一份给高中生的微积分讲义

一份给高中生的微积分讲义
一份给高中生的微积分讲义

专题13定积分与微积分基本定理知识点

专题13定积分与微积分基 本定理知识点 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

考点13 定积分与微积分基本定理 一、定积分 1.曲边梯形的面积 (1)曲边梯形:由直线x =a 、x =b (a ≠b )、y =0和曲线()y f x =所围成的图形称为曲边梯形(如图①). (2)求曲边梯形面积的方法与步骤: ①分割:把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形(如图②); ②近似代替:对每个小曲边梯形“以值代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值(如图②); ③求和:把以近似代替得到的每个小曲边梯形面积的近似值求和; ④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积. 2.求变速直线运动的路程 3.定积分的定义和相关概念 (1)如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0

非常好的定积分与微积分基本定理复习讲义

定积分与微积分基本定理复习讲义[备考方向要明了] 考什么怎么考 1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. 2.了解微积分基本定理的含义. 1.考查形式多为选择题或填空题. 2.考查简单定积分的求解. 3.考查曲边梯形面积的求解. 4.与几何概型相结合考查. 1.定积分 (1)定积分的相关概念:在∫b a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式. (2)定积分的几何意义 ①当函数f(x)在区间[a,b]上恒为正时,定积分∫b a f(x)d x的几何意义是由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分). ②一般情况下,定积分∫b a f(x)d x的几何意义是介于x轴、曲线f(x)以及直线x=a,x=b之间的曲边梯形面积的代数和(右上图中阴影所

示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数. (3)定积分的基本性质:①∫b a kf(x)d x=k∫b a f(x)d x. ②∫b a[f1(x)±f2(x)]d x=∫b a f1(x)d x±∫b a f2(x)d x. ③∫b a f(x)d x=∫c a f(x)d x+∫b c f(x)d x. [探究] 1.若积分变量为t,则∫b a f(x)d x与∫b a f(t)d t是否相等? 提示:相等. 2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗? 提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算. 3.定积分∫b a[f(x)-g(x)]d x(f(x)>g(x))的几何意义是什么? 提示:由直线x=a,x=b和曲线y=f(x),y=g(x)所围成的曲边梯形的面积. 2.微积分基本定理:如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么∫b a f(x)d x=F(b)-F(a),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式.为了方便,常把F(b)-F(a)记成F(x)| b a,即∫b a f(x)d x=F(x) |b a=F(b)-F(a). 课前预测: 1.∫421 x d x等于( ) A.2ln 2 B.-2ln 2 C.-ln 2 D.ln 2

微积分知识点归纳

知识点归纳 1. 求极限 2.1函数极限的性质P35 唯一性、局部有界性、保号性 P34 A x f x x =→)(lim 0 的充分必要条件是 :A x f x f x f x f x x x x == +==-+-→→)()0()()0(lim lim 0 000 2.2 利用无穷小的性质P37: 定理1有限个无穷小的代数和仍是无穷小。 0)sin 2(30 lim =+→x x x 定理2有界函数与无穷小的乘积是无穷小。 0)1 sin (20 lim =→x x x 定理3无穷大的倒数是无穷小。反之,无穷小的倒数是无穷大。 例如:lim ∞→x 12132335-++-x x x x ∞= , lim ∞→x 131 23523+--+x x x x 0= 2.3利用极限运算法则P41 2.4利用复合函数的极限运算法则P45 2.4利用极限存在准则与两个重要极限P47 夹逼准则与单调有界准则,

lim 0→x x x tan 1=,lim 0→x x x arctan 1=,lim 0→x x x arcsin 1=, lim )(∞→x ?)())(11(x x ??+e =,lim 0 )(→x ?) (1 ))(1(x x ??+e = 2.6利用等价无穷小P55 当0→x 时, x x ~sin ,x x ~tan , x x ~arcsin ,x x ~arctan ,x x ~)1ln(+, x e x ~,221 ~cos 1x x -,x x αα++1~)1(,≠α0 为常数 2.7利用连续函数的算术运算性质及初等函数的连续性P64 如何求幂指函数)()(x v x u 的极限?P66 )(ln )()()(x u x v x v e x u =,)(ln )()(lim )(lim x u x v x v a x a x e x u →=→ 2.8洛必达法则P120 lim a x →)() (x g x f )() (lim x g x f a x ''=→ 基本未定式:00,∞∞ , 其它未定式 ∞?0,∞-∞,00,∞1,0∞(后三个皆为幂指函数) 2. 求导数的方法 2.1导数的定义P77: lim 00|)(→?==='='x x x dx dy x f y x x f x x f x y x ?-?+ =??→?) ()(000lim h x f h x f h ) ()(000lim -+=→

