多孔材料的应用及发展

多孔材料的应用及发展
多孔材料的应用及发展

多孔材料的应用及发展

摘要:本文综合介绍了多孔金属材料的应用,目的在于促进该材料性能结构的进一步改善,并获得更好的应用前景。

关键词: 多孔金属;应用;介绍

1引言

多孔金属由金属骨架及孔隙所组成,具有金属材料的可焊性等基本的金属属性。相对于致密金属材料,多孔金属的显著特征是其内部具有大量的孔隙。而大量的内部孔隙又使多孔金属材料具有诸多优异的特性,如比重小、比表面大、能量吸收性好、导热率低(闭孔体)、换热散热能力高(通孔体)、吸声性好(通孔体)、渗透性优(通孔体)、电磁波吸收性好(通孔体)、阻焰、耐热耐火、抗热震、气敏(一些多孔金属对某些气体十分敏感)、能再生、加工性好,等等。多孔有机高分子材料强度低且不耐高温,多孔陶瓷则质脆且不抗热震,因此,多孔金属材料被广泛应用于航空航天、原子能、电化学、石油化工、冶金、机械、医药、环保、建筑等行业的分离、过滤、布气、催化、电化学过程、消音、吸震、屏蔽、热交换等工艺过程中,制作过滤器、催化剂及催化剂载体、多孔电极、能量吸收器、消音器、减震缓冲器、电磁屏蔽器件、电磁兼容器件、换热器和阻燃器,等等[1~7] 。另外,还可制作多种的复合材料和填充材料。多孔金属既可作为许多场合的功能材料,也可作为一些场合的结构材料,而一般情况下它兼有功能和结构双重作用,是一种性能优异的多用工程材料。本文以文献[1~7]为基础分别介绍该材料的不同用途。

2过滤与分离

多孔金属具有优良的渗透性,是适合于制备多种过滤器的理想材料。利用多孔金属的孔道对流体介质中固体粒子的阻留和捕集作用,将气体或液体进行过滤与分离,从而达到介质的净化或分离作用。多孔金属过滤器可用于从液体(如石油、汽油、致冷剂、聚合物熔体和悬浮液等)或空气和其它气流中滤掉固体颗粒。使用最广的金属过滤器材料是多孔青铜和多孔不锈钢。多孔金属材料用作分离媒介,如从水中分离出油、从冷冻剂中分离水。还可作充气液体或液体分布CO 2 等的扩散媒介。在生物化学领域,金属泡沫用作肾器中渗透膜的支撑体。该原理也能扩展到那些取决于渗透或反向渗透作用的过程,如流出物处理中的脱盐和脱氢。日本住友电气工业公司在世界上首次开发出能容易净化柴油机废气的、并且实用而廉价的柴油机微粒过滤器(DPF)系统,采用的过滤材料是孔率为85%的三维网状Ni-Cr-Al合金多孔体,从而通过了1997年以后的排放烟灰量限制值[8] 。在发动机排气管道上安装DPF的方法,在十几年前就已研究过采用陶瓷作为过滤器材料来捕集废气中烟灰的系统。若烟灰的捕集量过多,则燃烧部分会发生局部温升,由于陶瓷热导率较低而产生过度的温差,过滤器就会发生破裂而熔化的现象。Ban等[9] 发明的Ni-20Cr和Ni-33Cr-1.8Al合金多孔体,可以抵抗柴油机废气的高温腐蚀且无多孔陶瓷的开裂问题,同样适于柴油机的排气过滤材料,大大减少环境污染。

经过青铜、不锈钢、镍等多孔金属过滤器净化的空气,已广泛用于各种厌氧细菌的生长,它几乎取代了原用的活性炭加脱脂棉的空气过滤器。大输液制取中的脱炭,采用多孔不锈钢或钛,过滤效果提高数倍,而且降低了维护费用,它已基本取代原用的砂滤棒。在冶金工业湿法冶炼钽粉生产中,熔融金属钠采用镍过滤器。

锌冶炼中硫酸锌溶液的过滤采用多孔钛,钢铁厂中高炉煤气的净化采用不锈钢过滤器。

在原子能工业中,用镍、蒙乃尔、不锈钢过滤器对UF6提炼及氧铀基硝酸盐脱硝中硫化床尾气过滤。低碳钢、渗铬多孔铁、不锈钢以及钼过滤器,用于原子能电站中二氧化碳冷却气体的过滤,还用于反应堆净化液中细小放射线污染物的去除。

在宇航工业中,多孔不锈钢用于航空器及制导舵螺中液压油的净化,在自动燃料管路中净化气体及在碳氢化合工艺中回收催化剂。

80年代以后,石化、纺织、造纸等行业的发展,对耐高温、高压和腐蚀多孔材料的需求不断扩大,要求不断提高,并促进了多孔材料的规模生产。如在纺织业,粉末烧结多孔不锈钢管用于喷丝头的前级过滤和分散及纺织厂热洗水中去除染料颗粒。在造纸业,316L、317LN镍及镍合金、钛多孔材料用于纸浆漂洗和污水处理。在石化行业,石油钻井中泥砂的排除是用低碳钢和不锈钢多孔材料;石油提炼中油蜡分离是用铁过滤器;天然气过滤用低碳渗铬钢和多层金属网;聚丙烯生产中的液体过滤、聚脂薄膜等高分子聚合物的过滤用不锈钢粉末或纤维多孔材料;邻苯二甲酐、己内酚胺生产中催化剂粉尘收集,液氮、气氨过滤等,均用粉末烧结多孔不锈钢;液体硫磺及丁酸制取工艺的过滤用多孔钛。

在化工行业,硝酸、96%硫酸、醋酸、硼酸、亚硝酸、草酸、碱、硫化氢、乙炔、蒸汽、海水、熔融盐、氢氧化钠、气态氟化氢等,均用不锈钢、钛等耐蚀多孔金属材料进行过滤,以达到净化或回收的目的。

利用孔的大小及表面张力作用,可获得介质的分离效果。具有0.01~0.02Lm孔径的多孔镍,可将U235 与U 238 同位素进行气体扩散分离。

总之,只要涉及固-液、液-液、气-液过滤与分离的场合,基本上均可采用金属多孔材料。

多孔钛是一种新型的、更新换代的过滤净化材料,也是具有[10]高弥散度的化工反应、节气新材料。其特点是耐蚀性强,能过滤多种介质如海水、氯化物、次氯酸盐、湿氯气、氧化性酸、碱及多种有机酸、多种强氧化剂及各种高低温介质;具有良好的物理机械性能,可以满足过滤工程对力学性能的需要;过滤精度高,适于从除菌/精滤0到一般/粗过滤0,如采油防砂过滤,使用精滤多孔钛材则可极有保证地除掉空气中的杆菌、噬菌体等细菌;强度高、刚度大,可以自支撑,能承受任意方向加压;可适应多种再生方法,如酸洗、碱洗和其它化学清洗,也可以进行超声波、高压气、水反冲和溶剂清洗,在各种应用环境中很容易选择到极为有效的再生的方法;使用寿命极长。

3 能量吸收

能量吸收是多孔金属材料的重要用途,其中缓冲器及吸震器是典型的能量吸收装置,其应用从汽车的防冲挡直至宇宙飞船的起落架,以及升降机、传送器安全垫和高速磨床防护罩吸能内衬。

在汽车冲击区使用泡沫铝制成的合适元件,可控制最大能耗的变形,对侧面冲击保护同样如此[11] 。例如,在中空钢材或铝材外壳中充入泡沫铝,可使这些部件在负载期间具备良好的变形行为。车体或发动机的另外一些部件可用泡沫金属制造或增强,以同时获得较高的刚性和较轻的质量。因为通过泡沫金属密度的选择可得到很大范围的弹性模量,故可匹配泡沫部件的共振频率,由此抑制有害振动。

由于运载工具安全性的要求不断提高(特别是在汽车工业中),使得其质量增

加。这又和进一步的要求相矛盾,如降低燃料消耗。因此,低比重和高能量吸收能力的材料倍受青睐。有机泡沫体的比重小,但可转换成变形能的能量也少,强度又低。使用金属泡沫,即可实现相应的高能量吸收。Baumeister等[12]运用粉末冶金技术制备了孔率达90%的结构均匀泡沫铝产品,通过充模加热法可造成具有复杂形状的部件,从而满足上述要求。

