IEEE802协议标准

IEEE802.11协议

主讲:王海飞

制作:李越

许文静

王海飞

目录

●IEEE802.11 协议标准

●IEEE802.11系列协议标准的发展

●IEEE802.11的工作方式

●IEEE802.11的物理层

●IEEE802.11的MAC层

●IEEE802.11ac协议(真正的5G WiFi)

概述

802.11是IEEE最初制定的一个无线局域网标准,这也是在无线局域网领域内的第一个国际上被认可的协议。

用途:用户与用户终端的无线介入业务

(主要限于数据存取,速率最高只能达到2Mbps)

发展

●802.11 定义微波和红外线的物理层和MAC子层(2.4GHz,2Mbit/s)

●802.11a 定义了微波物理层及MAC子层(5GHz,54Mbit/s,1999)

●802.11b 物理层补充DSSS(2.4GHz,11Mbit/s,1997)

●802.11c 关于802.11网络和普通以太网之间的互通协议(2000)

●802.11d 关于国际间漫游的规范(2000)

●802.11e 对服务等级QoS的支持(2004)

●802.11f 基站的互联性(2003)

●802.11h 扩展物理层和MAC子层标准(5GHz,欧洲,2003)

●802.11j 扩展物理成和MAC子层标准(5GHz,日本,2004)

●802.11k 基于无线局域网的微波测量规范(2005)

●802.11m 基于无线局域网的设备维护规范(2006)

●802.11ac 第五代Wi-Fi传输技术(2008)

IEEE802.11协议性能参数

频带最大传输速度

协议发布

日期

1997 2.4-2.5GHz 2Mbps

802.1

1

802.11999 5.15-5.35/5.47-5.725/5.754Mbps

IEEE802.11的工作方式

802.11定义了两种类型的设备

1.一种是无线站,通常是通过一台PC 机器加上一块无线网络接口卡构成。

2.另一个称为无线接入点(Access Point ,AP ),一个无线接入点通常由一个无线输出口和一个有线的网络接口(802.3接口)构成。

IEEE802.11的物理层

3种物理层传输介质方式 其中2种物理层传输介质工作方式在微波频段。采用扩频传输技术进行数据传输,包括跳频序列扩频传输技术(FHSS )和直接序列扩频传输技术(DSSS )。 1a 25-5.825GHz

802.1

1b

1999 2.4-2.5GHz 11Mbps 802.1

1g

2003 2.4-2.5GHz 54Mbps 802.1

1n

2009 2.4GHz 或者5GHz 600Mbps(40MHz*4 MIMO) 802.1

1ac

(草案)

2011.11 2.4GHz 或者5GHz 876Mbps,1.73Gbps3.47Gbps 6.93Gbps(8 MIMO,

160MHz) 802.1

1ad

(草案)

2012.12 60GHz Up to 7000Mbps

另一种方式以光波段作为其物理层,也就是利用红外线光波传输数据流。 ● 扩频传输技术

跳频扩频(FHSS ,Frequency Hopping Spread Spectrum )使用了传统的窄带数据传输技术,但传输频率将发生周期性的切换。跳频现象可以使FHSS 系统避免受到信道内窄带噪音的干扰。

直接序列扩频(DSSS ,Direct Sequence Spread Spectrum )系统则将要传输的数据流通过扩展码调制而人为地扩展带宽,即使在传输波段中存在部分噪声信号,接收机也可以无错误地接受数据。

优势: 抗干扰强 安全性好 可靠性高

● IEEE802.11的MAC 层

无线局域网虽然也是多个站点共享无线信道,却不能简单的搬用以太

网的CSMA/CD 协议,这里主要有两个原因:

CSMA/CD 协议要求一个站点在发送本站数据的同时必须不简短地检测信道,但在无线局域网的设备中要实现这种全双工花费就会过大。

即使我们能够在发送的同时实现冲突检测的功能,并且当我们在发送数据检测到信道是空闲的,在接受端仍然有可能发生冲突。

● IEEE802.11的MAC 层

802.11标准设计独特的MAC 层。它通过协调功能来确定在基本服务

集BSS 中的移动站在什么时间能发送数据或接受数据。

1. 80

2.11的MAC 层使用DCF 或PCF

1)分布协调功能DCF ——争用服务

DCF 在每一个结点使用CSMA 机制的分布式接入算法,让各个站通过

争用信道来获取发送权。因此DCF 向上提供争用服务。

2)点协调功能PCF ——无争用服务

PCF 基于轮询机制,使用AP 集中控制的接入算法将发送数据权轮流

交给各个站从而避免了冲突的产生。

2. 帧优先级的设置

所有的站在完成发送后,必须在等待一段很短的时间(继续监听)才

能发送下一帧,这段时间的通称为帧间间隔IFS 。

帧间间隔长度取决于该站欲发送的帧的类型。高优先级帧需要等待的时间

较短。因此可优先获得发送权,但有线级帧就必须等待较长的时间。 若低优先级帧还没来得及发送而其他站的高优先级帧已发送到媒体,

无争用服务(选用) M

则媒体变为忙态,因而低优先级帧就只能在推迟发送了

3. 帧间间隔IFS

IEEE802.11中有四种帧间隔,其长度由小到大依次分别是SIFS

SIFS:短帧间间隔

PIFS:点协调功能帧间间隔(比SIFS长)

DIFS:分布协调功能帧间间隔(比PIFS长)

EIFS:延长幀间间隔(最长的 IFS)

时隙长度:在一个基本服务集BBS中,当某个站在一个时隙开始接入到信道时,那么在下一个时隙开始时,其他站就能检测出信道已转变到忙态,就选定该长度作为时隙长度。

虚拟载波监听技术

难题:由于天线半双工的工作方式和信号空间传播的复杂性,无线网络相对于有线网络更易发生冲突,这个问题在物理层难以解决。

解决方案:IEEE802.11在MAC层通过使用虚拟载波监听技术解决了这个问题。每个工作站维护一个网络分配矢量NAV(NetworkAllocationVector),用NAV来指示网络的忙闲状态,每个发送站在发送帧时估计网络忙的时间,即NAV,并把这一时间信息装入帧头,其他站接收到此帧后如发现本地NAV小于此时间则利用此时间更新本地NAV。

