微积分(下)

微积分(下)
微积分(下)

1.设是连续函数,而,则=( A)分值:5

A.

B.

C.

D.

2.设,则=(B )

分值:5

B. 3

C.

D. 2

3.利用极坐标变换后,二重积分=(B )分值:5

A.

B.

C.

D.

4.微分方程的通解(C )

分值:5

A.

B.

C.

D.

5.设积分区域是圆环域:,则二重积分=(C )

A.

B.

C.

D.

6.设函数,则=(B )分值:5

A.

B.

C.

D.

7.若可微,则=(D ) 分值:5

A.

B.

C.

D.

8.是级数收敛的( B) 分值:5

A.

B.

C.

D.

10.设是由方程确定的隐函数,则=(C )

分值:5

A. 1

B.

C.

D. 0

11.设,是可微函数,则下面各式正确的是(A )分值:5

A.

B.

C.

D.

12.正项级数收敛的充要条件为( C) 分值:5

A.

B.

C. 存在,

D.

13.幂级数的收敛区间是(C ) 分值:5

A.

B.

C.

D.

A.

B.

C.

D.

15.已知级数收敛,则=(C )

A. 1

B. 2

C. 0

D.

16.二元函数在点处可导(偏导数存在)与可微的关系是(C )

分值:5

17.二重积分=(C ),其中是由曲线及围成。分值:5

A.

B.

C.

D. 1

18.已知,则关于的幂级数是(D )

A.

B.

C.

D.

19.函数的定义域(B )分值:5

A.

B.

C.

D.

20.若级数发散,则( A)

A.

B.

C.

D.

微积分知识点小结

第一章 函数 一、本章提要 基本概念 函数,定义域,单调性,奇偶性,有界性,周期性,分段函数,反函数,复合函数,基本初等函数,初等函数 第二章 极限与连续 一、本章提要 1.基本概念 函数的极限,左极限,右极限,数列的极限,无穷小量,无穷大量,等价无穷小,在一点连续,连续函数,间断点,第一类间断点(可去间断点,跳跃间断点),第二类间断点. 2.基本公式 (1) 1sin lim 0=→口 口口, (2) e )11(lim 0=+→口口口 (口代表同一变量). 3.基本方法 ⑴ 利用函数的连续性求极限; ⑵ 利用四则运算法则求极限; ⑶ 利用两个重要极限求极限; ⑷ 利用无穷小替换定理求极限; ⑸ 利用分子、分母消去共同的非零公因子求0 0形式的极限; ⑹ 利用分子,分母同除以自变量的最高次幂求 ∞∞形式的极限; ⑺ 利用连续函数的函数符号与极限符号可交换次序的特性求极限; ⑻ 利用“无穷小与有界函数之积仍为无穷小量”求极限. 4.定理 左右极限与极限的关系,单调有界原理,夹逼准则,极限的惟一性,极限的保号性,极限的四则运算法则,极限与无穷小的关系,无穷小的运算性质,无穷小的替换定理,无穷小与无穷大的关系,初等函数的连续性,闭区间上连续函数的性质. 第三章 导数与微分 一、本章提要

瞬时速度,切线,导数,变化率,加速度,高阶导数,线性主部,微分. 2.基本公式 基本导数表,求导法则,微分公式,微分法则,微分近似公式. 3.基本方法 ⑴利用导数定义求导数; ⑵利用导数公式与求导法则求导数; ⑶利用复合函数求导法则求导数; ⑷隐含数微分法; ⑸参数方程微分法; ⑹对数求导法; ⑺利用微分运算法则求微分或导数. 第四章微分学的应用 一、本章提要 1. 基本概念 未定型,极值点,驻点,尖点,可能极值点,极值,最值,曲率,上凹,下凹,拐点,渐近线,水平渐近线,铅直渐近线. 2.基本方法 ⑴用洛必达法则求未定型的极限; ⑵函数单调性的判定; ⑶单调区间的求法; ⑷可能极值点的求法与极大值(或极小值)的求法; ⑸连续函数在闭区间上的最大值及最小值的求法; ⑹求实际问题的最大(或最小)值的方法; ⑺曲线的凹向及拐点的求法; ⑻曲线的渐近线的求法; ⑼一元函数图像的描绘方法. 3. 定理 柯西中值定理,拉格朗日中值定理,罗尔中值定理, 洛必达法则,函数单调性的判定定理,极值的必要条件,极值的第一充分条件,极值的第二充分条件,曲线凹向的判别法则. 第五章不定积分 一、本章提要 1. 基本概念 原函数,不定积分.

