无机粒子改性EVA的粘接和流变性能研究

无机粒子改性EVA的粘接和流变性能研究
无机粒子改性EVA的粘接和流变性能研究

聚乙烯的改性分析

聚乙烯的改性分析

聚乙烯的改性 聚乙烯虽然具有优良的电性能、机械性能和加工性能,但是它也有一些缺点,如软化点低,强度不高,耐大气老化性差,易应力开裂,不易染色及印刷等。为了进一步拓宽聚乙烯的应用领域,克腿这些缺点,可以采用聚乙烯改性来达到。 聚乙烯的改牲主要分为化学改性和物理改性。化学改性又分为接枝共聚改性、嵌段共聚改性、化学及辐射交联改性等;物理改性分为共混改性、填充改性(包括增强改性等)。 聚乙烯的化学交联主要是在聚乙烯树脂中加人有机化合物(常用过氧化二异丙苯)作为交联剂,然后在压力和175~200℃的温度下交联。 接枝聚合是最常用的改性聚合方法。所谓接校共聚反应是在聚乙烯的主链上将作为支链的不同种高分子结合上去的一种反应。当然也有采用过氧化物、放射辐照或其他有关方法进行反应。接枝方式的共聚合反应可以获得良好的混合状态,其分散界面是以化学方式结合在一起,具有良好的机械性能。同时又因为聚乙烯本身是无极性材料,和其他材料亲和性不好,如将具有极性的单体以接枝共聚合反应结合至聚乙烯分子

1.交联聚乙烯 交联聚乙烯分为有机过氧化物交联聚乙烯、有机硅交联和辐照交联聚乙烯。 (1)有机过氧化物交联聚乙烯 结构式: 制法有机过氧化物交联聚乙烯是聚乙烯以有机过氧化物作为交联剂,在热的作用下分解而生成高度活泼的游离基。这些游离基使聚合物碳链上生成活性点,并产生碳-碳交联,形成交联聚乙烯。所用的有机过氧化物有过氧化二异丙苯、过氧化二叔丁基和2,5-二叔丁基-2,5-二甲基过氧化己烷等。根据被交联的聚乙烯品种和交联工艺设备的不同而选用不同的过氧化物。通常交联低密度聚乙烯时,采用在132℃时能起反应的过氧化二异丙苯;在交联高度填充的低密度聚乙烯和高密度聚乙烯时,可采用能在144℃下加工的2,5-二叔丁基-2,5-二甲基过氧化己烷作交联剂。将聚乙烯与合适的有机过氧化物、炭黑及其他无机填料等添加剂混合在一起,经混炼造粒后,用适宜的成型工艺将它加工成制品。然后再将制品经过一段时间的加热处

改性淀粉的研究及应用

改性淀粉的研究及应用 刘兴孝 (西北民族大学化工学院,兰州,730124) 摘要本文主要总结了改性淀粉的特点,阐述了改性淀粉的研究及应用,展望了改性淀粉的发展前景。 关键词改性淀粉;研究应用;发展前景 the characteristics and adhibitions of modified starch Xingxiao Liu (Chemical Engineering Institute , Northwest University For Nationalities, Lanzhou,730124) Abstract This paper summarizes the characteristics of modified starch, elaborates modified starch’s research and it’s prospects. Keywords modified starch; research and application; prospects 前言 淀粉是天然高分子化合物,多糖类化合物,也是目前广泛使用的一类可降解的不会对环境造成污染的可再生的物质。天然淀粉经过适当化学处理,引入某些化学基团使分子结构及理化性质发生变化,生成淀粉衍生物。未改性的淀粉结构通常有两种:直链淀粉和支链淀粉,是聚合的多糖类物质。通常因为水溶性差,故往往是采用改性淀粉,即水溶性淀粉。可溶性淀粉是经不同方法处理得到的一类改性淀粉衍生物,不溶于冷水、乙醇和乙醚,溶于或分散于沸水中,形成胶体溶液或乳状液体。改性淀粉以天然淀粉为原料经过特定的化学方法、物理方法、酶处理法。改良其原有性能的淀粉, 被广泛应用于食品、医药、皮革、铸造、造纸、纺织、水处理等行业。 改性淀粉的特点 变性淀粉的品种、规格达两千多种,变性淀粉的分类一般是根据处理方式来进行。加工精白淀粉,必须选用淀粉含量高的白薯品种。经加工后的淀粉虽选用了天然原料,但经人为加工,改性淀粉也就不可能算是天然的了。食用类的专用变性淀粉是不会对身体有副作用的。

