汽车系统动力学概论

汽车系统动力学概论
汽车系统动力学概论

汽车系统动力学概论

摘要:汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有汽车在垂向和横向两个方面的动力学内容。本文通过对大量教科书和文献进行了分析,对汽车动力学的研究内容、研究方法和理论基础以及发展趋势进行了阐述。

关键词:系统,汽车,系统动力学

1系统及系统动力学的概念

1.1系统

系统是一个由相互区别、相互作用的各部分(即单元或要素)有机地连接在一起,为同一目的的完成某种功能的集合体。

由此可知系统具有以下几个特点:具有目的性、具有层次性、具有功能共性、具有整体性。

1.2系统动力学

系统动力学是一门分析研究信息反馈的学科。它是系统科学中的一个分支,是跨越自然科学和社会科学的横向学科。系统动力学基于系统论,吸收控制论、信息论的精髓,是一门认识系统问题和解决问题系统问题交叉、综合性的学科。

反馈系统就是包含反馈环节与其作用的系统。它要受系统本身的历史行为的影响,把历史行为的结果回授给系统本身,以影响未来的行为。如库存订货系统。

2汽车系统动力学及其研究内容

2.1汽车系统动力学

汽车系统动力学就是把汽车看做是一个动态系统,对其行为进行研究,讨论数学模型和响应。是研究汽车受的力及其与汽车运动之间的相互关系,找出汽车主要性能的内在规律和联系,提出汽车设计参数选取的原则和依据。

汽车系统动力学研究所有与车辆系统运动有关的学科,包括空气动力学,纵向运动及其子系统的动力学响应,垂向和横向两个方面的动力学内容,即行驶动力学和操作动力学,行驶动力学主要研究由路面的不平激励,通过悬架和轮胎垂向力引起的车身跳动和俯卧以及车轮的运动,操纵动力学研究车辆的操纵性,主要与轮胎侧向力有关,并由此引起车辆侧滑、横摆和侧倾运动。

2.2汽车动力学研究内容

汽车系统动力学是研究所有与汽车运动有关的学科,研究内容可按车辆运动方向分为纵向、垂向和侧向动力学三大部分。

2.2.1纵向动力学

纵向或前进运动对于车辆来说都是最重要的,它们主要代表了运输任务需要的运动。特别地,车辆的纵向性能主要取决于由其驱动系统产生的运动与所能实现的驱动性能。

纵向动力学研究车辆直线运动及其控制的问题,主要是车辆沿前进方向的受力与其运动的关系。按车辆的工况不同,可分为驱动动力学和制动动力学两大部分。行驶动力学主要研究由路面的不平激励,通过悬架和轮胎垂向力引起的车身跳动和俯仰以及车轮的运动;而操纵动力学研究车辆的操纵特性,主要与轮胎侧向力有关,并由此引起车辆侧滑、横滑和侧倾运动。

2.2.2行驶动力学

行驶动力学研究的首要问题是建立考虑悬架特性在内的车辆动力学模型,而分析这些动力学问题的最简单的数学模型应该是具有七自由度的整车系统模型。将行驶动力学问题分为两类。一类是可通过数学建模来分析的行驶动力学问题即“主要行驶舒适性问题”。然而,主要行驶舒适性研究还无法将所有的行驶震动特性完整而真实地描绘出来,实际中还有大量其他因素影响着乘员对乘坐舒适性的主观评价,包括对约15Hz以上的高频震动的响应、更高频率范围内的震动噪声问题、悬架系统中橡胶村套的影响、对路面的阶跃凸起等路障的纵向冲击的响应以及人体对震动的响应等。目前,几乎还没有办法用数学解析模型来准确的预测这些影响,这类问题常归结为“次级行驶舒适性问题”。

对次级是、行驶舒适性问题,通常需要人的主观设计,例如路面凹坑离散输入对悬架系统震动噪声响应的评价,一般会涉及三个方面的问题,包括轮胎在路面输入处变形时的动态响应、纵向和垂向的悬架非线性动力学性能以及驾驶员的响应特性。

2.2.3操纵动力学

由于轮胎的重要性,因此操纵动力学建模中必须要与轮胎模型精度相吻合,否则建立的操纵模型将失去意义。

分析车辆操纵特性可以从最基本的两自由度车辆模型入手,该模型中,车辆向前的速度被假定为恒定的,而两个变量分别是车辆的侧向速度和横摆速度。经

过对基本模型的动力学分析,得到一个关于车辆操纵特性的基本概念,即车辆的“不足或过度转向”特性。考虑到实际设计中的可用性,模型中至少应包括车身的横摆、侧倾和侧向运动,悬架的运动学效应,悬架系统特性,转向系统的影响等。在高速直线行驶时,还包括空气阻力和力矩。尽管线性模型已经在操纵性能定量分析中得到了有效的应用,但对非线性域和非线性联合工况,则通常需要采用多体动力学分析软件,以求解这些非线性方程。

3汽车系统动力学研究方法和理论基础

3.1研究方法

解决任何一个系统问题的首要步骤就是把时间问题抽象,并转变为简化的模型。抽象是通过一种思维区分出现象的本质而抽出其中非本质和次要的性质的一种逻辑方法。在抽象的基础上就要建立表达系统行为的物理或者数学的模式,即所谓的物理模型和数学模型。

模型的分类:

3.1.1.比例的物理模型

即模型和实物的物理本质相同,仅在形状和尺寸上有差距。尺寸比例为1:1的称为足尺模型,如风洞实验中的汽车模型,用以预测空气动力学性能。模型即使尺寸与原物相同也只能称模拟,因为它在结构上进行了简化,只对研究中主要特征按原型制造,而其他部分加以简化,以利于制造、节省成本,突出主要矛盾。其优点是可以同时观察到整体的物理性能,并能做种种记录、摄影等,且能清楚一些次要因素的干扰,故能准确的预测系统的性能和参数间的关系。

3.1.2.数学等效模型

在工程上发展不同物理系统,其动态行为的数学形式是相同的。不同系统的行为可用等效的常系数微分方程来描绘。这就使我们可能用一种系统来模拟另一系统,如用电力系统模拟机械系统。

3.1.3.数学模型

这种模型比实物模型、模拟模型更为抽象,但是在实物和数学模型间存在很强的相似性,它建立了一组法则或运算,从而将一个或多个元素(运算对象)与运动结果联系起来。这种数学模型有多种表示方式:

(1)各种数学方程式(代数方程、微分方程、差分方程)。这些方程式形式服从于研究的对象和目的。其动态特性和响应常用微分方程。

(2)用数学与逻辑符号建立符号模型—方块图。它反映了信息传递因果

关系。

(3)用能量键、功率流建立模型。这种方法是利用相互作用的子系统必然传递功率这一事实,使各种不同系统(液压—机械—电力)的描

述统一起来。而功率的表现形式可以不同。

3.2理论基础

在汽车系统动力学研究中,主要的理论基础有分析力学,分析力学是从能动量观点建立起来的,它利用广泛坐标作为独立参数来描述系统的运动,另一方面应用达朗贝尔原理将静力学中的虚位移原理推广到动力学问题中去,从而建立动力学普遍方程式,由此出发推导出可广泛应用的拉格朗日方程来建立系统的运动方程。用分析力学的方法可以较严格地阐明有限自由度体系振动的普遍规律和计算方法,而且所得的规律可推广于无限自由度体系。

另外,线性系统理论和现代控制系统理论,概率论及其分支随机过程以及人体工程学等也都是其理论基础。

4.汽车系统动力学发展趋势

汽车系统动力学研究由被动元件设计转变为采用主动控制来改变汽车动态性能。随着多体动力学的发展及计算机技术的发展,使汽车系统动力学成为汽车CAE技术的重要组成部分,并逐渐朝着与电子和液压控制、有限元分析技术集成的方向发展。

4.1汽车主动控制

汽车控制系统的构成都将包括三个部分,即控制算法、传感器技术和执行机构的开发。而控制系统的关键,控制规律则需要控制理论与汽车系统动力学的紧密结合。

4.2多体系统动力学

多体系统动力学的基本方法是,首先对一个由不同质量和几何尺寸组成的系统设施加一些不同类型的连接元件,从而建立起一个具有合适自由度的模型;然后,软件包会自动产生相应的时域非线性方程,并在给定的系统输入下进行求解。系统方程可以写成这样一个通式:MX=F(式中M表示一个系统参数矩阵,F为所有外力的矢量)。

4.3“人—车—路”闭环系统和主观与客观的评价

采用人—车闭环系统是未来汽车系统动力学研究的趋势。作为驾驶者,人既起着控制器的作用,又是汽车系统品质的最终评价者。假如表达驾驶员驾驶特性

的驾驶员模型问题得到解决后,“开环评价”与“闭环评价”的价值差别也许就不存在了。因此,在人—车闭环系统中的驾驶员模型研究,也是今后汽车系统动力学研究的难题和挑战之一。初驾驶员模型的不确定因素外,就汽车本身的一些动力学问题也未必能完全通过建模来解决。目前,人们对汽车性能的客观测量和主观之间的复杂关系还缺乏了解,而汽车的最终用户是人。因此,对汽车系统动力学研究者而言,今后一个重要的研究领域可能会是对主观评价与客观评价关系的认识。

参考文献

[1]喻月, 林逸. 汽车系统动力学[M]. 北京:机械工业出版社, 2008.

[2]郭孔, 辉著. 汽车操纵动力学[M]. 长春:吉林科学技术出版社, 1991.

[3]中国汽车技术研究中心标准所. 汽车定型与通用试验方法标准汇编[M]. 天津:中国汽车技术研究中心, 1994.

[4]唐, 岚, 李涵武. 汽车测试技术[M]. 北京:机械工业出版社, 2006.

车辆系统动力学解析

汽车系统动力学的发展现状 仲鲁泉 2014020326 摘要:汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有汽车在垂直和横向两个方面的动力学内容。介绍车辆动力学建模的基础理论、轮胎力学及汽车空气动力学基础之外,重点介绍了受汽车发动机、传动系统、制动系统影响的驱动动力学和制动动力学,以及行驶动力学和操纵动力学内容。本文主要讲述的是通过对轮胎和悬架的系统动力学研究,来探究汽车系统动力学的发展现状。 关键词:轮胎;悬架;系统动力学;现状 0 前言 汽车系统动力学是讨论动态系统的数学模型和响应的学科。它是把汽车看做一个动态系统,对其进行研究,讨论数学模型和响应。是研究汽车的力与其汽车运动之间的相互关系,找出汽车的主要性能的内在联系,提出汽车设计参数选取的原则和依据。 车辆动力学是近代发展起来的一门新兴学科。有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。开始出现有关转向、稳定性、悬架方面的文章。同时,人们对轮胎侧向动力学的重要性也开始有所认识。在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。 在随后的20年中,车辆动力学的进展甚微。进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。随后的几十年,汽车制造商意识到行驶平顺性和操纵稳定性在汽车产品竞争中的重要作用,因而车辆动力学得以迅速发展。计算机及应用软件的开发,使建模的复杂程度不断提高。

车辆系统动力学发展1

汽车系统动力学的发展和现状 摘要:近年来,随着汽车工业的飞速发展,人们对汽车的舒适性、可靠性以及安全性也提出越来越高的要求,这些要求的实现都与汽车系统动力学相关。汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有车辆在垂向和横向两个方面的动力学内容。本文通过对汽车系统动力学的的介绍,对这一新兴学科的发展和现状做一阐述。 关键字:汽车系统动力学动力学响应发展历史 Summary:In recent years, with the rapid development of automobile industry, people on the vehicle comfort, reliability and safety are also put forward higher requirements, to achieve these requirements are related to vehicle system dynamics.Vehicle system dynamics is the study of all related to the movement of the car system discipline, it involves the scope is broad, in addition to the effects of dynamic response of vehicle longitudinal motion and its subsystems, and vehicles to and dynamic content crosswise two aspects in the vertical.Based on the vehicle system dynamics is introduced, the development and status of this emerging discipline to do elaborate. Keywords:Dynamics of vehicle system dynamics Dynamic response Development history 0 引言 车辆动力学是近代发展起来的一门新兴学科。有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。开始出现有关转向、稳定性、悬架方面的文章。同时,人们对轮胎侧向动力学的重要性也开始有所认识。 在随后的20年中,车辆动力学的进展甚微。进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。随后的几十年,汽车制造商意识到行驶平顺性和操纵稳定性在汽车产品竞争中的重要作用,因而车辆动力学得以迅速发展。计算机及应用软件的开发,使建模的复杂程度不断提高。在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。 传统的车辆动力学研究都是针对被动元件的设计而言,而采用主动控制来改变车辆动态性能的理念,则为车辆动力学开辟了一个崭新的研究领域。在车辆系统动力学研究中,采用“人—车—路”大闭环的概念应该是未来的发展趋势。作为驾驶者,人既起着控

