知识图谱技术原理介绍

知识图谱技术原理介绍
知识图谱技术原理介绍

知识图谱技术原理介绍

近两年来,随着Linking Open Data1等项目的全面展开,语义Web数据源的数量激增,大量RDF数据被发布。互联网正从仅包含网页和网页之间超链接的文档万维网(Document Web)转变成包含大量描述各种实体和实体之间丰富关系的数据万维网(Data Web)。在这个背景下,Google、百度和搜狗等搜索引擎公司纷纷以此为基础构建知识图谱,分别为Knowledge Graph、知心和知立方,来改进搜索质量,从而拉开了语义搜索的序幕。下面我将从以下几个方面来介绍知识图谱:知识图谱的表示和在搜索中的展现形式,知识图谱的构建和知识图谱在搜索中的应用等,从而让大家有机会了解其内部的技术实现和各种挑战。

知识图谱的表示和在搜索中的展现形式

正如Google的辛格博士在介绍知识图谱时提到的:“The world is not made of strings , but is made of things.”,知识图谱旨在描述真实世界中存在的各种实体或概念。其中,每个实体或概念用一个全局唯一确定的ID来标识,称为它们的标识符(identifier)。每个属性-值对(attribute-value pair,又称A VP)用来刻画实体的内在特性,而关系(relation)用来连接两个实体,刻画它们之间的关联。知识图谱亦可被看作是一张巨大的图,图中的节点表示实体或概念,而图中的边则由属性或关系构成。上述图模型可用W3C提出的资源描述框架RDF2或属性图(property graph)3来表示。知识图谱率先由Google提出,以提高其搜索的质量。

为了更好地理解知识图谱,我们先来看一下其在搜索中的展现形式,即知识卡片(又称Knowledge Card)。知识卡片旨在为用户提供更多与搜索内容相关的信息。更具体地说,知识卡片为用户查询中所包含的实体或返回的答案提供详细的结构化摘要。从某种意义来说,它是特定于查询(query specific)的知识图谱。例如,当在搜索引擎中输入“姚明”作为关键词时,我们发现搜索结果页面的右侧原先用于置放广告的地方被知识卡片所取代。广告被移至左上角,而广告下面则显示的是传统的搜索结果,即匹配关键词的文档列表。这个布局上的微调也预示着各大搜索引擎在提高用户体验和直接返回答案方面的决心。图1从左到右依次是Google、百度和搜狗在搜索结果首页中所展现的与姚明相关的知识卡片。1https://www.360docs.net/doc/b24211406.html,/

2https://www.360docs.net/doc/b24211406.html,/TR/rdf-concepts/

3https://https://www.360docs.net/doc/b24211406.html,/tinkerpop/blueprints/wiki/Property-Graph-Model

图1. 当搜索“姚明”时,Google 、百度和搜狗所展示的知识卡片

虽说三大搜索引擎在知识卡片的排版和内容展现上略有不同,但是它们都列出了姚明的身高、体重、民族等属性信息。此外,它们均包含“用户还搜索了”或“其他人还搜”的功能来展现相关的人物。该功能允许用户去浏览其他与姚明相关的人物的详细信息。细心的读者也发现Google 在其知识卡片中也展示了很多与姚明相关的图片,以图文并茂的方式来展示姚明的方方面面。百度则结合了百度风云榜的信息,列出了姚明的类别(体坛人物)及其百度指数(今日排名和今日搜索热度等信息)。在搜索结果页面的左上角(在图中未给出),百度还展示了其特有的专题搜索,包含了与姚明相关的百科、图片、微博、新闻、音乐、贴吧和视频等七大类的结果,基本涵盖了用户最基本的需求。搜狗在列出与姚明相关的百科、图片,电影和最新相关消息等专题的同时,其知识卡片额外显示了诸如“主持电视节目”、“效力篮球队”、“人物关系”等各种细粒度的语义关系。当遇到含有歧义的用户查询时,知识卡片还会列出其他可能的查询目标对象。在上面的例子中,搜狗还列出了一项“您是否要找”的功能,列出一位也叫姚明的一级作曲家。该功能用于去歧义,在显示最相关实体的同时也给出其他可能的对象,达到去歧义的作用。当搜索“李娜”或“长城”时,Google 和百度也在其知识卡片下方展现

了类似的功能。除了给出著名网球运动员李娜和万里长城之外,它们还列出歌手李娜和长城汽车供用户选择和浏览。更值得一提的是,当在搜狗知立方中输入“姚明的老婆的女儿的身高”如此复杂的查询时,其会直接返回其女儿的姓名(姚沁蕾)以及其身高(110cm),并给出推理说明“叶莉的女儿是姚沁蕾”。如此详实的说明不仅为返回的答案提供了很好的解释,从另一个侧面也展示了知识图谱的强大,其不仅能识别出运动员姚明,也能抽取出关系“老婆”和“女儿”和属性“身高”等信息。当我们将查询修改为“姚明的妻子的女儿的身高”时,依然返回相同的结果,这也意味着知识图谱知道“妻子”和“老婆”代表相同的含义。

通过上述的介绍,大家应该对知识图谱的表示以及其在搜索中的展现形式有了更深的了解。接着,我将介绍知识图谱的构建以及如何在搜索中应用知识图谱返回相应的知识卡片以及答案。

知识图谱的构建

1.知识图谱的规模

据不完全统计,Google知识图谱到目前为止包含了5亿个实体和35亿条事实(形如实体-属性-值,和实体-关系-实体)。其知识图谱是面向全球的,因此包含了实体和相关事实的多语言描述。不过相比占主导的英语外,仅包含其他语言(如中文)的知识图谱的规模则小了很多。与此不同的是,百度和搜狗主要针对中文搜索推出知识图谱,其知识库中的知识也主要以中文来描述,其规模略小于Google的。

2.知识图谱的数据来源

为了提高搜索质量,特别是提供如对话搜索和复杂问答等新的搜索体验,我们不仅要求知识图谱包含大量高质量的常识性知识,还要能及时发现并添加新的知识。在这种背景下,知识图谱通过收集来自百科类站点和各种垂直站点的结构化数据来覆盖大部分常识性知识。这些数据普遍质量较高,更新比较慢。而另一方面,知识图谱通过从各种半结构化数据(形如HTML表格)抽取相关实体的属性-值对来丰富实体的描述。此外,通过搜索日志(query log)发现新的实体或新的实体属性从而不断扩展知识图谱的覆盖率。相比高质量的常识性知识,通过数据挖掘抽取得到的知识数据更大,更能反映当前用户

的查询需求并能及时发现最新的实体或事实,但其质量相对较差,存在一定的错误。这些知识利用互联网的冗余性在后续的挖掘中通过投票或其他聚合算法来评估其置信度,并通过人工审核加入到知识图谱中。

a)百科类数据

维基百科4,通过协同编辑,已经成为最大的在线百科全书,其质量与大英百科媲美。可以通过以下方式来从维基百科中获取所需的内容:通过文章页面(Article Page)抽取各种实体;通过重定向页面(Redirect Page)

获得这些实体的同义词(又称Synonym);通过去歧义页面(Disambiguation Page)和内链锚文本(Internal Link Anchor Text)获得它们的同音异义词(又称Homonym);通过概念页面(Category Page)获得各种概念以及其上下位(subclass)关系;通过文章页面关联的开放分类抽取实体所对应的类别;通过信息框(Infobox)抽取实体所对应的属性-值对和关系-实体对。类似地,从百度百科和互动百科抽取各种中文知识来弥补维基百科中文数据不足的缺陷。此外,Freebase5是另一个重要的百科类的数据源,其包含超过3900万个实体(其称为Topics)和18亿条事实,规模远大于维基百科。对比之前提及的知识图谱的规模,我们发现仅Freebase一个数据源就构成了Google知识图谱的半壁江山。更为重要的是,维基百科所编辑的是各种词条,这些词条以文章的形式来展现,包含各种半结构化信息,需要通过事先制定的规则来抽取知识;而Freebase则直接编辑知识,包括实体及其包含的属性和关系,以及实体所属的类型等结构化信息。因此,不需要通过任何抽取规则即可获得高质量的知识。虽然开发Freebase的母公司MetaWeb于2010年被Google收购,Freebase还是作为开放的知识管理平台独立运行。所以百度和搜狗也将Freebase加入到其知识图谱中。

b)结构化数据

除了百科类的数据,各大搜索引擎公司在构建知识图谱时,还考虑其他结构化数据。其中,LOD项目在发布各种语义数据的同时,通过owl:sameAs将新发布的语义数据中涉及的实体和LOD中已有数据源所包含的潜在同一实体进行关联,从而实现了手工的实体对齐(entity