消音材料是多孔金属在能量吸收方面的又一重大应用。泡沫金属具有与可得最好的声控材料)))聚合物泡沫媲美的声性能,并能在高温下加以保持。吸声材料需要同时具有优良的吸声效率、透声损失、透气性、耐火性和结构强度[13] 。玻璃毛织品等纤维材料变形性差,且吸声效率在雨水条件下易于变坏,而陶瓷等烧结材料则冲击强度低。因此,多孔金属被广泛用于建筑和自动办公设备、无线电录音室等,既作外表装饰,又作吸声材料。

在燃气轮机排气系统等一些特殊的工作条件下,其排气消声装置要满足高效、长寿和轻型化的要求。一般常规的吸声构件和材料不能适用,而具有耐高温高速气流冲刷和抗腐蚀性能优越的轻质多孔钛可满足其要求,可应用于燃气轮机进、排气躁声控制[14] 。

十多年来,日本一直在发展火车的加速和减重技术,但有轨车辆的加速减重带来了震动和噪音的增加,故控制汽车和火车发出的噪音的要求也随之不断提高,成为发展这项技术的重要课题。直江正久[15] 开发的泡沫铝合金具有良好的消音吸震效果,可作汽车火车等减震、消声的阻尼材料,从而解决上述问题。在超声检测方面,因泡沫金属的超声阻抗处于合适的范围, [11]可用作接收器。

此外,在长距离高压管道送气时会产生高密噪音,并可沿管道传播,换用泡沫金属进行扩散气体方式的送气,即几乎可完全消除噪音。泡沫金属也可用于其它减压场合,如蒸汽发电站和气动工具等的消声器(如用密度为5%的泡沫铜作气动工具的消声器)。用作消声器时必须在获得消音效果的同时保证足够的空气流通量。4电极材料

多孔金属材料的另一类用途是作电极材料。各种蓄电池、燃料电池、空气电池中都用多孔镍作电极,并要求孔率尽可能高。

氢镍、镉镍等二次碱性电池在高技术和普通民用领域中不断提出高能量密度、长寿命和低成本的要求,致使传统的烧结镍基板受到挑战。轻质高孔率的发泡沫基板和纤维基板等多孔金属材料与传统烧结基板材料相比,可使镍材消耗降低约一半,极板质量减少12%左右,并大大提高能量密度[16] 。

利用有机泡沫电沉积法制备的泡沫铜可作电解铜还原的阴极以及电有机合成电极,泡沫镍则被用作化学反应工程中的流通性和流经性多孔电极,具有良好的电解质扩散、迁移和物质交换性能[17~19] 。

泡沫镍用于电化学反应器,由于增加了电极表面积,从而提高了电化学单元的性能,且在一些工业应用中可无膜使用[20] 。泡沫镍适合于作有机化合物电氧化的多孔三维阳极,如苯甲基乙醇的多相电催化氧化促进了乙醛的生成,泡沫镍电极提高电解电流和乙醇转换达30% [21] 。

另外,泡沫铅作为铅酸电池的活性物质支撑体时,也使电极结构大大减轻[22] 。

5流体分布与控制

多孔金属作为一种流体分布装置也得到广泛应用。如用多孔不锈钢控制火箭鼻锥体偏航指示仪外壳的冷却气体或液体;多孔粉末冶金材料则大量使用于磁带处理设备中的漂浮塑性膜的气浮辊筒中。另外一些布气元件用于液体中分布入气体,

如用多孔钛管给啤酒充气,不锈钢或多孔钛板在医用氧合器中将氧气均匀充入血液中等等。

在石油化工、冶金等工业中,广泛采用流态化床技术。已广泛采用的流体分布板有青铜、镍、蒙乃尔合金、不锈钢等粉末烧结多孔板。

多孔金属材料还用于流体控制。如用于气体或液体的计量器、自动化系统中的信号控制延时器等。

6 热交换

多孔金属具有很大的比表面积,是热交换和加热的有效材料,通孔体适作热交换器、加热器和散热器,其中循环空气加热器和电阻水加热器都表现了很高的效率和优良的使用性能。可根据需要制成管状或平面状金属与多孔金属的组合件,在强迫对流条件下使用有利于利用三维复杂流动,克服边界层的不利影响。闭孔多孔金属可作绝热材料,其强度及耐温性优于相应传统材料。

泡沫钢可应用的温度区间很宽,如可制作汽车发动机的排气歧管。因为歧管传热率的大大减小,达到排气催化的正常操作温度所需时间也随之减少。

此外,多孔金属耐火且具有与阻火能力协调的高渗透性,可作为防止火焰沿管道蔓延的优质材料,故可制成灭火器。

7反应材料

在化学工业中,可利用多孔金属比表面大并具有支撑强度等特点,制作高效催化剂或催化剂载体。本身即可作某些反应催化体的多孔金属如多孔拉内铜(RaneyCopper) [23] 、多孔镍[24]等,作催化剂载体的如多孔Cr-Ni不锈钢[25] 等。基于多孔金属的催化剂可用于碳氢化物的深度氧化、乙醇的选择性氧化[26] 、石油化工中的己烷重组[27] 等反应工程。将泡沫金属制作汽车所排有毒废气的催化中和器,可减少排放的CO为2~3倍,毒性减小达90% [28] 。环保方面还用泡沫镍对水溶液中的6价Cr离子(剧毒)进行氧化还原反应[29] ,用材质均匀的多孔钛作工业废水处理装置[30] 。

据日刊5工业材料6(V ol.38,No.12)报道,新日本钢铁公司和松下电器工业公司共同开发出性能好、寿命长的新型去臭材料,是在三维网状铁系多孔体上复合铁系金属微细粉末和有机酸络合物而形成的产物,应用于多功能脱臭、自动空气净化器和去臭建材等方面[31] 。这种去臭材料的制造方法是,将10Lm以下的铁系金属细粉的粉浆浸渗到氨基甲酸乙酯泡沫中,经烧结,在微观上形成具有多孔质结构的三维网状铁系多孔体。然后,用有机酸(抗坏血酸系)对其进行表面处理,形成金属络合物后,再进行特殊的化学处理(碱处理),在铁系多孔体微观表面生成的金属络合物可吸附并贮存臭气成分。由金属铁供给必须的电子来维持金属络合物的活性,去臭效果可持续很长时间。与活性炭的性能相比,其去臭速度高,可作为家庭、大厦、商店用空气净化器、汽车用去臭器等。

8结构材料

多孔金属具有一定的强度、延展性和可加工性,可作轻质结构材料,尤其是温度超过200e的场合。泡沫铝很早就用于飞机夹合件的芯材[32] 。将多孔金属与致密基体连结在一起,可提高其作为结构材料的使用性。

在飞机和导弹工业中,多孔网状金属被用作轻质、传热的支撑结构[33] 。因其能焊接、胶粘或电镀到结构体上,故可做成夹层构件。如作机翼金属外壳的支撑体、导弹鼻锥的防外壳高温倒坍支撑体(因其良好的导热性)、雷达镜的反射材料等。

在建筑上,需要多孔金属制作轻、硬、耐火的元件、栏杆或这些东西的支撑体。

现代化电梯高频高速的加速和减速,特别需要轻质结构(如泡沫铝或泡沫镶板)来降低能耗。而安全规则常常排除传统的轻质结构技术,故泡沫铝以其同时具备吸能和刚硬的特性,在这些应用中充满前景[22] 。

圆柱形壳体广泛存在于工程结构中,如远离岸边的油井平台和飞机机身。薄壁圆柱壳在轴向压缩或弯曲时易于弯折损坏,但若外壳由连续的低密多孔芯支持,作抵御弯折的弹性基衬,则该结构比同样直径和大小的未加强中心壳体具有较大的弹性弯折抗力[34,35] 。

泡沫铜较易制得,且便于变形,故适合作紧固器。[36]

泡沫金属还可作许多有机和无机材料的增强材料。如在泡沫镍中充入熔融铝凝固后制成泡沫镍增强的铝合金(NFRA)材料)))铝合金基复合材料[37] 。孔率为6%~30%的铝合金基复合材料(如Fe或Ni泡沫等增强)可用于内燃机引擎[38] 。