EVA共混改性HDPE

乙烯-醋酸乙烯共聚物(EVA) 共混改性高密度聚乙烯(HDPE) 一、实验目的 通过通过本实验,使学生初步了解和掌握高密度聚乙烯和乙烯-醋酸乙烯共聚物的共混性能及聚合物制备的方式方法;了解标准件的制备方法;了解并简单掌握聚合物材料的表征方法和测试手段,为毕业论文实验打下良好的基础。 聚乙烯(HDPE)是重要的通用塑料之一,产量居各种塑料之首。聚乙烯品种有HDPE、LDPE、LLDPE、VLDPE等,这些品种由于在结构上的差异,使性能不同。PE最通常的生产方法是通过淤浆或气相加工法,也有少数用溶液相加工生产。所有这些加工过程都是由乙烯单体、a-烯烃单体、催化剂体系(可能是不止一种化合物)和各种类型的烃类稀释剂参与的放热反应。高密度聚乙烯(HDPE)是一种结晶度高、非极性的热塑性树脂,高密度聚乙烯是种白色粉末颗粒状产品,无毒、无味,具有良好的耐热性和耐寒性,化学稳定性好,还具有较高的刚性和韧性,机械强度好,介电性能,耐环境应力开裂性亦较好。硬度、拉伸强度和蠕变性优于低密度聚乙烯;耐磨性、电绝缘性、韧性及耐寒性均较好,但与低密度绝缘性比较略差些。 乙烯-醋酸乙烯酯共混物(EVA),为具有甜的醚味的无色易燃液体,可用于有机合成,主要用于合成维尼纶,也用于粘结剂和涂料工业等的化学试剂;具有良好的透明性和弹性,在鞋材上可以发泡成型做鞋底,也可用于鞋材化工油墨和胶水,也可用于医药用品。

乙烯-醋酸乙烯酯共聚物是由美国人H.F.马克在1928年首次用低压法获得的,英国卜内门化学工业公司曾于1938年发表了高压聚合法制造的专利,但直到60年代初才从美国开始有工业产品。工业生产方法因醋酸乙烯酯含量而异。含量在 5%~40%者,一般用类似于低密度聚乙烯所用的高压本体聚合法生产,所用压力也在100~200MPa 范围内;含量在40%~80%者采用溶液聚合法,压力10~40MPa,溶剂可用叔丁醇;含量在60%~95%者可用乳液聚合法,压力0.1~20MPa。 EVA树脂是乙烯-醋酸乙烯共聚物,一般醋酸乙烯(VA)含量在 5%~40%。与聚乙烯相比,EVA由于在分子链中引入了醋酸乙烯单体,从而降低了高结晶度,提高了柔韧性、抗冲击性、填料相溶性和热密封性能,被广泛应用于发泡鞋料、功能性棚膜、包装膜、热熔胶、电线电缆及玩具等领域。一般来说,EVA树脂的性能主要取决于分子链上醋酸乙烯的含量。2001年我国EVA树脂的市场消费量约为290 kt。随着我国制鞋工业的发展以及功能棚膜用量的增加,我国对EVA树脂的需求量还将逐年增加。 (1) 发泡鞋材 鞋材是我国EVA树脂最主要的应用领域。在鞋材使用的EVA树脂