高等数学讲义(一)

高等数学基础 高等数学基础课程的学习内容微积分学,它是创建于十七世纪的一门数学学科,创始人是英国数学家牛顿(Newton )和德国数学家莱布尼茨(Leibniz )。用著名学者的话来形容“微积分、或者数学分析,是人类思维的伟大成果之一。它处于自然科学与人文科学之间的地位,使它成为高等教育的一种特别有效的工具”。“微积分的创立,与其说是数学史上,不如说是人类历史上的一件大事。时至今日,它对工程技术的重要性就像望远镜之于天文学,显微镜之于生物学一样。 第1讲 函数 1.2 函数 要知道什么是函数,需要先了解几个相关的概念。 一、常量与变量 先看几个例子: 圆的面积公式 2πr S = 自由活体的下落距离 202 1gt t v s + = 在上述讨论的问题中,g v ,,π0是常量,t s r S ,,,是变量。变量可以视为实属集合(不止一个元素)。 二、函数的定义 定义1.1 设D 是一个非空数集。如果有一个对应规则f ,使得对每一D x ∈,都能对应于唯一的一个数y ,则此对应规则f 称为定义在集合D 上的一个函数,并把数x 与对应的数y 之间的对应关系记为 )(x f y = 并称x 为该函数的自变量,y 为函数值或因变量,D 为定义域。 实数集合 },)(;{D x x f y y Z ∈== 称为函数f 的值域。 看看下面几个例子中哪些是函数: }6,3,1{=X f

}9,8,6,2{=Y f 是函数,且 2)1(=f ,8)3(=f ,6)6(=f 定义域}6,3,1{=D ,值域}8,6,2{=Z ,一般地Y Z ?。 }7,6,3,1{=X }9,8,6,2{=Y f 不是函数。 }6,3,1{=X }9,8,6,2{=Y f 是函数,且 2)1(=f ,8)3(=f ,8)6(=f 定义域}6,3,1{=D ,值域}8,2{=Z 。 }6,3,1{=X }9,8,6,2{=Y f 不是函数。 由函数定义可以得出,函数的对应规则和定义域是确定函数的两个要素,用解析法表示的函数的对应规则就是由表达式确定的,而定义域就是使表达式有意义的所有x 轴上的点。 例1 求函数x y -=1的定义域。 解 在实数范围内要使等式有意义,有 01≥-x 即 f f f

知识讲解_微积分基本定理

微积分基本定理 编稿:赵雷 审稿:李霞 【学习目标】1.理解微积分基本定理的含义。 2.能够利用微积分基本定理求解定积分相关问题。 【要点梳理】 要点一、微积分基本定理的引入 我们已学过过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 (1)导数和定积分的直观关系: 如下图:一个做变速直线运动的物体的运动规律是s=s (t ),由导数的概念可知,它在任意时刻t 的速度v (t )=s '(t )。设这个物体在时间段[a ,b]内的位移为s ,你能分别用 s (t )、v (t )表示s 吗? 一方面,这段路程可以通过位置函数S (t )在[a ,b]上的增量s (b )-s (a )来表达, 即 s=s (b )-s (a )。 另一方面,这段路程还可以通过速度函数v (t )表示为 ()d b a v t t ? , 即 s = ()d b a v t t ? 。 所以有: ()d b a v t t =? s (b )-s (a ) (2)导数和定积分的直观关系的推证: 上述结论可以利用定积分的方法来推证,过程如下: 如右图:用分点a=t 0<t 1<…<t i -1<t i <…<t n =b , 将区间[a ,b]等分成n 个小区间: [t 0,t 1],[t 1,t 2],…,[t i ―1,t i ],…,[t n ―1,t n ], 每个小区间的长度均为