微积分期末测试题及复习资料

一 单项选择题(每小题3分,共15分) 1.设lim ()x a f x k →=,那么点x =a 是f (x )的( ). ①连续点 ②可去间断点 ③跳跃间断点 ④以上结论都不对 2.设f (x )在点x =a 处可导,那么0()(2)lim h f a h f a h h →+--=( ). ①3()f a ' ②2()f a ' ③()f a ' ④ 1()3f a ' 3.设函数f (x )的定义域为[-1,1],则复合函数f (sinx )的定义域为( ). ①(-1,1) ②,22ππ??-??? ? ③(0,+∞) ④(-∞,+∞) 4.设2()()lim 1() x a f x f a x a →-=-,那么f (x )在a 处( ). ①导数存在,但()0f a '≠ ②取得极大值 ③取得极小值 ④导数不存在 5.已知0lim ()0x x f x →=及( ),则0 lim ()()0x x f x g x →=. ①g (x )为任意函数时 ②当g (x )为有界函数时 ③仅当0lim ()0x x g x →=时 ④仅当0 lim ()x x g x →存在时 二 填空题(每小题5分,共15分) 1.sin lim sin x x x x x →∞-=+____________. 2.31lim(1)x x x +→∞+=____________. 3.()f x =那么左导数(0)f -'=____________,右导数(0)f +'=____________. 三 计算题(1-4题各5分,5-6题各10分,共40分) 1.111lim()ln 1 x x x →-- 2.t t x e y te ?=?=?,求22d y dx 3.ln(y x =,求dy 和22d y dx . 4.由方程0x y e xy +-=确定隐函数y =f (x ) ,求dy dx . 5.设111 1,11n n n x x x x --==++,求lim n x x →∞.

大学微积分l知识点总结 二

【第五部分】不定积分 1.书本知识(包含一些补充知识) (1)原函数:F ’(x )=f (x ),x ∈I ,则称F (x )是f (x )的一个“原函数”。 (2)若F (x )是f (x )在区间上的一个原函数,则f (x )在区间上的全体函数为F (x )+c (其中c 为常数) (3)基本积分表 c x dx x +?+?=?+???11 1(α≠1,α为常数) (4)零函数的所有原函数都是c (5)C 代表所有的常数函数 (6)运算法则 []??????±?=?±??=??dx x g dx x f dx x g x f dx x f a dx x f a )()()()()()(②① (7)[][]c x F dx x x f +=??)()(')(???复合函数的积分: c b x F dx b x f c b ax F a b ax d b ax f a dx b ax f ++=?+++?=+?+?=?+???)()()(1)()(1)(一般地, (9)连续函数一定有原函数,但是有原函数的函数不一定连续,没有原函数的函数一定不连续。 (10)不定积分的计算方法 ①凑微分法(第一换元法),利用复合函数的求导法则 ②变量代换法(第二换元法),利用一阶微分形式不变性 ③分部积分法: 【解释:一阶微分形式不变性】 数乘运算 加减运线性运 (8

释义:函数 对应:y=f(u) 说明: (11)c x dx a x a x ++??++?22ln 1 22 (12)分段函数的积分 例题说明:{} dx x ??2,1max (13)在做不定积分问题时,若遇到求三角函数奇次方的积分,最好的方法是将其中的一 (16)隐函数求不定积分 例题说明: (17)三角有理函数积分的万能变换公式 (18)某些无理函数的不定积分 ②欧拉变换 (19)其他形式的不定积分 2.补充知识(课外补充) ☆【例谈不定积分的计算方法】☆ 1、不定积分的定义及一般积分方法 2、特殊类型不定积分求解方法汇总 1、不定积分的定义及一般积分方法 (1)定义:若函数f(x)在区间I 上连续,则f(x)在区间I 上存在原函数。其中Φ(x)=F(x)+c 0,(c 0为某个常数),则Φ(x)=F(x)+c 0属于函数族F(x)+c (2)一般积分方法 值得注意的问题:

微积分下册知识点

微积分(下)知识点 第 1 页 共 18 页 微积分下册知识点 第一章 空间解析几何与向量代数 (一) 向量及其线性运算 1、 向量,向量相等,单位向量,零向量,向量平行、共线、 共面; 2、 线性运算:加减法、数乘; 3、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式; 4、 利用坐标做向量的运算:设),,(z y x a a a a = , ),,(z y x b b b b = , 则 ),,(z z y y x x b a b a b a b a ±±±=± , ),,(z y x a a a a λλλλ= ; 5、 向量的模、方向角、投影: 1) 向量的模: 222z y x r ++= ; 2) 两 点 间 的 距 离公式: 212212212)()()(z z y y x x B A -+-+-= 3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,, 4) 方向余弦:r z r y r x ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα 5) 投影:?cos Pr a a j u =,其中?为向量a 与u 的夹角。 (二) 数量积,向量积 1、 数量积:θcos b a b a =? 1)2a a a =? 2)?⊥b a 0=?b a z z y y x x b a b a b a b a ++=? 2、 向量积:b a c ?=

微积分(下)知识点 第 1 页 共 18 页 大小:θsin b a ,方向:c b a ,,符合右手规则 1)0 =?a a 2)b a //?0 =?b a z y x z y x b b b a a a k j i b a =? 运算律:反交换律 b a a b ?-=? (三) 曲面及其方程 1、 曲面方程的概念:0),,(:=z y x f S 2、 旋转曲面: yoz 面上曲线0),(:=z y f C , 绕y 轴旋转一周: 0),(2 2=+±z x y f 绕 z 轴旋转一周: 0),(22=+±z y x f 3、 柱面: ),(=y x F 表示母线平行于 z 轴,准线为 ?????==0 ),(z y x F 的柱面 4、 二次曲面(不考) 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:122 222 2=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 4) 双叶双曲面:122 22 2 2 =--c z b y a x

高等数学下册试题(题库)及参考答案

高等数学下册试题库 一、选择题(每题4分,共20分) 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是:( A ) A )5 B ) 3 C ) 6 D )9 解 ={1-1,2-0,1-2}={0,2,-1}, |AB |= 5)1(20222=-++. 2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( B ) A ){-1,1,5}. B ) {-1,-1,5}. C ) {1,-1,5}. D ){-1,-1,6}. 解 (1) c =3a -2b =3{1,-1,3}-2{2,-1,2}={3-4,-3+2,9-4}={-1,-1,5}. 3. 设a ={1,-1,3}, b ={2, 1, -2},求用标准基i , j , k 表示向量c=a-b ; ( A ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k 解c ={-1,-2,5}=-i -2j +5k . 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:(C ) A )2π B )4π C )3 π D )π 解 由公式(6-21)有 2 1112)1(211)1(1221cos 2222222 121= ++?-++?-+?+?= ??= n n n n α, 因此,所求夹角 32 1 arccos π α= =. 5. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:(D ) A )2x+3y=5=0 B )x-y+1=0 C )x+y+1=0 D )01=-+y x . 解 由于平面平行于z 轴,因此可设这平面的方程为 0=++D By Ax 因为平面过1M 、2M 两点,所以有 ?? ?=+-=+020D B A D A 解得D B D A -=-=,,以此代入所设方程并约去)0(≠D D ,便得到所求的 平面方程 01=-+y x 6.微分方程()043 ='-'+''y y y x y xy 的阶数是( D )。 A .3 B .4 C .5 D . 2

微积分试题及答案

微积分试题及答案

5、ln 2111x y y x +-=求曲线 ,在点(, )的法线方程是__________ 三、判断题(每题2分) 1、2 21x y x =+函数是有界函数 ( ) 2、 有界函数是收敛数列的充分不必要条件 ( ) 3、lim ββαα=∞若,就说是比低阶的无穷小( )4可导函数的极值点未必是它的驻点 ( ) 5、曲线上凹弧与凸弧的分界点称为拐点 ( ) 四、计算题(每题6分)1、1sin x y x =求函数 的导数 2、 21()arctan ln(12f x x x x dy =-+已知),求 3、2326x xy y y x y -+="已知,确定是的函数,求 4、20tan sin lim sin x x x x x →-求 5、31)x x +计算( 6、21 0lim(cos )x x x + →计算 五、应用题 1、设某企业在生产一种商品x 件时的总收益为2 )100R x x x =-(,总成本函数为2 ()20050C x x x =++,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大?(8分) 2、描绘函数21 y x x =+的图形(12分) 六、证明题(每题6分) 1、用极限的定义证明:设01lim (),lim ()x x f x A f A x + →+∞→==则 2、证明方程10,1x xe =在区间()内有且仅有一个实数 一、 选择题