此外,多孔金属还可作镶板、壳体和管体的轻质芯,制成多种层压复合材料[39] 。

9电磁屏蔽

多孔金属的电磁波吸收性能可用于电磁屏蔽、电磁兼容器件。

现代电子工业的高速发展和电子电器的普遍使用。使电磁波辐射日益严重,不仅干扰其它电子仪器设备,而且造成信息泄漏,因此屏蔽措施十分重要。多孔金属在这方面应用的主要是孔隙相互之间全部连通的三维网状铜或镍,这种结构透气散热性好,比重轻,比金属网的屏蔽性能高得多,可达到波导窗的屏蔽效果,但体积比波导窗小、轻便,更适合于移动的仪器设备使用[40] 。

10生物材料

钛等多孔材料对人体无害且有较好的相容性而被大量用于医疗卫生行业,如多孔钛髓关节用于矫形术,多孔钛种植牙根用于牙缺损的修复,钨铬镍合金复合体用于多孔复合心瓣体等。

90年代以来还开发了其它一些新的用途,如用多孔钨进行Ag和Gd(粉末注入多孔体)的热蒸发[41] ,用泡沫铜作粘弹体、低温焊料等基体[42] ,用多孔铜或镍测定Pb和Sn-Pb合金的熔点[43] ,用多孔金属作灯芯材料及火箭和喷气发动机的支护材料,用多孔青铜作铸模中的排气塞,等等。

Thomas等[44] 介绍的/多孔基体金属化y气相氧化性等离子区进行氧化y 气相还原等离子区进行还原0法制成的多孔金属复合材料(多孔基体可为陶瓷或聚合物,金属可为Pb、Pd、Ni、Ag、Au-Pd或Cu等),可用于电化学领域的气体传感器和燃料电池电极,以及一般领域如化学反应催化剂、高比表面的催化活性表面和层析分离器等。

11结语

除作隔热材料等少数用途在追求高孔率的同时还需要闭孔隙外,对多孔材料的绝大多数应用均是在保证基本的强度使用要求的基础上追求高孔率、高比表面积和高通孔率,以使产品的使用性能达到最佳状态。这不但促成了三维网状结构的多孔金属材料之大规模生产,同时也使三维网状的高孔率金属的应用几乎遍及所有多孔金属的应用领域并有所拓宽,如用于各种过滤器、流体混合器、催化剂及其载体、镍镉、镍氢、锂、燃烧电池等各种电池的电极、电合成和重金属回收等的电化学过程阴极、热交换器、消音材料、电磁屏蔽材料、复合金属材料和宇航工业中的某些结构材料等[37,45~50] 。因此,为提高和促进多孔金属的已有应用优势,目前对高孔率金属的制备工艺改进和性能研究显得很有意义。

新材料在汽车行业的应用

新材料在汽车发展的应用 学号:****** 姓名:***** 【摘要】:现代对汽车性能要求越来越高,轻量化、节能降耗和 降低排放污染是现在汽车发展的趋势,而轻量化必须从改进汽车的 材料出发,研制性能更好更轻的汽车材料从而带来能源消耗的减少,进而排放污染随之降低,汽车材料的发展是汽车技术发展的重要方面,新材料对于汽车工业的发展是至关重要的。 【关键词】:新材料(合金,新型塑料,纳米材料等);汽车 对于汽车工程材料来说,其总的发展趋势是:结构材料中钢铁 材料所占比例将逐步下降,有色金属、陶瓷材料、复合材料、高分 子材料等新型材料的用量将有所上升。在性能可靠的条件下,尽可 能多地采用铝合金、复合材料等轻型、新型材料取代钢铁材料。随 着大量新材料,如高分子材料、复合材料等的迅速发展,为现代汽 车的发展提供了必要的条件。复合材料、陶瓷材料、特殊用途材料 的用量呈增长趋势。新材料对于汽车工业的发展是至关重要的,下 面就分几个方面介绍一下最新汽车材料的应用,车身新材料的种类: 镀锌钢板 随着汽车工业发展,为了提高车体使用寿命和增强车体材料的 抗腐性能,镀锌钢板得到广泛使用。由于在目前汽车车身制造中, 主要采用电阻点焊方法,与无镀层钢板相比,镀锌钢板的点焊过程 中还存在一些问题:先于钢板熔化的锌层形成锌环而分流,致使焊 接电流密度减小;锌层表面烧损、污染电极而使电极寿命降低;锌 层电阻率低,接触电阻小;容易产生焊接飞溅、裂纹及气孔等缺陷。 高强度钢板 从前的高强度钢板,拉延强度虽高于低碳钢板,但延伸率只有 后者的50%,故只适用于形状简单、延伸深度不大的零件。现在的 高强度钢板是在低碳钢内加入适当的微量元素,经各种处理轧制而成,其抗拉强度大幅度提高,是普通低碳钢板的2~3倍,深拉延性 能极好,可轧制成很薄的钢板,是车身轻量化的重要材料。 含磷高强度冷轧钢板 含磷高强度冷轧钢板主要用于轿车外板、车门、顶盖和行李箱 盖升板,也可用于载货汽车驾驶室的冲压件。主要特点为:具有较 高强度,比普通冷轧钢板高15%~25%;良好的强度和塑性平衡, 即随着强度的增加,伸长率和应变硬化指数下降甚微;具有良好的 耐腐蚀性,比普通冷轧钢板提高20%;具有良好的点焊性能。 烘烤硬化冷轧钢板 经过冲压拉延变形及烤漆高温时效处理,屈服强度得以提高。

对建筑工程新型材料的发展现状及应用分析

对建筑工程新型材料的发展现状及应用分析 1 建筑工程新型材料应用的意义 建筑材料直接影响土木和建筑工程的安全可靠性、耐久性及适用性等各种性能。因此加强建筑新型材料的开发、生产和使用,对于促进建筑业发展、发展国民经济具有重要意义。发展新建材、推广节能建筑是改造传统建材和建筑工艺发展的重要前提。新材料代表了建筑材料的未来发展方向,符合世界发展趋势和人类发展的需要。 2 建筑工程新型材料的現状分析 目前建筑工程新型材料具有很强的地方性和区域性,其发展受到资源、自然条件、工业和科学技术水平、建筑风格、民族习俗等多方面的影响。目前建材工业成为国民经济体系中资源综合利用的关键环节和消纳固体废弃物的主要工业之一。并且建材工业正在朝着资源消耗低、环境污染少的资源节约型、环境友好型产业的绿色发展方向迈进。虽然新型建筑材料正朝着大型化、轻质化、节能化、利废化、复合化和装饰化方向发展,产品结构趋于合理,但代表建筑材料现代化水平的各种轻质、复合板和复合墙板可供建筑业选择使用的仍然比较少。此外新型建筑材料施工工艺要求较高,施工人员培训不够,墙体砌筑、安装质量不易保证。因此要改变过去依赖能源、资源并且污染环境的建筑材料应

用,必须不断加强建筑工程新型材料的生产、应用发展。 3 建筑工程新型材料的应用分析 3.1 建筑工程新型混凝土材料的应用分析 新型混凝土特性如下:(1)硬化混凝土的性能。现代建筑向高层化、大跨度方向发展,因此促进了高强HPC 的研究和开发。在高层建筑中的混凝土强度是对应于柱子的轴力,可以说建筑物的层数是由所使用的混凝土强度来决定的。比如25?30层的建筑物要使用强度36Mpa?42MPa的混凝土,30?35层要42MPa?48MPa,更高层的建筑就需要更高强的混凝土,如60层需用100MPa。在此情况下,配合比设计可以参照普通混凝土的方法,但是主要组成材料和性能应满足HPC的要求。HPC可能比普通混凝土要耐久得多,这是因为在设计配合比时,就考虑到耐久性问题。(2)新拌混凝土的工作性。新拌混凝土的工作性是一个综合指标,如流动性、可泵性、填充性、均匀性等。HPC要求新拌混凝土具有大流动性及流动度经时损失小,以满足混凝土集中搅拌、运输、泵送、浇注的工艺要求。甚至在浇注时要求混凝土不振捣自流平,即好的填充性。与普通混凝土相比,HPC的组分复杂,多种掺合料与超塑化剂配合使用,其目的是通过这些组分来调整性能。其中最关键的技术之一是超塑化剂及其组成。单一成分的超塑化剂(如萘系和三聚氰胺系高效减水剂)虽然对水泥浆有强的分散作