1i i b a t t t n --?=-= 。 当Δt 很小时,在[t i ―1,t i ]上,v (t )的变化很小,可以认为物体近似地以速度v (t i ―1)做匀速运动,物体所做的位移 111()'()'()i i i i i b a s h v t t s t t s t n ----?≈=?=?= 。 ② 从几何意义上看,设曲线s=s (t )上与t i ―1对应的点为P ,PD 是P 点处的切线,由导数的几何意义知,切线PD 的斜率等于s '(t i ―1),于是 1tan '()i i i s h DPC t s t t -?≈=∠??=??。 结合图,可得物体总位移 111 1 1 1 ()'()n n n n i i i i i i i i s s h v t t s t t --=====?≈=?=?∑∑∑∑。 显然,n 越大,即Δt 越小,区间[a ,b]的分划就越细,1 11 1 ()'()n n i i i i v t t s t t --==?=?∑∑与s 的近似程度就越好。由定积分的定义有 11lim ()n i n i b a s v t n -→∞=-=∑11 lim '()n i n i b a s t n -→∞=-=∑()d '()d b b a a v t t s t t ==??。 结合①有 ()d '()d ()()b b a a s v t t s t t s b s a ===-??。 上式表明,如果做变速直线运动的物体的运动规律是s=s (t ),那么v (t )=s '(t )在 区间[a ,b]上的定积分就是物体的位移s (b )―s (a )。 一般地,如果()f x 是区间[a ,b]上的连续函数,并且'()()F x f x =,那么 ()d ()()b a f x x F b F a =-? 。 这个结论叫做微积分基本定理。 要点二、微积分基本定理的概念 微积分基本定理: 一般地,如果'()()F x f x =,且()f x 在[a ,b]上可积,则()d ()()b a f x x F b F a =-? 。 这个结论叫做微积分基本定理,又叫做牛顿-莱布尼兹公式。 其中,()F x 叫做()f x 的一个原函数。为了方便,我们常把()()F b F a -记作()b a F x ,即 ()d ()()()b b a a f x x F x F b F a ==-? 。

高等数学辅导讲义

第一部分函数极限连续

历年试题分类统计及考点分布 本部分常见的题型 1.求分段函数的复合函数。 2.求数列极限和函数极限。 3.讨论函数连续性,并判断间断点类型。 4.确定方程在给定区间上有无实根。

一、 求分段函数的复合函数 例1 (1988, 5分) 设2 (),[()]1x f x e f x x ?==-且()0x ?≥,求()x ?及其定义 域。 解: 由2 ()x f x e =知2 () [()]1x f x e x ? ?==-,又()0x ?≥, 则()0 x x ?= ≤. 例2 (1990, 3分) 设函数 1,1 ()0,1 x f x x ?≤?=?>??,则[()]f f x =1. 练习题: (1)设 1,1, ()0,1,(),1,1, x x f x x g x e x ??求[()]f g x 和[()]g f x , 并作出这 两个函数的图形。 (2) 设 20,0,0,0, ()(), ,0,,0, x x f x g x x x x x ≤≤??==??>->??求 [()],[()],[()],[()]f f x g g x f g x g f x . 二、 求数列的极限 方法一 利用收敛数列的常用性质 一般而言,收敛数列有以下四种常用的性质。 性质1(极限的唯一性) 如果数列{}n x 收敛,那么它的极限唯一。 性质2(收敛数列的有界性)如果数列{}n x 收敛,那么数列{}n x 一定有界。 性质3(收敛数列的保号性) 如果lim n n x a →∞ =,且0a >(或0a <),那么存在 0n N + ∈,使得当0n n >时,都有0n x >(或0n x <). 性质4(数列极限的四则运算法则) 如果,, lim lim n n n n x a y b →∞ →∞ ==那么 (1)()lim n n n x y a b →∞ ±=±; (2)lim n n n x y a b →∞ ?=?; (3)当0()n y n N + ≠∈且0 b ≠时,lim n n n x a y b →∞ = .

微积分大一基础知识经典讲解

Chapter1 Functions(函数) 1)A function f is a rule that assigns to each element x in a set A exactly one element, called f (x ), in a set B. 2)The set A is called the domain(定义域) of the function. 3)The range(值域) of f is the set of all possible values of f (x ) as x varies through out the domain. ?=)()(x g x f :Note 1)(,1 1)(2+=--=x x g x x x f E xample )()(x g x f ≠? Elementary Functions(基本初等函数) 1) constant functions f (x )=c 2) power functions 0,)(≠=a x x f a 3) exponential functions 1,0,)(≠>=a a a x f x domain: R range: ),0(∞ 4) logarithmic functions 1,0,log )(≠>=a a x x f a domain: ),0(∞ range: R 5) trigonometric functions f (x )=sin x f (x )=cos x f (x )=tan x f (x )=cot x f (x )=sec x f (x )=csc x

专题13 定积分与微积分基本定理知识点

考点13 定积分与微积分基本定理 一、定积分 1.曲边梯形的面积 (1)曲边梯形:由直线x =a 、x =b (a ≠b )、y =0和曲线()y f x =所围成的图形称为曲边梯形(如图①). (2)求曲边梯形面积的方法与步骤: ①分割:把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形(如图②); ②近似代替:对每个小曲边梯形“以值代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值(如图②); ③求和:把以近似代替得到的每个小曲边梯形面积的近似值求和; ④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积. 2.求变速直线运动的路程 3.定积分的定义和相关概念 (1)如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0