1、C 2、C 3、A 4、B 5、D 6、B 二、填空题 1、0x = 2、6,7a b ==- 3、18 4、3 5、20x y +-= 三、判断题 1、√ 2、× 3、√ 4、× 5、× 四、计算题 1、 1sin 1sin 1sin ln 1sin ln 22))1111cos ()ln sin 1111(cos ln sin )x x x x x x y x e e x x x x x x x x x x x '='='??=-+??? ?=-+(( 2、 22()112(arctan )121arctan dy f x dx x x x dx x x xdx ='=+-++= 3、 解: 2222)2)22230 2323(23)(23(22)(26) (23x y xy y y x y y x y y x y x y yy y x y --'+'=-∴'=--'----'∴''=-

微积分下册主要知识点

微积分下册主要知识点

4.1不定积分 *基本积分表 *基本积分法:利用基本积分表。 4.2换元积分法 一、第一换元积分法(凑微分法) C x F C u F du u g dx x x g +=+=='??)]([)()()()]([???. 二、常用凑微分公式 三、第二换元法 x u x u x u x u x u x u a u e u x u x u b ax u x d x f dx x x f x d x f dx x x f x d x f xdx x f x d x f xdx x f x d x f xdx x f x d x f xdx x f da a f a dx a a f de e f dx e e f x d x f dx x x f x d x f dx x x f a b ax d b ax f a dx b ax f x x x x x x x x x x arcsin arctan cot tan cos sin ln ) (arcsin )(arcsin 11 )(arcsin .11) (arctan )(arctan 11 )(arctan .10cot )(cot csc )(cot .9tan )(tan sec )(tan .8cos )(cos sin )(cos .7sin )(sin cos )(sin .6)(ln 1)(.5)()(..4) (ln )(ln 1 )(ln .3) 0()()(1 )(.2)0()()(1 )(.12 2 221==========+=-=-=+-==-=?=?=?=?=?≠=≠++= +??????????????????????-μμμμμμμ 法 分 积元换 一第换元公式积分类型

(微积分II)课外练习题 期末考试题库

《微积分Ⅱ》课外练习题 一、选择: 1. 函数在闭区间上连续是在上可积的. ( ) A.必要而不充分条件 B.充分而不必要条件 C.充要条件 D.无关条件 2. 二元函数定义域是. ( ) B. D. 比较大小:. ( ) B. C. D.不确定 4.微分方程的阶数是. ( ) A.5 B.3 C.2 D.1 5.下列广义积分发散的是. ( ) A. B. C. D. 6.是级数收敛的条件. ( ) A.必要非充分 B.充分非必要 C.充分必要 D.无关7.如果点为的极值点,且在点处的两个一阶偏导数存在,则点必为的. ( ) 最大值点 B.驻点 C.最小值点 D.以上都不对 微分方程是微分方程. ( ) A.一阶线性非齐次 B. 一阶齐次 C. 可分离变量的 D. 一阶线性齐次 9 .设是第一象限内的一个有界闭区域,而且。记,,,则的大小顺序是 . ( ) C. D. 10. 函数的连续区域是. ( ) B. D.

1. . ( ) B. C. D. 12.下列广义收敛的是. ( ) A. B. C. D. .下列方程中,不是微分方程的是. ( ) A. B. C. D. .微分方程的阶数是. ( ) A.5 B.3 C.2 D.1 .二元函数的定义域是. ( ) A. B. C. D. .设,则 ( ) A. B. C. D. .= 其中积分区域D为区域:. ( ) A. B. C. D. 18.下列等式正确的是. ( ) A.B. C.D. 19.二元函数的定义域是. ( ) A. B. C. D. 20.曲线在上连续,则曲线与以及轴围成的图形的面积是.( ) A.B.C.D.|| .. ( ) A. B. C. D. 22.= 其中积分区域D为区域:. ( ) A. B. C. D.