4https://www.360docs.net/doc/b24211406.html,/

5https://www.360docs.net/doc/b24211406.html,/

alignment)。LOD不仅包括如DBpedia6和YAGO7等通用语义数据集,还包括如MusicBrainz8和DrugBank9等特定领域的知识库。因此,Google等通过整合LOD中的(部分)语义数据提高知识的覆盖率,尤其是垂直领域的各种知识。此外,Web上存在大量高质量的垂直领域站点(如电商网站,点评网站等),这些站点被称为Deep Web10。它们通过动态网页技术将保存在数据库中的各种领域相关的结构化数据以HTML表格的形式展现给用户。各大搜索引擎公司通过收购这些站点或购买其数据来进一步扩充其知识图谱在特定领域的知识。这样做出于三方面原因:其一、大量爬取这些站点的数据会占据大量带宽,导致这些站点无法被正常访问;其二、爬取全站点数据可能会涉及知识产权纠纷;最后,相比静态网页的爬取,Deep Web爬虫需要通过表单填充(Form Filling)技术来获取相关内容,且解析这些页面中包含的结构化信息需要额外的自动化抽取算法,具体细

节在下一节描述。

c)半结构化数据挖掘A VP

虽然从Deep Web爬取数据并解析其中所包含的结构化信息面临很大的挑战,各大搜索引擎公司仍在这方面投入了大量精力。一方面,Web 上存在大量长尾的结构化站点,这些站点提供的数据与最主流的相关领域站点所提供的内容具有很强的互补性,因此对这些长尾站点进行大规模的信息抽取(尤其是实体相关的属性-值对的抽取)对于知识图谱所含内容

的扩展是非常有价值的。另一方面,中文百科类的站点(如百度百科等)的结构化程度远不如维基百科,能通过信息框获得A VP的实体非常稀少,大量属性-值对隐含在一些列表或表格中。一个切实可行的做法是构建面

向站点的包装器(Site-specific Wrapper)。其背后的基本思想是:一个Deep Web站点中的各种页面由统一的程序动态生成,具有类似的布局和结构。

利用这一点,我们仅需从当前待抽取站点采样并标注几个典型详细页面

(Detailed Pages),利用这些页面通过模式学习算法(Pattern Learning)6https://www.360docs.net/doc/b24211406.html,/

7http://www.mpi-inf.mpg.de/yago-naga/yago/

8https://www.360docs.net/doc/b24211406.html,/

9http://www.drugbank.ca/

10相对以静态网页和超链接关联的浅层Web(Shallow Web)而言,称为深层Web。

自动构建出一个或多个以类Xpath表示的模式,然后将其应用在该站点的其他详细页面中从而实现自动化的A VP抽取。对于百科类站点,我们可以将具有相同类别的页面作为某个“虚拟”站点,并使用类似的方法进行实体A VP的抽取。自动学习获得的模式并非完美,可能会遗漏部分重要的属性,也可能产生错误的抽取结果。为了应对这个问题,搜索引擎公司往往通过构建工具来可视化这些模式,并人工调整或新增合适的模式用于抽取。此外,通过人工评估抽取的结果,将那些抽取结果不令人满意的典型页面进行再标注来更新训练样本,从而达到主动学习(Active Learning)的目的。

d)通过搜索日志进行实体和实体属性等挖掘

搜索日志是搜索引擎公司积累的宝贵财富。一条搜索日志形如<查询,点击的页面链接,时间戳>。通过挖掘搜索日志,我们往往可以发现最新出现的各种实体及其属性,从而保证知识图谱的实时性。这里侧重于从查询的关键词短语和点击的页面所对应的标题中抽取实体及其属性。选择查询作为抽取目标的意义在于其反映了用户最新最广泛的需求,从中能挖掘出用户感兴趣的实体以及实体对应的属性。而选择页面的标题作为抽取目标的意义在于标题往往是对整个页面的摘要,包含最重要的信息。据百度研究者的统计,90%以上的实体可以在网页标题中被找到。为了完成上述抽取任务,一个常用的做法是:针对每个类别,挑选出若干属于该类的实体(及相关属性)作为种子(Seeds),找到包含这些种子的查询和页面标题,形成正则表达式或文法模式。这些模式将被用于抽取查询和页面标题中出现的其他实体及其属性。如果当前抽取所得的实体未被包含在知识图谱中,则该实体成为一个新的候选实体。类似地,如果当前被抽取的属性未出现在知识图谱中,则此属性成为一个新的候选属性。这里,我们仅保留置信度高的实体及其属性,新增的实体和属性将被作为新的种子发现新的模式。此过程不断迭代直到没有新的种子可以加入或所有的模式都已经找到且无法泛化。在决定模式的好坏时,常用的基本原则是尽量多地发现属于当前类别的实体和对应属性,尽量少地抽取出属于其他类别的实体及属性。上述方法被称为基于Bootstrapping的多类别协同模式学习。

3.从抽取图谱到知识图谱

上述所介绍的方法仅仅是从各种类型的数据源抽取构建知识图谱所需的各种候选实体(概念)及其属性关联,形成了一个个孤立的抽取图谱(Extraction Graphs)。为了形成一个真正的知识图谱,我们需要将这些信息孤岛集成在一起。下面我对知识图谱挖掘所涉及的重要技术点逐一进行介绍。

a)实体对齐

实体对齐(Object Alignment)旨在发现具有不同ID但却代表真实世界中同一对象的那些实体,并将这些实体归并为一个具有全局唯一标识的实体对象添加到知识图谱中。虽然实体对齐在数据库领域被广泛研究,但面对如此多异构数据源上的Web规模的实体对齐,这还是第一次尝试。各大搜索引擎公司普遍采用的方法是聚类。聚类的关键在于定义合适的相似度度量。这些相似度度量遵循如下观察:具有相同描述的实体可能代表同一实体(字符相似);具有相同属性-值的实体可能代表相同对象(属性相似);具有相同邻居的实体可能指向同一个对象(结构相似)。在此基础上,为了解决大规模实体对齐存在的效率问题,各种基于数据划分或分割的算法被提出将实体分成一个个子集,在这些子集上使用基于更复杂的相似度计算的聚类并行地发现潜在相同的对象。另外,利用来自如LOD中已有的对齐标注数据(使用owl:sameAs关联两个实体)作为训练数据,然后结合相似度计算使用如标签传递(Label Propagation)等基于图的半监督学习算法发现更多相同的实体对。无论何种自动化方法都无法保证100%的准确率,所以这些方法的产出结果将作为候选供人工进一步审核和过滤。

b)知识图谱schema构建

在之前的技术点介绍中,大部分篇幅均在介绍知识图谱中数据层(Data Level)的构建,而没有过多涉及模式层(Schema Level)。事实上,模式是对知识的提炼,而且遵循预先给定的schema有助于知识的标准化,更利于查询等后续处理。为知识图谱构建schema相当于为其建立本体(Ontology)。最基本的本体包括概念、概念层次、属性、属性值类型、关系、关系定义域(Domain)概念集以及关系值域(Range)概念集。