多孔金属材料的制备及应用_杨雪娟

多孔金属材料的制备及应用 杨雪娟,刘 颖,李 梦,涂铭旌 (四川大学材料科学与工程学院,成都610065) 摘要 根据制备过程中金属的状态,从液相法、固相法、金属沉积法三方面介绍了多孔金属材料的制备工艺。液态金属的发泡可以通过直接吹气法发泡法、金属氢化物分解发泡法来实现;固态金属可以通过粉末冶金法、粉末发泡法、金属空心球法和金属粉末纤维烧结法来实现;与前两种不同的是,金属沉积法是采用化学或物理的方法来实现的。最后,讨论了多孔金属材料在结构材料和功能材料两方面的应用。 关键词 多孔金属材料 制备工艺 应用   Preparation and Application of the Porous Metal Material YANG Xuejuan,LIU Ying,LI M eng,TU M ingjing (Schoo l of M aterials Scie nce&Engineering,Sichuan U niver sity,Chengdu610065) A bstract I n this pape r,prepara tion and applicatio n of the po ro us metal ma te rials are intr oduced acco rding to the state of the metal in the process———so lid,liquid,gaseous o r ionized state.Liquid metal can be fo rmed directly by in-jecting g as o r gas-releasing blow ing ag ent.Solid metal can be for med by various methods,including metal pow de r slurry foaming,o r ex trusion and sintering o f polymer/pow der mixtures.Diffe rently,metal-depo sitio n can be realized by chemic or phy sical methods.Finally,the structural and functional applicatio ns of po ro us metal materials are presented a s well. Key words po rous metal material,preparation,applicatio n   在材料科学研究中,永不改变的话题是探索新材料。人们注意到许多天然材料因其多孔的结构而具备优良的性能,因此,人们发展出了各种人造多孔材料。作为材料科学研究中较年轻的一员,多孔材料迅速成为近年来国际科学界关注的热点之一。 多孔材料可分为金属和非金属两大类,也可细分为多孔陶瓷材料、高分子多孔材料和多孔金属材料3种不同的类型。多孔金属材料又称为泡沫金属,作为结构材料,它具有密度小、孔隙率高、比表面积大等特点;作为功能材料,它具有多孔、减振、阻尼、吸音、隔音、散热、吸收冲击能、电磁屏蔽等多种性能。而且,多孔金属材料往往兼有结构材料和功能材料的双重作用,是一类性能优异的多用途材料。目前,多孔金属材料已经在冶金、石油、化工、纺织、医药、酿造等国民经济部门以及国防军事等部门得到了广泛的应用。多孔金属材料作为多孔材料的重要组成部分,在材料学领域具有不可取代的地位。 从20世纪中叶开始,世界各国竞相投入到多孔金属材料的研究与开发之中,并相继提出了各种不同的制备工艺[1]。根据制备过程中金属所处的状态可以将这些制备方法划分为以下几种:(1)液相法,(2)气相法,(3)金属沉积法。 1 液相法 1.1 直接发泡法 早在19世纪六七十年代,以直接发泡法制备多孔金属就已经获得了成功。相关实验主要集中在A l、M g、Zn等低熔点金属及其合金的闭孔金属材料的制备方面。经过研究者多年的实验和研究,直接发泡法制备多孔金属材料的工艺日渐成熟,目前已广泛应用于工业生产领域。直接发泡法包括两类不同的工艺: (1)直接吹气法发泡法;(2)金属氢化物分解发泡法。 (1)直接吹气法发泡法 对于制备泡沫金属,直接吹气法是一种简便、快速且低耗能的金属发泡方法。该方法的工艺是首先向金属液中加入SiC、A l2O3等以提高金属液的粘度,然后使用特制的旋转喷头向熔体中吹入气体(如空气、氩气、氮气)[2]。该法制备泡沫金属的工艺流程如图1所示。 图1 直接吹气法发泡法制备泡沫金属材料的流程图[4] Fig.1 Direct foaming of m elts with blowing agents[4] 该方法主要应用于泡沫铝的生产中。用这种工艺来生产泡沫铝,首先应在熔融铝液中加入一种高熔点材料的细小颗粒,这种难熔颗粒在铝液中既可以增加铝液粘度,又可以在气体和金属的界面上形成一层表面活性剂,从而保证气体能稳定地滞留在铝液中,并在凝固过程中不会导致泡沫塌陷。尽管有多种符合应用条件的难熔材料,但在实际生产中常选用碳化硅作为增加铝液粘度的增粘剂。在这一过程中,碳化硅可与铝液反应形成碳硅铝的合成物,并使铝液保持在相对较低的搅拌温度[3]。  杨雪娟:1983年生,硕士研究生 E-mail:ya ng xuejuan@tom.co m

超轻多孔金属材料在军事上的应用

超轻多孔金属材料在军事上的应用 随着加工技术和材料制备的逐渐发展,使得超轻多孔金属出现了新的物理特性而产生一种新型材料。超轻多孔金属这种新型材料的具有良好的可塑性和可改造性,可以依据实际需要在新型材料生产前对材料的结构进行有目的性的设计和组合优化,这样超轻多孔金属的多功能的特性会更好的发挥作用。超轻金属的机械性能也很优良。文章通过对超轻金属多孔材料的发展与回顾,阐述了超轻多孔金属材料的特点与发展趋势,并对其在军事领域的应用做以研究。 标签:超轻;多孔材料;泡沫金属;军事 1 超轻金属多孔材料的分类与性能 相对于传统的材料,超轻金属多孔材料的结构千变万化,这种材料的孔隙率非常的高的且孔径的大小由毫米到微米甚至到纳米级。 1.1 超轻 由于超轻金属多孔材料的孔隙率很高,这样导致超轻多孔材料的密度不如传统材料大,由于多孔材料的分子结构千变万化,因此材料的制备方法也是千变万化,但是超轻金属多孔材料的孔隙率会更大大致在90%-99%之间,这个数据我们可以看出在最小密度可以达到只占基体材料的1%,导致材料的本身很轻。 1.2 高强韧、耐撞击 经过的大量的试验数据表明,超轻多孔金属材料是比较耐撞击和韧性很强的材料,在对这种材料的样本进行试验分析时,材料的承受压力时的应力变化和应变变化在塑性变性阶段几乎不变,在材料承受压力时将能量转化为热能最终以散热的形势耗散。此外超轻多孔金属材料具有很强的韧性,这样的特性可以防止材料存在裂纹和缺陷时出现材料的破坏,有利于对材料进行探伤检测和监控。 1.3 高比强、高比刚度 在航空工业已得到广泛应用的蜂窝铝层合板壳(闭孔)有很好的机械性能,但其价格昂贵(蜂窝铝的国际市场价格~$4000/kg,是闭孔泡沫铝的100-1000倍),同时其性能有很强的方向性。人们发现制造成本相对低得多的点阵材料的比刚度几乎可与蜂窝材料相媲美(见图1),而其比强度甚至更高。 图1 各种最轻重量结构的比较 1.4 高效散热、隔热 超轻多孔金属材料还具有散热、隔热的特殊性能,这种材料是热的良导体,

多孔材料研究进展.

多孔材料研究进展 1前沿 根据国际纯粹化学与应用化学联合会的规定 1, 由孔径的大小, 把孔分为三类:微孔 (孔径小于 2nm 、介孔(2~50nm 、大孔(孔径大于 50nm ,如图 1所示。同时,孔具有各种各样的类型(pore type和形状(pore shape ,分别如图 2, 3所示。在一个真实的多孔材料中, 可能存在着一类, 两类甚至三类孔了。在这片概述中, 我们把多孔材料 (porous materials 分为微孔材料 (microporous materials、介孔材料 (mesoporous materials、大孔材料 (macroporous materials ,将分别对其经典例子、合成方法,及其应用予以讨论。

Figure 1 pore size Figure 2 Pore type Figure 3 Pore shape 2 多孔材料 2.1 微孔材料 (microporous materials 典型的微孔材料是以沸石分子筛为代表的。在这里我们要举金属 -有机框架化合物 MOFs (metal-organic frameworks 的例子来给予介绍。 MOF-52是这类材料中的杰出代表, 是 Yaghi 小组在 1999年最先合成出来的。以 Zn (NO 3 2·6H 2O 和对苯二甲酸为原料,通过溶剂热法合成了非常稳定(300℃,在空气中加热 24小时,晶体结构和外形保持不变、具有很高孔隙率(0.61-0.54 cm3 cm-3 、密度很小(0.59gcm 3的多孔材料 MOF-5。如图 4所示分别是 MOF-5的结构单元及其拓扑结构。在MOF-5中, Zn 4(O(BDC3构成了次级构筑单元 SBU(second building unit, SBU通过