微积分上重要知识点总结

1、常用无穷小量替换 2、关于邻域:邻域的定义、表示(区间表示、数轴表示、简单表示);左右邻域、空心邻域、有 界集。 3、初等函数:正割函数sec就是余弦函数cos的倒数;余割函数就是正弦函数的倒数;反三角 函数:定义域、值域 4、收敛与发散、常数A为数列的极限的定义、函数极限的定义及表示方法、函数极限的几 何意义、左右极限、极限为A的充要条件、极限的证明。 5、无穷小量与无穷大量:无穷小量的定义、运算性质、定理(无穷小量与极限的替换)、比较、 高阶无穷小与同阶无穷小的表示、等价无穷小、无穷大量于无穷小量的关系。 6、极限的性质:局部有界性、唯一性、局部保号性、不等式性质(保序性)。 7、极限的四则运算法则。 8、夹逼定理(适当放缩)、单调有界定理(单调有界数列必有极限)。 9、两个重要极限及其变形 10、等价无穷小量替换定理 11、函数的连续性:定义(增量定义法、极限定义法)、左右连续 12、函数的间断点:第一类间断点与第二类间断点,左、右极限都存在的就是第一类间断 点,第一类间断点有跳跃间断点与可去间断点。左右极限至少有一个不存在的间断点就是第二类间断点。 13、连续函数的四则运算 14、反函数、复合函数、初等函数的连续性 15、闭区间上连续函数的性质:最值定理、有界性定理、零值定理、介值定理。 16、导数的定义、左右导数、单侧导数、左右导数的表示、可导则连续。 17、求导法则与求导公式:函数线性组合的求导法则、函数积与商的求导法则、反函数 的求导法则、复合函数求导法则、对数求导法、基本导数公式 18、隐函数的导数。 19、高阶导数的求法及表示。 20、微分的定义及几何意义、可微的充要条件就是可导。 21、A微分的基本公式与运算法则dy=f’(x0)Δx、

大一上微积分知识点重点(供参考)

大一(上) 微积分 知识点 第一章 函数 一、A ?B=?,则A 、B 是分离的。 二、设有集合A 、B ,属于A 而不属于B 的所有元素构成的集合,称为A 与B 的差。 A-B={x|x ∈A 且x ?B}(属于前者,不属于后者) 三、集合运算律:①交换律、结合律、分配律与数的这三定律一致; ②摩根律:交的补等于补的并。 四、笛卡尔乘积:设有集合A 和B ,对?x ∈A,?y ∈B ,所有二元有序数组(x,,y )构成的集合。 五、相同函数的要求:①定义域相同②对应法则相同 六、求反函数:反解互换 七、关于函数的奇偶性,要注意: 1、函数的奇偶性是就函数的定义域关于原点对称时而言的,若函数的定义域关于原点不对称,则函数无奇偶性可言,那么函数既不是奇函数也不是偶函数; 2、判断函数的奇偶性一般是用函数奇偶性的定义:若对所有的)(f D x ∈,)()(x f x f =-成立,则)(x f 为偶函数;若对所有的)(f D x ∈,)()(x f x f -=-成立,则)(x f 为奇函数;若)()(x f x f =-或)()(x f x f -=-不能对所有的)(f D x ∈成立,则)(x f 既不是奇函数也不是偶函数; 3、奇偶函数的运算性质:两偶函数之和是偶函数;两奇函数之和是奇函数;一奇一偶函数之和是非奇非偶函数(两函数均不恒等于零);两奇(或两偶)函数之积是偶函数;一奇一偶函数之积是奇函数。 第二章 极限与连续 一、一个数列有极限,就称这个数列是收敛的,否则就称它是发散的。 二、极限存在定理:左、右极限都存在,且相等。 三、无穷小量的几个性质: 1、limf(x)=0,则 2、若limf(x)=)(lim x g =0,则0)()(lim =+x g x f 3、若limf(x)=)(lim x g =0,则lim )(x f ·)(x g 0= 4、若g(x)有界(|g(x)|<M ),且limf(x)=0,则limf(x)·g(x )=0 四、无穷小量与无穷大量的关系: ①若 y 是无穷大量,则y 1是无穷小量; ②若y (y ≠0)是无穷小量,则y 1是无穷大量。