在此基础上,我们可以额外添加规则(Rules)或公理(Axioms)来表示

模式层更复杂的约束关系。面对如此庞大且领域无关的知识库,即使是

构建最基本的本体,也是非常有挑战的。Google等公司普遍采用的方法

是自顶向下(Top-Down)和自底向上(Bottom-Up)相结合的方式。这

里,自顶向下的方式是指通过本体编辑器(Ontology Editor)预先构建本

体。当然这里的本体构建不是从无到有的过程,而是依赖于从百科类和

结构化数据得到的高质量知识中所提取的模式信息。更值得一提的是,

Google知识图谱的Schema是在其收购的Freebase的schema基础上修改

而得。Freebase的模式定义了Domain(领域),Type(类别)和Topic(主

题,即实体)。每个Domain有若干Types,每个Type包含多个Topics

且和多个Properties关联,这些Properties规定了属于当前Type的那些

Topics需要包含的属性和关系。定义好的模式可被用于抽取属于某个

Type或满足某个Property的新实体(或实体对)。另一方面,自底向上

的方式则通过上面介绍的各种抽取技术,特别是通过搜索日志和Web

Table抽取发现的类别、属性和关系,并将这些置信度高的模式合并到知

识图谱中。合并过程将使用类似实体对齐的对齐算法。对于未能匹配原

有知识图谱中模式的类别、属性和关系作为新的模式加入知识图谱供人

工过滤。自顶向下的方法有利于抽取新的实例,保证抽取质量,而自底

向上的方法则能发现新的模式。两者是互补的。

c)不一致性的解决

当融合来自不同数据源的信息构成知识图谱时,有一些实体会同时属于两个互斥的类别(如男女)或某个实体所对应的一个Property11(如

性别)对应多个值。这样就会出现不一致性。这些互斥的类别对以及

Functional Properties可以看作是模式层的知识,通常规模不是很大,可

以通过手工指定规则来定义。而由于不一致性的检测要面对大规模的实

体及相关事实,纯手工的方法将不再可行。一个简单有效的方法充分考

虑数据源的可靠性以及不同信息在各个数据源中出现的频度等因素来决

定最终选用哪个类别或哪个属性值。也就是说,我们优先采用那些可靠

11称为Functional Property,即仅允许和一个值关联。如果该property是属性,那么就只能和一个属性值关联,如果是关系,则只能关联一个对象。

性高的数据源(如百科类或结构化数据)抽取得到的事实。另外,如果

一个实体在多个数据源中都被识别为某个类别的实例,或实体某个

functional property在多个数据源中都对应相同的值,那么我们倾向于最

终选择该类别和该值。注:在统计某个类别在数据源中出现的频率前需

要完成类别对齐计算。类似地,对于数值型的属性值我们还需要额外统

一它们所使用的单位。

4.知识图谱上的挖掘

通过各种信息抽取和数据集成技术已经可以构建Web规模的知识图谱。为了进一步增加图谱的知识覆盖率,需要进一步在知识图谱上进行挖

掘。下面将介绍几项重要的基于知识图谱的挖掘技术。

a)推理

推理(Reasoning或Inference)被广泛用于发现隐含知识。推理功能一般通过可扩展的规则引擎来完成。知识图谱上的规则一般涉及

两大类。一类是针对属性的,即通过数值计算来获取其属性值。例如:

知识图谱中包含某人的出生年月,我们可以通过当前日期减去其出生

年月获取其年龄。这类规则对于那些属性值随时间或其他因素发生改

变的情况特别有用。另一类是针对关系的,即通过(链式)规则发现

实体间的隐含关系。例如,我们可以定义规定:岳父是妻子的父亲。

利用这条规则,当已知姚明的妻子(叶莉)和叶莉的父亲(叶发)时,

可以推出姚明的岳父是叶发。

b)实体重要性排序

搜索引擎识别用户查询中提到的实体,并通过知识卡片展现该实体的结构化摘要。当查询涉及多个实体时,搜索引擎将选择与查询更

相关且更重要的实体来展示。实体的相关性度量需在查询时在线计算,

而实体重要性与查询无关可离线计算。搜索引擎公司将PageRank算

法12应用在知识图谱上来计算实体的重要性。和传统的Web Graph相

比,知识图谱中的节点从单一的网页变成了各种类型的实体,而图中

的边也由连接网页的超链接(Hyperlink)变成丰富的各种语义关系。12PageRank算法用来衡量页面的重要性,当有很多重要的页面链入到当前页面,该页面的重要性也很好。

由于不同的实体和语义关系的流行程度以及抽取的置信度均不同,而

这些因素将影响实体重要性的最终计算结果,因此,各大搜索引擎公

司嵌入这些因素来刻画实体和语义关系的初始重要性,从而使用带偏

的PageRank算法(Biased PageRank)。

c)相关实体挖掘

在相同查询中共现的实体,或在同一个查询会话(Session)中被提到的其他实体称为相关实体。一个常用的做法是将这些查询或会话

看作是虚拟文档,将其中出现的实体看作是文档中的词条,使用主题

模型(如LDA)发现虚拟文档集中的主题分布。其中每个主题包含1

个或多个实体,这些在同一个主题中的实体互为相关实体。当用户输

入查询时,搜索引擎分析查询的主题分布并选出最相关的主题。同时,

搜索引擎将给出该主题中与知识卡片所展现的实体最相关的那些实

体作为“其他人还搜了”的推荐结果。

5.知识图谱的更新和维护

a)Type和Collection的关系

知识图谱的schema为了保证其质量,由专业团队审核和维护。

以Google知识图谱为例,目前定义的Type数在103-104的数量级。

为了提高知识图谱的覆盖率,搜索引擎公司还通过自动化算法从各种

数据源抽取新的类型信息(也包含关联的Property信息),这些类型

信息通过一个称为Collection的数据结构保存。它们不是马上被加入

到知识图谱schema中。有些今天生成后第二天就被删除了,有些则

能长期的保留在Collection中,如果Collection中的某一种类型能够

长期的保留,发展到一定程度后,由专业的人员进行决策和命名并最

终成为一种新的Type。

b)结构化站点包装器的维护

站点的更新常常会导致原有模式失效。搜索引擎会定期检查站点是否存在更新。当检测到现有页面(原先已爬取)发生了变化,搜索

引擎会检查这些页面的变化量,同时使用最新的站点包装器进行A VP

抽取。如果变化量超过事先设定的阈值且抽取结果与原先标注的答案

差别较大,则表明现有的站点包装器失效了。在这种情况下,需要对

最新的页面进行重新标注并学习新的模式,从而构建更新的包装器。

c)知识图谱的更新频率

加入到知识图谱中的数据不是一成不变的。Type对应的实例往往是动态变化的。例如,美国总统,随着时间的推移,可能对应不同

的人。由于数据层的规模和更新频度都远超schema层,搜索引擎公

司利用其强大的计算保证图谱每天的更新都能在3个小时内完成,而

实时的热点也能保证在事件发生6个小时内在搜索结果中反映出来。

d)众包(Crowdsourcing)反馈机制

除了搜索引擎公司内部的专业团队对构建的知识图谱进行审核和维

护,它们还依赖用户来帮助改善图谱。具体来说,用户可以对搜索结

果中展现的知识卡片所列出的实体相关的事实进行纠错。当很多用户

都指出某个错误时,搜索引擎将采纳并修正。这种利用群体智慧的协

同式知识编辑是对专业团队集中式管理的互补。

知识图谱在搜索中的应用

1.查询理解

搜索引擎借助知识图谱来识别查询中涉及到的实体(概念)及其属性等,并根据实体的重要性展现相应的知识卡片。搜索引擎并非展现实体的全部属性,而是根据当前输入的查询自动选择最相关的属性及属性值来显示。此外,搜索引擎仅当知识卡片所涉及的知识的正确性很高(通常超过95%,甚至达到99%)时,才会展现。当要展现的实体被选中之后,利用相关实体挖掘来推荐其他用户可能感兴趣的实体供进一步浏览。

2.问题回答

除了展现与查询相关的知识卡片,知识图谱对于搜索所带来的另一个革新是:直接返回答案,而不仅仅是排序的文档列表。要实现自动问答系统,搜索引擎不仅要理解查询中涉及到的实体及其属性,更需要理解查询所对应的语义信息。搜索引擎通过高效的图搜索,在知识图谱中查找连接这些实体及属性的子图并转换为相应的图查询(如SPARQL13)。这些翻译过的图查询

13https://www.360docs.net/doc/b24211406.html,/TR/rdf-sparql-query/

被进一步提交给图数据库进行回答返回相应的答案。

总结

这篇文章比较系统地介绍了知识图谱的表示、构建、挖掘以及在搜索中的应用。通过上述介绍,大家可以看出:1)目前知识图谱还处于初期阶段;2)人工干预很重要;3)结构化数据在知识图谱的构建中起到决定性作用;4)各大搜索引擎公司为了保证知识图谱的质量多半采用成熟的算法;5)知识卡片的给出相对比较谨慎;6)更复杂的自然语言查询将崭露头角(如Google的蜂鸟算法)。

此外,知识图谱的构建是多学科的结合,需要知识库、自然语言理解,机器学习和数据挖掘等多方面知识的融合。有很多开放性问题需要学术界和业界一起解决。我们有理由相信学术界在上述方面的突破将会极大地促进知识图谱的发展。

致谢

感谢来自谷歌的王栋博士、来自搜狗的张坤以及来自百度的吴华博士和赵士奇博士分别介绍了Google知识图谱、搜狗知立方和百度知心系统的工作。他们精彩的报告是本篇技术文章的基础。