源站将它还要占用信道的时间(包括目的站发回确认帧所需时间)在其 MAC 帧首部字段“持续时间”中填入指示给所有其他站,其他所有站会在这段时间都停止发送数据, 这样大大减少了冲突的机会。

“虚拟”是指其他站并没有真正监听信道,而是检测到源站发送幀中的“持续时间”才不发送数据,这种效果好像是其他站都监听了信道。

当一个站检测到正在信道中传送的 MAC 帧首部的“持续时间”字段时,就调整自己的网络分配向量 NAV (Network Allocation Vector),NAV 指出了信道处于忙状态的持续时间

IEEE802.11ac(真正5G WiFi)

第五代Wi-Fi传输技术,运行在5Ghz无线电波频段。更高的无线传输速度是5G Wi-Fi的最大特征。业界认为,5G Wi-Fi的入门级速度是

433Mbps,这至少是现在Wi-Fi速率的三倍,一些高性能的5G Wi-Fi还能

达到1Gbps以上。

●IEEE802.11ac的关键特性

1. 5GHz 频带 80

2. 11ac 更宽的信道带宽需求是其限制在5GHz 频段

的主要驱动因素。由于带宽的增加,信道规划成为新挑战,尤其是在拥堵

且零散的2. 4GHz 频段。

2.使用更高的宽信道带宽 802. 11ac 规范中,可以很清楚地看到信

道带宽与数据子载波数量之间的关系。

3. 向下兼容向下兼容性将可缓和与市场的调适过程,确保802. 11ac

装置可用于现有WLAN 网络。

4. 新的调制和编码方案( MCS) 802. 11ac引入256 - QAM调制机制

的首个商用的无线标准,以满足不断增长的数据吞吐量要求。可以实现更

高的数据速率。

5. 波束成形和多用户多输入输出( MIMO) 根据802. 11n 的经验,

WiFi 装置的制造商使用传送波束成形。802. 11ac 在此基础上,并提升

诸如单一声测( single sounding) 与反馈格式。更重要的在于,802. 11ac 工作组已建立在802. 11n 新机制的波束成型上,允许存取点

( AccessPoint; AP) 利用相同信道、多个天线、与空间多任务。

●IEEE802.11ac的优点

1.解决网络拥堵:Wi-Fi这个高速公路正变得拥挤不堪。目前全球最快的

Wi-Fi传输速度仅为300Mbps(少数可以达到600Mbps),相当于每秒只能

传输约36MB的内容

2.提升播放质量:视频流量的爆发性成长以及与日俱增的无线装置,加重

了Wi-Fi网络负担,导致用户消费者在观看影片时很容易遇到播放不顺畅、影片下载时间冗长等问题。5G Wi-Fi每秒传输速度可达125MB,让每秒下

载速度约为30~45MB的高清电影传输不成问题。

3.让手机更省电: 5G Wi-Fi另一大优点是节能——由于同一时间传送

的内容更多,设备也能更快地进入低功率的省电模式。比如博通的 5G Wi-Fi 技术可让行动装置降低83%的耗电率,因此可延长装置的使用时间。

4.信号品质更好: 目前2.4GHz频段Wi-Fi网络上“奔跑”的不仅仅有手

机、平板、笔记本电脑、掌上游戏机,还有各种各样的移动设备。大量设

备堆积在一个狭小的频段中很容易彼此干扰。国内5G频段使用较少,无

线电干扰大为降低,信号品质有极大提升。

●IEEE802.11ac的缺点

1.80

2.11ac增加了传输设备和接收设备之间的设置和选择数量。故设置

用户对于每一台设备的功能的预期是很困难的。

2.在5GHz频段的频率分配方面还有很大的地理差别,为主要频率和通道

绑定分配的频率是完全不同的,导致了高带宽频道的可用性和数量的区别。

●IEEE802.11ac的应用

基于Wi-Fi无线网卡、无线路由以及ARM单片机系统的无线智能门铃系统。

谢谢!

IEEE802协议(详细介绍)

IEEE802协议集介绍(802.1~802.21) TCP/IP协议(Transfer Controln Protocol/Internet Protocol)叫做传输控制/网际协议,又叫网络通讯协议,这个协议是Internet国际互联网络的基础。 TCP/IP协议世界上有各种不同类型的计算机,也有不同的操作系统,要想让这些装有不同操作系统的不同类型计算机互相通讯,就必须有统一的标准。TCP/IP协议就是目前被各方面遵从的网际互联工业标准。 TCP/IP是网络中使用的基本的通信协议。虽然从名字上看TCP/IP包括两个协议,传输控制协议(TCP)和网际协议(IP),但TCP/IP实际上是一组协议,它包括上百个各种功能的协议,如:远程登录、文件传输和电子邮件等,而TCP协议和IP协议是保证数据完整传输的两个基本的重要协议。通常说TCP/IP是Internet协议族,而不单单是TCP和IP。 TCP/IP是用于计算机通信的一组协议,我们通常称它为TCP/IP协议族。它是70年代中期美国国防部为其ARPANET广域网开发的网络体系结构和协议标准,以它为基础组建的INTERNET是目前国际上规模最大的计算机网络,正因为INTERNET的广泛使用,使得TCP/IP成了事实上的标准。 之所以说TCP/IP是一个协议族,是因为TCP/IP协议包括TCP、IP、UDP、ICMP、RIP、TELNETFTP、SMTP、ARP、TFTP等许多协议,这些协议一起称为TCP/IP协议。以下我们对协议族中一些常用协议英文名称和用途作一介绍: TCP(Transport Control Protocol)传输控制协议 IP(Internetworking Protocol)网间网协议 UDP(User Datagram Protocol)用户数据报协议 ICMP(Internet Control Message Protocol)互联网控制信息协议 SMTP(Simple Mail Transfer Protocol)简单邮件传输协议 SNMP(Simple Network manage Protocol)简单网络管理协议 FTP(File Transfer Protocol)文件传输协议 ARP(Address Resolation Protocol)地址解析协议 从协议分层模型方面来讲,TCP/IP由四个层次组成:网络接口层、网间网层、传输层、应用层。其中: 网络接口层这是TCP/IP软件的最低层,负责接收IP数据报并通过网络发送之,或者从网络上接收物理帧,抽出IP数据报,交给IP层。 网间网层负责相邻计算机之间的通信。其功能包括三方面。 一、处理来自传输层的分组发送请求,收到请求后,将分组装入IP数据报,填充报头,选择去往信宿机的路径,然后将数据报发往适当的网络接口。 二、处理输入数据报:首先检查其合法性,然后进行寻径--假如该数据报已到达信宿机,则去掉报头,将剩下部分交给适当的传输协议;假如该数据报尚未到达信宿,则转发该数据报。 三、处理路径、流控、拥塞等问题。 传输层提供应用程序间的通信。其功能包括: 一、格式化信息流; 二、提供可靠传输。为实现后者,传输层协议规定接收端必须发回确认,并且假如分组丢失,必