微积分(下册)主要知识点汇总

4.1不定积分 *基本积分表 *基本积分法:利用基本积分表。 4.2换元积分法 一、第一换元积分法(凑微分法) C x F C u F du u g dx x x g +=+=='??)]([)()()()]([???. 二、常用凑微分公式 三、第二换元法 C x F C t F dt t t f dx x f +=+='=??)]([)()()]([)(ψ??, 注: 以上几例所使用的均为三角代换, 三角代换的目的是化掉根式, 其一般规律如下: 当被积函数中含有 a) ,22x a - 可令 ;sin t a x = b) ,22a x + 可令 ;tan t a x = c) ,22a x - 可令 .sec t a x = x u x u x u x u x u x u a u e u x u x u b ax u x d x f dx x x f x d x f dx x x f x d x f xdx x f x d x f xdx x f x d x f xdx x f x d x f xdx x f da a f a dx a a f de e f dx e e f x d x f dx x x f x d x f dx x x f a b ax d b ax f a dx b ax f x x x x x x x x x x arcsin arctan cot tan cos sin ln ) (arcsin )(arcsin 11 )(arcsin .11)(arctan )(arctan 11 ) (arctan .10cot )(cot csc )(cot .9tan )(tan sec )(tan .8cos )(cos sin )(cos .7sin )(sin cos )(sin .6)(ln 1)(.5)()(..4) (ln )(ln 1 )(ln .3) 0()()(1 )(.2) 0()()(1 )(.12 2221==========+=-=-=+-==-=?=?=?=?=?≠=≠++=+??????????????????????-μμμμμμμ 法 分 积元换 一第换元公式积分类型

清华大学微积分试题库完整

(3343).微分方程0cos tan =-+'x x y y 的通解为 x C x y cos )(+=。 (4455).过点)0,2 1(且满足关系式11arcsin 2 =-+ 'x y x y 的曲线方程为 21arcsin - =x x y 。 (4507).微分方程03='+''y y x 的通解为 2 2 1x C C y + =。 (4508).设)(),(),(321x y x y x y 是线性微分方程)()()(x f y x b y x a y =+'+''的三个特解,且 C x y x y x y x y ≠--) ()() ()(1312,则该微分方程的通解为 )())()((())()((1132121x y x y x y C x y x y C y +-+-=。 (3081).设x e x y x y -++=+=22213,3是某二阶线性非齐次微分方程的两个特解,且相 应齐次方程的一个解为x y =3,则该微分方程的通解为x e C x C x y -+++=212 3。 (4725).设出微分方程x e xe x y y y x x 2cos 32++=-'-''-的一个特解形式 )2sin 2cos ()(*x F x E e e D Cx x B Ax y x x +++++=-。 (4476).微分方程x e y y y =+'-''22的通解为 )sin cos 1(21x C x C e y x ++=。 (4474).微分方程x e y y 24=-''的通解为 x x e x C e C y 222141??? ? ? ++=-。 (4477).函数x C x C y 2s i n 2c o s 21+=满足的二阶线性常系数齐次微分方程为04=+''y y 。 (4532).若连续函数)(x f 满足关系式 2ln )2 ()(20 +=? x dt t f x f ,则=)(x f 2ln 2x e 。 (6808).设曲线积分 ?--L x ydy x f ydx e x f cos )(sin ])([与路径无关,其中)(x f 具有一阶 连续导数,且0)0(=f ,则)(x f 等于[ ] (A) )(2 1x x e e --。 (B) )(21 x x e e --。

微积分(下册)主要知识点汇总

一、第一换元积分法(凑微分法) C x F C u F du u g dx x x g +=+=='??)]([)()()()]([???. 二、常用凑微分公式 三、第二换元法 C x F C t F dt t t f dx x f +=+='=??)]([)()()]([)(ψ??, 注: 以上几例所使用的均为三角代换, 三角代换的目的是化掉根式, 其一般规律如下: 当被积函数中含有 a) ,22x a - 可令 ;sin t a x = b) ,22a x + 可令 ;tan t a x = c) ,22a x - 可令 .sec t a x = 当有理分式函数中分母的阶较高时, 常采用倒代换t x 1 =. 四、积分表续 4.3分部积分法 x u x u x u x u x u x u a u e u x u x u b ax u x d x f dx x x f x d x f dx x x f x d x f xdx x f x d x f xdx x f x d x f xdx x f x d x f xdx x f da a f a dx a a f de e f dx e e f x d x f dx x x f x d x f dx x x f a b ax d b ax f a dx b ax f x x x x x x x x x x arcsin arctan cot tan cos sin ln ) (arcsin )(arcsin 11 ) (arcsin .11) (arctan )(arctan 11)(arctan .10cot )(cot csc )(cot .9tan )(tan sec )(tan .8cos )(cos sin )(cos .7sin )(sin cos )(sin .6)(ln 1)(.5)()(..4)(ln )(ln 1 )(ln .3)0()()(1)(.2) 0()()(1 )(.1法 分 积元换一第换元公式 积分类型2 2 2 2 1==========+=-=-= +-==-=?=?=?=?=?≠=≠++= +?????? ????????????????-μμ μμμμμ