撰稿人简介:

王昊奋,上海交通大学计算机应用专业博士,对语义搜索、图数据库以及Web 挖掘与信息抽取有浓厚的兴趣。在博士就读期间发表了30余篇国际顶级会议和期刊论文,长期在WWW、ISWC等顶级会议担任程序委员会委员。作为Apex 数据与知识管理实验室语义组负责人,他主持并参与了多项相关项目的研发,长期与IBM、百度等知名IT企业进行合作,在知识图谱相关的研究领域积累了丰富的经验。

知识图谱 概念与技术:第8章 图数据库系统

《知识图谱: 概念与技术》 第8 讲 知识图谱管理系统

Knowledge Graph Serving Systems

Outline ?Knowledge graph serving scenarios ?General design principles of knowledge graph serving systems ?Real-time query processing ?Representative graph systems ?Demo

Knowledge Serving Scenarios

A real-life relation search scenario A News Headline Tom Cruise Admits Katie Holmes Divorced Him To Protect Suri From Scientology 1Tom Cruise –people.person.marriage–(marriage ) –time.event.person –Katie Holmes 2Tom Cruise –people.person.children–(Suri Cruise) –people.person.parent –Katie Holmes 3Tom Cruise –film.actor.film–(Bambi Verleihung2007) –film.filmactor –Katie Holmes 4...

Relation search in knowledge graph Multi-hop Relation Search Discover the hidden relations between entities Enable more than what entity indexes can support Entity A Entity B

态势感知-知识图谱

态势感知-知识图谱

一、态势感知(SA) 定义 SA的正式定义是“对一定时间和空间环境中的元素的感知,对它们的含义的理解,并对他们稍后状态的投影,态势感知这个词最早来自于军队飞行员的领域。 对SA的正式定义分解为三个独立的层次:Level 1 - 对环境中的元素的感知 Level 2 - 对当前形势的理解(知识图谱的主要应用领域) Level 3 - 未来状况的投影

一级:环境中元素的感知 实现SA的第一步是感知环境中的相关元素的状态,属性和动态。对于每个域和作业类型,所需的要求是完全不同的。飞行员需要感知的要素,如其他飞机,地形,系统状态和警告灯,以及他们的相关特性。在驾驶舱里,持续监控所有相关的系统和飞行数据,其他飞机,和导航数据的任务相当繁重。一个军官需要探测敌人,平民和友军的位置和行动,地形特征,障碍和天气。一个空中交通管制或汽车司机有一套不同的态势感知。 二级SA:现状的理解 实现良好SA的第二步是理解数据和线索对目标和目的意味着什么。理解(第2级SA)基于不相交的1级元素的综合,以及该信息与个人目标的对照(图2.3)。它涉及集成许多数据以形成信息,并且优先考虑组合信息与实现当前目标相关的重要性和意义。2级SA类似于具有高水平的阅读理解,而不是仅仅阅读单词。 军事指挥官的2级SA可能涉及理解在给定

成这些预测。通过不断地前向映射,他们能够制定一套现成的战略和对事件的反应。这让他们掌握主动,避免许多不期望的情况,并且当各种事件发生时也非常快速地响应。 二、知识图谱 1.知识图谱的概念 知识图谱旨在描述真实世界中存在的各种实体或概念及其关系,其构成一张巨大的语义网络图,节点表示实体或概念,边则由属性或关系构成。 实体: 指的是具有可区别性且独立存在的某种事物。如某一个人、某一个城市、某一种植物等、某一种商品等等。世界万物有具体事物组成,此指实体。如图1的“中国”、“美国”、“日本”等。,实体是知识图谱中的最基本元素,不同的实体间存在不同的关系。 语义类(概念):具有同种特性的实体构成的集合,如国家、民族、书籍、电脑等。概念主要指集合、类别、对象类型、事物的种类,例如人物、地理等。

知识图谱概述与应用

导读:知识图谱 (Knowledge Graph) 是当前的研究热点。自从2012年Google推出自己第一版知识图谱以来,它在学术界和工业界掀起了一股热潮。各大互联网企业在之后的短短一年纷纷推出了自己的知识图谱产品以作为回应。比如在国,互联网巨头百度和搜狗分别推出”知心“和”知立方”来改进其搜索质量。那么与这些传统的互联网公司相比,对处于当今风口浪尖上的行业 - 互联网金融,知识图谱可以有哪方面的应用呢? 目录: 1. 什么是知识图谱? 2. 知识图谱的表示 3. 知识图谱的存储 4. 应用 5. 挑战 6. 结语 1.什么是知识图谱? 知识图谱本质上是语义网络,是一种基于图的数据结构,由节点(Point)和边(Edge)组成。在知识图谱里,每个节点表示现实世界中存在的“实体”,每条边为实体与实体之间的“关系”。知识图谱是关系的最有效的表示方式。通俗地讲,知识图谱就是把所有不同种类的信息(Heterogeneous Information)连接在一起而得到的一个关系网络。知识图谱提供了从“关系”的角度去分析问题的能力。 知识图谱这个概念最早由Google提出,主要是用来优化现有的搜索引擎。不同于基于关键词搜索的传统搜索引擎,知识图谱可用来更好地查询复杂的关联信息,从语义层面理解用户意图,改进搜索质量。比如在Google的搜索框里

输入Bill Gates的时候,搜索结果页面的右侧还会出现Bill Gates相关的信息比如出生年月,家庭情况等等。 另外,对于稍微复杂的搜索语句比如”Who is the wife of Bill Gates“,Google能准确返回他的妻子Melinda Gates。这就说明搜索引擎通过知识图谱真正理解了用户的意图。 上面提到的知识图谱都是属于比较宽泛的畴,在通用领域里解决搜索引擎优化和问答系统(Question-Answering)等方面的问题。接下来我们看一下特定领域里的 (Domain-Specific) 知识图谱表示方式和应用,这也是工业界比较关心的话题。 2.知识图谱的表示 假设我们用知识图谱来描述一个事实(Fact) - “三是四的父亲”。这里的实体是三和四,关系是“父亲”(is_father_of)。当然,三和四也可能会跟其他人存在着某种类型的关系(暂时不考虑)。当我们把也作为节点加入到

移动通信专业(专业基础知识和专业技术知识)

二、移动通信专业 (一)无线通信专业基础知识 1.移动通信概述: (1)移动通信的定义和分类; (2)移动通信的特点; (3)蜂窝移动通信系统; (4)当前主要移动通信体制、发展历史和地域特点; (5)第三代移动通信系统概述; (6)移动通信发展趋势。 2.移动通信组网: (1)移动通信网络结构; (2)蜂窝网技术; (3)移动通信网的频率配置; (4)信令方式; (5)路由计划与接续要求。 3.电波传播与抗衰落技术: (1)移动信道的特性; (2)移动信道中的电波传播; (3)抗衰落技术。

4.移动通信中的调制与编码:(1)调制技术; (2)编码技术。 5.多址技术: (1)多址的概念和类型;(2)频分多址(FDMA); (3)时分多址(TDMA); (4)码分多址(CDMA); (5)空分多址(SDMA)。 6.CDMA基本原理与扩频技术:(1)CDMA基本原理; (2)扩频技术; (3)地址码与扩频码;(4)CDMA同步。 7.交换基础理论: (1)电信交换基础知识;(2)移动交换基本技术;(3)移动交换系统。

8.话务量基本知识: (1)话务量基本概念; (2)呼叫处理能力; (3)信道配置。 9.其他: 本专业维护规程。 (二)无线通信专业技术知识 移动通信专业分为GSM/GPRS移动通信系统、CDMA数字移动通信系统、移动数据通信、第三代移动通信系统、其他移动通信系统五个职业功能,每一个职业功能又分为不同的工作内容。每个工作内容为一个考试模块,考生只需选择某一考试模块参加考试。第一,CSM/CPRS移动通信系统:供C网范围相关工作人员按工作内容选择考试模块。 一、GSM/GPRS移动通信系统 ●工作内容1:GSM/GPRS核心网技术 ●专业能力要求: 1.掌握GSM网的专业知识:(1)GSM900和GSMl800系统组成与