医用硅橡胶材料改性研究_高仁伟

文章编号:1671-7104(2015)02-0122-03 高仁伟 上海千山医疗科技有限公司,上海市,200949 该文主要从纳米材料填充改性、等离子体表面改性、表面接枝、硅橡胶与生物活性物质混合改性及仿生涂层法改性硅橡 胶等硅橡胶的亲水性改性方面进行了综述,并对每种改性方法进行了分析,最后对医用硅橡胶材料改性研究的发展进行了展望。 硅橡胶;生物相容性;改性R318.6 A doi:10.3969/j.issn.1671-7104.2015.02.012GAO Renwei Shanghai Chinasun Medical Technology Co. Ltd., Shanghai, 200949 This paper reviews and analyzes the modi ?cations of silicone rubber, containing nanometer material ?lling, plasma surface modi ?cation, surface grafting, mixture with bioactive substrates and bionic coating. At last, the author shows the prospect for the future development of silicone rubber modi ?cation. silicone rubber, biocompatibility, modi ?cation 医用硅橡胶材料改性研究 【作 者】【摘 要】【关 键 词】【中图分类号】【文献标志码】 【 Writer 】【 Abstract 】【Key words 】Research for Modification of Medical Silicone Rubber Material 作者简介:高仁伟,E-mail: sungrw@https://www.360docs.net/doc/b51190344.html, 硅橡胶是有机聚硅氧烷的一族,由硅、氧及有机根组成的单体经聚合而成,在医学领域的应用开始于20世纪中期。硅橡胶具有极佳的理化稳定性和生理惰性,可长期处于体内环境,且不被机体代谢、吸收和降解。作为人体植入物的主要材料之一, 硅橡胶在复杂的环境条件下具有较强的耐老化性及良好的工艺性能。但由于硅橡胶的分子为螺旋性结构,非极性的R 基则处于螺旋外侧,主链硅氧键的极性降低或抵消,使得整个分子的极性很低,并表现出了极强的疏水性[1],临床应用植入体内后,导致植入物与受体亲和力差、容易变形移位、材料外露等问题, 还引起患者植入部位形成肉芽肿,长期发热[2]。因此,国内外学者在改善硅橡胶力学性能和生物相容性,增强硅橡胶材料的机械性能,进一步提高其亲水性等方面进行了广泛的研究。 1 纳米材料填充硅橡胶改性 近些年来,作为生物材料科学研究的前沿领域,纳米材料填充硅橡胶改性的研究得到了广泛开展。纳米材料填充改性硅橡胶指的是采用特殊工艺或手段使得纳米材料在硅橡胶机体内均匀分散,从而获得比原硅橡胶基体性能更佳的材料[3]。目前,已有越来越多的纳米材料在硅橡胶的改性研究中得到了应用。例如,将在硅橡胶内润湿分散性良好,中,这样不但能改善硅橡胶的流变性能与亲水性,而且起到增强作用[4]。Kannan 等[5]构建了硅氧烷纳米复合材料,聚尿烷-多面体齐分子量形式。该材料表面对纤维蛋白素原吸收能力增强,并且同时有两性电解质性能和较大的接触角滞后。动物体内研究表明,相对与普通的医用硅氧烷,其增水效果非常明显,其生物相容性和生物稳定性都得到了相应的改善。 2 等离子体表面改性 等离子体是一种对不同气体采用特殊装置进行作用,如射频辉光放电(radiof requency glow discharge ,RGD)或电晕放电等过程,产生的一种部分电离的混合气体,由电子、自由基、离子、不同能量的光子以及气体原子等各类活性粒子组成。等离子体在撞击材料表面的同时会与之发生各种化学反应[6]。通过等离子体对硅橡胶表面进行改性处理,在其表面引入各种极性的基团,可以有效的提高材料生物相容性,改善其与生物环境的相互作用[7]。等离子体表面改性的方法有等离子体表面处理以及等离子体表面聚合两种。等离子体表面处理利用的是等离子体对暴露于非聚合性气体等离子体的材料表面进行轰击,从而引起高分子材料表面结构的变化来实现对高分子材料表面的改性过程。等离子体处理则是通过改变材料表面的拓扑结构,实现对其表面非特异性作用的抑制,在材料表面形成目标官能团。等离子体会聚合于暴露在聚合性气体高分子材料表面并沉积一层具有特定功能的聚合