()d b a f x x ? =1 lim ()n i n i b a f n ξ→∞ =-∑ . (2)在 ()d b a f x x ? 中,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数()f x 叫做被 积函数,x 叫做积分变量,f (x )d x 叫做被积式. 4.定积分的性质 (1)()()d d b b a a kf x x k f x x =??(k 为常数); (2)[()()]d ()d ()d b b b a a a f x g x x f x x g x x ±=±? ??; (3) ()d =()d +()d b c b a a c f x x f x x f x x ? ??(其中a

高中微积分知识点总结

微积分(下)知识点总结 6月26日 马上就要进入期末考试了,本学期的推送也将告一段落了,希望同学们期末考试能有个好成绩,现将本学期所做的推送归纳一下。 微积分(下)的主要知识点和考点归纳如下: 第6章定积分及其应用 1、定积分的计算(换元积分法、分部积分法、定积分的对称性问题); 2、定积分的应用(平面图形的面积、旋转体的体积); 3、反常积分(无穷区间上的反常积分、无界函数的反常积分)。 第7章多元函数微分学 1、空间解析几何基础(空间两点间的距离、平面方程:一般方程、截距式方程特殊的平面方程、球面方程); 2、多元函数的概念(二元函数的极限、二元函数的连续性); 3、偏导数(偏导数的定义、偏导数的计算、偏导数存在与函数连续性的关系、高阶偏导数); 4、全微分及其应用(全微分的定义、全微分的计算、可微与连续,偏导数存在之间的关系); 5、多元复合函数的微分法; 6、多元函数的极值(二元函数的极值、二元函数的最值、条件极值)。 第8章二重积分 1、二重积分的几何意义; 2、二重积分的性质; 3、二重积分的计算(在直角坐标系中计算二重积分、交换积分次序、在极坐标中计算二重积分)。 第9章无穷级数 1、常数项级数的概念和性质(常数项级数收敛与发散的定义、常数项级数的性质、级数收敛的必要条件); 2、三类常用的级数(等比级数、调和级数、p级数); 3、正项级数及其审敛法(比较判别法、比较判别法的极限形式、比值判别法、根值判别法); 4、任意项级数(交错级数及其莱布尼茨判别法、绝对收敛与条件收敛); 5、幂级数(求幂级数的收敛半径及收敛域、求幂级数的和函数); 6、函数展开成幂级数(常用的函数的幂级数展开式、间接展开法)。 第10章微分方程 1、微分方程的基本概念(微分方程的阶数、验证函数是微分方程的解); 2、可分离变量的微分方程; 3、齐次方程; 4、一阶线性微分方程及其常数变易法; 5、二阶常系数齐次线性微分方程解的结构及求解方法。 §6.3定积分的换元积分法和分部积分法知识点; §6.4 定积分的应用知识点; §6.5 反常积分的知识点; 第6章定积分及其应用练习题及答案;

(完整)高中微积分基本知识

高中微积分基本知识 第一章、 极限与连续 一、 数列的极限 1. 数列 定义: 按着正整数的顺序排列起来的无穷多个数 1,,,n x x K L 叫数列,记作{}n x ,并吧每个数叫做数列的项,第n 个数叫做数列的第n 项或通项 界的概念: 一个数列{}n x ,若0M ?>,..s t 对*n N ?∈,都有n x M ≤,则称{}n x 是有界的: 若不论M 有多大,总*m N ?∈,..s t m x M >,则称{}n x 是无界的 若n a x b ≤≤,则a 称为n x 的下界,b 称为n x 的上界 {}n x 有界的充要条件:{}n x 既有上界,又有下界 2. 数列极限的概念 定义: 设{}n x 为一个数列,a 为一个常数,若对?0ε>,总?N ,..s t 当n N >时,有 n x a ε-< 则称a 是数列{}n x 的极限,记作lim n n x a →∞ =或()n x a n →→∞ 数列有极限时,称该数列为收敛的,否则为发散的 几何意义: 从第1N +项开始,{}n x 的所有项全部落在点a 的ε邻域(,)a a εε-+ 3. 数列极限的性质 ①唯一性 ②收敛必有界 ③保号性:极限大小关系?数列大小关系(n N >时) 二、 函数的极限 1.定义:两种情形 ①0x x →:设()f x 在点0x 处的某去心邻域内有定义,A 为常数,若对0ε?>, 0δ?>,..s t 当00x x δ<-<时,恒有()f x A ε-<成立, 则称()f x 在0x x →时有 极限A 记作0 lim ()x x f x A →=或0()()f x A x x →→

大学微积分l知识点总结(一)