汽车系统动力学习题答案分析解析

1.汽车系统动力学发展趋势 随着汽车工业的飞速发展,人们对汽车的舒适性、可靠性以及安全性也提出越来越高的要求,这些要求的实现都与汽车系统动力学相关。汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有车辆在垂向和横向两个方面的动力学内容,随着多体动力学的发展及计算机技术的发展,使汽车系统动力学成为汽车CAE技术的重要组成部分,并逐渐朝着与电子和液压控制、有限元分析技术集成的方向发展,主要有三个大的发展方向: (1)车辆主动控制 车辆控制系统的构成都将包括三大组成部分,即控制算法、传感器技术和执行机构的开发。而控制系统的关键,控制律则需要控制理论与车辆动力学的紧密结合。 (2)多体系统动力学 多体系统动力学的基本方法是,首先对一个由不同质量和几何尺寸组成的系统施加一些不同类型的连接元件,从而建立起一个具有合适自由度的模型;然后,软件包会自动产生相应的时域非线性方程,并在给定的系统输入下进行求解。汽车是一个非常庞大的非线性系统,其动力学的分析研究需要依靠多体动力学的辅助。 (3)“人—车—路”闭环系统和主观与客观的评价 采用人—车闭环系统是未来汽车系统动力学研究的趋势。作为驾驶者,人既起着控制器的作用,又是汽车系统品质的最终评价者。假如表达驾驶员驾驶特性的驾驶员模型问题得到解决后,“开环评价”与“闭环评价”的价值差别也许就

不存在了。因此,在人—车闭环系统中的驾驶员模型研究,也是今后汽车系统动力学研究的难题和挑战之一。除驾驶员模型的不确定因素外,就车辆本身的一些动力学问题也未必能完全通过建模来解决。目前,人们对车辆性能的客观测量和主观之间的复杂关系还缺乏了解,而车辆的最终用户是人。因此,对车辆系统动力学研究者而言,今后一个重要的研究领域可能会是对主观评价与客观评价关系的认识 2.目前汽车系统动力学的研究现状 汽车系统动力学研究内容范围很广,包括车辆纵向运动及其子系统的动力学响应,还有车辆垂向和横向动力学内容。及行驶动力学和操纵动力学。行驶动力学研究路面不平激励,悬架和轮胎垂向力引起的车身跳动和俯仰运动;操纵动力学研究车辆的操纵稳定性,主要是轮胎侧向力有关,引起的车辆侧滑、横摆、和侧倾运动。汽车系统动力学的研究可以分为三个阶段: 阶段一(20世纪30年代) ①对车辆动态性能的经验性的观察 ②开始注意到车轮摆振的问题 ③认识到车辆舒适性是车辆性能的一个重要方面 阶段二(30年代—50年代) ①了解了简单的轮胎力学,给出了轮胎侧偏角的定义 ②定义不足转向和过度转向 ③建立了简单的两自由度操纵动力学方程

汽车系统动力学期末重点

1.除了影响车辆纵向运动及其子系统的动力学响应(如发动机、传动、加速、制动、防抱死和牵引力控制系统等方面的因素)外,还有车辆在垂向和横向两个方面的动力学内容,即行驶动力学和操纵动力学。 2.纵向动力学研究车辆直线运动及其控制的问题,主要是车辆沿前进方向的受力与其运动的关系,按车辆工况的不同,可分为驱动动力学和制动动力学。 3.行驶阻力的两个最基本部分是车辆的滚动阻力和空气阻力,行驶阻力代表了车辆对动力和功率的需求。 4.操纵动力学的研究范围的三个区域:线性域、非线性域、非线性联合工况。 5.车辆动力学特征的设计方法:系统建模、分析 8.稳态:指当周期性(或恒定)操作输入(或扰动输入)施加在车辆上引起的周期性(或恒定)车辆响应,在任意长的时间内不发生变化时,便称该车处于稳定。 9.瞬态:指车辆的运动响应和作用在车辆上的外力或操作位置随时间变化而变化,便称此时车辆的运动处于瞬态。 10.车辆控制系统的构成包括:控制算法、传感器技术和执行机构的开发。 11.假如在车前部安装前视预瞄传感器来可靠地提供前轮前方路面的输入信息,那么主动悬架系统就可以利用车辆对前后轮的路面预测信息进行控制,这就是预瞄控制。 第二章 1.建立系统微分方程的传统方法主要有两种:(1)利用牛顿矢量力学体系的动量定理及动量矩定理(2)利用拉格朗日的分析力学体系 2.约束与约束方程:一般情况下,力学系统在运动时都会受到某些几何或运动学特性的限制,这些构成限制条件的具体物体称为约束,用数学方程所表示的约束关系称为约束方程 3.完全约束:如果约束方程仅是系统位形和时间的解析方程,这种约束称为完全约束 4.非完全约束:如果约束方程不仅包含系统的位形,还包括广义坐标对时间的导数或广义坐标的微分,而且不能通过积分使之转化为包含位形和和时间的完全约束方程,这种约束称为非完全约束 5.完整系统:具有完整约束的力学系统 6.非完整系统:具有非完整约束的力学系统 第三章1.SAE标准轮胎运动坐标系:被定义为法向坐标向下的三维右手正交坐标系,坐标的原点是轮胎接地印迹中心,x轴定义为车轮平面与地面的交线,前进方向为正,y轴是指车轮旋转轴线在地面上的投影线,向右为正,z轴与地面垂直,向下为正。 离程度,是影响轮胎产生纵向力的一个重要因素 定义:车轮回转平面与车轮中心运动方向的夹角,顺时针方向为正。 4.根据车辆动力学研究的内容不同,轮胎模型可分为(1)轮胎纵滑模型(2)轮胎侧偏模型和侧倾模型(3)轮胎垂向振 动模型 y=Dsin(Carctan(Bx-E(Bx-arctanBx)))它以三角形函数组合的形式来拟合试验数据,得出了一套形式相同并可同时表达纵向力侧向力和回正力矩的轮胎模型(y可以是纵向力侧向力和回正力矩,而自变量x可以在不同情况下分别表示轮胎侧偏角或纵向滑移率) 6.轮胎垂直刚度的三种不同定义:静刚度,非滚动动刚度,滚动动刚度。 7.在60—100HZ的频率范围内,子午线轮胎的垂向振动传递特性幅值显著地高于斜交轮胎,该频率范围的振动正对应于乘员的“颤振”感觉区域。在约150—200HZ左右的频率范围,斜交轮胎的振动特性远差于子午线轮胎,通常将该频率范围的轮胎振动称之为轮胎“噪声”,即通常所说的“路面噪声”。 8.轮胎噪声的产生机理 (1)空气泵吸效应随着轮胎的滚动,空气在胎面与路面的空隙中被吸入和挤压。当压缩的空气在接地区间的出口处被告诉释放到空气中时,就会产生噪声。 (2)胎面单元振动当轮胎滚动时,胎面单元作用于路面,当它离开接触区域时,胎齿便由高变形状态下恢复,从而引起胎面噪声,此为主要的轮胎噪声源。同时,胎体振动、胎面花纹沟、花纹凸块空隙就像谐振管一样,也促进了轮胎的噪声辐射。 由于空气泵吸效应、胎体和胎齿单元的振动均和车速有关,因此轮胎噪声的程度是车辆行驶速度的函数。 (3)路面材料对轮胎噪声也有影响。 9.影响轮胎侧向力的三个最重要的因素是侧偏角、垂向载荷和车轮外倾角。侧偏角由轮胎的运行条件所决定,它取决于车辆前进速度、侧向速度、横摆角速度和转向角。轮胎垂向载荷的静态值由车辆质量分布所决定,但随着载荷在纵向和侧向的重新分配,轮胎的垂向载荷会发生变化。车轮外倾角由转向角和通过悬架杆系作用的车身侧倾所决定,但对非独立悬架车辆来说,外倾角只取决于车轴的侧倾角。(填空题)