IEEE802.11协议详细介绍

协议X档案:IEEE 802.11协议详细介绍 作为全球公认的局域网权威,IEEE 802工作组建立的标准在过去二十年内在局域网领域内独领风骚。这些协议包括了802.3 Ethernet协议、802.5 Token Ring协议、802.3z 100BASE-T快速以太网协议。在1997年,经过了7年的工作以后,IEEE发布了802.11协议,这也是在无线局域网领域内的第一个国际上被认可的协议。在1999年9月,他们又提出了802.11b"High Rate"协议,用来对802.11协议进行补充,802.11b在802.11的1Mbps和2Mbps 速率下又增加了 5.5Mbps和11Mbps两个新的网络吞吐速率,后来又演进到802.11g的54Mbps,直至今日802.11n的108Mbps。 802.11a 高速WLAN协议,使用5G赫兹频段。 最高速率54Mbps,实际使用速率约为22-26Mbps 与802.11b不兼容,是其最大的缺点。也许会因此而被802.11g淘汰。 802.11b 目前最流行的WLAN协议,使用2.4G赫兹频段。 最高速率11Mbps,实际使用速率根据距离和信号强度可变 (150米内1-2Mbps,50米内可达到11Mbps) 802.11b的较低速率使得无线数据网的使用成本能够被大众接受(目前接入节点的成本仅为10-30美元)。 另外,通过统一的认证机构认证所有厂商的产品,802.11b设备之间的兼容性得到了保证。兼容性促进了竞争和用户接受程度。 802.11e 基于WLAN的QoS协议,通过该协议802.11a,b,g能够进行VoIP。 也就是说,802.11e是通过无线数据网实现语音通话功能的协议。 该协议将是无线数据网与传统移动通信网络进行竞争的强有力武器。 802.11g 802.11g是802.11b在同一频段上的扩展。支持达到54Mbps的最高速率。

IEEE 802.11标准

《无线局域网技术》讲义 第六讲 IEEE802.11物理层 作为全球公认的局域网权威,IEEE 802工作组建立的标准在过去二十年内在局域网领域内独领风骚。这些协议包括了802.3 Ethernet协议、802.5 Token Ring协议、802.3z 100BASE-T快速以太网协议。在1997年,经过了7年的工作以后,IEEE发布了802.11协议,这也是在无线局域网领域内的第一个国际上被认可的协议。在1999年9月,他们又提出了802.11b“High Rate”协议,用来对802.11协议进行补充,802.11b在802.11的1Mbps和2Mbps速率下又增加了5.5Mbps和11Mbps两个新的网络吞吐速率。利用802.11b,移动用户能够获得同Ethernet一样的性能、网络吞吐率、可用性。这个基于标准的技术使得管理员可以根据环境选择合适的局域网技术来构造自己的网络,满足他们的商业用户和其他用户的需求。802.11协议主要工作在ISO协议的最低两层上,并在物理层上进行了一些改动,加入了高速数字传输的特性和连接的稳定性。 主要内容: 1.80 2.11工作方式 2.802.11物理层 3.802.11b的增强物理层 4.802.11数字链路层 5.联合结构、蜂窝结构和漫游 1、802.11工作方式 802.11定义了两种类型的设备,一种是无线站,通常是通过一台PC机器加上一块无线网络接口卡构成的,另一个称为无线接入点(Access Point,AP),它的作用是提供无线和有线网络之间的桥接。一个无线接入点通常由一个无线输出口和一个有线的网络接口(802.3接口)构成,桥接软件符合802.1d桥接协议。接入点就像是无线网络的一个无线基站,将多个无线的接入站聚合到有线的网络上。无线的终端可以是802.11PCMCIA卡、PCI接口、ISA接口的,或者是在非计算机终端上的嵌入式设备(例如802.11手机)。 2、802.11物理层 在802.11最初定义的三个物理层包括了两个扩散频谱技术和一个红外传播规范,无线传输的频道定义在2.4GHz的ISM波段内,这个频段,在各个国际无线管理机构中,例如美国的USA,欧洲的ETSI和日本的MKK都是非注册使用频

IEEE 802标准

IEEE 802.11 IEEE 802.11是无线局域网通用的标准,它是由IEEE所定义的无线网络通信的标准。虽然有人将Wi-Fi与802.11混为一谈,但两者并不一样。 目录 编辑本段 802.11为IEEE(美国电气和电子工程师协会,The Institute of Electrical and Electronics Engineers)于1997年公告的无线区域网路标准,适用于有线站台与无线用户或无线用户之间的沟通连结。 编辑本段 历史