多孔金属材料

多孔金属材料 总论 所谓多孔金属材料即金属内部弥散分布着大量的有方向性的或随机的孔洞,这些孔洞的直径约2um~3mm之间。由于对孔洞的设计要求不同,孔洞可以是泡沫型的,藕状型的,蜂窝型的等等。多孔金属材料还可以根据其孔洞的形态可以分为独立孔洞型的和连续孔洞型的二大类。独立型的材料具有比重小,刚性、比强度好,吸振、吸音性能好等特点;连续型的材料除了具有上述特点之外,还具有浸透性、通气性好等特点。正因为多孔金属材料具有结构材料利功能材料的特点,所以被广泛应用于航空航天、交通运输、建筑工程、机械工程、电化学工程、环境保护工程等领域。 图为多孔模具钢的金相组织(ESEM)。从图中可以看出,该材料内部随机分布着大量三维空间互通的孔洞。由于该模具钢的透气性好,所以,铸出的铸件表面轮廓清晰;其二,充型阻力减小,于是充型动力也可以减小;其三,模具的合模力可以减小;其四,模具的重量可以减轻,仅为原来模具的三分之二,节约了金属材料;其五,上述优点的综合,可以简化模具结构的设计和对注塑机、压铸机型号的选择。从多孔钢在模具上的应用实例可以看出,多孔金属材料的研制利应用具有省能源,省资源,有利于材料的循环利用l地球环境的保护,所以具有广阔的应用前景利深远的经济效益及社会效益。 多孔金属材料的特性和用途 1.比重小,比强度大 由于金属材料中存在火量的孔洞,所以材料的比重显著减小,如上述的多孔模具钢的比重经测试只有 5.0g/cm ,比无孔的该材料(比重7.6g/cm )减少34.2%。如果是铝合金或镁合金的多孔材料,它们的比重可以小于l,只要材料的外表是致密的,那么它们可以浮出水面。 有人认为,金属材料内部分布大量的孔洞,那么其强度会大大削弱。一些文献指出,在材料的轻量化时,材料的形状因子是一个关键因素,形状因子包括了宏观形状因子和微观形状因子。在机械设计时经常不用圆棒而采用空心管,不用矩形截面而采工字型、兀字型等材料,所有这些都是改变宏观形状因子的措施。而将材料制备成多

多孔材料的研究进展

引言 固体材料所包含的空间和表面的多少直接影响着该材料在实际应用中的性能。具有大量的空间和表面积的固体多孔材料已经成为了当代科学研究的热点,在各式各样物理化学过程中显示出极为突出的优势。根据孔径的大小,可以将多孔固体材料分为三类:孔径小于2nm的归为微孔材料;孔径在2-50nm之间的归为介孔材料;孔径大于50nm的归为大孔材料。多孔材料在化工石油催化、气体吸附、药物输送、组织工程支架制备、海洋深潜装备中都有很广泛的应用,是当今时代一种很重要的材料。 1. 纳米多孔材料 相比于传统的纳米颗粒材料,具有可调结构和性能的纳米多孔材料有着非凡的特性。孔径大于50nm的大孔材料具有极快的传质过程和蛋白分子吸附固定速率,在蛋白质组学分析及酶反应研究中有巨大的潜力。在当今组学的前沿,蛋白质的酶解严重缺乏效率,影响后续的分析测试,而目前发展的快速酶解技术需要较为复杂的前处理过程和过量的蛋白消耗;另一方面酶解技术难于联合应用于后续的肤段富集之中[1]。因此,多孔纳米材料的功能化设计合成及其在蛋白质组学分析中的应用至关重要。这种纳米多孔材料的典型就是大孔二氧化硅泡沫材料,它可以作为催化剂极大的提高酶解反应速率。 2. 金属-有机骨架材料[2] 金属-有机骨架材料是一种新型的多孔材料,具有高孔性、比表面积大、合成方便、骨架规模大小可变以及可根据目标要求作化学修饰、结构丰富等优点,在气体吸附、催化、光电材料等领域有广泛的应用。MOFs又名配位聚合物或杂合化合物,是利用有机配体与金属离子间的金属配体络合作用自组装形成的具有超分子微孔网络结构的类沸石材料。MOFs由于能大量进行氢气的可逆吸附,因此被认为是最具有储氢前景的材料之一;它可以存储和运载药物,也可以用于生

多孔金属材料的应用

多孔泡沫金属材料的性能及其应用 摘要:多孔泡沫金属是一种在金属基体中含有一定数量、一定尺寸孔径、一定孔隙率的孔洞的金属材料.由于其结构特殊,因此具备了多方面的特殊性能。作为结构材料,它具有轻质、高比强度的特点;作为功能材料,它具有多孔、减振、阻尼、吸音、隔音、散热、吸收冲击能、电磁屏蔽等多种物理性能,因此在国内外一般工业领域及高技术领域都得到了越来越广泛的应用.本文对这种多孔泡沫金属材料的性能及其应用进行了较为全面的介绍。 关键词:多孔泡沫金属;性能;应用 0多孔泡沫金属是近几十年发展起来的一种功能材料,对其概念或分类学术界不尽统一,但基本上有如下定义方式:多孔泡沫金属是一种金属基体中含有一定数量、一定尺寸孔径、一定孔隙率的金属材料.概括起来,主要有如下分类方式:(1)按孔径和孔隙率的大小分为两类:多孔金属和泡沫金属.孔径小于013mm,孔隙率在45%~90%的,称为多孔金属(porousmetal);而孔径在015~6mm,孔隙率大于90%的,称为泡沫金属(foammetal);(2)按孔的形状特征进行分类:具有通孔结构的称为多孔金属,具有闭孔结构的称为胞状金属(cellu2larmetal).但用得最多的是多孔金属和泡沫金属,且多数作者都将两者视为等同的概念.目前更为合适的名称为多孔泡沫金属(porousfoammetal)[1-3].多孔泡沫金属材料实际上是金属与气体的复合材料,正是由于这种特殊的结构,使之既有金属的特性又有气泡特性,综合表现为能量吸收性(如吸音、减震等)、渗透性、阻燃耐热性、轻质等,故一直被期望用于建筑材料、吸音材料、减震材料、过滤器材料、电池电极材料等方面.如果在气孔结构的工艺控制、短流程连续化工业生产等关键性技术方面取得突破,多孔泡沫金属材料将为金属材料及其它相关领域带来革命性进展1多孔泡沫金属材料的结构特点[4]泡沫金属的孔径一般较大,011~10mm或更大(一般粉末冶金金属孔径不大于0.3mm)。孔隙率较高,一般随其种类不同而不同,在40%~98%的范围内变化。直接发泡法制作的泡沫金属,孔隙率在40%~60%左右,而通孔的海绵态泡沫金属的孔隙率可高达98%。随孔隙率的提高,泡沫金属的密度降低,泡沫金属的密度低,一般只有同体积金属的1/10~3/5。它的比表面积则较大,为10~40cm2/cm3。例如孔隙率大于63%的泡沫铝合金,其密度可达1以下,能够浮于水面上. 2多孔泡沫金属的性能及其应用泡沫金属材料的性能主要取决于气孔在基体材料内的分布情况,包括气孔的类型、形状、大小、数量、均匀性、以及比表面积等.多孔泡沫金属材料自问世以来,作为结构材料,它具有轻质、高比强度的特点;作为功能材料,它具有多孔、减振、阻尼、吸音、隔音、散热、吸收冲击能、电磁屏蔽等多种物理性能[5];因此它在国内外一般工业领域及高技术领域都得到了越来越广泛的应用。 2.1渗透性能及应用渗透性是高孔隙率材料在过滤、液-液分离、噪声抑制等方面的关键性能。泡沫金属中闭孔的数目对渗透性的影响较大,只有那些具有通孔结构的泡沫材料才有渗透性能,另外,渗透性还与孔径大小、孔的表面光洁度、渗透物体的性质(如黏度、流速)、渗透压力等因素有关.因其多孔性可将其应用于化学过滤器(如滤掉液体、气体中的固体颗粒等)、供净化水使用的气化处理器、自动加油的含油轴承、带香味的装饰品等。通过对泡沫金属孔结构(如孔隙度、孔径大小、通孔度等)的调整,可以获得不同透过性能要求的泡沫金属材料。 2.2消声减震性能及应用[6-8]具有通孔结构的泡沫金属材料,当有声波或机械振动波进入时,孔内介质(一般为空气)在声波作用下产生周期性的震动而与孔壁摩擦形成摩擦热,孔内介质在声波作用下发生压缩─膨胀形变也使部分声能变为热能,这种能量转换是不可逆的,对消声起主导作用;另外,泡沫材料本身也可以因弹性震动而消耗一部分声能;又由于泡沫材料具有的特殊结构,使其具有改变声源特性的功效,可以使难以消除的中低频段噪声峰值移向高频段,这些特征均为采用常规手段进一步降低气流噪声提供了有利条件。与其它的消音材料