最新铁道车辆系统动力学作业及试题答案

作业题 1、车辆动力学的具体内容是研究车辆及其主要零部件在各种运用情况下,特别是在高速运行时的位移、加速度和由此而产生的动作用力。 2、车辆系统动力学目的在于解决下列主要问题: ①确定车辆在线路上安全运行的条件; ②研究车辆悬挂装置和牵引缓冲装置的结构、参数和性能对振动及 动载荷传递的影响,并为这些装置提供设计依据,以保证车辆高速、安全和平稳地运行; ③确定动载荷的特征,为计算车辆动作用力提供依据。 3、铁路车辆在线路上运行时,构成一个极其复杂的具有多自由度的振动系统。 4、动力学性能归根结底都是车辆运行过程中的振动性能。 5、线路不平顺不是一个确定量,它因时因地而有不同值,它的变化规律是随机的,具有统计规律,因而称为随机不平顺。 (1)水平不平顺; (2)轨距不平顺; (3)高低不平顺; (4)方向不平顺。 6、车轮半径越大、踏面斜度越小,蛇行运动的波长越长,即蛇行运动越平缓。 7、自由振动的振幅,振幅大小取决于车辆振动的初始条件:初始位移和初始速度(振动频率)。 8、转向架设计中,往往把车辆悬挂的静挠度大小作为一项重要技术指标。 9、具有变摩擦减振器的车辆,当振动停止时车体的停止位置不是一个点,而是一个停滞区。 10、在无阻尼的情况下共振时振幅随着时间增加,共振时间越长,车辆的振幅也越来越大,一直到弹簧全压缩和产生刚性冲击。 11、出现共振时的车辆运行速度称为共振临界速度 12、在车辆设计时一定要尽可能避免激振频率与自振频率接近,避免出现共振。 13、弹簧簧条之间要留较大的间距以避免在振动过程中簧条接触而出现刚性冲击 14、两线完全重叠时,摩擦阻力功与激振力功在任何振幅条件下均相等。 15、在机车车辆动力学研究中,把车体、转向架构架(侧架)、轮对等基本部件近似地视为刚性体,只有在研究车辆各部件的结构弹性振动时,才把他们视

第五章 汽车转向系统动力学,

第五章汽车转向系统动力学 问题的提出 汽车转向系统动力学是研究驾驶员给系统以转向指令后汽车在曲线行驶中的运动学和动力学特性。这一特性影响到汽车操纵的方便性和稳定性,所以也是汽车安全性的重要因素之一,因而成为汽车系统动力学中重要研究内容之一。 汽车操纵稳定性是与汽车的车速密不可分的,早期的低速汽车还谈不上稳定性的问题,最早出现稳定性的问题,是在具有较高车速的轿车上或赛车上,目前,随着车速的不断提高,轿车、大客车、载货汽车的设计都离不开汽车操纵稳定性的研究。近年来,有许多学者研究这一问题,并取得很多成果。 操纵性不好的汽车的主要表现: 1.“飘” -有时驾驶员并没有发出转向的指令,而汽车开始自己改编本方向,使人感到汽车漂浮 2.“贼”-有时汽车像受惊的马,忽东忽西,汽车不听驾驶员的指令; 3.“反应迟钝”-驾驶员虽然发出指令。但是汽车还没有转向反映,转向过程反应较慢; 4.“晃”-驾驶员发出了稳定的转型指令,可使汽车左右摇摆,行驶方向难以稳定,当汽车受到路面不平,或者是侧向风扰动时,汽车就会出现左右摇摆; 5.“丧失路感”-正常汽车转弯的程度,会通过转向盘在驾驶员的手上产生相应的感觉,有些汽车操纵性不好的汽车,特别是在汽车车速较高时,或转向急剧时会丧失这种感觉,这会增加驾驶员操纵困难,或影响驾驶员的正确判断 6.“失去控制”-某些汽车的车速超过一个临界值以后,驾驶员已经不能控制器行驶的方向。 汽车的操纵稳定性:在驾驶者不感到过分紧张、疲劳的条件下,汽车能遵循驾驶者通过转向系及转向车轮给定的方向行驶,且当遭遇外界干扰时,汽车能抵抗干扰而保持稳定行驶的能力。 汽车的操纵性:汽车能及时而准确的反映驾驶员主观操作的能力,也就是按照驾驶员的愿望维持或改变原来的行驶路线的能力。 汽车的稳定性:汽车在外力干扰下,仍能保持或很快恢复原来行驶状态和方向,而不致丧失控制、发生侧滑或翻车的能力。 101

车辆系统动力学-复习提纲

1. 简要给出完整约束与非完整约束的概念2-23,24,25, 1)、约束与约束方程 一般的力学系统在运动时都会受到某些几何或运动学特性的限制,这些构成限制条件的具体物体称为约束,用数学方程所表示的约束关系称为约束方程。 2)、完整约束与非完整约束 如果约束方程只是系统位形及时间的解析方程,则这种约束称为完整约束。 完整约束方程的一般形式为: 式中,qi为描述系统位形的广义坐标(i=1,2,…,n);n为广义坐标个数;m为完整约束方程个数;t为时间。 如果约束方程是不可积分的微分方程,这种约束就称为非完整约束。 一阶非完整约束方程的一般形式为:

式中,qi为描述系统位形的广义坐(i = 1, 2, …,n);为广义坐标对时间的一阶与数;n为广义坐标个数;m为系统中非完整约束方程个数;t为时间。 2. 解释滑动率的概念3-7,8 1.滑动率S 车轮滑动率表示车轮相对于纯滚动(或纯滑动)状态的偏离程度,是影响轮胎产生纵向力的一个重要因素。 为了使其总为正值,可将驱动和被驱动两种情况分开考虑。驱动工况时称为滑转率;被驱动(包括制动,常以下标b以示区别)时称为滑移率,二者统称为车轮的滑动率。

参照图3-2,若车轮的滚动半径为rd,轮心前进速度(等于车辆行驶速度)为uw,车轮角速度为ω,则车轮滑动率s定义如下: 车轮的滑动率数值在0~1之间变化。当车轮作纯滚动时,即uw=rd ω,此时s=0;当被驱动轮处于纯滑动状态时,s=1。 3. 轮胎模型中表达的输入量和输出量有哪些?3-22,23 轮胎模型描述了轮胎六分力与车轮运动参数之间的数学关系,即轮胎在特定工作条件下的输入和输出之间的关系,如图3-7所示。 根据车辆动力学研究内容的不同,轮胎模型可分为:

车辆系统动力学仿真大作业(带程序)

Assignment Vehicle system dynamics simulation 学院:机电学院 专业:机械工程及自动化 姓名: 指导教师:

The model we are going to analys: The FBD of the suspension system is shown as follow:

According to the New's second Law, we can get the equation: 2 )()(221211mg z z c z z k z m --+-=???? 221212)()(z k mg z z c z z k z m w +-----=? ??? 0)()()()(222111222111=-++--+-++--+? ? ? ? ? ? ? ?w w w w z L z k z L z k z L z c z L z c z m χχχχ 0)()()()(2222111122221111=-++----++---? ? ? ? ? ? ? ?w w w w z L z L k z L z L k z L z L c z L z L c J χχχχχ d w w w w Q z L z k z L z c z m ,111111111)()(-=------? ? ? ? ?χχ d w w w w Q z L z k z L z c z m ,222222222)()(-=-+--+-? ????χχ When there is no excitation we can get the equation: 2)()(221211mg z z c z z k z m --+-=???? 2 21212)()(z k mg z z c z z k z m w +-----=? ??? Then we substitude the data into the equation, we write a procedure to simulate the system: Date: ???? ?? ??? ??==?==?===MN/m 0.10k m 25.1s/m kN 0.20MN/m 0.1m kg 3020kg 2100kg 3250w 2l c k I m m by w b

车辆系统动力学试卷

1、系统动力学有哪三个研究容? (1)优化:已知输入和设计系统的特性,使得它的输出满足一定的要求,可称为系统的设计,即所谓优化。就是把一定的输入通过选择系统的特性成为最优化的输出。 (2)系统识别:已知输入和输出来研究系统的特性。 (3)环境预测。已知系统的特性和输出来研究输入则称为环境预测。 例如对一振动已知的汽车,测定它在某一路面上行驶时所得的振动响应值(如车身上的振动加速度),则可以判断路面对汽车的输入特性,从而了解到路面的不平特性。 车辆系统动力学研究的容是什么? (1)路面特性分析、环境分析及环境与路面对车辆的作用; (2)车辆系统及其部件的运动学和动力学;车辆各子系统的相互作用; (3)车辆系统最佳控制和最佳使用; (4)车辆-人系统的相互匹配和模型研究、驾驶员模型、人机工程等。 2、车辆建模的目的是什么? (1)描述车辆的动力学特性; (2)预测车辆性能并由此产生一个最佳设计方案; (3)解释现有设计中存在的问题,并找出解决方案。 车辆系统动力学涉及哪些理论基础? (1)汽车构造 (2)汽车理论

(3)汽车动力学 (4)信号与系统 在“时间域”及“频率域”下研究时间函数x(t)及离散序列 x(n)及系统特性的各种描述方式,并研究激励信号通过系统 时所获得的响应。 (5)自动控制理论 (6)系统辨识 (7)随机振动分析 研究随机振动中物理量的描述方法(相关函数、功率谱密度), 讨论受随机激励的振动系统的激励、系统特性、响应三者统 计规律性之间的关系。 (8)多体系统动力学 建立车辆系统动态模型的方法主要有哪几种? 数学模型 (1)各种数学方程式:微分方程式,差分方程,状态方程,传递函数等。 (2)用数字和逻辑符号建立符号模型—方框图。 3、路面不平度功率谱密度的表达式有几种?各有何特点?试举出2 种以上路面随机激励方法,并说明其特点。(10分) 路面功率谱密度的表达形式分为幂函数和有理函数两种 (1)路面不平度的幂函数功率谱密度 ISO/DIS8608和国家标准GB7031-1987《车辆振动输入路面平

车辆系统动力学试题及答案

西南交通大学研究生2009-2010学年第( 2 )学期考试试卷 课程代码 M01206 课程名称 车辆系统动力学 考试时间 120 分钟 阅卷教师签字: 答题时注意:各题注明题号,写在答题纸上(包括填空题) 一. 填空题(每空2分,共40分) 1.Sperling 以 频率与幅值的函数 ,而ISO 以 频率与加速度的函数 评定车辆的平稳性指标。 2.在轮轨间_蠕滑力的_作用下,车辆运行到某一临界速度时会产生失稳的_自激振动_即蛇行运动。 3.车辆运行时,在转向架个别车轮严重减重情况下可能导致车辆 脱轨 ,而车辆一侧全部车轮严重 减重情况下可能导致车辆 倾覆 。 4.在车体的六个自由度中,横向运动是指车体的横移、 侧滚 和 摇头 。 5.在卡尔克线性蠕滑理论中,横向蠕滑力与 横向 蠕滑率和 自旋 蠕滑率呈相关。 6.设具有锥形踏面的轮对的轮重为W ,近似计算轮对重力刚度还需要轮对的 接触角λ 和 名义滚动圆距离之半b 两个参数。 7.转向架轮对与构架之间的 横向定位刚度 和 纵向定位刚度 两个参数对车辆蛇行运动稳定性影 响较大。 8. 纯滚线距圆曲线中心线的距离与车轮 的_曲率_成反比、与曲线的_曲率_成正比。 9.径向转向架克服了一般转向架 抗蛇行运动 和 曲线通过 对转向架参数要求的矛盾。 10.如果两辆同型车以某一相对速度冲击时其最大纵向力为F ,则一辆该型车以相同速度与装有相同缓冲器 的止冲墩冲击时的最大纵向力为_21/2F _,与不装缓冲器的止冲墩冲击时的最大纵向力为_2F_。 院 系 学 号 姓 名 密封装订线 密封装订线 密封装订线