(完整版)领域应用知识图谱的技术和应用

领域应用 | 知识图谱的技术与应用 本文转载自公众号:贪心科技。 领域应用 | 知识图谱的技术与应用 李文哲开放知识图谱 1周前 本文转载自公众号:贪心科技。 作者 | 李文哲,人工智能、知识图谱领域专家 导读:从一开始的Google搜索,到现在的聊天机器人、大数据风控、证券投资、智能医疗、自适应教育、推荐系统,无一不跟知识图谱相关。它在技术领域的热度也在逐年上升。本文以通俗易懂的方式来讲解知识图谱相关的知识、尤其对从零开始搭建知识图谱过程当中需要经历的步骤以及每个阶段需要考虑的问题都给予了比较详细的解释。对于读者,我们不要求有任何AI相关的背景知识。 目录: 1.概论 2.什么是知识图谱 3.知识图谱的表示 4.知识抽取 5.知识图谱的存储 6.金融知识图谱的搭建 1.定义具体的业务问题 2.数据收集 & 预处理 3.知识图谱的设计 4.把数据存入知识图谱 5.上层应用的开发 7.知识图谱在其他行业中的应用 8.实践上的几点建议 9.结语 1. 概论

随着移动互联网的发展,万物互联成为了可能,这种互联所产生的数据也在爆发式地增长,而且这些数据恰好可以作为分析关系的有效原料。如果说以往的智能分析专注在每一个个体上,在移动互联网时代则除了个体,这种个体之间的关系也必然成为我们需要深入分析的很重要一部分。在一项任务中,只要有关系分析的需求,知识图谱就“有可能”派的上用场。 2. 什么是知识图谱? 知识图谱是由Google公司在2012年提出来的一个新的概念。从学术的角度,我们可以对知识图谱给一个这样的定义:“知识图谱本质上是语义网络(Semantic Network)的知识库”。但这有点抽象,所以换个角度,从实际应用的角度出发其实可以简单地把知识图谱理解成多关系图(Multi-relational Graph)。 那什么叫多关系图呢?学过数据结构的都应该知道什么是图(Graph)。图是由节点(Vertex)和边(Edge)来构成,但这些图通常只包含一种类型的节点和边。但相反,多关系图一般包含多种类型的节点和多种类型的边。比如左下图表示一个经典的图结构,右边的图则表示多关系图,因为图里包含了多种类型的节点和边。这些类型由不同的颜色来标记。

知识图谱概述及应用

导读:知识图谱(Knowledge Graph) 是当前的研究热点。自从2012年Google推出自己第一版知识图谱以来,它在学术界和工业界掀起了一股热潮。各大互联网企业在之后的短短一年内纷纷推出了自己的知识图谱产品以作为回应。比如在国内,互联网巨头百度和搜狗分别推出”知心“和”知立方”来改进其搜索质量。那么与这些传统的互联网公司相比,对处于当今风口浪尖上的行业- 互联网金融,知识图谱可以有哪方面的应用呢? 目录: 1. 什么是知识图谱? 2. 知识图谱的表示 3. 知识图谱的存储 4. 应用 5. 挑战 6. 结语 1.什么是知识图谱? 知识图谱本质上是语义网络,是一种基于图的数据结构,由节点(Point)和边(Edge)组成。在知识图谱里,每个节点表示现实世界中存在的“实体”,每条边为实体与实体之间的“关系”。知识图谱是关系的最有效的表示方式。通俗地讲,知识图谱就是把所有不同种类的信息(Heterogeneous Information)连接在一起而得到的一个关系网络。知识图谱提供了从“关系”的角度去分析问题的能力。

知识图谱这个概念最早由Google提出,主要是用来优化现有的搜索引擎。不同于基于关键词搜索的传统搜索引擎,知识图谱可用来更好地查询复杂的关联信息,从语义层面理解用户意图,改进搜索质量。比如在Google的搜索框里输入Bill Gates的时候,搜索结果页面的右侧还会出现Bill Gates相关的信息比如出生年月,家庭情况等等。 另外,对于稍微复杂的搜索语句比如”Who is the wife of Bill Gates“,Google能准确返回他的妻子Melinda Gates。这就说明搜索引擎通过知识图谱真正理解了用户的意图。

通信技术基础知识

通信技术基础知识(中) 通信技术基础知识(中) 什么是移动电话网? 移动电话网就是可以使移动用户之间进行通信的网络。我国自1987年开始开通移动电话业务以来,移动电话迅猛发展,用户增长迅速,到现在我国已经出现了五种移动电话网共存的局面,这五种网各有不同的通话范围和不同的业务功能。用户选择配备移动电话手机时,需要对现有的五种网有所了解。 我国的五种移动电话网又被称为A、B、C、D、G网,其中A网和B网是模拟网,C、D、G网是数字网。 1)A网和B网:模拟移动电话网 模拟网是我国早期建设的移动电话网。由于各地分别建设、时间先后不同,又有爱立信和摩托罗拉两大移动电话系统等原因,模拟移动电话网形成了A网和B网系统,A网地区使用A网的手机,B网地区使用B网的手机。A网的地区是北京、天津、上海以及除河北、山东以外的全国各地。可见在大部分地区是共存的,但原来是不能互通的。B网的地区主要是在北京、天津、上海、河北、辽宁、江苏、浙江、四川、黑龙江、山东等地。1996年1月起,我国各省模拟移动电话系统实现了联网,模拟移动电话已有可能在全国30个省(市、自治区)实现自动漫游。但是,如果要从A网区到B网区,需要用户在自己的手机上进行操作,将手机转换为B网,否则不能使用;如果从B网区回到A网区,也必须先在手机上操作,将手机变回才能使用。变换的方法可见说明书。 2)C网:CDMA制式移动电话网 C网是指CDMA(码分多址)制式的移动电话网,CDMA制式是接通率高、噪声小、发射功率小的新型数字网,能实现移动电话的各种智能业务。我国目前在上海、北京、广州、西安等市建设了C 网,沿海的10省也在建设,已经建成的城市间已联网,使用CDMA手机可以在上述地区漫游。 3)G网:全球通(GSM)数字移动电话网 20世纪90年代中期,我国开始建设“全球通”(GSM)数字移动电话网,这就是G网。数字网具有许多新的业务功能,特别是具有漫游范围最为广泛的特点,因而被称为“全球通”。G网工作于900兆赫频段,频带比较窄,随着近年来移动电话用户迅猛增长,许多地区的G网已出现因容量不足而达到饱和的状态。为了满足广大用户的需求,近来又建设了“D”网。 4)D网:工作在DCS1800系统的移动电话网 它的基本体制和现有的GSM900系统完全一致,但工作于1800兆赫频段,需要用全球通1800的手机。如果使用双频手机,那么在G网中也能漫游、自动切换。现在有许多城市是DCS1800系统和GSM900系统同时覆盖一个地区,就称为全球通双频系统,使全球通移动通信系统的容量成倍增长。

基于知识图谱的国内学习分析研究热点及趋势分析

龙源期刊网 https://www.360docs.net/doc/b24211406.html, 基于知识图谱的国内学习分析研究热点及趋势分析 作者:马卉王晓春张功云 来源:《中国教育技术装备》2016年第18期 摘要学习分析,作为一个新兴的交叉研究领域,受到国内外教育研究者的广泛关注,成为当前教育技术领域的研究热点。为探究国内学习分析技术的研究热点和发展趋势,基于科学知识图谱的基本理论与方法,利用可视化网络分析软件CiteSpace对中国期刊全文数据库中收录的144篇国内学习分析文献样本的关键词进行分析。 关键词学习分析;知识图谱;可视化分析;CiteSpace;关键词分析 中图分类号:G652 文献标识码:B 文章编号:1671-489X(2016)18-0001-04 Abstract Learning analytics, as a new intersectant research field, has attracted wide attention among educational researchers and is becoming a current research focus in educational technology field. To explore the research hotspots and the development trend on Lear- ning Analytics in China, based on the basic theory and method of mapping knowledge domain, analyze keywords from 144 pieces sample literatures within Chinese Journal Full-Text Database(CJFD) with a visibility network analysis software, CiteSpace. Key words learning analytics; mapping knowledge domain; visual analysis; CiteSpace;keywords analysis 1 引言 随着教育大数据的迅猛增长,学习分析(Learning Analytics)[1]作为一种新兴的交叉技术,通过深度挖掘、分析学习者学习行为和学习过程数据背后所隐藏的含义,得出有效的结论来指导和干预教学、优化学习和学习环境,更好地为教育决策和学生学习提供服务[2]。由于 学习分析技术的这种实际应用价值,使其受到国内外教育研究者的广泛关注,成为教育信息化领域研究的热点问题之一。 2010年,加拿大阿塞巴斯卡大学G.Siemens教授[3]在博客中宣布将于2011年2月举办第一届学习分析国际会议并解释何为学习分析,由此拉开学习分析技术领域形成的序幕。2011年,美国新媒体联盟公布的地平线报告[4]把学习分析技术列为未来4~5年被广泛应用的技术。2012年,Educational Technology & Society[5]出版了10篇关于学习与知识分析的系列专题