大学微积分I 知识点总结 【第一部分】大学阶段准备知识 1、不等式: 2 2 a b 2ab 3 abc c 3 3abc a b a 2 b 2 2 ' 2 当且仅当,a i b i 为常数,i 1,2,3...n 时取等号 2、函数周期性和对称性的常用结论 1、若 f (X+a ) =± f (X+b ),则 f (x )具有周期性;若 f (a+X )=± f (b-X ),则 f ( X )具有对 称性。 双向不等式: 扩展:若有y -b b 两侧均在ab > 0或ab < 0时取等号 且x 1 n 则的最大值为:Xl X2 ... X n n x 1 ?X 2?...?X n , X 2 ... x n p p 为常数 柯西不等式: ^设 a i 、a 2、...a n , b i 、 b 2、..?b n 均是实数,则有: a 〔 b-] a 2 2 2 2 a n b n a i a 2 2 2 2 ... a n b| b ? bn 2 a i a 2??? a n n n

口诀:“内同表示周期性,内反表示对称性” 2、周期性 (1) 若f (x+a) =f (b+x),贝U T=|b-a| (2) 若f (x+a) =-f (b+x),则T=2|b-a| (3) 若f (x+a) =± 1/f (x),贝U T=2a (4) 若f (x+a)=【1-f (x)】/【1+f (x)】,则T=2a (5) 若f (x+a)=【1+f (x)】/【1-f (x)】,则T=4a 3、对称性 (1) 若f (a+x) =f (b-x),贝U f (x)的对称轴为x= (a+b) /2 (2) 若f (a+x) =-f (b-x) +c,则f (x)的图像关于((a+b) /2,c/2)对称4、函数图象同时具备两种对称性,即两条对称轴,两个对称中心,一条对称轴和一个对称中心,则函数必定为周期函数,反之亦然。 (1) 若f (x)的图像有两条对称轴x=a和x=b,则f (x)必定为周期函数,其中一个周期为2|b-a| 。 (2) 若f (x)的图像有两个对称中心(a,0)和(b,0),(a^b),则f (x) 必定为周期函数,其中一个周期为2|b-a| (3) 若f (x)的图像有一个对称轴x=a和一个对称中心 则f (x)必定为周期函数,其中一个周期为4|b-a| 3、三角函数 正弦sin 余弦cos 十「十n 正切tan b,0) ,( a^ b),

高中微积分基本知识

高中微积分基本知识 第一章、 极限与连续 一、 数列的极限 1. 数列 定义: 按着正整数的顺序排列起来的无穷多个数 1, ,, n x x 叫数列,记作{}n x ,并吧每个数叫做数列的项,第n 个数叫做数列 的第n 项或通项 界的概念: 一个数列{}n x ,若0M ?>,..s t 对*n N ?∈,都有n x M ≤,则称{}n x 是有界的: 若不论M 有多大,总*m N ?∈,..s t m x M >,则称{}n x 是无界的 若n a x b ≤≤,则a 称为n x 的下界,b 称为n x 的上界 {}n x 有界的充要条件:{}n x 既有上界,又有下界 2. 数列极限的概念 定义: 设{}n x 为一个数列,a 为一个常数,若对?0ε>,总?N ,..s t 当n N >时,有 n x a ε-< 则称a 是数列{}n x 的极限,记作lim n n x a →∞ =或()n x a n →→∞ 数列有极限时,称该数列为收敛的,否则为发散的 几何意义: 从第1N +项开始,{}n x 的所有项全部落在点a 的ε邻域(,)a a εε-+ 3. 数列极限的性质

①唯一性 ②收敛必有界 ③保号性:极限大小关系?数列大小关系(n N >时) 二、 函数的极限 1.定义:两种情形 ①0x x →:设()f x 在点0x 处的某去心邻域内有定义,A 为常数,若对0ε?>, 0δ?>,..s t 当00x x δ<-<时,恒有()f x A ε-<成立, 则称()f x 在0x x →时有 极限A 记作0 lim ()x x f x A →=或0()()f x A x x →→ 几何意义:对0ε?>,0δ?>,..s t 当00x x δ<-<时,()f x 介于两直线y A ε=± 单侧极限:设()f x 在点0x 处的右侧某邻域内有定义,A 为常数,若对0ε?>,0δ?>,..s t 当00x x δ<-<时, 恒有()f x A ε-<成立,称()f x 在0x 处有右极限A , 记作0 lim ()x x f x A + →=或0()f x A + = 0 lim ()x x f x A →=的充要条件为:0 0()()f x f x +- ==A 垂直渐近线:当0 lim ()x x f x →=∞时,0x x =为()f x 在0x 处的渐近线 ②x →∞:设函数()f x 在0x b ≥≥上有定义,A 为常数,若对0ε?>,,..X b s t ?>当x X >时,有()f x A ε-<成立,则称()f x 在x →∞时有极限A ,记作 lim ()x f x A →∞ =或()()f x A x →→∞ lim ()x f x A →∞ =的充要条件为:lim ()lim ()x x f x f x A →+∞ →-∞ == 水平渐进线: 若lim ()x f x A →+∞ =或lim ()x f x A →-∞ =,则y A =是()f x 的水平渐近线 2.函数极限的性质: ①唯一性 ②局部有界性 ③局部保号性(②③在当00x x δ<-<时成立) 三、 极限的运算法则 1. 四则运算法则