共2页 第1页 5.什么是稳定的极限环? 极限环附近的内部和外部都收敛于该极限环,则称该极限环为稳定的极限环。 6.轨道不平顺有几种?各自对车辆的哪些振动起主要作用? 方向、轨距、高低(垂向)、水平不平顺。方向不平顺引起车辆的侧滚和左右摇摆。轨距不平顺对轮轨磨耗、车辆运行稳定性和安全性有一定影响。高低不平顺引起车辆的垂向振动。水平不平顺则引起车辆的横向滚摆耦合振动。 三.问答题 (每题15分,共30分) 1.已知:轮轨接触点处车轮滚动圆半径r ,踏面曲率半径R w ,轨面曲率半径R t , 法向载荷N ,轮轨材料的弹性模量E 和泊松比o 。试写出Hertz 理论求解接触椭圆 长短半径a 、b 的步骤。P43-P44 根据车轮滚动圆半径、踏面在接触点处的曲率半径、钢轨在接触点处的曲率半径得到A+B 、B-A ,算得cos β,查表得到系数m 、n ,然后分别根据钢轨和车轮的弹性模量E 和泊松比σ,求得接触常数k ,得出轮轨法向力N ,然后带人公式求得a 、b 。 2. 在车辆曲线通过研究中,有方程式 ()W f r y f w O W μψλ212 1 2 222 * 11=??? ?????+???? ?? 二.简答题 (每题5分,共30分) 1.与传统机械动力学相比,轨道车辆动力学有何特点? 2.轮轨接触几何关系的计算有哪两种方法,各有何优缺点? 解析和数值方法。数值方法可以用计算机,算法简单,效率高,但存在一定误差;解析方法是利用轮轨接触几何关系建立解析几何的方式求解,比较准确,但是计算繁琐,方法难于理解。 3.在车辆系统中,“非线性”主要指哪几种关系? 轮轨接触几何非线性、轮轨蠕滑关系非线性、车辆悬挂系统非线性 4.怎样根据特征方程的特征根以判定车辆蛇行运动稳定性?。 根据求出的特征根实部的正负判断车辆蛇行运动的稳定性,当所有的特征根实部均为负时,车辆系统蛇行运动稳定,存在特征根为零或者负时,车辆系统的蛇行运动不稳定。

汽车系统动力学

第一节 历史回顾 《汽车系统动力学》教学大纲 、课程性质与任务 1. 课程性质:本课程是车辆工程专业的专业选修课。 2. 课程任务:本课程要求学生学习和掌握车辆系统的主要行驶性能,如牵引性能、车 辆的动态载荷、转向动 力学等。研究路面不平度激励的振动。 了解该领域世界发展及最新成 果。通过学习本课程,掌握汽车动力学分析的一般的理论和方法, 析、从事该领域研究、开发奠定基础。 二、课程教学基本要求 本课程是研究所有与汽车系统运动有关的学科, 其内容可按车辆运动方向分为纵向、 垂 向和侧向动力学三大部分。要求学生了解车辆动力学建模的基础理论、 轮胎力学及汽车空气 动力学基础之外,重点理解受汽车发动机、传动系统、制动系统影响的驱动动力学和制动动 力学,以及行驶动力学(垂向)和操纵动力学(侧向)内容。运用系统方法及现代控制理论,结 合实例分析,介绍了车辆动力学模型的建立、 计算机仿真、动态性能分析和控制器设计的方 法,同时使学生对常用的车辆动力学分析软件有所了解。 问、课堂讨论等)(30%)。成绩评定采用百分制, 60分为及格。 三、课程教学内容 绪篇概论和基础理论 第一章 车辆动力学概述 1?教学基本要求 让学生了解车辆动力学的历史发展、研究内容和范围、车辆特性和设计方法、术语、 标准和法规、发展趋势。 2. 要求学生掌握的基本概念、理论、技能 法、发展趋势。 3. 教学重点和难点 教学重点是车辆动力学的研究内容和范围、 车辆特性和设计方法。教学难点是车辆特性 和设计方法。 4. 教学内容 为今后汽车系统动力学分 成绩考核形式:末考成绩(闭卷考试) (70%) +平时成绩(平时测验、作业、课堂提 通过本章教学使学生了解车辆动力学的历史发展、 研究内容和范围、车辆特性和设计方

汽车系统动力学概论

汽车系统动力学概论 摘要:汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有汽车在垂向和横向两个方面的动力学内容。本文通过对大量教科书和文献进行了分析,对汽车动力学的研究内容、研究方法和理论基础以及发展趋势进行了阐述。 关键词:系统,汽车,系统动力学 1系统及系统动力学的概念 1.1 系统 系统是一个由相互区别、相互作用的各部分(即单元或要素)有机地连接在一起,为同一目的的完成某种功能的集合体。 由此可知系统具有以下几个特点:具有目的性、具有层次性、具有功能共性、具有整体性。 1.2 系统动力学系统动力学是一门分析研究信息反馈的学科。它是系统科学中的一个分支,是跨越自然科学和社会科学的横向学科。系统动力学基于系统论,吸收控制论、信息论的精髓,是一门认识系统问题和解决问题系统问题交叉、综合性的学科。 反馈系统就是包含反馈环节与其作用的系统。它要受系统本身的历史行为的影响,把历史行为的结果回授给系统本身,以影响未来的行为。如库存订货系统。 2 汽车系统动力学及其研究内容 2.1 汽车系统动力学 汽车系统动力学就是把汽车看做是一个动态系统,对其行为进行研究,讨论数学模型和响应。是研究汽车受的力及其与汽车运动之间的相互关系,找出汽车主要性能的内在规律和联系,提出汽车设计参数选取的原则和依据。 汽车系统动力学研究所有与车辆系统运动有关的学科,包括空气动力学,纵向运动及其子系统的动力学响应,垂向和横向两个方面的动力学内容,即行驶动力学和操作动力学,行驶动力学主要研究由路面的不平激励,通过悬架和轮胎垂向力引起的车身跳动和俯卧以及车轮的运动,操纵动力学研究车辆的操纵性,主要与轮胎侧向力有关,并由此引起车辆侧滑、横摆和侧倾运动。