IEEE 802.11 无线通讯一直发展,但缺乏广泛的通讯标准。于是,IEEE在1997年为无线局域网制定了第一个版本标准 ──IEEE 802.11。其中定义了媒体存取控制层(MAC层)和物理层。物理层定义了工作在2.4GHz的ISM频段上的两种展频作调频方式和一种红外传输的方式,总数据传输速率设计为2Mbit/s。两个设备之间的通信可以设备到设备(ad hoc)的方式进行,也可以在基站(Base Station, BS)或者访问点(Access Point,AP)的协调下进行。为了在不同的通讯环境下取得良好的通讯质量,采用 CSMA/CA (Carrier Sense Multi Access/Collision Avoidance)硬件沟通方式。 1999年加上了两个补充版本:802.11a定义了一个在5GHz ISM频段上的数据传输速率可达54Mbit/s的物理层,802.11b定义了一个在2.4GHz的ISM频段上但数据传输速率高达11Mbit/s的物理层。2.4GHz的ISM频段为世界上绝大多数国家通用,因此802.11b得到了最为广泛的应用。苹果公司把自己开发的802.11标准起名叫AirPort。1999年工业界成立了Wi-Fi联盟,致力解决符合802.11标准的产品的生产和设备兼容性问题。802.11标准和补充。 编辑本段 规格说明 802.11 -- 初期的规格采直接序列展频(扩频)技术(Direct Sequence Spread Spectrum,DSSS)或跳频展频(扩频)技术(Frequency Hopping Spread Spectrum,FHSS),制定了在RF射频频段2.4GHz上的运用,并且提供了1Mbps、2Mbps和许多基础讯号传输方式与服务的传输速率规格。 IEEE 802.11 802.11a -- 802.11的衍生版,于5.8GHz频段提供了最高54 Mbps的速率规格,并运用orthogonal frequency division multiplexing encoding scheme以取代802.11的FHSS 或 DSSS。 802.11b (即所谓的高速无线网路或Wi-Fi标准),1999年再度发表IEEE802.11b高速无线网路标准,在2.4GHz频段上运用DSSS技术,且由于这个衍生标准的产生,将原来无线网路的传输速度提升至11 Mbps并可与以太网路(Ethernet)相媲。 802.11g -- 在2.4GHz频段上提供高于20 Mbps的速率规格。 编辑本段

局域网 IEEE802系列标准

IEEE802系列标准 Institute of Electrical and Electronics Engineers (IEEE)美国电气和电子工程师协会 ● IEEE802.1 网间互连定义 802.1是关于LAN/MAN桥接、LAN体系结构、LAN管理和位于MAC以及LLC层之上的协议层的基本标准。现在,这些标准大多与交换机技术有关,包括:802.1q(VLAN标准)、 802.3ac (带有动态GVRP标记的VLAN标准)、802.1v(VLAN分类)、802.1d(生成树协议)、802.1s(多生成树协议)、802.3ad (端口干路)和802.1p(流量优先权控制)。 ● IEEE802.2 逻辑链路控制 该协议对逻辑链路控制(LLC),高层协议以及MAC子层的接口进行了良好的规范,从而保证了网络信息传递的准确和高效性。由于现在逻辑理论控制已经成为整个802标准的一部分,因此这个工作组目前处于“冬眠”状态,没有正在进行的项目。 ● IEEE802.3 CSMA/CD网络 IEEE802.3定义了10Mbps、100Mbps、1Gbps,甚至10Gbps 的以太网雏形,同时还定义了第五类屏蔽双绞线和光缆是有效的缆线类型。该工作组确定了众多的厂商的设备互操作方式,而不管它们各自的速率和缆线类型。而且这种方法定义了 CSMA/CD(带冲突检测的载波侦听多路访问)这种访问技术规范。IEEE802.3产生了许多扩展标准,如快速以太网的 IEEE802.3u,千兆以太网的IEEE802.3z和 IEEE802.3ab,10G以太网的IEEE802.3ae。目前,局域网络中应用最多的就是基于IEEE802.3标准的各类以太网。

IEEE 802.15.4标准及其应用

用户名 : 密码: 登录 注册 查看文章 IEEE 802.15.4标准及其应用 2011-06-28 20:10 清水绿竹 清清流水 绿色竹林 主页博客相册个人档案好友i贴吧 概 述 在《电子设计应用》创刊号中,笔者已经介绍了无线个人网络(WPAN)和无线分布式感知/控制网络(WDSCN)。与其他的网络一样,WPAN 和WDSCN 网络中的网络设备可能会由不同的公司进行开发生产,所以一个统一的协议或标准显得尤其重要。 2002年,IEEE 802.15 工作组成立, 专门从事WPAN 标准化工作。它的任务是开发一套适用于短程无线通信的标准,通常我们称之为无线个人局域网(WPANs)。目前,IEEE 802.15 WPAN 共拥有4个工作组: 蓝牙WPAN 工作组 蓝牙是无线个人局域网的先驱。在初始阶段,IEEE 并没有制定蓝牙相关的标准,所以经过一段快速发展时期后,蓝牙很快就有了产品兼容性的问题。现在,IEEE 决定制定行业标准来开发能够相互兼容的蓝牙芯片、网络和产品。 图1 802.15.4标准的结构 图2 802.15.4的MAC 层数据帧 共存组 为所有工作在2.4GHz 频带上的无线应用建立一个标准。 高数据率 WPAN 工作组 其802.15.3标准适用于高质量要求的多媒体应用领域。 802.15.4工作组 为了满足低功耗、低成本的无线网络要求,IEEE 标准委员会在2000年12月份正式批准并成立了802.15.4工作组,任务就是开发一个低数据率的 WPAN(LR-WPAN)标准。它具有复杂度低、成本极少、功耗很小的特点,能在低成本设备(固定、便携或可移动的)之间进行低数据率的传输。表1中概 括了一些802.15.4的特点。 目前该标准仍处于不断改善和修订阶段,预计于2003年初推出正式标准。802.15.4无线发射/接收机及网络被Motorola 、Philips 、Eaton 、Invensys 和Honeywell 这些国际通信与工业控制界巨头们极力推崇。 IEEE 802.15.4 标准及其技术特点 IEEE 802.15.4 满足国际标准组织 (ISO)开放系统互连(OSI)参考模式。它包括物理层、介质访问层、网络层和高层。图1是对这些层的描述。 物理层 IEEE 802.15.4 提供两种物理层的选择(868/915 MHz 和2.4GHz),物理层与MAC 层的协作扩大了网络应用的范畴。这两种物理层都采用直接序列扩频(DSSS)技术,降低数字集成电路的成本,并且 都使用相同的包结构,以便低作业周期、低功耗地运作。2.4G 物理层的数据传输率为250kb/s,868/915MHz 物理层的数据传输率分别是20 k bps 、40 kbps 。