关于高等数学B上复习资料归纳

华南理工大学网络教育学院 《高等数学(上)》辅导 一、 求函数值 例题: 1、若2()f x x =,()x x e ?=,则(())f x ?= . 解:() 2 2(())()x x x f x f e e e ?=== 2、若(1)21f x x -=+,则()f x = . 解:令1x t -=,则1x t =+ 所以()2(1)123f t t t =++=+ 即 ()23f x x =+ 二、 常见的等价无穷小及等价无穷小替换原理 常见的等价无穷小: 无穷小替换原理:在求极限过程中,无穷小的因子可以用相应的等价无 穷小替换 例题: 1、320sin 3lim x x x →=? 解:当0sin3~3x x x →, , 原式=3 200(3)lim lim270x x x x x →→== 2、0sin3lim x x x →=? 解:原式=03lim 3x x x →=

3、201-cos lim x x x →=? 解:当2 10cos ~2x x x →,1- 原式=220112lim 2 x x x →= 4、0ln(13) lim x x x →+=? 解:当03)~3x x x →,ln(1+ 原式=.03lim 3x x x →=. 5、201 lim x x e x →-=? 解:当201~2x x e x →-, 原式=.02lim 2x x x →=. 三、 多项式之比的极限 2lim 03x x x x →∞=+,22 11lim 33x x x x →∞-=+,23lim x x x x →∞+=∞ 四、 导数的几何意义(填空题) 0()f x ':表示曲线()y f x =在点00(,())M x f x 处的切线斜率 曲线..()y f x =..在点00(,())M x f x 处的切线方程为: 曲线()y f x =在点00(,())M x f x 处的法线方程为: 例题: 1、曲线44x y x += -在点(2,3)M 的切线的斜率.

定积分、微积分基本定理-高中数学知识点讲解

定积分、微积分基本定理 1.定积分、微积分基本定理 【定积分】 定积分就是求函数在区间中图线下包围的面积.即由所围成图(f X)[a,b] y=0,x=a,x=b,y=(f X) 形的面积.这个图形称为曲边梯形,特例是曲边三角形,表示的是一个面积,是一个 数. 定积分的求法: 求定积分首先要确定定义域的范围,其次确定积分函数,最后找出积分的原函数然后求解,这里以例题为例. 【微积分基本定理】 在高等数学中对函数的微分、积分的研究和对相关概念及用途的数学称作微积分.积分学、极限、微分学及其应用是微积分的主要内容.微积分也称为数学分析,用以研究事物运动时的变化和规律.在高等数学学科中,微积分是一个基础学科. 其中,微积分的核心(基本)定理是 ? ? F(x)=(f x)(f x) ?(?)??= ?(?)―?(?),其中,而 必须在区间 (a,b) 内连续. 2 例 1:定积分|3 ―2?|??= 1 解: 1 | 3﹣2x | dx 2 = 3 2 1 (3 ―2?)??+ 2 3 2 (2?―3)?? 3 =(﹣2)1 +(x2﹣3x)|23 3x x |

2 2 1/ 2

= 1 2 通过这个习题我们发现,第一的,定积分的表示方法,后面一定要有;第二,每一段对应的被积分函数的表 dx 达式要与定义域相对应;第三,求出原函数代入求解. 例 2:用定积分的几何意义,则 3 9 ― ?2??. ―3 解:根据定积分的几何意义,则 3 9 ―?2??表示圆心在原点,半径为3 的圆的上半圆的面积, ―3 故 3 ―3 9 ―?2?? = 1 2 × ?× 3 2 = 9? . 2 这里面用到的就是定积分表示的一个面积,通过对被积分函数的分析,我们发现它是个半圆,所以可以直接求他的面积. 【考查】 定积分相对来说比较容易,一般以选择、填空题的形式出现,这里要熟悉定积分的求法,知道定积分的含义,上面两个题代表了两种解题思路,也是一般思路,希望同学们掌握. 2/ 2

《微积分》讲义

《微积分》讲义 第一章极限 一、函数极限的概念:f=A 要点:⑴x 为变量;⑵A 为一常量。 二、函数极限存在的充分必要条件: f=A f=A,f=A 例:判定是否存在? 三、极限的四则运算法则 ⑴=f±g ⑵=f·g ⑶=……g≠0 ⑷k·f=k·f 四、例: ⑴ ⑵ ⑶ ⑷ 五、两个重要极限