纳米SiO_2疏水改性研究及应用进展

纳米SiO2疏水改性研究及应用进展 王 倩1,刘 莉2,张 琴1 (1 四川大学高分子科学与工程学院,成都610065;2 广州吉必时科技实业有限公司,广州510510) 摘要 由于与有机基体之间存在良好相容性,疏水纳米SiO2已成为一种广泛应用于有机材料中的重要无机纳米填料。介绍了纳米SiO2疏水改性的原理方法,综述了纳米SiO2疏水改性最新研究进展及其在硅橡胶、涂料、塑料、化妆品等领域的应用情况,并对今后的研究发展提出了建议。 关键词 纳米SiO2 疏水 改性 中图分类号:TQ424.26 文献标识码:B R esearch and Applications of H ydrophobic N ano Silica WAN G Qian1,L IU Li2,ZHAN G Qin1 (1 College of Polymer Science and Engineering,Sichuan University,Chengdu610065; 2 Guangzhou G BS High2Tech&Industry Co.Ltd.,Guangzhou510510) Abstract For the fairly good compatibility with organic matrix,hydrophobic nano silica is now one of the most important inorganic nano fillers widely used in organic materials.The mechanism of hydrophobic modification of nano silica is introduced.The current research and applications in silicone rubbers,coatings,plastics and cosmetics,etc are summarized.Some advices for civil researchers are put forward. K ey w ords nano silica,hydrophobic,modification   纳米SiO2具有小尺寸效应、量子隧道效应、特殊光电性等特点,是一种无毒、化学稳定、耐高温的无机纳米填料,在橡胶、塑料、涂料、油墨、化妆品等领域有着重要应用[1]。纳米SiO2的制备方法主要有气相法(Chemical vapor deposition)[2,3]、水解沉淀法(Hydrolysis2precipitation)[4~8]、溶胶2凝胶法(Sol2gel)[9]和微乳液法(Micro2emulsion)[10],其中气相法属于干法,其余方法属于湿法。气相法与水解沉淀法是工业上纳米SiO2成熟的生产方法。由于表面大量存在硅羟基,纳米SiO2在贮存和使用过程中易团聚,难分散,在有机基体中的分散性和浸润性尤其不好。为改善和拓宽纳米SiO2的应用领域,必须设法减少其表面硅羟基数量浓度,使之由强亲水性转为一定程度的疏水性,从而与有机基体之间具有良好相容性。疏水处理后的纳米SiO2具有明显的特点:既能通过疏水基团在有机相良好分散,又能通过硅羟基与有机相形成强相互作用,从而在本不相容的无机相与有机相之间建立稳固联系,达到补强目的[11]。本文就纳米SiO2的疏水原理、国内外疏水纳米SiO2的研发现状及其在橡胶、涂料、塑料、化妆品等领域的应用研究现状进行分析介绍,以期对国内的研发与生产有所帮助。 1 疏水改性原理及方法 纳米SiO2因为粒度极小,表面能极高,且表面有大量硅羟基,故极易团聚。无论何种方法制备的纳米SiO2均含3种结构:①粒径仅十几纳米的原生粒子;②原生粒子相互粘接、缩聚而成的数百纳米大小的聚集体;③聚集体彼此依附而成的微米级的附聚体。原生粒子由于极高的表面能和强烈的缩聚趋势,在成品纳米SiO2中基本不存在;靠微弱范德华力维系而存在的附聚体结构十分疏松,受外力作用很容易分散;而聚集体是原生粒子通过化学键结合在一起而成的具有一定强度的结构,不易破坏。故一般认为聚集体是纳米SiO2在填充体系中最终能够保持的状态。 为解决纳米SiO2在贮存和使用过程中的分散问题,提高与有机基体之间的相容性,采用氯硅烷、硅氮烷、硅氧烷和醇等对其表面硅羟基进行部分或全面“屏蔽”,使之由亲水转为一定程度的疏水甚至完全疏水,同时达到抑制粒径增长、提高分散性的目的,此为疏水改性原理。疏水改性方法分为两种:传统的成品疏水改性法(即对由干法或湿法制得的成品纳米SiO2进行疏水改性)和原位疏水改性法(即在纳米SiO2的制备过程中原位进行疏水改性)。疏水改性处理的作用在于使纳米SiO2的表面结构和化学性质发生改变,既减少亲水硅羟基的数量,又通过疏水基在纳米SiO2表面形成空间位阻,从而阻止颗粒之间相邻硅羟基因缔合而形成结构紧凑的聚集体,达到控制粒度的目的。成品疏水改性的对象是附聚体和聚集体,而原位疏水改性的对象则是初生成的原生粒子和正在生长中的聚集体,故一般认为原位疏水更有利于抑制聚集体增长、改善分散、控制粒度及粒度分布。 2 疏水改性研究进展 粒径与表面性质是决定纳米SiO2应用性能的基本属性。  王倩:女,1975年生,博士生,工程师,主要从事纳米复合材料的研究 Tel:028********* E2mail:salicyl@1631com