金属多孔材料的制备及应用_于永亮

金属多孔材料的制备及应用 于永亮,张德金,袁勇,刘增林 (粉末冶金有限公司) 摘要:在归纳分析目前国内外各种制备多孔材料新技术的基础上,阐述了多孔材料在过滤、电极材料、催化载体、消音材料、生物和装饰材料方面应用及未来发展前景。 关键词:多孔材料功能结构制备方法金属加工 0前言 多孔材料是一种由相互贯通或封闭的孔洞构成网络结构的材料,孔洞的边界或表面由支柱或平板构成。由于多孔材料具有相对密度低、比强度高、比表面积大、重量轻、隔音、隔热、渗透性好等优点,其应用范围远远超过单一功能的材料。近年来金属多孔材料的开发和应用日益受到人们的关注。目前,金属多孔材料已经在冶金、石油、化工、纺织、医药、酿造等国民经济部门以及国防军事等部门得到了广泛的应用。从20世纪中叶开始,世界科技较发达国家竞相投入到多孔金属材料的研究与开发之中,并相继研发了各种不同的制备工艺。 1金属多孔材料的制备工艺 1.1粉末冶金(PM)法[1] 该方法的原理是将一种或多种金属粉末按一定的配比混合均匀后,在一定的压力下压制成粉末压坯。将成形坯在烧结炉中进行烧结,制得具有一定孔隙度的多孔金属材料。或不经过成形压制,直接将粉末松装于模具内进行无压烧结,即粉末松装烧结法。 1.2纤维烧结法[2] 纤维烧结法与粉末冶金法基本类似。用金属纤维代替金属粉末颗粒,选取一定几何分布的金属纤维混合均匀,分布成纤维毡,随后在惰性气氛或还原性气氛保护的条件下烧结制备金属纤维材料。该法制备的金属多孔材料孔隙度可在很大范围内调整。 作者简介:于永亮(1981-),男,2006年7月毕业于中南大学粉末冶金专业。现为莱钢粉末冶金有限公司技术科助理工程师,主要从事生产技术及质量管理工作。1.3发泡法[3] 1)直接吹气法。对于制备泡沫金属,直接吹气法是一种简便、快速且低耗能的方法。 2)金属氢化物分解发泡法。这种方法是在熔融的金属液中加入发泡剂(金属氢化物粉末),氢化物被加热后分解出H2,并且发生体积膨胀,使得液体金属发泡,冷却后得到泡沫金属材料。 3)粉末发泡法。该方法的基本工艺是将金属与发泡剂按一定的比例混合均匀,然后在一定的压力下压制成形。将成形坯经过进一步加工,如轧制、模锻等,使之成为半成品,然后将半成品放入一定的钢模中加热,使得发泡剂分解放出气体发泡,最后得到多孔泡沫金属材料。 1.4自蔓延合成法[4] 自蔓延高温合成法是一种利用原材料组分之间化学反应的强烈放热,在维持自身反应继续进行的同时产生大量孔隙的材料合成方法。该方法放热反应可迅速扩展(即自蔓延),在极短时间内即可完成全部燃烧反应。同时因为反应时的温度高,故容易得到高纯度材料。这种方法主要是依靠反应过程中产生的液体和气体的运动而得到多孔结构,因此其孔隙大多是相互连通的,采用这种方法制备的多孔材料孔隙度可达到60%以上。然而,由于在自蔓延高温合成过程中,其热量释放和反应过程过于剧烈,容易导致材料的变形和开裂,同时不利于材料的孔结构控制和近净成形。 1.5铸造法[5] 1)熔模铸造法。熔模铸造法是先将已经发泡的塑料填入一定几何形状的容器内,在其周围倒入液态耐火材料,在耐火材料硬化后,升温加热使发泡塑料气化,此时模具就具有原发泡塑料的形状,将液态金属浇注到模具内,在冷却后把耐火材料与 36 莱钢科技2011年6月

新材料的应用与发展说课材料

新材料的应用与发展

新材料 摘要:随着现代科学技术的迅速发展和人类需求的改变,我们队对材料的要求也越来越高,我们期待能够有更好的材料来满足我们各方面的需求,随着新材料的研发日益的成熟,更多的新材料开始真正的进入大众的视野当中,在现实生活当中的使用也是日趋广泛。新的要求,新的材料,新的使用,新的材料的使用是我们的生活的各个方面发生着巨大的变化。 关键词:建筑节能新材料,高分子智能材料,汽车新材料 正文:新材料是指新近发展的或正在研发的、性能超群的一些材料,具有比传 统材料更为优异的性能。新材料作为高新技术的基础和先导,应用范围极其广泛,它同信息技术,生物技术一起成为二十一世纪最重要和最具发展潜力的领域同传统材料一样,新材料可以从结构组成,功能和应用领域等多种不同角度对其进行分类,不同的分类之间相互交叉和嵌套.新材料正在从一点一滴改变我们的世界。 一.建筑节能新材料。近年来国内建筑业得到了突飞猛进的发展,建筑节能是社会发展的需求,它有利于缓解能源紧缺问题;建筑节能是环境保护的需求它有利于减轻大气污染现状;建筑节能是建筑业进步的需求,它有利于巩固企业市场地位。 我国传统围护结构墙多为无机材料组成,如砖石砌体、混凝土、水泥砂浆等而最新发明的新型环保阻燃蜂窝复合墙体材料则是利用煤渣、水稻秸秆等废料生产而来,其是将废料同水泥、粘合剂经过混合搅拌压缩而成,该种节能砖既减少了废物排放又能实现清洁生产,同时其具有能耗低、重量轻、所需钢筋水泥量小等优点。 防裂性是墙体保温工程要解决的关键技术,因为一旦保温层、抗裂防护层发生开裂,墙体保温性能就会发生很大改变,非但满足不了节能要求,甚至还会危

碳纤维复合材料在汽车工业中的应用

《能源工程材料》 课外拓展阅读报告 《碳纤维复合材料在汽车工业中的应用》 姓名:XX 指导教师:XX 学号:XXXXXXXX 专业班级:XXXXXXXX 2016年6月 碳纤维复合材料在汽车工业中的应用 摘要:节能减排是当前汽车工业可持续发展迫切需要解决的问题,采用碳纤维复合材料等轻质材料使汽车轻量化是一个有效的解决办法。介绍了碳纤维复合材料的性能特点和在汽车上的应用现状,从材料、设计和成型工艺3个方面分析了其在国内汽车工业应用中的问题,提出了促进碳纤维复合材料广泛应用的发展建议,并展望了其在汽车工业中的应用前景。 进入21世纪以来,能源危机日趋严重,世界各国的排放法规日益严格,如何在保证安全性和动力性的前提下降低油耗和减少排放是目前汽车工业迫切需要解决的问题。采用各种轻质材料取代金属等传统材料,使汽车轻量化是实现节能减排的重要途径。碳纤维复合材料凭借轻质、高强度、高刚度、抗振性能好、抗疲劳、耐腐蚀等众多优点[1]越来越受到汽车工业的重视,在汽车中的应 用也越来越多。碳纤维及其复合材料是支撑国家高科技产业发展的关键材料,经过40多年的积累与发展,我国碳纤维及其复合材料研发拥有众多突破性进展,但在汽车领

