOZ多晶体。纳米技术在80年代末和90年代初得到了长足发展,并逐步成为一个纳米技术体系。1990年7月,第一届国际纳米科技会议在美国巴尔的摩 召开,标志着纳米科学技术的正式诞生;正式提出了纳米材料学、纳米生物学、

纳米杂化材料的研究与进展

纳米杂化材料的研究与进展 【摘要】有机.无机杂化纳米材料由于小尺寸和兼具有机、无机材料的各种优良性质,在许多领域都有巨大的应用潜质。本文介绍了模板法、嵌段聚合物自组装、含特殊官能团的乙烯基单体直接聚合法等制备纳米有机一无机杂化材料的方法,并对各自的特点进行了说明。 【前言】纳米材料由于其大比表面积的特殊性质,使之在纳米和分子水平范围内具有特殊的应用性能,已成为材料科学中最为热门和前沿的研究领域。有机.无机杂化材料兼具聚合物的低密度、高韧性、可塑性以及无机材料的透明性、高折射率、表面坚硬性等诸多优良性质,同时容易剪裁成具有特殊结构的材料,如微胶囊、核.壳型颗粒、毛细管等等,所以有机一无机杂化纳米材料在光学、催化、微电子、包装、生物、制药等行业内都有巨大的潜在应用。 【正文】 1 在无机粒子外包覆聚合物 为了增加有机.无机间的亲和力,偶联剂在此类制备过程中被广泛应用,Carris等利用有机钛偶联剂,在二氧化钛胶粒表面通过化学键作用或物理缠结作用包覆了一层聚甲基丙烯酸甲酯聚合物。Espiard等用类似的方法,用甲基丙烯酸一3.三甲氧基硅丙酯(MPS)作为偶联剂,在硅胶体外包裹一层甲基丙烯酸乙酯聚合物,这种杂化胶体颗粒可形成完全透明的膜,且具有与硫化橡胶类似的优良的力学性能。Carris等对用憎水基团改性过的钛胶体颗粒,使十二烷基硫酸钠吸附于其表面,然后引发聚合反应形成有机层。带有正电荷的氧化铁胶

体颗粒表面,可成功吸附双层十二烷基硫酸钠乳化剂而保存胶体稳定,在吸附过程中利用超声分散,避免聚并。后来,Quaroni等利用油酸在银胶体粒子表面的吸附,形成聚苯乙烯/聚丙烯酸甲酯共聚物壳n ,同样,油酸也可以在磁性胶体颗粒外吸附,进而制备杂化粒子。单体同样能够先吸附于无机粒子表面,然后再引发聚合。主要是选用带有酸性或碱性的单体,利用酸碱作用机理进行吸附,然后与苯乙烯、甲基丙烯酸甲酯、丙烯酸丁酯、甲基丙烯酸丁酯在粒子表面进行共聚,由此合成的杂化粒子制成的膜具有高玻璃化、高透明度等特点。Armes 等利用碱性的4.乙烯基吡啶与表面为酸性的二氧化硅胶体颗粒之问的吸附,然后引发聚合形成杂化纳米粒子。Mafikanos等用类似的方法,使用相应的单体聚合形成聚吡咯和聚Ⅳ.甲基吡咯/金杂化颗粒。另外,使用可聚合的表面活性剂(如甲基丙烯酸二甲基乙基氨盐),其兼具表面活性剂和单体的作用,它的吸附提高了包覆的效率。 另外一种路线是在无机粒子表面利用与粒子表面电荷相反的引发剂进行吸附,后引发聚合反应,其吸附过程可由介质的pH值控制17]。AIBA与合适的表面活性剂一起吸附后,可在二氧化硅胶体颗粒表面引发聚合并在其表面杂凝聚,形成杂化粒子。根据二氧化硅胶体颗粒的大小,这种杂化粒子分别呈现出草莓状结构和规整的核.壳结构。最近,利用微乳液聚合方法制备杂化纳米粒子也被广泛研究,这种方法是在无机粒子外吸附憎水物,后分散于憎水单体中,然后加入到含有表面活性剂的水溶液中,高速搅拌后形成单体包裹于无机粒子外的胶束,引发聚合后即形成杂化纳米粒子,其关键是无机粒子在单体中的分散。Erdem等利用聚异丁烯琥珀酰胺良好的稳定作用,在二氧化钛胶体颗粒外成功进行了聚合。

相关文档
最新文档