硅橡胶膜的改性与应用研究进展

第27卷 第1期2006年2月特种橡胶制品 Special P ur po se Rubbe r P roduc ts V o l .27 N o .1 F ebruary 2006 硅橡胶膜的改性与应用研究进展 范 敏,马文石,汪国杰 (华南理工大学材料学院,广州 510640) 摘 要:对近年来硅橡胶膜通过复合、辐射接枝、过氧化物引发接枝和等离子体聚合改性,以及改性硅橡胶膜在有机废水处理、发酵、离子传感器和膜激活器等方面的研究与应用进行了概述。关键词:硅橡胶膜;改性;应用 中图分类号:T Q333.93 文献标识码:A 文章编号:1005-4030(2006)01-0050-04 收稿日期:2005-07-18 作者简介:范 敏(1973-),女,湖南邵阳人,在读硕士研究生。 硅橡胶分子链由硅原子和氧原子交替组成,是一种兼具无机和有机性质的高分子弹性材料,具有耐热、耐寒、抗水、高介电性、透气性以及与生物组织相容性等一系列优点,已广泛应用于能源、 电子、化工、食品、医药、环保、生命科学等领域[1]。将硅橡胶制备成膜材料,不但保持硅橡胶的基本性能,而且还能体现出膜的特性,大大拓宽了其应用范围,尤其是在一些普通高分子膜不能使用或应用效果不理想的场所,硅橡胶膜则能发挥良好的作用。因此,近年来随着膜科学与技术的发展,对硅橡胶膜的研究与开发更是备受关注。均质硅橡胶膜已经在气体或液体混合物浓缩、纯化或分离方面发挥了重要作用,但是均质硅橡胶膜存在成膜性和机械强度差等缺点。为提高其性能,拓宽应用领域,改性硅橡胶膜已成为国内外膜科学与技术研究、开发的热点。通过复合、辐射接枝、过氧化物引发接枝、等离子体聚合等方法所制得的改性硅橡胶膜性能得到显著提高。本文对近年来国内外在硅橡胶膜复合改性与辐射接枝、过氧化物引发接枝和等离子体聚合改性,以及改性硅橡胶膜在有机废水处理、发酵、离子传感器和膜激活器等方面的研究与应用进行了概述。1 硅橡胶膜的改性 渗透性和选择性是膜的2个关键性参数。为了使硅橡胶膜能达到优异的分离效果,人们一直在不断地探索新的改性方法,以提高硅橡胶膜的选择和渗透功能。硅橡胶膜的改性方法主要有物理复合改性和化学改性2大类。 1.1 物理复合改性 物理复合改性不使用化学手段,通常采用浸没涂敷或填充掺杂的方法来制备复合膜。这样的制膜方法比较简单,所制得的复合膜在渗透性、选择性方面有了较大的提高。 硅沸石(silicalite )主要的化学成分是二氧化硅,它的骨架结构为-Si -O -Si -,具有优良的疏水性能,用它填充的硅橡胶可制备疏水性分离膜。龙英才等人 [2] 先用107硅橡胶与交联剂混 合,再将硅沸石加入并混合均匀,再脱气,然后在聚酯薄膜上涂覆成厚度大约150μm 的硅橡胶膜,经室温硫化8h 左右可获一定强度的疏水膜。用此复合膜来分离乙醇/水体系,其分离系数α可达30,分离效果很好。结构分析表明,硅沸石的结构是影响该复合膜分离性能的关键因素 [2] 。 不对称结构复合膜的开发是膜技术发展史上的一个重要突破。这种膜的结构是一个薄的、致密皮层支撑在多孔亚层上,其中皮层和亚层是由不同的聚合物材料制备的。由于薄皮层决定传递速率,亚层起支撑作用,因此这种不对称复合膜的渗透速率远大于相同厚度的均质对称膜。这种复合膜还有另外一个优点,可以分别选用适当的皮层和亚层使之在选择性、渗透性、化学稳定性、力学强度等方面使膜的性能达到最优化。 张元琴等人[3]以24%聚砜、56%二甲基乙酰胺和20%乙二醇单甲醚配比所组成的膜液,采用特定的纺丝工艺,获得外壁光滑、壁厚薄适中、有一定强度的中空纤维基膜。该基膜的纯水通量可达35×10-5 kg /(m 2 ·Pa ·h ),截留率86%~95%,透气量1×10 -7m 3/(m 2 ·s ·Pa )。在此中空纤维 基膜的内外表面再分别涂上一层均匀、一定厚度的

聚乙烯醇缩甲醛(胶水)的制备

聚乙烯醇缩甲醛(胶水)的制备 一、实验目的 了解聚乙烯醇缩甲醛化学反应的原理,并制备红旗牌胶水。 以聚乙烯醇和甲醛为原料制备聚乙烯醇缩甲醛胶水,了解聚合物的化学反应特点 二、实验原理 聚乙烯醇缩甲醛胶(商品名107胶)是一种目前广泛使用的合成胶水, 无色透明溶液,易溶于水。与传统的浆糊相比具有许多优点[1]:①、初粘性好,特别适合于牛皮纸和其它纸张的粘合;②、粘合力强;③、贮存稳定,长久放置不变质;④、生产成本低廉。国内有许多厂家生产此胶水。因此广泛应用于多种壁纸、纤维墙布、瓷砖粘贴、内墙涂料及多种腻子胶的粘合剂等。近年来,为了适应市场需求人们对聚乙烯醇缩甲醛胶粘剂进行了大量的改性研究,无论在合成工艺上还是在胶液的性能方面都有显著的提高。本实验以聚乙烯醇缩甲醛为例,我们对其合成过程所用的催化剂、缩合温度等对胶水质量有影响的因素进行了试验研究和探讨,摸索出更佳更合理的工艺条件。 聚乙烯醇缩甲醛是利用聚乙烯醇与甲醛在盐酸催化作用下而制得的,其反应如下 : 聚乙烯醇缩醛化机理: 聚乙烯醇是水溶性的高聚物,如果用甲醛将它进行部分缩醛化,随着缩醛度的增加,水溶液愈差,作为维尼纶纤维用的聚乙烯醇缩甲醛其缩醛度控制在35%左右,它不溶于水,是性能优良的合成纤维。