汽车悬架系统动力学研究剖析

(研究生课程论文) 汽车动力学 论文题目:汽车悬架系统动力学研究指导老师:乔维高 学院班级: 学生姓名: 学号: 2015年1月

汽车悬架系统动力学研究 摘要:汽车悬架类型的选择和悬架参数的差异对汽车的操纵稳定性和行驶平顺性具有重要的影响。主要分析了麦弗逊悬架的结构特点,并通过ADAMS软件建立麦弗逊悬架的3D模型,对其进行仿真分析,得出悬架参数的优化设计方法。关键词:麦弗逊悬架;ADAMS多刚体动力学;仿真分析 The automobile suspension system dynamics research Caisi Vehicle 141 1049721402344 Abstract:Different kinds of suspension systems and of differences in suspension parameters on the vehicle steering stability and riding comfort have important influence. Mainly analyzed the structure characteristics of Macpherson suspension, and by using ADAMS software to establish 3D model of Macpherson suspension, carry on the simulation analysis, the method of optimal design parameters of the suspension. Key words:Macpherson suspension; ADAMS /Car; multi-rigid-body dynamics; simulation and analysis 引言 汽车悬架是汽车车轮与车身之间一切装置的总称。其功用在于:在垂直方向能够衰减振动和起悬挂作用;在侧向可防止车身侧倾和左右车轮载荷转移;在行驶方向上能够保证驱动与制动的实现并保持行驶方向的稳定性。不同的悬架设置会使驾驶者有不同的感受。看似简单的悬架系统综合多种作用力,决定着轿车的稳定性、舒适性和安全性,是现代轿车十分关键的部件之一。悬架系统起着传递车轮和车身之间的力和力矩、引导与控制汽车车轮与车身的相对运动、缓和路面传递给车身的冲击、衰减系统的振动等作用,汽车悬架系统对汽车的操

湖南大学 汽车系统动力学 试卷

诚信应考,考试作弊将带来严重后果! 湖南大学课程考试试卷

7、对于一个线性系统,输入为正弦波时,输出()保持不变 A 幅值 B 相位 C 频率 D 方向 8、对悬架动行程而言,在静平衡条件下,车轮与车身相对位移保持在正负2倍动行程以内的概率为()。 A 68.3% B 95.4% C 99.7% D 52.6% 9、两自由度基本操纵模型的最大问题是忽略了()的影响。 A 空气动力 B 转向系统 C 路面 D 簧载质量的侧倾运动 10、()是电动助力转向系统的基本控制方法。 A 回正控制 B 模糊控制 C 自适应控制 D 最优控制 二、判断题(总共10题,每题2分,共计20分) 1、车辆动力学分析中平衡条件是指稳定状态下车辆的基准条件。() 2、拉格朗日运动学普遍方程建立的基本依据是虚功率原理。() 3、离散化方法是车辆建模中对柔体处理常用方法。() 4、防滑系统工作时对每个车轮进行控制。() 5、半主动悬架中的阻尼系数只在几个离散值之间进行切换。() 6、就车辆乘坐舒适性来说,通常是以噪声、振动来描述。() 7、车辆运动过程中,轮胎主要受到纵向、侧向以及垂向三个方向的力。() 8、一般情况下,质心后移,稳定裕度减少,车辆将趋于过多转向。() 9、多刚体动力学分析方法将车辆各系统看作是由铰链和内力连接起来的刚体集合,在外力作用下产生运动。()

10、建立基本操纵模型的运动方程时,必须考虑车辆的加速度坐标系。 ( ) 三、填空题(总共10题,每题2分,共计20分) 1、汽车操纵动力学包含相互关联的两方面内容即操纵性和( )。 2、采用( )闭环系统是未来汽车系统动力学研究的趋势。 3、关于人体对振动的反应,首先可将振动输入按振动的幅值和频率、作用的( )、作用的时间进行分类。 4、分析汽车的操纵稳定性有两种基本方法:( )和( )。 5、轮胎设计有四大要素,即( )、轮廓(整体形状)、结构和材料。 6、车辆转向时,为获得左右不等的转向角,转向杆系构成的几何形状通常设计成不等边四边形,称为( )。 7、作用于车辆的外力和外力矩有两种,即( )和空气动力。 8、轮胎载荷的变化会引起地面接触印迹面积的变化,并导致( )和制动力的减少。 9、悬架与转向杆系运动关系不协调会引起( )的摆振。 10、轮胎经验模型是基于( )的递归分析上来表现出轮胎和路面间的力学特性的轮胎模型。 四、问答题(总共2题,每题20分,共计40分) 1、简述不足转向参数与车辆稳态转向特性的关系。若车辆系统特征方程为 022=++λλ,计算该系统的无阻尼固有频率、阻尼固有频率、阻尼比,并判断该系统是否稳定?(可画图说明)