域的应用还远落后于航空航天和其他工业领域[2]。因此有必要分析碳纤维复合材料在我国汽车工业应用中存在的问题,提出合理的发展对策,以适应汽车工业对材料发展的迫切需求。 1.碳纤维复合材料的性能特点和使用优势 与金属材料相比,碳纤维复合材料具有许多优良性能,应用于汽车上有明显的优势,主要表现在:1)密度小,强度高,CFRP在常用材料中比强度和比模量最高,用于车身及底盘能在减轻车重的同时不损失强度或刚度,汽车安全系数不降低。2)韧性好,具有良好的抗冲击性和能量吸收能力,用于车身及其结构件具有良好的碰撞安全性。3)阻尼高,抗振性能好,用于车身、传动系统及发动机部件具有良好的减振、隔音效果,提高了乘坐舒适性。4)抗疲劳性能极佳,用于承受疲劳载荷的汽车零部件能有效延长其使用寿命。 5)优秀的耐热性、抗腐蚀与抗辐射性能,在电动汽车和其他新能源汽车领域应用具有很强的竞争力。6)成型工艺多,可设计性好,易于实现零部件一体化生产,极大缩短开发周期,节约成本。 2.碳纤维复合材料在汽车上的应用 碳纤维复合材料用于汽车部件上不仅可以实现汽车轻量化,而且在安全性与乘用舒适性等方面也有很大提高,因此越来越受到汽车工业的重视,很多汽车制造商生产的高档、豪华轿车(如通用、宝马、大众、奔驰、福特、奥迪、本田、日产等)几乎都开始试用或已经采用了各种碳纤维复合材料。 1)碳纤维复合材料应用于汽车车身、底盘及承力部件,在保证安全性的同时具有十分明显的减重效果。在各种材料制造的车身中碳纤维复合材料是最轻的,尤其是与钢制车身相比,轻量化效果达53%以上。 美国通用汽车公司1992年展出了由碳纤维复合材料制造车身的超轻概念车,车身质量为 kg,整车质量降低68%,节油40%。兰博基尼汽车2011年推出了Mucilage替代车型,该车采用了全碳纤维复合材料单壳体车身,质量仅有kg。目前,碳纤维复合材料制成的车身结构件已在德国宝马公司开发的Z-9和Z-22系列中大量采用。德国大众汽车公司的“2L车”CC1 研究项目,碳纤维复合材料用于车身的比例高达

多孔材料概述

多孔材料 多孔材料是一种由相互贯通或封闭的孔洞构成网络结构的材料,孔洞的边界或表面由支柱或平板构成。典型的孔结构有:一种是由大量多边形孔在平面上聚集形成的二维结构;由于其形状类似于蜂房的六边形结构而被称为“蜂窝”材料;更为普遍的是由大量多面体形状的孔洞在空间聚集形成的三维结构, 通常称之为“泡沫”材料。如果构成孔洞的固体只存在于孔洞的边界(即孔洞之间是相通的),则称为开孔;如果孔洞表面也是实心的,即每个孔洞与周围孔洞完全隔开,则称为闭孔;而有些孔洞则是半开孔半闭孔的。 由于多孔材料具有相对密度低、比强度高、比表面积高、重量轻、隔音、隔热、渗透性好等优点, 其应用范围远远超过单一功能的材料, 而在航空、航天、化工、建材、冶金、原子能、石化、机械、医药和环保等诸多领域具有广泛的应用前景。 泡沫材料,简称多孔材料或泡沫材料。总之,目前没有一个统一、严格、公认的定义。多数学者将多孔材料和泡沫材料视为等同概念。多孔材料在自然界中普遍存在如木材、软木、海绵和珊瑚等(“cellulose”这个词就来源于意为“充满小孔的”拉丁小词“cellula”)。 千百年来,这些天然的多孔材料被人们广泛利用。在多年前的古埃及金字塔中就已经使用了木制建材在罗马时代软木就被用作酒瓶的瓶塞。近代人们开始自己制造多孔材料,其中最简单的是由大量相似的棱形孔洞组成的蜂窝状材料,可用作轻质构件。更常见的是高分子泡沫材料,其用途广泛,可用于小到随处可见的咖啡杯,大到飞机坐舱的减震垫。现代技术的发展使得金属、陶瓷、玻璃等材料也能像聚合物那样发泡。这些新型泡沫材料正逐渐地被用作绝缘、缓冲、吸收冲击能量的材料,从而发挥了其由多孔结构决定的独特的综合性能。 .

金属多孔材料压缩行为的评述

万方数据

万方数据

万方数据

万方数据

金属多孔材料压缩行为的评述 作者:乔吉超, 奚正平, 汤慧萍, 王建永, 朱纪磊, Qiao Jichao, Xi Zhengping, Tang Huiping, Wang Jianyong, Zhu Jilei 作者单位:乔吉超,Qiao Jichao(西北工业大学,陕西,西安,710072;西北有色金属研究院金属多孔材料国家重点实验室,陕西,西安,710016), 奚正平,汤慧萍,王建永,朱纪磊,Xi Zhengping,Tang Huiping,Wang Jianyong,Zhu Jilei(西北有色金属研究院金属多孔材料国家重点实验室,陕 西,西安,710016) 刊名: 稀有金属材料与工程 英文刊名:RARE METAL MATERIALS AND ENGINEERING 年,卷(期):2010,39(3) 被引用次数:0次 参考文献(52条) 1.Nakajima H查看详情 2007 2.Gibson L J.Ashby M F Cellular Solid:Structure and Properties 1997 3.Ashby M F Metal Foams:A Design Guide 2000 4.Banhart J查看详情 2001 5.Evans A G查看详情 1999 6.Sypeck D J查看详情 2002(4) 7.Neubert V查看详情 2007 8.Neville B P查看详情 2008 9.Gülsoy H (o)zkan查看详情 2008 10.Zhou Z Y查看详情 2002 11.Shirizly A查看详情 1999 12.Cao Xiaoqing查看详情 2006 13.Wang Zhihu查看详情 2006 14.Yu Sirong查看详情 2008 15.Romero PA查看详情 2008 16.Amsterdam E查看详情 2008 17.Dawson M A查看详情 2007 18.Okumura D查看详情 2008 19.Liu Jiaan查看详情 2008 20.Liu Jiaan查看详情 2008 21.Jeon I查看详情 2005 22.Mukai T查看详情 2006 23.Kitazono K查看详情 2007 24.Aly M S查看详情 2007 25.Tan P J查看详情 2005 26.Mondal D P查看详情 2007 27.Peroni L查看详情 2008 28.Papadopoulos D P查看详情 2004

多孔碳材料制备与应用

摘要 离子液体因为具有绿色环保、不易挥发、稳定性高以及结构设计性强等特点,最几年在合成碳材料中的应用引起了人们的广泛关注[1]。且因多孔碳材料质量轻,法及其相关表征。稳定性好,耐高温,耐酸碱,无毒性,吸附性好等优点而在多领域中被广泛应用。本文主要介绍的是以PEI(聚醚酰亚胺Polyetherimide)为原料制备离子液体前驱体并制得碳材料的方法。首先通过向原材料PEI中加入溴乙腈(BrCH2CN)制备离子液体前驱体,向得到的离子液体前驱体中加入二氰胺银[AgN(CN)2]进行阴离子交换反应,最后通过活化法得到多孔碳材料。这种方法的最大优点是有较高的碳产率。 关键词:离子液体、阴离子交换法、多孔碳材料

Abstract In recent years,the application of ionic liquid in the synthesis of carbon materials has aroused extensive attention because of its features, such as green, less volatile, high stability and structural design of characters. And because the porous carbon material with light weight, good stability, high temperature resistance, acid and alkali resistant, non-toxic and good adsorption, it has been used in many fields. This paper mainly introduces the PEI (Polyetherimide) prepared for ionic liquid precursors, methods of carbon materials and related characterization. First by PEI of raw materials to join bromoacetonitrile (BrCH2CN) of ionic liquid precursor preparation, obtained by ionic liquid precursor to join dicyanamide silver [AgN (CN) 2] by anion exchange reaction, the activation method of porous carbon materials. The greatest advantage of this method is that there is a high carbon yield. Keywords: Ionic liquid, anion exchange, porous carbon material.