本实验是合成水溶性的聚乙烯醇缩甲醛,即胶水。反应过程中需要控制较低的缩醛度以保持产物的水溶性,若反应过于猛烈,则会造成局部缩醛度过高,导致不溶于水的物质存在,影响胶水质量。因此在反应过程中,特别注意要严格控制崐催化剂用量、反应温度、反应时间及反应物比例等因素。 聚乙烯醇缩甲醛随缩醛化程度的不同,性质和用途各有所不同,它能溶于甲酸、乙酸、二氧六环、氯化烃(二氯乙烷、氯仿、二氯甲烷)、乙醇甲苯混合物(30∶70)、乙醇甲苯混合物(40∶60)以及60%的含水乙醇中。缩醛度为75%~85%的聚乙烯醇缩甲醛重要的用途是制造绝缘漆和粘合剂。 三、实验药品及仪器 药品:聚乙烯醇、甲醛(40%)、氢氧化钠,浓盐酸,硫酸 仪器:搅拌器、恒温水浴,球形冷凝管,温度计,滴液漏斗, 三口烧瓶实验装置如下图: 四、实验步骤及现象 步骤现象分析 在250mL三颈瓶中,加入90mL去离子水(或蒸馏水)、7g聚乙烯醇,在搅拌下升温至85-90℃溶解。 搅拌加热升温至 90℃左右时,聚乙烯醇 全部溶解,溶液无色透 明,瓶内无白色固体。 聚乙烯醇熔点>85℃,所以需升温至 85-90℃。 等聚乙烯醇完全溶解后,降温至35-40℃加入4.6mL甲醛(40%工业纯),搅拌15min,再加入1∶4盐酸,使溶液pH 值为1-3。保持反应温度85-90℃,继续搅拌20min,反应体系逐渐变稠,当体系中出现气泡或有絮状物产生时,立即迅速加入1.5 mL8%的NaOH溶液,同时加入34mL去离子水(或蒸馏水)。调节体系的pH 值为8-9。然后冷却降温出料,获得无色透明粘稠的液体,即市场出售的红旗牌胶水。 加入盐酸,溶液 无明显变化,PH降低至 2左右。 加入甲醛后加热升 温,溶液变稠。 升温至85-90℃一 段时间后,出现气泡, 加入NaOH和蒸馏水, PH值为9左右。冷却, 得无色透明粘稠的液 体。 必须控制PH为1-3,所以加入盐 酸不能太多也不能太少。当pH过低 时,催化剂过量,反应过于猛烈,造成 局部缩醛度过高,导致不溶于水的产物 产生。当pH过高时,反应过于迟缓, 甚至停止,结果往往会使聚乙烯醇缩醛 化成都过低,产物粘性过低。 加入甲醛后加热升温,聚乙烯醇与 甲醛反应,缩醛化,体系粘度变大,溶 液变粘稠。 产生气泡,说明分子间已经开始交 联,故此时要停止加热。 调节PH为8-9是因为,在酸性条 件下,聚合物与空气接触不稳定会继续 缩醛化,所以要调PH>7

聚氯乙烯的阻燃改性研究及应用

目录 1PVC 的组成结构 (3) 2PVC 改性方法 (4) 3PVC 改性的性能指标 (5) 3.1着色性 (5) 3.2迁移性 (5) 3.3耐候性 (6) 3.4稳定性 (6) 3.5电性能 (7) 4 阻燃PVC 的概述 (8) 4.1阻燃PVC的发展 (8) 4.2阻燃PVC 结构与特点 (8) 4.3阻燃PVC性能 (9) 4.4阻燃PVC 加工成型 (10) 4.5阻燃PVC应用 (10) 5PVC 共混阻燃改性材料研究 (12) 5.1二元共混阻燃材料 (12) 5.1.1 PVC/CPE (12) 5.1.2 PVC/CPVC (12) 5.1.3PVC/NBR (13) 5.1.4PVC/EVA (14) 5.2三元共混阻燃材料 (15) 6 结语 (16)