IEEE_802系列标准

IEEE 802系列标准 https://www.360docs.net/doc/b28244558.html,/ From Wikipedia, the free encyclopedia Jump to: navigation, search This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations.Please improve this article by introducing more precise citations where appropriate. (April 2009) IEEE 802 refers to a family of IEEE standards dealing with local area networks and metropolitan area networks. More specifically, the IEEE 802 standards are restricted to networks carrying variable-size packets. (By contrast, in cell-based networks data is transmitted in short, uniformly sized units called cells. Isochronous networks, where data is transmitted as a steady stream of octets, or groups of octets, at regular time intervals, are also out of the scope of this standard.) The number 802 was simply the next free number IEEE could assign, though “802” is sometimes associated with the date the first meeting was held — February 1980.

详尽的IEEE802标准

IEEE802协议集介绍(802.1 ?802.21 ) 1980 年 2 月成立 IEEE802 委员会( IEEE - Institute of Electrical and lectronics Engineers INC , 即电器和电子工程师协会) 。该委员会制定了一系列局域网标准,称为 IEEE802 标准。按 IEEE802 标准,局域网体系结构由物理层、介质访问控制子层( MAC-Media Access Control )和逻辑链路子 层 LLC (Logical Link Control ) 组成。 IEEE 委员会为局域网制定了一系列标准,统称为 IEEE802 标准。 IEEE802.1 — 局域网概述、体系结构、网络管理和网络互联 IEEE802.2 — 逻辑链路控制 LLC IEEE802.3 — CSMA/C 胡问方法和物理层规范,主要包括如下几个标准: IEEE802.3 — CSMA/CD 介质访问控制标准和物理层规范:定义了四种不同介质 10Mbps 以太网 规范 : 10BASE2、10BASE5、 10BASET 、10BASEF IEEE802.3U — 100Mbps 快速以太网标准,现已合并到 802.3中 IEEE802.3z — 光纤介质千兆以太网标准规范 IEEE802.3ab — 传输距离为 100米的 5类无屏蔽双绞线介质千兆以太网标准规范 IEEE802.4—Token Passing BUS (令牌总线) IEEE802.5—Token Ring (令牌环)访问方法和物理层规范 IEEE802.6 —城域网访问方法和物理层规范 IEEE802.7 —宽带技术咨询和物理层课题与建议实施 IEEE802.8 —光纤技术咨询和物理层课题 IEEE802.9 —综合声音/数据服务的访问方法和物理层规范 IEEE802.10 —安全与加密访问方法和物理层规范 IEEE802.11 —无线局域网访问方法和物理层规范,包括: IEEE802.11a 、IEEE802.11b 、 IEEE802.11c 和 IEEE802.11q 标准。 IEEE802.12 — 100VG-A nyLAN 快速局域网访问方法和物理层规范 简单说一下 802 系列如下: 802.1 :高层局域网协议 Higher Layer LAN Protocols 802.2 :逻辑链路控制 Logical Link Control 802.3 :以太网 Ethernet (CSMA/CD ) 802.4 :令牌总线 Token Bus 802.5 :令牌环 Token Ring 802.6 :城域网 802.7 :宽带技术 TCP(Transport Control Protocol) IP(Internetworking Protocol) UDP(User Datagram Protocol) ICMP(Internet Control Message Protocol) SMTP(Simple Mail Transfer Protocol) SNMP(Simple Network manage Protocol) FTP(File Transfer Protocol) ARP(Address Resolation Protocol) 传输控制协议 网间网协议 用户数据报协议 互联网控制信息协议 简单邮件传输协议 简单网络管理协议 文件传输协议 地 址解析协议

IEEE 802标准介绍

IEEE 802标准介绍 IEEE 802标准IEEE 802 Standards IEEE 802 Standards IEEE 802标准电气和电子工程师协会(IEEE)802委员会或802工程定义了局域网(LAN)标准。标准中的大部分是在80年代由委员会制订的,当时个人计算机联网刚刚兴起。 注意:下面的许多标准也是ISO8802标准。例如IEEE802.3是ISO8802.3。 802.1网间互连定义定义了IEEE802标准和ISO开放系统互连(OSI)参考模型之间的关系。例如,这个委员会为所有的802标准定义了48位的LAN站地址,这样每一个适配器就有唯一地址。IEEE记录了网络接口卡的供应商们,并把地址开始的三个字节赋予每一个供应商。然后每一个供应商负责为他的每个产品建立一个唯一的地址。 802.2逻辑链路控制定义了IEEE逻辑链路控制(LLC)协议,这些协议确保数据在一条通信链路上可靠地传输。OSI协议栈中的数据链路层被分成了介质访问控制(MAC)子层和LLC子层。在桥接器中,这两层作为一个模块化交换机制服务,如图I-5所示。一幅到达以太网并指定发送到令牌环网的帧被剥去该帧的以太网头部并用令牌环网头部重新封装这幅帧。LLC协议是由高级数据链路控制(HDLC)协议派生而来的,并且两者在操作上类似。注意,LLC提供了服务访问点(SAP)地址,而MAC子层提供了一个设备的物理网络地址。SAP指定了运行于一台计算机或网络设备上的一个或多个应用进程地址。 LLC提供了以下服务: □面向连接的服务在这个服务中,一个会话是和一个目的站建立的,并且当数据传输结束时,就关闭这个会话。每个节点都自动地参与数据传输,但是这样的会话要求一个建立时间以及会话双方由于监控带来的额外开销。 □应答式面向连接服务这种服务类似于上面的服务,在这种服务中,分组传输是需要应答的。 □非应答式无连接服务在这种服务中不用建立会话,分组只是发往目的地。高层协议负责请求重发丢失的分组。由于LAN的高可靠性,这种服务因此成为LAN 上的通常服务。 802.3CSMA/CD网络IEEE802.3标准(ISO8802-3)定义了在各种介质