⑴=1 =1 ⑵=e =e ……… 型 理论依据: ⑴两边夹法则:若f≤g≤h,且limf=limh=A, 则:limg=A ⑵单调有界数列必有极限。 例题: ⑴= ⑵= ⑶= ⑷= ⑸= 六、无穷小量及其比较 1、无穷小量定义:在某个变化过程中趋向于零的变量。 2、无穷大量定义:在某个变化过程中绝对值无限增大的变量。 3、高阶无穷小,低阶无穷小,同阶无穷小,等价无穷小。 4、定理:f=A f=A+a (a=0) 七、函数的连续性

1、定义:函数y=f在点处连续……在点处给自变量x一改变量 x: ⑴x0时,y0。即:y=0 ⑵f=f ⑶左连续:f=f右连续:f=f 2、函数y=f在区间上连续。 3、连续函数的性质: ⑴若函数f和g都有在点处连续,则:f±g、f·g、 (g()≠0)在点处连续。 ⑵若函数u=j在点处连续,而函数y=f在点=j()处连续, 则复合函数f(j(x)) 在点处连续。 例:= = = 4、函数的间断点: ⑴可去间断点:f=A,但f不存在。 ⑵跳跃间断点:f=A ,f=B,但A≠B。 ⑶无穷间断点:函数在此区间上没有定义。

5、闭区间上连续函数的性质:若函数f在闭区间上连续,则: ⑴f在闭区间上必有最大值和最小值。 ⑵若f与f异号,则方程f=0 在内至少有 一根。 例:证明方程式-4+1=0在区间内至少有一个根。 第二章一元函数微分学 一、导数 1、函数y=f在点处导数的定义:x y=f-f =A f'=A ……y',, 。 2、函数y=f在区间上可导的定义:f',y',,。 3、基本初等函数的导数公式: ⑴=0 ⑵=n· ⑶=,= ⑷=·lnɑ,= ⑸=cosx,=-sinx =x,=-

高中物理学的几个微积分解释

高中物理学的几个微积分解释 河南省汤阴县一中 张淑强 在普通高中数学课程中,有关于对函数求导和简单微积分知识的应用。而“应用数学知识解决物理问题”是要求高中学生所具备的能力,也是高考中所要求的“五种能力”之中很重要的一种。在物理教学中,教师可以大胆尝试,创新教法,利用简单微积分知识解释和解决一些物理学问题,既锻炼了学生的思维能力,又使一些复杂问题变得简单易懂。 一.转动金属棒电磁感应问题: 长为l 的金属棒在磁感应强度为B 的匀强磁场中垂直磁感线方向转动,角速度为ω,则该金属棒产生的感应电动势为: ωωω20200B 21B 21d d E l l l l B l Bv l l l ====?? 若围绕棒所在直线上的任一点转动,由以上积分式容易看出结果相同。 二.航天器变轨过程中能量变化问题 21121-2-2 P 2121212 1d d E r GMm r GMm r GMm r GMm r GMm GMmr r GMmr r r GMm r r r r r r r r -=???? ??--=-=-===??? 根据万有引力提供向心力公式,有关系: r mv r GMm 2 2 = 所以轨道半径为r 的航天器的动能r GMm mv E 2212k == 容易得到动能减少量为:???? ??== ?2121k -212-2r GMm r GMm r GMm r GMm E 对比易得:k p 2E E ?=? 机械能变化量0-2121k p >??? ? ??=?+?=?r GMm r GMm E E E 即航天器由低轨道变轨为高轨道环绕地球运动时,势能增加量是动能减少量的2倍,总机械能增加。 三.弹簧弹性势能问题: 设弹簧劲度系数为k ,伸长量由x1增加为x2,则根据弹性势能增加量等于克服弹簧弹力做功,得: 212222 12121d )(2121kx kx kx x kx E x x x x p -==--=??