聚氯乙烯的阻燃改性研究及应用 摘要:PVC材料具有成本低、易加工、韧性好等优点, 被广泛使用在建筑中。但由于PVC材料在户外使用过程会受到紫外线照射而发生老化, 所以PVC材料的加工过程会添加一些增塑剂等助剂, 导致材料的阻燃性能降低, 而无法满足建筑材料防火阻燃等级的要求。因此通过添加阻燃剂来改善材料PVC的阻燃性就显得十分重要。 本文首先介绍了PVC的主要结构其碳原子为SP3杂化,其次介绍了PVC的常用改性方法有:化学改性、填充改性、增强改性、共混改性以及纳米复合改性,引申出了PVC的 阻燃改性的研究,其中阻燃PVC的性能研究当中研究了不同温度下阻燃PVC的形态以及性能趋势。探究了二元共混阻燃材料与三元共混阻燃材料的区别,阐述了PVC阻燃改性 的重要性以及生活中应用在必要性。 关键词:阻燃改性PVC

EVA改性HDPE机理

EVA即乙烯-醋酸乙烯共聚物,改性剂用的EVA中一般含有30%-60%的VAc 结构,具有无定形的结构,因此,大多数EVA是一种具有橡胶弹性的热塑性树脂,具有良好的柔韧性、挠曲性、耐应力开裂性及抗冲击强度,所以EVA常作为聚烯烃类树脂的共混改性剂。很多研究发现,LDPE经EVA改性后其力学性能有所提高,EVA改性LDPE薄膜的杨氏模量与抗拉强度开始时随EVA含量的增加而增加,在某一比例时,改性薄膜的纵横向杨氏模量与拉伸强度均达到最大值;与纯LDPE 薄膜相比,改性薄膜的纵横向杨氏模量增加很明显。 因为EVA与LDPE都具有乙烯链段,所以两者有较好的相容性但EVA中高极性的VAc链段与LDPE基体的相容性差,因此VAc链段会在基体树脂中产生微分相,起到异相成核的作用,使LDPE的结晶度稍有增加,增加了物理交联点,从而使改性薄膜的杨氏模量与拉伸强度增加。 EVA与LDPE都具有乙烯链段,相容性好,又EVA中高极性的VAc链段与LDPE 基体的相容性差,因此部分EVA链段会在基体树脂中产生微相分离,就能起到橡胶增韧塑料作用。EVA颗粒作为应力集中中心,诱发大量银纹和剪切带,从而消耗大量能量,EVA颗粒和生成的剪切带又能及时终止银纹而不致于发展成破坏性的裂纹。从而使改性薄膜的韧性增加。 当EVA含量继续增加时,EVA改性LDPE膜的杨氏模量和拉伸强度呈下降趋势,这是由于当EVA含量大于某值时,EVA使得LDPE 的迁移受到阻碍,结晶速率变慢,使LDPE的结晶度降低,引起力学性能降低,综合该因素的作用大于VA 的异相成核作用,因此在高EVA含量时,改性薄膜的断裂伸长率增加不明显,但模量和强度性能降低明显。

无机粒子增韧聚丙烯的研究进展

无机粒子增韧聚丙烯的研究进展 摘要:阐述了几种不同的无机纳米粒子对聚丙烯的增韧介绍,简单叙述了无机纳米粒子的物理化学作用增韧机理和微裂纹化增韧机理,并对无机粒子增韧聚丙烯的发展前景进行展望。 关键词:无机粒子聚丙烯增韧机理 PP是五大通用塑料之一,具有相对密度低、来源丰富、价格低廉、性能优良、用途广泛等优点, 被广泛应用于汽车、电器、化工、建筑、包装等行业。由于PP 存在低温脆性大、刚性低、成型收缩率大等缺点, 限制了PP 的进一步应用。纳米无机粒子的填充改性可较大幅度地提高聚合物材料的综合性能, 达到同时增强、增韧、功能化的目的。目前常用的无机刚性粒子主要有滑石粉、高岭土、C aCO3、硫酸钡、蒙脱土、碳纳米管、二氧化硅等。本文综述了近年来国内外微一纳米无机刚性粒子对PP 材料改性的最新研究进展以及对增韧机理的简单介绍。 1. PP/微米级无机粒子复合材料 1.1 PP/ CaCO3复合材料 Chan等将纳米CaCO3与聚丙烯熔融共混,当填充量在9.2%以下时,纳米CaCO3 在聚丙烯中的分散均匀, 复合材料的拉伸强度增加了85%左右;扫描电镜显示聚丙烯中存在着球形空穴结构,这是纳米CaCO3在聚丙烯基体中的应力集中导致的,这些空穴能够引起聚丙烯的塑性变形, 进而提高聚丙烯的机械性能。 Guo等先在纳米CaCO3粒子表面包裹上可溶性的斓系化合物,再与PP进行熔融共混制得pp/纳米CaCO3一La复合材料。 Ma等先用硅烷偶联剂对纳米CaCO3粒子进行预处理, 在γ光的照射下于米粒子表面接枝上聚丙烯酸丁酿(PBA)形成纳米复合物(既有接枝的聚合物PBA,又含有均聚物, 还有孤立的纳米粒子) , 最后与聚丙烯熔融共混。研究发现, 纳米粒子与PBA具有明显的协同作用。 1.1.1 碳酸钙用量对断裂伸长率的影响 随着碳酸钙用量的不断增加,无机颗粒之间的团聚增大了分子链之间的摩擦力,阻碍了分子链的滑移,在PP中形成了多相体系,碳酸钙与PP的润滑性、相容性变差,界面结合力变弱,在粘流态下呈固体粒子流动,因此使整个体系的断裂