IEEE 802.15.4标准及其应用

IEEE 802.15.4标准及其应用 2002年,IEEE 802.15 工作组成立,专门从事WPAN标准化工作。它的任务是开发一套适用于短程无线通信的标准,通常我们称之为无线个人局域网(WPANs)。目前,IEEE 802.15 WPAN共拥有4个工作组:蓝牙WPAN工作组蓝牙是无线个人局域网的先驱。在初始阶段,IEEE并没有制定蓝牙相关的标准,所以经过一段快速发展时期后,蓝牙很快就有了产品兼容性的问题。现在,IEEE决定制定行业标准来开发能够相互兼容的蓝牙芯片、网络和产品。 高数据率WPAN工作组其802.15.3标准适用于高质量要求的多媒体应用领域。 802.15.4工作组为了满足低功耗、低成本的无线网络要求,IEEE标准委员会在2000年12月份正式批准并成立了802.15.4工作组,任务就是开发一个低数据率的WPAN(LR-WPAN)标准。它具有复杂度低、成本极少、功耗很小的特点,能在低成本设备(固定、便携或可移动的)之间进行低数据率的传输。表1中概括了一些802.15.4的特点。 目前该标准仍处于不断改善和修订阶段,预计于2003年初推出正式标准。802.15.4无线发射/接收机及网络被Motorola、Philips、Eaton、Invensys和Honeywell这些国际通信与工业控制界巨头们极力推崇。 IEEE 802.15.4 标准及其技术特点IEEE 802.15.4 满足国际标准组织(ISO)开放系统互连(OSI)参考模式。它包括物理层、介质访问层、网络层和高层。图1是对这些层的描述。 物理层IEEE 802.15.4 提供两种物理层的选择(868/915 MHz和2.4GHz),物理层与MAC 层的协作扩大了网络应用的范畴。这两种物理层都采用直接序列扩频(DSSS)技术,降低数字集成电路的成本,并且都使用相同的包结构,以便低作业周期、低功耗地运作。2.4G物理层的数据传输率为250kb/s,868/915MHz物理层的数据传输率分别是20 kbps、40 kbps. 2.4GHz物理层的较高速率主要归因于一个较好的调制方案:基于DSSS方法(16个状态)的准正交调制技术。来自PPDU的二进制数据被依次(按字节从低到高)组成4位二进制数据符号,每种数据符号(对应16状态组中的一组)被映射成32位伪噪音CHIP,以便传输。然后这个连续的伪噪音CHIP序列被调制(采用最小移位键控方式MSK)到载波上,即采用半正弦脉冲波形的偏移四相移相键控(O_QPSK)调制方式。 868/915MHZ物理层使用简单DSSS方法,每个PPDU数据传输位被最大长为15的CHIP 序列(m-序列)所扩展。即被多组+1,-1构成的m-序列编码,然后使用二进制相移键控技术调制这个扩展的位元序列。不同的数据传输率适用于不同的场合。举例如下,868/915MHz 物理层的低速率换取了较好的灵敏度(-85dbm/2.4G,-92dbm/868,915MHz)和较大的覆盖面积,从而减少了覆盖给定物理区域所需的节点数。2.4G物理层的较高速率适用于较高的数据吞吐量、低延时或低作业周期的场合。 介质访问层IEEE 802.15.4 MAC层的特征是:联合,分离,确认帧传递,通道访问机制,帧确认,保证时隙管理,和信令管理。MAC子层提供两个服务与高层联系,即通过两个服务访问点(SAP)访问高层。通过MAC通用部分子层SAP(MCPS-SAP)访问MAC数据服务,用MAC层管理实体SAP(MLME-SAP)访问MAC管理服务。这两个服务为网络层和物理层提供了一个接口。

IEEE 802.1标准简介

IEEE 802.1标准简介 目录 零、IEEE 802.1简介 一、IEEE 802.1D 二、IEEE 802.1p协议 三、IEEE 802.1q协议 四、IEEE 802.1w协议 五、IEEE 802.1s协议 六、IEEE 802.1x协议 零、IEEE 802.1简介 IEEE 802.1是一组协议的集合,如生成树协议、VLAN协议等。为了将各个协议区别开来,IEEE在制定某一个协议时,就在IEEE 802.1后面加上不同的小写字母,如IEEE 802.1a定义局域网体系结构;IEEE 802.1b定义网际互连,网络管理及寻址;IEEE 802.1d定义生成树协议;IEEE 802.1p 定义优先级队列;IEEE 802.1q定义VLAN标记协议;IEE 802.1s定义多生成树协议;IEEE 802.1w定义快速生成树协议;IEEE 802.1x定义局域网安全认证等。 一、IEEE 802.1D 1、IEEE 802.1D简介 为了解决“广播风暴”这一在二层数据网络中存在弊端,IEEE(电机和电子工程师学会)制定了IEEE 802.1d的生成树(Spanning Tree)协议。生成树协议是一种链路管理协议,为网络提供路径冗余,同时防止产生环路。为使以太网更好地工作,两个工作站之间只能有一条活动路径。 STP(生成树协议)允许网桥之间相互通信以发现网络物理环路。该协议定义了一种算法,网桥能够使用它创建无环路(loop-free)的逻辑拓朴结构。换句话说,STP创建了一个由无环路树叶和树枝构成的树结构,其跨越了整个第二层网络。 2、工作原理 STP协议中定义了根桥(Root Bridge)、根端口(Root Port)、指定端口(Designated Port)、路径开销(Path Cost)等概念,目的就在于通过构