微积分下册主要知识点

第一换元积分法(凑微分法) g[ (X)]「(x)dx = g(u)du = F(U) C = FL (x)] C J f (x)dx= J f[毋(t)]"(t)dt = F(t)+C = F[寧(X)PC , 注:以上几例所使用的均为三角代换,三角代换的目的是化掉根式,其一般规律如下当被积函数中含有 a).a2-x2,可令X =as int; b)x2a2,可令x =ata nt; C).X22 -a ,可令x =asect. 当有理分式函数中分母的阶较高时,常采用倒代换X=1 . t 四、积分表续 4.3分部积分法

UdV=UV- VdU (或微分)的逆运算.一般地,下列类型的被 n 都是正整数). n . X SInmX n X cosmx nx ? e SIn mx nx e cosmx 分部积分公式: UVdX=UV- U VdX (3.2) n mx X e n X arcsInmX X n (In x) X n arccosmx X n arcta nmx 等. 5.1定积分的概念 5.2定积分的性质 两点补充规定: 性质 性质 性质 性质 性质 推论 推论 b ⑻当 a=b 时, f(x)dx=0; (b)当 a b 时, f(x)dx - - f (x)dx . b [f (x)二g(x)]dx f (X )dx g (X )dx. a a a b b kf (x)dx =k f (x)dx, (k 为常数). a IJ a b Cb f (x)dx f(x)dx 亠 I f (x)dx . a ?a ?c 若在区间 若在区间 b dx 二b -a. a [a,b]上有 f(x)_g(x),则 f(χ)dx g(x)dx, (a :::b). ■a *a b [a,b]上 f(x)_0,贝 U f(x)dx_O, (a ::b). a b I L f(X)dx 兰『I f (X)IdX (a cb). a L - 性质6 (估值定理)设M 及m 分别是函数f(x)在区间[a,b ]上的最大值及最小值,则 b m(b —a) _ f (x)dx _ M (b —a). a 性质7 (定积分中值定理)如果函数f (x)在闭区间[a,b ]上连续,则在[a,b ]上至少存在 个点,使 b f(x)dx = f( )(b-a), (a _ -b). a 5.3微积分的基本公式 一、引例 X 二、积分上限的函数及其导数 ::?:J (X^ f(t)dt L a 定理2若函数f(x)在区间[a,b ]上连续,则函数 (3.1) 分部积分法实质上就是求两函数乘积的导数 积函数常考虑应用分部积分法 (其中m,

微积分考试题库(附答案)

85 考试试卷(一) 一、填空 1.设c b a ,,为单位向量,且满足0=++c b a ,则a c c b b a ?+?+?= 2.x x e 10 lim +→= ,x x e 10 lim -→= ,x x e 1 lim →= 3.设2 11)(x x F -= ',且当1=x 时,π2 3)1(=F ,则=)(x F 4.设= )(x f ? dt t x 2sin 0 ,则)(x f '= 5.???>+≤+=0 ,0 ,1)(x b ax x e x f x 在x =0处可导,则=a ,=b 二、选择 1.曲线???==-0 1 22z y x 绕x 轴旋转一周所得曲面方程为( )。 (A )12222=+-z y x ; (B )122222=--z y x ; (C )12222=--z y x ; (D )122222=+-z y x 2.2 )1 1(lim x x x x -∞→-+=( ) 。 (A )1 (B )2 1 e (C )0 (D )1-e 3.设函数)(x f 具有连续的导数,则=+'? dx x f x f x )]()([( ) (A )c x xf +)(; (B )c x f x +')(; (C )c x f x +'+)(; (D )c x f x ++)( 4.设)(x f 在],[b a 上连续,则在],[b a 上至少有一点ξ,使得( ) (A )0)(='ξf (B )a b a f b f f --= ') ()()(ξ