最新无线通信技术基础知识(1)

无线通信技术 1.传输介质 传输介质是连接通信设备,为通信设备之间提供信息传输的物理通道;是信息传输的实际载体。有线通信与无线通信中的信号传输,都是电磁波在不同介质中的传播过程,在这一过程中对电磁波频谱的使用从根本上决定了通信过程的信息传输能力。 传输介质可以分为三大类:①有线通信,②无线通信,③光纤通信。 对于不同的传输介质,适宜使用不同的频率。具体情况可见下表。 不同传输媒介可提供不同的通信的带宽。带宽即是可供使用的频谱宽度,高带宽传输介质可以承载较高的比特率。 2无线信道简介 信道又指“通路”,两点之间用于收发的单向或双向通路。可分为有线、无线两大类。

无线信道相对于有线信道通信质量差很多。有限信道典型的信噪比约为46dB,(信号电平比噪声电平高4万倍)。无限信道信噪比波动通常不超过2dB,同时有多重因素会导致信号衰落(骤然降低)。引起衰落的因素有环境有关。 2.1无线信道的传播机制 无线信道基本传播机制如下: ①直射:即无线信号在自由空间中的传播; ②反射:当电磁波遇到比波长大得多的物体时,发生反射,反射一般在地球表面,建筑物、墙壁表面发生; ③绕射:当接收机和发射机之间的无线路径被尖锐的物体边缘阻挡时发生绕射; ④散射:当无线路径中存在小于波长的物体并且单位体积内这种障碍物体的数量较多的时候发生散射。散射发生在粗糙表面、小物体或其它不规则物体上,一般树叶、灯柱等会引起散射。 2.2无线信道的指标 (1)传播损耗:包括以下三类。 ①路径损耗:电波弥散特性造成,反映在公里量级空间距离内,接收信号电平的衰减(也称为大尺度衰落); ②阴影衰落:即慢衰落,是接收信号的场强在长时间内的缓慢变化,一般由于电波在传播路径上遇到由于障碍物的电磁场阴影区所引起的; ③多径衰落:即快衰落,是接收信号场强在整个波长内迅速的随机变化,一般主要由于多径效应引起的。 (2)传播时延:包括传播时延的平均值、传播时延的最大值和传播时延的统计特性等; (3)时延扩展:信号通过不同的路径沿不同的方向到达接收端会引起时延扩展,时延扩展是对信道色散效应的描述; (4)多普勒扩展:是一种由于多普勒频移现象引起的衰落过程的频率扩散,又称时间选择性衰落,是对信道时变效应的描述; (5)干扰:包括干扰的性质以及干扰的强度。 2.3无线信道模型 无线信道模型一般可分为室内传播模型和室外传播模型,后者又可以分为宏蜂窝模型和微蜂窝模型。 (1)室内传播模型:室内传播模型的主要特点是覆盖范围小、环境变动较大、不受气候影响,但受建筑材料影响大。典型模型包括:对数距离路径损耗模型、Ericsson多重断点模型等; (2)室外宏蜂窝模型:当基站天线架设较高、覆盖范围较大时所使用的一类模型。实际使用中一般是几种宏蜂窝模型结合使用来完成网络规划; (3)室外微蜂窝模型:当基站天线的架设高度在3~6m时,多使用室外微蜂窝模型;其描述的损耗可分为视距损耗与非视距损耗。

人工智能-知识图谱机器大脑中的知识库

知识图谱技术原理介绍 ?莫扎特 ?2016-01-09 17:31:55 ?大数据技术 ?评论(0) ? 作者:王昊奋 近两年来,随着Linking Open Data[1] 等项目的全面展开,语义Web数据源的数量激增,大量RDF数据被发布。互联网正从仅包含网页和网页之间超链接的文档万维网(Document Web)转变成包含大量描述各种实体和实体之间丰富关系的数据万维网(Data Web)。在这个背景下,Google、百度和搜狗等搜索引擎公司纷纷以此为基础构建知识图谱,分别为Knowledge Graph、知心和知立方,来改进搜索质量,从而拉开了语义搜索的序幕。下面我将从以下几个方面来介绍知识图谱:知识图谱的表示和在搜索中的展现形式,知识图谱的构建和知识图谱在搜索中的应用等,从而让大家有机会了解其内部的技术实现和各种挑战。 知识图谱的表示和在搜索中的展现形式

正如Google的辛格博士在介绍知识图谱时提到的:“The world is not made of strings , but is made of things.”,知识图谱旨在描述真实世界中存在的各种实体或概念。其中,每个实体或概念用一个全局唯一确定的ID来标识,称为它们的标识符(identifier)。每个属性-值对(attribute-value pair,又称AVP)用来刻画实体的内在特性,而关系(relation)用来连接两个实体,刻画它们之间的关联。知识图谱亦可被看作是一张巨大的图,图中的节点表示实体或概念,而图中的边则由属性或关系构成。上述图模型可用W3C提出的资源描述框架RDF[2] 或属性图(property graph)[3] 来表示。知识图谱率先由Google提出,以提高其搜索的质量。 为了更好地理解知识图谱,我们先来看一下其在搜索中的展现形式,即知识卡片(又称Knowledge Card)。知识卡片旨在为用户提供更多与搜索内容相关的信息。更具体地说,知识卡片为用户查询中所包含的实体或返回的答案提供详细的结构化摘要。从某种意义来说,它是特定于查询(query specific)的知识图谱。例如,当在搜索引擎中输入“姚明”作为关键词时,我们发现搜索结果页面的右侧原先用于置放广告的地方被知识卡片所取代。广告被移至左上角,而广告下面则显示的是传统的搜索结果,即匹配关键词的文档列表。这个布局上的微调也预示着各大搜索引擎在提高用户体验和直接返回答案方面的决心。 【三大搜索引擎关于姚明的知识卡片(略)】 虽说三大搜索引擎在知识卡片的排版和内容展现上略有不同,但是它们都列出了姚明的身高、体重、民族等属性信息。此外,它们均包含“用户还搜索了”或“其他人还搜”的功能来展现相关的人物。该功能允许用户去浏览其他与姚明相关的人物的详细信息。细心的读者也发现Google在其知识卡片中也展示了很多与姚明相关的图片,以图文并茂的方式来展示姚明的方方面面。百度则结合了百度风云榜的信息,列出了姚明的类别(体坛人物)及其百度指数(今日排名和今日搜索热度等信息)。在搜索结果页面的左上角(在图中未给出),百度还展示了其特有的专题搜索,包含了与姚明相关的百科、图片、微博、新闻、音乐、贴吧和视频等七大类的结果,基本涵盖了用户最基本的需求。搜狗在列出与姚明相关的百科、图片,电影和最新相关消息等专题的同时,其知识卡片额外显示了诸如“主持电视节目”、“效力篮球队”、“人物关系”等各种细粒度的语义关系。当遇到含有歧义的用户查询时,知识卡片还会列出其他可能的查询目标对象。在上面的例子中,搜狗还列出了一项“您是否要找”的功能,列出一位也叫姚明的一级作曲家。该功能用于去歧义,在显示最相关实体的同时也给出其他可能的对象,达到去歧义的作用。当搜索“李娜”或“长城”时,Google和百度也在其知识卡片下方展现了类似的功能。除了给出著名网球运动员李娜和万里长城之外,它们还列出歌手李娜和长城汽车供用户选择和浏览。更值得一提的是,当在搜狗知立方中输入“姚明的老婆的女儿的身高”如此复杂的查询时,其会直接返回其女儿的姓名(姚沁蕾)以及其身高(110cm),并给出推理说明“叶莉的女儿是姚沁蕾”。如此详实的说明不仅为返回的答案提供了很好的解释,从另一个侧面也展示了知识图谱的强大,其不仅能识别出运动员姚明,也能抽取出关系“老婆”和“女儿”和属性“身高”等信息。当我