新材料产业发展现状及趋势

新材料产业发展现状及趋势 “十五”期间,在我国新材料产业发展过程中,国家给予了大力支持,初步形成了比较完整的新材料产业体系。“十五”期间发布的《国家计委关于组织实施新材料高技术产业化专项公告》,通过100多个产业化专项的实施.有力地推动了我国具有自主知识产权的新材料产业的发展,在电子信息材料、先进金属材料、电池材料、磁性材料、新型高分子材料、商性能陶瓷材料和复合材料等方面形成了一批高技术新材料核心产业。“十一五”期间又进一步加大了支持力度。按我国目前经济发展趋势预计,新材料需求增长速度将高于经济增长速度,按10%的增长速度计算,到2010年我国新材料市场可达6500亿元。新材料产业也已成为衡量一个国家经济社会发展、科技进步和国防实力的重要标志。 我国新材料产业的发展现状 当前,我国的新材料产业在国际产业布局中正处于由低级向高级发展的阶段,随着对外开放和与全球业界的广泛交流合作,我国新材料产业正呈现快速健康发展的良好状态,在一些重点、关键新材料的制备技术、工艺技术、新产品开发及节能、环保和资源综合利用等方面取得了明显成效,促进了一批新材料产业的形成与发展。 1.新一代钢铁结构材料 迄今为止,钢铁结构材料依然是国民经济各支柱产业和国防工业的重要支撑材料和应用范围最宽、使用量最大的材料,其生产和应用过程对全球资源、能源和人类生存环境有着不可忽视的影响,以去年为例: 2007年生产钢材46719.3万吨,比去年增长16.2%。同时,高技术含量、高附加值品种钢材产量大幅度增长。全年生产冷轧薄宽钢带1740.27万吨,同比增长31.8%;冷轧薄板1563.83万吨,同比增长25.2%;镀层板(带)1754.58万吨,同比增长37.9%;涂层板(带)317.21万吨,同比增长36.1%;电工钢板(带)415.57万吨。同比增长23.5%。以上5个品种钢材合计生产5791.487吨,比上年增长31.28%,高于钢材生产总量增幅8.59个百分点。全年生产不锈钢720.6万吨,比上年增加190.6万吨,增长35.96%,居世界第一位。其中,世界一流工艺装备的生产量达到70%,国内市场占有率达到75%,实现了重大的突破。全行业已基本形成以企业为主体、市场为导向、产学研相结合的技术创新和新产品研发体系,形成了科研基础设施建设加强、科技投入增加的良好格局。全行业在高效采选技术、钢铁冶炼技术、轧钢新技术、高端产品开发、大型冶金成套装备技术集成、节能节水和废弃物综合利用新技术等方面,都取得了新的成果和进步。 2007年宝钢试制成功X120管线钢,实现电镀锌机组全面无铬化生产,年产150万吨生铁的COREX3000熔融还原工艺装置投产;鞍钢继续完善冷连轧自主集成成套工艺技术,开发成功一批具有自主知识产权的核心技术,并在相关企业投入使用;武钢新一代取向硅钢、高效电机硅钢的研发和装备技术集成,高强度桥梁钢生产技术提高;太钢建成世界一流的现代化不锈钢生产基地;攀钢转炉铁水提钒和半钢炼钢连续工业性试生产成品钒渣等均取得了工艺技术的新突破。 2007年在研发和扩大生产市场需求的短缺产品方面,船用高强度宽厚板、高强度海洋结构用钢板、高档汽车用板和汽车零部件用钢、工程机械和高层建筑用高强度厚钢板、X80以上高等级管线钢板、百米在线热处理钢轨和时速350公里高速铁路钢轨、高速动车组用钢、高端压

去合金化制备纳米多孔金属材料的研究进展_谭秀兰

去合金化制备纳米多孔金属材料的研究进展 * 谭秀兰 1,2 ,唐永建1,刘 颖2,罗江山1,李 恺1,刘晓波 2 (1 中国工程物理研究院激光聚变研究中心,绵阳621900;2 四川大学材料科学与工程学院,成都610065)摘要 用去合金化制备的孔隙尺寸小于100nm 的纳米多孔金属材料,开拓了多孔金属材料一个新的应用领域。目前的研究主要集中于通过不同的合金体系制备出不同的纳米多孔金属,分别介绍了纳米多孔金、铂、铜、钯、钛的制备工艺,并对孔洞形成的溶解-再沉积机制、体扩散机制、表面扩散机制、渗流机制及相分离模型进行了简述。对纳米多孔金的现有研究表明,纳米多孔金具有良好的化学稳定性、高的比表面积以及高的屈服强度,目前应用研究包括作为热交换器、传感器及催化材料等方面。 关键词 纳米多孔金属 制备 去合金化 Prog ress in R esearch on Preparations of Nanoporours M etals by Dealloying T AN Xiulan 1,2,T ANG Yongjian 1,LIU Ying 2,LU O Jiang shan 1,LI Kai 1,LIU Xiaobo 2 (1 R esear ch Center of L aser F usio n,CAEP ,M iany ang 621900;2 Depar tment o f M ater ial Science and Eng ineering ,Sichuan U niv ersity ,Cheng du 610065) Abstract N anoporo us metals made by dealloy ing display no vel pro per ties in many applicat ions.T he pr esent research concentr ates o n pr epar atio ns of mult-i nano po ro ur s metals fro m different alloys.P reparatio ns of nano po rous go ld,plat inum,co pper ,palladium and t itanium ar e r eview ed.T he mechanisms of po re for ming dur ing deallo ying a re summar ied,including the r eso lutio n -redeposit ion mechanism,volume diffusion mechanism,surface diffusio n mecha -nism,the per co lation mechanism and phase separ ation mo del.Nano po rous g old has a go od chemical stabilit y,a high specific surface area,as well as a hig h y ield str eng th.T he cur rent application r esear ches include the applications as heat ex chang ers,sensors and catalytic mat erial,and so on. Key words nanopor ous metals,preparations,deallo ying *中国工程物理研究院科学技术发展基金资助(2007B08007) 谭秀兰:女,1983年生,硕士研究生,研究方向为多孔泡沫金属 E -mail:tx l725@https://www.360docs.net/doc/b3314743.html, 0 引言 近年来利用去合金化方法制备的孔隙尺寸小于100nm 的纳米多孔金属材料由于比表面积高、密度低而具有特殊的物理、化学、机械性能,开拓了多孔金属材料新的应用领域,作为潜在的传感器和驱动器而受到国际材料学界的高度重视[1,2]。 去合金化,即选择性腐蚀,是指合金组元间的电极电位相差较大,合金中的电化学性质较活泼元素在电解质的作用下选择性溶解进入电解液而留下电化学性质较稳定元素的腐蚀过程。组元既可以是单相固溶体合金中的一种元素,又可以是多相合金中的某一相。最典型的例子是黄铜脱锌和铸铁的石墨化腐蚀。目前,对二元固溶体合金去合金化制备纳米多孔金属成为国内外研究的一大热点,特别是对通过A g -Au 系合金选择性腐蚀制备纳米多孔金的研究。现有的研究主要集中于采用不同的合金体系制备出各种不同的纳米多孔材料。本文对去合金化制备的几种纳米多孔金属及其制备过程、孔洞形成机制和应用方面的研究进行介绍。 1 去合金化制备的纳米多孔材料 纳米多孔金属材料可通过不同的合金体系制备,如通过Ag -Au [1,3-9]、Zn -A u [10]、A-l A u [11]、Cu -Au [12,13]、N-i Au [14]均已制备出纳米孔隙尺寸金。在研究纳米多孔金的基础上,国内外科学研究者们将这种方法拓展应用于其他金属体系,如S-i Pt [15]、Cu -Pt [16]、Cu -Zr [17]、M n -Cu [18]、Cu -Pd [19,20]和A-l T i [21] 等,已制备出纳米多孔铂、纳米多孔铜、纳米多孔钯和纳米多孔钛等多种纳米多孔金属材料。 1.1 纳米多孔金的制备 目前,国际上对去合金化的研究主要集中在以Ag -Au 合金体系为主的均匀固溶体。一方面从相图上看Ag -Au 在所有组成范围内形成单相无限固溶体,另一方面A g 和Au 都为面心立方结构,两元素的点阵常数分别为0.40786nm 和0.40862nm,点阵错配度仅为0.2%,在整个成分范围内点阵常数变化不大。利用Ag -Au 合金的去合金化已制备出多重孔隙尺寸的纳米多孔金块体、纳米孔隙金薄膜、纳米多孔金丝等多种多孔结构。 约翰-霍普金斯大学的Eriebac h er 教授[1]采用2.4g (12

相关文档
最新文档