86 (C )0)(=ξf (D )a b dx x f a b f -=?)()(ξ 5.设函数x x a y 3sin 3 1sin +=在x = 3 π 处取得极值,则=a ( ) (A )0 (B )1 (C )2 (D )3 三、计算题 1. 求与两条直线?? ? ??+=+==2 11 t z t y x 及112211-= +=+z y x 都平行且过点(3,-2,1)的平面方程。 2.求下列极限 (1)12cos 1lim 21 +-+→x x x x π; (2)1 arctan lim 30--→x x e x x 3.计算下列积分 (1)?dx x sin ; (2) ? +dx x sin 21 (3)?+dx x x e ln 11 2; (4)?--+2/12/111dx x x 4.求下列导数或微分 (1) 设3 2 ) 1)(21()2(x x x y +--=,求dy 。 (2)? ??+=+-=2 3)1ln(t t y t t x ,求22dx y d 。 (3)x x x y sin )1( +=,求dy 。 (4)设a y x =+,求隐函数)(x y y =的二阶导数22dx y d 。 四、设)1,0()(],1,0[)(D x f C x f ∈∈,且1)2 1(,0)1()0(===f f f ,证明: (1)存在)1,2 1(∈η,使ηη=)(f (2) 对任意实数λ,必存在),0(ηξ∈,使1])([)(=--'ξξλξf f

微积分知识点归纳

知识点归纳 1. 求极限 2.1函数极限的性质P35 唯一性、局部有界性、保号性 P34 A x f x x =→)(lim 0 的充分必要条件是 :A x f x f x f x f x x x x == +==-+-→→)()0()()0(lim lim 0 000 2.2 利用无穷小的性质P37: 定理1有限个无穷小的代数和仍是无穷小。 0)sin 2(30 lim =+→x x x 定理2有界函数与无穷小的乘积是无穷小。 0)1 sin (20 lim =→x x x 定理3无穷大的倒数是无穷小。反之,无穷小的倒数是无穷大。 例如:lim ∞→x 12132335-++-x x x x ∞= , lim ∞→x 131 23523+--+x x x x 0= 2.3利用极限运算法则P41 2.4利用复合函数的极限运算法则P45 2.4利用极限存在准则与两个重要极限P47 夹逼准则与单调有界准则,

lim 0→x x x tan 1=,lim 0→x x x arctan 1=,lim 0→x x x arcsin 1=, lim )(∞→x ?)())(11(x x ??+e =,lim 0 )(→x ?) (1 ))(1(x x ??+e = 2.6利用等价无穷小P55 当0→x 时, x x ~sin ,x x ~tan , x x ~arcsin ,x x ~arctan ,x x ~)1ln(+, x e x ~,221 ~cos 1x x -,x x αα++1~)1(,≠α0 为常数 2.7利用连续函数的算术运算性质及初等函数的连续性P64 如何求幂指函数)()(x v x u 的极限?P66 )(ln )()()(x u x v x v e x u =,)(ln )()(lim )(lim x u x v x v a x a x e x u →=→ 2.8洛必达法则P120 lim a x →)() (x g x f )() (lim x g x f a x ''=→ 基本未定式:00,∞∞ , 其它未定式 ∞?0,∞-∞,00,∞1,0∞(后三个皆为幂指函数) 2. 求导数的方法 2.1导数的定义P77: lim 00|)(→?==='='x x x dx dy x f y x x f x x f x y x ?-?+ =??→?) ()(000lim h x f h x f h ) ()(000lim -+=→

大学全册高等数学知识点(全)

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

(完整)高等数学考试题库(附答案)

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 2.函数() 00x f x a x ≠=?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4 y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 8. x x dx e e -+?的结果是( ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ ( D )ln()x x e e C -++ 9.下列定积分为零的是( ). (A )4 24arctan 1x dx x π π-+? (B )44 arcsin x x dx ππ-? (C )112x x e e dx --+? (D )()121sin x x x dx -+? 10.设() f x 为连续函数,则()1 2f x dx '?等于( ). (A )()()20f f - (B ) ()()11102f f -????(C )()()1 202 f f -????(D )()()10f f - 二.填空题(每题4分,共20分) 1.设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = . 2.已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '=. 3.21 x y x =-的垂直渐近线有条. 4. ()21ln dx x x = +?. 5. ()4 22 sin cos x x x dx π π - += ?.

(完整版)高等数学(下)知识点总结

高等数学(下)知识点 主要公式总结 第八章 空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111C B A n =ρ,),,(2222C B A n =ρ , 22 22 22 21 21 2 1 2 12121cos C B A C B A C C B B A A ++?++++= θ ?∏⊥∏21 0212121=++C C B B A A ;?∏∏21// 2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: 2 2 2 000C B A D Cz By Ax d +++++= (三) 空间直线及其方程

相关文档
最新文档