通信工程介绍概况

通信工程介绍概况 通信工程(也作电信工程,旧称远距离通信工程、弱电工程)是电子工程的一个重要分支,电子信息类子专业,同时也是其中一个基础学科。该学科关注的是通信过程中的信息传输和信号处理的原理和应用。本专业学习通信技术、通信系统和通信网等方面的知识,能在通信领域中从事研究、设计、制造、运营及在国民经济各部门和国防工业中从事开发、应用通信技术与设备。 该学科是信息科学技术发展迅速并极具活力的一个领域,尤其是数字移动通信、光纤通信、Internet网络通信使人们在传递信息和获得信息方面达到了前所未有的便捷程度。通信工程具有极广阔的发展前景,也是人才严重短缺的专业之一。本专业学习通信技术、通信系统和通信网等方面的知识,能在通信领域中从事研究、设计、制造、运营及在国民经济各部门和国防工业中从事开发、应用通信技术与设备。通信工程研究的是以电磁波、声波或光波的形式把信息通过电脉冲,从发送端(信源)传输到一个或多个接受端(信宿)。接受端能否正确辨认信息,取决于传输中的损耗高低。信号处理是通信工程中一个重要环节,其包括过滤,编码和解码等。毕业后可从事无线通信、电视、大规模集成电路、智能仪器及应用电子技术领域的研究,设计和通信工程的研究、设计、技术引进和技术开发工作。 研究内容 通信工程专业主要为研究信号的产生、信息的传输、交换和处理,以及在计算机通信、数字通信、卫星通信、光纤通信、蜂窝通信、个人通信、平流层通信、多媒体技术、信息高速公路、数字程控交换等方面的理论和工程应用问题。随着19世纪美国人发明电报之日起,现代通信技术就已经产生。为了适应日益发展的技术需要,通信工程专业成为了美国大学教育中的一门学科,并随着现代技术水平的不断提高而得到迅速发展。 专业发展 通信工程专业代码:0810,分为两个学科,一个是偏向于传输的“通信与信息系统(081001)”,另一个是偏向于编解码的“信号与信息处理(081002)”。其中“通信与信息系统(081001)”的前身是电机系,北京交通大学是中国通信与信息系统研究的发祥地;“信号与信息处理(081002)”的前身是信息论系,西安电子科技大学是中国信号与信息处理的发源地。 未来展望

中文知识图谱构建的关键技术

Intelligent Search Engine and Recommender Systems based on Knowledge Graph 阳德青 复旦大学知识工场实验室 yangdeqing@https://www.360docs.net/doc/b24211406.html, 2017-07-13

Background ?Knowledge Graph exhibits its excellent performance through the intelligent applications built on it ?As typical AI systems,Search engine and recommender system are very popular and promising in the era of large data ?Many previous literatures and systems have proved KG’s merits on such AI’s applications

KG-based Search Engine

?The keyword of high click frequency are ranked higher ?The pages containing the keywords of more weights are ranked higher ?The pages having more important in-links are ranked higher ?1st:category-based ?Yahoo,hao123 ?2nd:IR-based ?Keyword-based,vector space,Boolean model ?3rd:link-based ?PageRank (Google) However,how to handle it if users want to search something new or the ones of long tail? result in

领域知识图谱的技术与应用

领域应用知识图谱的技术与应用 本文转载自公众号:贪心科技。 领域应用I知识图谱的技术与应用 李文哲开放知识图谱1周前 本文转载自公众号:贪心科技。 作者I李文哲,人工智能、知识图谱领域专家 导读:从一开始的Google搜索,到现在的聊天机器人、大数据风控、证券投资、智能医疗、自适应教育、推荐系统,无一不跟知识图谱相关。它在技术领域的热度也在逐年上升。本文以通俗易懂的方式来讲解知识图谱相关的知识、尤其对从零开始搭建知识图谱过程当中需要经历的步骤以及每个阶段需要考虑的问题都给予了比较详细的解释。对于读者,我们不要求有任何AI相关的背景知识。 目录: 1.概论 2.什么是知识图谱 3.知识图谱的表示 4.知识抽取 5.知识图谱的存储 6.金融知识图谱的搭建 1.定义具体的业务问题 2.数据收集&预处理 3.知识图谱的设计 4.把数据存入知识图谱 5.上层应用的开发 7.知识图谱在其他行业中的应用 8.实践上的几点建议 9.结语 1.概论 随着移动互联网的发展,万物互联成为了可能,这种互联所产生的数据也在爆发式地增长,而且这些数据恰好可以作为分析关系的有效原料。如果说以往的智能分析专注在每一个个体上,在移动互联网时代则除了个体,这种个体之间的关系也必然成为我们需要深入分析的很重要一部分。在一

项任务中,只要有关系分析的需求,知识图谱就有可能”派的上用场。

2. 什么是知识图谱? 知识图谱是由Google 公司在2012年提出来的一个新的概念。从学术的角度,我们可以 对知识图谱给一个这样的定义: 知识图谱本质上是语义网络(Sema ntic Network )的 知识库”但这有点抽象,所以换个角度,从实际应用的角度出发其实 可以简单地把知识 图谱理解成多关系图(Multi-relational Graph 那什么叫多关系图呢? 学过数据结构的都应该知道什么是图(Graph )。图是由节点 (Vertex )和边(Edge )来构成,但这些图通常只包含一种类型的节点和边。但相反, 多关系图一般包含多种类型的节点和多种类型的边 。比如左下图表示一个经典的图结构, 右边的图则表示多关系图,因为图里包含了多种类型的节点和边。这些类型由不同的颜 色来标记。 在知识图谱 里, 我们通常用 实体(Entity ) ”来表达图里的节点、用 关系(Relation )”来表达图里的 边”实体指的是现实世界中的事物比如人、地名、概念、药物、公司等 ,关系则用来 表达不同实体之间的某种联系, 比如人-居住在”北京、张三和李四是 朋友”逻辑回归 是深度学习的先导知识”等等。 现实世界中的很多场景非常适合用知识图谱来表达。 比如一个社交网络图谱里,我们既 可以有 人”的实体,也可以包含 公司”实体。人和人之间的关系可以是 朋友”,也可以是 同 事”关系。人和公司之间的关系可以是 现任职”或者曾任职”的关系。类似的,一个风控 知识图谱可以包含 电话”公司”的实体,电话和电话之间的关系可以是 通话”关系,而 且每个公司它也会有固定的电话。 3. 知识图谱的表示 知识图谱应用的前提是已经构建好了知识图谱 ,也可以把它认为是一个知识库。这也是 为什么它可以用来回答一些搜索相关问题的原因,比如在 Google 搜索引擎里输入“ Who is the wife of Bill Gates?,我们直接可以得到答案-“Melinda Gates 。这是因为我们在系 )。 包含一种类型的节点和边 包含多种类型的节点和边 (不同<^状扣師色代憑不岡评奥断节点和边) 节点 节点 边 边 节点 节点 边

第14章 知识图谱的落地与实践

《知识图谱: 概念与技术》 第14 讲 知识图谱落地与实践 肖仰华 复旦大学 shawyh@https://www.360docs.net/doc/b24211406.html,

概述

知识图谱产业概览 产业化概览 KW 构建大规模通用知识图谱和领域图谱, 为机器认知提供背景知识 百科图谱 商情图谱 垂直图谱 知识图谱数据与服务 提供领域知识图谱构建与应用咨询 服务或落地解决方案,给华为、电 信、移动、阿里巴巴、滴滴等数十 家应用单位提供了知识图谱解决方 案。 知识图谱咨询与方案 1)支撑知识图谱运作的混合型系 统,提供高效稳定的查询; 2)领域知识图谱构建的工具集成 系统,提供知识图谱构建能力 智能数据获取系统 图数据库系统 知识库构建工具集 底层支撑系统与产品

系统 技术体系 智能信息获取 图数据管理 数据 商情图谱 工商、产品、投融资、诉讼、专利软著、商标 百科图谱 人物、字词、地理、经济、军事、科学、社会 其他图谱 影视、音乐法律、食物 服务 百科问答 知识库验证码 实体链接 信息抽取 智能水军

支构建 应用 知识图谱能力体系 文本理解 工商百度百科 中文维基音乐图管图嵌入 图划分查询分发关联查询 图缓存 社团查询 基于mongo 数据的管理 分布式爬虫 智能爬虫 移动端支持优先级调度 多语言支 持 屏蔽检测验证码智能枚举抽取 概念识别概念抽取 实体链接 中文OpenIE 纯文本事实抽取 关系分类体系构建 关系抽取 实体识别融合 冲突消解属性值归一化 属性融合 属性值分割标注 众包 样本优化远程监督 实体理解 文本相似性文本提问 文档标签化 文档摘要搜索推荐 AVP 检索Type 检索描述检索 领域数据标注 关系标注 概念标注 垂直领域 开放领域 半结构化数据抽取 清洗 补全 类别补全属性补全 三元组补全 纠错 众包反馈版本更迭 错误检测外链 DBpedia 类别链接中英文跨语言链接 SameAs 外链 更新 主动更新基于日志的更新 周期更新 局点同步意图理解 对答 知识库对话 知识库问答 实体同义词 同义实体识别 图片实体化 文本实体化推理 众包反馈版本更迭 传递性推理

领域应用--知识图谱的技术与应用新选.