定积分与微积分基本定理复习讲义

定积分与微积分基本定理复习讲义 河南省卢氏县第一高级中学山永峰 考 什么怎么考 1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. 2.了解微积分基本定理的含义. 1.考查形式多为选择题或填空题. 2.考查简单定积分的求解. 3.考查曲边梯形面积的求解. 4.与几何概型相结合考查. [归纳·知识整合] 1.定积分 (1)定积分的相关概念:在∫b a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式. (2)定积分的几何意义 ①当函数f(x)在区间[a,b]上恒为正时,定积分∫b a f(x)d x的几何意义是由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分). ②一般情况下,定积分∫b a f(x)d x的几何意义是介于x轴、曲线f(x)以及直线x=a,x=b 之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数. (3)定积分的基本性质:①∫b a kf(x)d x=k∫b a f(x)d x. ②∫b a[f1(x)±f2(x)]d x=∫b a f1(x)d x±∫b a f2(x)d x. ③∫b a f(x)d x=∫c a f(x)d x+∫b c f(x)d x. [探究] 1.若积分变量为t,则∫b a f(x)d x与∫b a f(t)d t是否相等? 提示:相等. 2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗? 提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算. 3.定积分∫b a[f(x)-g(x)]d x(f(x)>g(x))的几何意义是什么? 提示:由直线x=a,x=b和曲线y=f(x),y=g(x)所围成的曲边梯形的面积. 2.微积分基本定理:如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么∫b a f(x)d x

AP微积分预备知识和知识要求

AP微积分预备知识和知识要求 本文整理了AP微积分预备知识和知识要求,供大家参考。 1. AP微积分的预备知识 AP微积分学习前,学生们应该掌握以下预备知识: (1)实数与数轴(初中知识) (2)绝对值(初中知识) (3)区间和邻域(高中知识) (4)函数的概念(自变量和因变量)、函数表示法(特别是图示法和解析法)、函数的定义域和值域、函数的几何特征:单调性、有界性、奇偶性、周期性。(高中知识) (5)基本初等函数(常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数)的表达式、定义域和图形。(高中知识) (6)复合函数对于定义域和值域的理解(高中知识) (7)初等函数和隐函数的表示法和概念(高中知识) (8)数列的基本性质(高中知识) 利用高中数学总复习资料可以帮助我们巩固微积分预备知识,国内大学财经类微积分课本的第一章一般会有对高中数学的简单回顾。 SAT1数学部分考的是代数、几何,相当于我国初中知识水平,SAT2数学部分主要包括函数、三角、几何。SAT2数学分为数学一和数学二,其中数学一比较简单,数学二比较难,包括三角,矩阵,级数,向量和部分微积分。由于SAT2数学二适用性更广泛,我国学生一般会选考SAT2数学二。学生可以把准备SAT1数学部分和SAT2数学一和数学二考试的部分内容作为准备学习AP微积分和AP统计学的基础。AP微积分基础主要在函数和三角。AP统计学基础主要在概率。 2. AP微积分的学习和考试内容 根据最新考试大纲规定的AP微积分的考试内容如下: 第一部分:函数和极限(Functions and limits) (1)函数(Functions) (2)函数图像分析(Analysis of graphs) (3)函数的极限(包括单侧极限) (Limits of functions (including one-sided limits) (4)渐进和无穷(Asymptotic and unbounded behavior) (5)函数的连续性(Continuity as a property of functions) 第二部分:导数(Derivatives) (1)导数的概念(Concept of the derivative) (2)在一个点处的导数(Derivative at a point) (3)导函数(包括中值定理等) (Derivative as a function) (4)二阶导数(Second derivatives) (5)导数的应用(Applications of derivatives)

(完整word版)高等数学辅导讲义.doc

第一部分函数极限连续 函数、极限、 连续 函数极限连续 函数概念函数的四种反函数与复初等函数数列极限函数极限连续概念间断点分类初等函数的连闭区间上连续特征合函数续性函数的性质 函数的有界数列极限的函数极限的第一类间断有界性与最大性定义定义点值最小值定理函数的单调收敛数列的函数极限的可去间断点零点定理性性质性质 函数的奇偶极限的唯一函数极限的跳跃间断点 性性唯一性 函数的周期收敛数列的函数极限的第二类间断 性有界性局部有界性点 收敛数列的函数极限的 保号性局部保号性 数列极限四函数极限与数 则运算法则列极限的关系 极限存在准函数极限四 则则运算法则 夹逼准则两个重要极 限 单调有界准无穷小的比 则较 高阶无穷小 低阶无穷小 同阶无穷小 等价无穷小

历年试题分类统计及考点分布 考点复合函数极限四则两个重要单调有界无穷小的合计 运算法则极限准则阶 年份 1987 1988 5 3 8 1989 1990 3 3 6 1991 5 3 8 1992 3 3 1993 5 3 8 1994 3 3 1995 3 3 1996 3 6 3 12 1997 3 3 1998 1999 2000 5 5 2001 2002 2003 4 4 8 2004 4 4 2005 2006 12 3 15 2007 4 4 2008 4 4 2009 4 4 2010 4 4 2011 10 10 20 合计8 18 37 32 27 本部分常见的题型 1.求分段函数的复合函数。 2.求数列极限和函数极限。 3.讨论函数连续性,并判断间断点类型。 4.确定方程在给定区间上有无实根。

相关文档
最新文档