IEEE802协议标准

IEEE802.11协议 主讲:王海飞 制作:李越 许文静 王海飞

目录 ●IEEE802.11 协议标准 ●IEEE802.11系列协议标准的发展 ●IEEE802.11的工作方式 ●IEEE802.11的物理层 ●IEEE802.11的MAC层 ●IEEE802.11ac协议(真正的5G WiFi) 概述 802.11是IEEE最初制定的一个无线局域网标准,这也是在无线局域网领域内的第一个国际上被认可的协议。 用途:用户与用户终端的无线介入业务 (主要限于数据存取,速率最高只能达到2Mbps) 发展 ●802.11 定义微波和红外线的物理层和MAC子层(2.4GHz,2Mbit/s) ●802.11a 定义了微波物理层及MAC子层(5GHz,54Mbit/s,1999) ●802.11b 物理层补充DSSS(2.4GHz,11Mbit/s,1997) ●802.11c 关于802.11网络和普通以太网之间的互通协议(2000) ●802.11d 关于国际间漫游的规范(2000) ●802.11e 对服务等级QoS的支持(2004) ●802.11f 基站的互联性(2003) ●802.11h 扩展物理层和MAC子层标准(5GHz,欧洲,2003) ●802.11j 扩展物理成和MAC子层标准(5GHz,日本,2004) ●802.11k 基于无线局域网的微波测量规范(2005) ●802.11m 基于无线局域网的设备维护规范(2006) ●802.11ac 第五代Wi-Fi传输技术(2008) IEEE802.11协议性能参数 频带最大传输速度 协议发布 日期 1997 2.4-2.5GHz 2Mbps 802.1 1 802.11999 5.15-5.35/5.47-5.725/5.754Mbps

IEEE802.15.4标准的概念,应用,特征;

IEEE802.15.4标准的概念,应用,特征; 1 IEEE802.15.4标准的概念 2002年,IEEE 802.15 工作组成立,专门从事WPAN标准化工作。目标是为在个人操作空间(personal operating space, POS)内相互通信的无线通信设备提供通信标准。POS一般是指用户附近10米左右的空间范围,在这个范围内用户可以是固定的,也可以是移动的。 在IEEE 802.15工作组内有四个任务组(task group, TG),分别制定适合不同应用的标准。这些标准在传输速率、功耗和支持的服务等方面存在差异。下面是四个任务组各自的主要任务: (1)任务组TG1:制定IEEE 802.15.1标准,又称蓝牙无线个人区域网络标准。这是一个中等速率、近距离的WPAN网络标准,通常用于手机、PDA等设备的短距离通信。 (2)任务组TG2:制定IEEE 802.15.2标准,研究IEEE 802.15.1与IEEE 802.11(无线局域网标准,WLAN)的共存问题。 (3)任务组TG3:制定IEEE 802.15.3标准,研究高传输速率无线个人区域网络标准。该标准主要考虑无线个人区域网络在多媒体方面的应用,追求更高的传输速率与服务品质。 (4)任务组TG4:制定IEEE 802.15.4标准,针对低速无线个人区域网络(low-rate wireless personal area network, LR-WPAN)制定标准。该标准把低能量消耗、低速率传输、低成本作为重点目标,旨在为个人或者家庭范围内不同设备之间的低速互连提供统一标准。 任务组TG4定义的LR-WPAN网络的特征与传感器网络有很多相似之处,很多研究机

IEEE 802系列标准

IEEE 802系列标准 2008-05-25 10:18 对于不同传输介质的不同局域网,IEEE局域网标准委员会定制了不同的标准,适用于不同的网络环境,IEEE 802各标准之间的关系如图4-2所示。 IEEE 802标准主要包括几项(这些标准在物理层和MAC子层有区别,但在逻辑链路子层是兼容的): ① IEEE 标准,定义了局域网体系结构、网络互联,以及网络管理与性能测试。 ② IEEE 标准,定义了逻辑链路控制(LLC)子层的功能与服务。 ③ IEEE 标准,定义了CSMA/CD总线介质访问控制子层和物理层规范。在物理层定义了4种不同介质的10Mb/s的以太网规范,包括10Base- 5(粗同轴电缆)、10Base-2(细同轴电缆)、10Base-F(多模光纤)和10Base-T(无屏蔽双绞线UTP)。另外,到目前为止IEEE 工作组还开发了一系列标准,如下所示。

? IEEE 标准,百兆快速以太网标准,现已合并到IEEE 中。 ? IEEE 标准,光纤介质千兆以太网标准规范。 ? IEEE 标准,传输距离为100m的5类无屏蔽双绞线千兆以太网标准规范。? IEEE 标准,万兆以太网标准规范。 ④ IEEE 标准,定义了令牌总线(Token Bus)介质访问控制子层与物理层规范。 ⑤ IEEE 标准,定义了令牌环(Token Ring)介质访问控制子层与物理层规范。 ⑥ IEEE 标准,定义了城域网(MAN)介质访问控制子层与物理层规范。 ⑦ IEEE 标准,定义了宽带网络技术。

⑧ IEEE 标准,定义了光纤传输技术。 ⑨ IEEE 标准,定义了综合语音与数据局域网(IVD LAN)技术。 ⑩ IEEE 标准,定义了可互操作的局域网安全性规范(SILS)。 IEEE 标准,定义了无线局域网介质访问控制方法和物理层规范,主要包括以下几项。 ? IEEE ,工作在5GHz频段,传输速率为54M/ps的无线局域网标准。 ? IEEE ,工作在频段,传输速率为11Mb/s的无线局域网标准; ? IEEE ,工作在频段,传输速率为54Mb/s的无线局域网标准; IEEE 标准,定义了100VG-AnyLAN快速局域网访问方法和物理层规范。