领域应用| 知识图谱的技术与应用 本文转载自公众号:贪心科技。 领域应用| 知识图谱的技术与应用 李文哲开放知识图谱1周前 本文转载自公众号:贪心科技。 作者| 李文哲,人工智能、知识图谱领域专家 导读:从一开始的Google搜索,到现在的聊天机器人、大数据风控、证券投资、智能医疗、自适应教育、推荐系统,无一不跟知识图谱相关。它在技术领域的热度也在逐年上升。本文以通俗易懂的方式来讲解知识图谱相关的知识、尤其对从零开始搭建知识图谱过程当中需要经历的步骤以及每个阶段需要考虑的问题都给予了比较详细的解释。对于读者,我们不要求有任何AI相关的背景知识。 目录: 1. 概论 2. 什么是知识图谱 3. 知识图谱的表示 4. 知识抽取 5. 知识图谱的存储 6. 金融知识图谱的搭建 1. 定义具体的业务问题 2. 数据收集& 预处理 3. 知识图谱的设计 4. 把数据存入知识图谱 5. 上层应用的开发 7. 知识图谱在其他行业中的应用 8. 实践上的几点建议 9. 结语 1. 概论

随着移动互联网的发展,万物互联成为了可能,这种互联所产生的数据也在爆发式地增长,而且这些数据恰好可以作为分析关系的有效原料。如果说以往的智能分析专注在每一个个体上,在移动互联网时代则除了个体,这种个体之间的关系也必然成为我们需要深入分析的很重要一部分。在一项任务中,只要有关系分析的需求,知识图谱就“有可能”派的上用场。 2. 什么是知识图谱? 知识图谱是由Google公司在2012年提出来的一个新的概念。从学术的角度,我们可以对知识图谱给一个这样的定义:“知识图谱本质上是语义网络(Semantic Network)的知识库”。但这有点抽象,所以换个角度,从实际应用的角度出发其实可以简单地把知识图谱理解成多关系图(Multi-relational Graph)。 那什么叫多关系图呢?学过数据结构的都应该知道什么是图(Graph)。图是由节点(Vertex)和边(Edge)来构成,但这些图通常只包含一种类型的节点和边。但相反,多关系图一般包含多种类型的节点和多种类型的边。比如左下图表示一个经典的图结构,右边的图则表示多关系图,因为图里包含了多种类型的节点和边。这些类型由不同的颜色来标记。

2020-2021年中国知识图谱行业研究报告

中国知识图谱行业研究报告 2019-2020年

场中以金融领域和公安领域应用份额占比最大。 摘要 人工智能本质是解决生产力升级的问题,人类生产力可以归类为知识生产力和劳动生产力,人工智能走入产业后,可以分为感知智能、认知智能和行为智能,后两者更与生产力相对应,NLP 和知识图谱是发展认知智能的基础。 原始数据通过知识抽取或数据整合的方式转换为三元组形式,然后三元组数据再经过实体对齐,加入数据模型,形成标准的知识表示,过程中如产生新的关系组合, 通过知识推理形成新的知识形态,与原有知识共同经过质量评估,完成知识融合, 最终形成完整形态上的知识图谱。 在面对数据多样、复杂,孤岛化,且单一数据价值不高的应用场景时,存在关系深度搜索、规范业务流程、规则和经验性预测等需求,使用知识图谱解决方案将带来最佳的应用价值。 2019年涵盖大数据分析预测、领域知识图谱及NLP 应用的大数据智能市场规模约为 106.6亿元,预计2023年将突破300亿元,年复合增长率为30.8%,其中2019年市 随着整体市场数据基础的完善和需求唤醒,大数据智能领域规模持续走高,但在行业可落地性和理性建设的限制下,预计市场增速将呈现下降趋势,期间咨询性需求将会大量出现,从整体发展来看增速处于良性区间,对真正有价值的公司和产品有正向意义。 4 5 1 3 2

1知识图谱技术概述 中国知识图谱市场概述2中国知识图谱细分市场分析3中国数据智能代表企业案例展示4

人工智能技术分类和趋势 三种流派的融合应用,使人工智能向想象更进一步 人工智能是对一类能够实现机器模拟智慧生命某些特征的技术统称,从学术上可以分为,对人类已有知识进行组织编辑的 符号主义、通过数学理论公式推导聚类和预测问题的连接主义,以及利用机器模仿生物活体行为的行为主义三个流派,分 别以知识工程、机器学习和仿生机器人为时代代表,而知识图谱就是新一代知识工程的具体体现。2012年,深度学习在计算机视觉和智能语音上产生重大突破,打开了人工智能商业化的大门,使得连接主义一度成为人工智能的代名词,但随着 应用落地成为主旋律,缺位行业逻辑和理论概念的连接主义,往往找不到最佳的应用场景而止步于浅层尝试,在此背景下, 人工智能技术应当走向融合,符号主义需要连接主义提供强大的计算支撑,连接主义需要符号主义的逻辑指导,二者又共 同作用于行为主义,充当机器人的大脑和“记忆宫殿”,在多种技术综合利用下的垂直领域智能解决方案才是当今最符合 市场期待的方向。 人工智能三大流派分类与融合趋势 机器学习 控制论 知识图谱 智能机器人系统 信息理论 控制理论 知识工程 深度学习 神经系统 智 能 语 音计算机视觉 自然语言理解 …… 专家系统 控制逻辑 计算机 智能控制系统 生物控制论 启发式算法 自组织系统 工程 控制论 行为主义 符号主义 连接主义

通信技术专业简介

通信技术专业简介 专业代码610301 专业名称通信技术 基本修业年限三年 培养目标 本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,具有遵守规范、安全生产、勇于创新等素质,掌握电路技术、通信原理、交换技术、传输理论、接入技术和项目管理知识,具备通信设备安装和调测、通信网络的组建与开通、通信系统的运行与维护、通信工程实施与项目管理能力,从事设备调试、技术服务、网络运营、系统维护、工程实施与管理工作的高素质技术技能人才。 就业面向 主要面向通信行业,在通信设备安装与测试、通信网络组建与维护、通信系统运行与管理、通信产品技术服务、通信工程施工与管理等岗位群,从事电信服务、通信设备安装、通信产品检修、通信系统运维、通信系统技术支持、通信项目实施、通信工程管理等工作。 主要职业能力 1.具备对新知识、新技能的学习能力和创新创业能力; 2.具备通信设备安装与测试能力; 3.具备传输、交换网络运行与维护能力; 4.具备数据局域网、移动接入网的组建与管理能力; 5.具备通信系统分析与测试能力; 6.具备通信工程项目实施与管理能力; 7.掌握电子线路、数字通信和信号系统的基本原理;

8.了解互联网、移动接入网、光传输网、数据交换网等现代通信网络。 核心课程与实习实训 1.核心课程 电子技术、现代通信技术及应用通信原理、接入网设备安装与维护、数据网组建与维护、交换设备运行与维护、移动通信系统分析与测试、光传输网络组建与维护、通信工程项目管理等。 2.实习实训 在校内进行数据网组建、通信工程项目实务、光传输网络组建等实训。 在通信网络运营企业、通信技术服务企业、通信工程施工企业、通信工程监理企业进行实习。 职业资格证书举例 电信机务员(三级、四级)通信网络管理员(三级、四级)有线通信传输设备调试工(三级、四级)电子设备装接工(三级、四级)电源调试工(三级、四级) 衔接中职专业举例 通信技术 接续本科专业举例 通信工程

相关文档
最新文档