汽车高等动力学讲解

侧偏力:汽车在行驶过程中,由于路面的侧向倾斜、侧向风、或者曲线行驶时的离心力等的作用,车轮中心沿Y轴方向将作用有侧向力F y,相应地在地面上产生地面侧向反作用力F Y,F Y即侧偏力。 侧偏现象:当车轮有侧向弹性时,即使F Y没有达到附着极限,车轮行驶方向也将偏离车轮平面cc,这就是轮胎的侧偏现象。 侧偏角:车轮与地面接触印迹的中心线与车轮平面错开一定距离,而且不再与车轮平面平行,车轮印迹中心线跟车轮平面的夹角即为侧偏角。 高宽比:以百分数表示的轮胎断面高H与轮胎断面宽B 之比 H/B×100% 叫高宽比. 附着椭圆:它确定了在一定附着条件下切向力与侧偏力合力的极限值。 转向灵敏度:汽车等速行驶时,在前轮角阶跃输入下进入的稳态响应就是等速圆周行驶。常用输出与输入的比值,如稳态的横摆角速度与前轮转角之比来评价稳态响应,这个比值称为稳态横摆角速度增益,也就是转向灵敏度。(即稳态的横摆角速度与前轮转角之比) 稳定性因数:稳定性因数单位为s2/m2,是表征汽车稳态响应的一个重要参数。 侧倾轴线:车厢相对于地面转动时的瞬时轴线称为车厢侧倾轴线。 侧倾中心:车厢侧倾轴线通过车厢在前,后轴处横断面上的瞬时转动中心,这两个瞬时中心称为侧倾中心。 悬架的侧倾角刚度:悬架的侧倾角刚度是指侧倾时(车轮保持在地面上),单位车厢转角下,悬架系统给车厢总的弹性恢复力偶矩。 转向盘力特性:转向盘力随汽车运动状况而变化的规律称为转向盘力特性。 切向反作用力控制的三种类型:总切向反作用力控制,前后轮间切向力分配比例的控制,内外侧车轮间切向力分配的控制。 侧翻阈值:汽车开始侧翻时所受的侧向加速度称为侧翻阈值。 汽车的平顺性:汽车的平顺性主要是保持汽车在行驶过程中产生的振动和冲击环境对乘员舒适性的影响在一定界限之内,主要根据乘员的主观感觉的舒适性来评价。 1.汽车的操纵稳定性:是指在驾驶者不感到过分紧张、疲劳的情况下,汽车能遵循驾驶者通过转向系统及转向车轮给定的方向行驶,且当遭遇外界干扰时,汽车能抵抗干扰而保持稳定行驶的能力。 2.汽车的操纵稳定性是汽车主动安全性的重要评价指标。 3.时域响应与频域响应表征汽车的操纵稳定性能。 4.转向盘输入有两种形式:角位移输入和力矩输入。 5.外界干扰输入主要指侧向风和路面不平产生的侧向力。 6.操纵稳定性包含的内容:1)转向盘角阶跃输入下的响应;2)横摆角速度频率响应特性;3)转向盘中间位置操纵稳定性;4)转向半径; 5)转向轻便性;6)直线行驶性能;7)典型行驶工况性能;8)极限行驶能力(安全行驶的极限性能) 7.转向半径:评价汽车机动灵活性的物理量。 8.转向轻便性:评价转动转向盘轻便程度的特性。 9.时域响应:路面不平敏感性和侧向风敏感性。 10.汽车是由若干部件组成的一个物理系统。它是具有惯性、弹性、阻尼的等多动力学的特点,所以它是一个多自由度动力学系统。 11.车辆坐标系:x轴平行于地面指向前方(前进速度),y轴指向驾驶员的左侧(俯仰角速度),z轴通过质心指向上方(横摆角速度) 12.汽车时域响应可分为不随时间变化的稳态响应和随时间变化的瞬态响应。 13.汽车转向特性的分为:不足转向、中性转向、过多转向。

车辆系统动力学 作业

车辆系统动力学作业 课程名称:车辆系统动力学 学院名称:汽车学院 专业班级:2013级车辆工程(一)班 学生姓名:宋攀琨 学生学号:2013122030

作业题目: 一、垂直动力学部分 以车辆整车模型为基础,建立车辆1/4模型,并利用模型参数进行: 1)车身位移、加速度传递特性分析; 2)车轮动载荷传递特性分析; 3)悬架动挠度传递特性分析; 4)在典型路面车身加速度的功率谱密度函数计算; 5)在典型路面车轮动载荷的功率谱密度函数计算; 6)在典型路面车辆行驶平顺性分析; 7)在典型路面车辆行驶安全性分析; 8)在典型路面行驶速度对车辆行驶平顺性的影响计算分析; 9)在典型路面行驶速度对车辆行驶安全性的影响计算分析。 模型参数为: m 1 = 25 kg ;k 1 = 170000 N/m ;m 2 = 330 kg ;k 2 = 13000 (N/m);d 2 =1000Ns/m 二、横向动力学部分 以车辆整车模型为基础,建立二自由度轿车模型,并利用二自由度模型分析计算: 1) 汽车的稳态转向特性; 2) 汽车的瞬态转向特性; 3)若驾驶员以最低速沿圆周行驶,转向盘转角0sw δ,随着车速的提高,转向盘转角位sw δ,试由 20sw sw u δδ-曲线和0 sw y sw a δ δ-曲线分析汽车的转向特性。 模型的有关参数如下: 总质量 1818.2m kg = 绕z O 轴转动惯量 23885z I kg m =? 轴距 3.048L m = 质心至前轴距离 1.463a m =

质心至后轴距离 1.585b m = 前轮总侧偏刚度 162618/k N rad =- 后轮总侧偏刚度 2110185/k N rad =- 转向系总传动比 20i =

车辆系统动力学复习题精选.

车辆系统动力学复习题 1.何谓系统动力学?系统动力学研究的任务是什么? 2.车辆系统动力学研究的内容和范围有哪些? 3.车辆系统动力学涉及哪些理论基础? 4.何谓多体系统动力学?多刚体系统动力学与多柔体系统动力学各有何特点?采用质量-弹簧-阻尼振动模型和多体系统模型研究车辆动力学问题各有何特点? 5.简述车辆建模的目。 6.期望的车辆特性是什么?如何来评价? 7.何谓轮胎侧偏角?何谓轮胎侧偏刚度?影响轮胎侧偏的因素有哪些? 8.何谓轮胎模型?根据车辆动力学研究内容的不同,轮胎模型可分为哪几种?整车建模中对轮胎模型需考虑的因素有哪些? 9.简述轮胎噪声产生的机理。 10.车辆空气动力学研究的主要内容有哪些?车辆的空气阻力有哪些?产生的原因是什么?试分析空气动力对车辆性能的影响。汽车空气动力学装置有那些? 11.简述风洞试验的特点? 12.车辆的制动性能主要由哪三个方面评价?试分析汽车制动跑偏的原因。 13.车辆动力传动系统由哪几部分组成?在激励作用下通常会产生何种振动?标出图示车辆简化扭振系统各部分名称?并说明其主要激振源? 14.写出货车动力传动系统动力学方程,并写出刚度阵等。 15.路面输入模型有几种?各有何特点?写出各自的表达式? 16.在整车虚拟仿真中常用的一些典型的特殊路面有哪些?各有何特点?

17.简述最新的舒适性评价标准。 18.车辆的平顺性是如何测量的? 19.车辆典型的共振频率范围通常是多少? 20.车辆行驶动力学模型是如何简化的?试写出1/4、1/2和整车系统垂直振动的微分方程式,并写成矩阵的形式。 21.车辆悬架系统的性能一般用哪3个基本参数进行定量评价?各对车辆行驶性能有何影响? 22.被动悬架存在的问题是什么?半主动悬架和主动悬架的工作原理是什么?写出其系统运动方程。 23.操纵性能的总体目标和期望的车辆操纵特性是什么? 24.基本操纵模型假设和存在最大问题是什么? 25.车辆操纵特性分析一般进行哪三种分析?其内容是什么? 26.何谓中性转向、不足转向和过多转向?各有何特点? 27.利用拉格朗日方程推导平面3自由度和5自由度汽车振动模型的运动方程,并写成矩阵形式。假定车身是一个刚体,车辆在水平面做匀速直线运动,以2个车轮不同激励和激振力F=F0cos2ωt作为系统输入。

相关文档
最新文档