IEEE802.15.4协议规范

基于IEEE 802.15.4的IPv6协议栈 随着互联网的普及,Internet对人们生活方式的影响越来越巨大,并将继续在未来得各领域持续发挥其影响力,集成了网络技术,嵌入式技术、微机电系统(MEMS)及传感器技术的无线传感器网络将Internet为从虚拟世界延伸到物理世界,从而将逻辑上的信息世界与真实物理世界融合在一起,改变了人与自然交互的方式,满足了人们对“无处不在”的网络的需求。2000年12月IEEE成立了IEEE 802.15.4 工作组,致力于定义一种供廉价、固定、便捷或移动设备使用的,复杂度、成本和功耗极低的低速率无线连接技术,产品的方便灵活,易于连接、实用可靠及可继承延续是市场的驱动力,一般认为短距离的无线低功耗通信技术最适合传感器网络使用,传感器网络是IEEE 802.15.4标准的主要市场对象。 一方面,无线传感器网络具有“无处不在”和节点数量庞大等特点,部署无线传感器网络需要数量巨大的IP地址资源,另一方面,由于无线传感器网络的应用领域往往对安全性要求较高,而无线传感器网络自组织的先天性缺乏应有的安全机制,IPv6作为下一代网络协议,具有地址资源丰富、地址自动配置、安全性高、移动性好等优点,可以满足无线传感器网络在地址和安全方面的需求,所以IETF于2004年11月成立了一个6LowPan(IPv6 over IEEE 802.15.4或IPv6 over LR_PAN)工作组,它规定了6lowPan技术底层采取IEEE 802.15.4,MAC层以

上采取IPv6协议栈,致力于如何将Ipv6与IEEE 802.15.4展开,实现Ipv6数据包在IEEE 802.15.4上的传输,研究基于IPv6 over IEEE 802.15.4的无线传感器网络的关键问题。目前这方面研究成为了一个很活跃的方向,其中,通过分析无线传感器网络对IPv6协议栈基本需求,借助协议工程学理论和软件工程的方法,设计并实现体积小、功能全、效率高,适用于IPv6无线传感器网络节点的嵌入式IPv6协议栈,已经成为一个很关键的问题。 本文在分析了无线传感器网络和IPv6 over IEEE 802.15.4的技术特点之后,重点提出了一种能够适用于无线传感器网络,且底层采用IEEE 802.15.4的嵌入式IPv6协议栈设计方案,最后,还总结了基于IPv6 over IEEE 802.15.4无线传感器网络协议栈设计的核心原则。 1 无线传感器网络和IPv6 over IEEE 802.15.4的技术节点 1.1 无线传感器网络简介 无线传感器网络由大量低功耗、低速率、低成本、高密度的微型节点组成,节点通过自我组织、自我愈合的方式组成网络,图1给出了无线传感器网络的工作原理,图中分散的无线传感器节点通过自组织方式形成传感器网络。节点负责采集周围的相关信息,并采用多跳方式将这些信息通过Internet或其他网络传递到远端的监控设备。

IEEE802.3af与at标准的解析 POE供电

IEEE802.3af与at标准的解析 POE供电 2003 年6 月,IEEE 批准了802. 3af 标准,它明确规定了远程系统中的电力检测和控制事项,并对路由器、交换机和集线器通过以太网电缆向IP电话、安全系统以及无线LAN 接入点等设备供电的方式进行了规定。IEEE 802.3af 的发展包含了许多公司专家的努力,这也使得该标准可以在各方面得到检验。 POE的系统构成及供电特性参数一个完整的POE系统包括供电端设备(PSE, Power Sourcing Equipment)和受电端设备(PD, Power Device)两部分。PSE设备是为以太网客户端设备供电的设备,同时也是整个POE以太网供电过程的管理者。而PD设备是接受供电的PSE负载,即POE系统的客户端设备,如IP电话、网络安全摄像机、AP及掌上电脑( PDA)或移动电话充电器等许多其他以太网设备。两者基于IEEE 802.3af标准建立有关受电端设备PD的连接情况、设备类型、功耗级别等方面的信息联系,并以此为根据PSE 通过以太网向PD供电。标准的五类网线有四对双绞线,IEEE80 2.3af 允许两种线序供电方法:一种是在4、5、7、8线对上传输电流,并且规定,4、5为正极,7、8为负极。另一种供电是在1、2、3、6线上传输电源,极性为任意,1、2为正极,3、6为负极或是1、2为负极,3、6为正极,其中的一种供电极性。 IEEE802.3af的工作过程: 1、检测:一开始PSE在为受电设备供电前,先输出一个低电压来检测受电设备(PD)是否符合IEEE802.3af标准,如果符合标准,一般是在受电设备中,选用24.9K的电阻,来确认符合IEEE802.3af供电标准。 2、分级:当PSE检测到符合要求的阻值后,会将输出电压进一步提高,来对受电设备进行分级,如果受电设备此时没有回应分级确认电流,PSE默认将受电设备规为0级,为其提供15.4W的输出功率。 3、供电:经过确认分级后,PSE会向受电设备输出48V的直流电,并确认受电设备不超过15.4W的功率要求,当受电设备超载或短路后,PSE停止为其供电,再次进入检测阶段。 IEEE802.3af标准供电系统的主要供电特性参数为: 直流电压在44~57V之间,典型值为48V。 典型工作电流为10~350mA,典型的输出功率:15.4W。 超载检测电流为350~500mA。 在空载条件下,最大需要电流为5mA。 为PD设备提供3.84~12.95W四个Class等级的电功率请求。 IEEE802.3af的分级参数: Class 0设备需要的最高工作功率为0~12.95W Class 1设备需要的最高工作功率为0~3.84W; Class 2设备需要的工作功率介于3.85W~6.49W; Class 3设备的功率范围则介于6.5~12.95W。 IEEE 802.3at标准出现的背景 由于IEEE 802.3af规范,受电设备(PD)上的PoE功耗被限制为12.95W,这对于传统的网络受电设备足以满足需求,但随着IP电话以及网络摄像头、双波段接入、视频电话、PTZ视频监控系统等高功率应用的出现,13W的供电功率显然不能满足需求,这就限制了以太网电缆供电的应用范围。为了克服PoE对功率预算的限制,并将其推向新的应用,IEEE成立了一个新的任务组,旨在探求提高该国际电源标准的功率限值的方法。IEEE802.3工作组为了在技术及经济上对IEEE802.3at实现的可能性进行评估,新标准称为IEEE 802.3at,它将功率要求高于12.95W的设备定义为Class 4,可将功率水平扩展到25W或更高,新标准并在2009年初发布。 IEEE 802.3at与802.3af相比,802.3at可输出2倍以上的电力,每个端口的输出功率可在30W以上,就标准而言,两者在功率、

相关主题
相关文档
最新文档