硅橡胶的研究进展_王香爱

硅橡胶的研究进展 王香爱,张洪利 (渭南师范学院化学与生命科学学院,陕西渭南 714000) 摘 要:介绍了硅橡胶的特点。综述了硅橡胶的分类(包括高温硫化型硅橡胶、室温固化型硅橡胶 等)、改性方法(包括共混改性、填料改性等)及其在医疗领域(包括医疗器械、药物缓释体系和体外用品等)和汽车领域中的应用。最后对硅橡胶的发展前景进行了展望。 关键词:硅橡胶;分类;改性中图分类号:TQ433.438:TQ333.93 文献标志码:A 文章编号:1004-2849(2012)09-0044-05 收稿日期:2012-06-25;修回日期:2012-07-23。 基金项目:陕西省军民融合项目(11JMR04);渭南师范学院自然科学项目(12YKF015)。 作者简介:王香爱(1967—),女,陕西渭南人,教授,主要从事精细化学品的开发和应用等方面的研究。E-mail :wnwxa@https://www.360docs.net/doc/b51190344.html, 0前言硅橡胶(Silicone rubber )是一种直链状、高M r (相对分子质量)的聚硅氧烷,其M r 一般超过1.5×105,其分子主链由硅原子和氧原子交替组成(-Si-O-Si-), Si-O 键的键能(422kJ/mol )高于C-C 键(240kJ/mol )[1]。 硅橡胶无毒无味,并具有良好的耐高低温性(300℃和-90℃时仍不失原有的强度和弹性)、电绝缘性、耐光老化性、耐氧老化性、防霉性和化学稳定性,因而在航空航天、化工、农业、医疗卫生和电子电器工业等领域中得到广泛应用。 硅橡胶按其硫化特性可分为热硫化(HTV )型硅橡胶和室温硫化(RTV )型硅橡胶。硫化剂可使线状硅胶分子交联成立体网状结构(可塑性降低、弹性增强);除某些热塑性硅胶不需硫化外,天然橡胶和各种合成橡胶通常都需使用硫化剂硫化(经硫化后的硅胶才具有使用价值,其力学性能大大提高)。为适应特殊用途需求,需使用特种性能的硅橡胶,如导电硅橡胶、导热硅橡胶、耐热硅橡胶、耐油硅橡胶、屏蔽性硅橡胶、阻燃硅橡胶、阻尼硅橡胶、绝缘硅橡胶和海绵硅橡胶等。 随着高新技术的快速发展,人们对硅橡胶的使用性能提出了更高的要求,如良好的力学性能、耐热性能、抗辐照性能、粘接性能和耐气候老化性能等[2],因此硅橡胶的改性(物理改性、化学改性等)势在必行。 1 硅橡胶的分类 1.1 HTV 型硅橡胶 HTV 型硅橡胶(又称高温硫化型硅橡胶)是产量 较大、应用广泛的一类硅橡胶,其M r 为(4.0~6.0)×105。 HTV 型硅橡胶可分为甲基硅橡胶、二甲基乙烯基硅 橡胶、甲基乙烯基苯基硅橡胶、腈硅橡胶和氟硅橡胶等。在HTV 型硅橡胶生胶中加入补强填料、硫化剂及其他助剂,经混炼后即得可用于模压制品、挤出制品的混炼胶。HTV 型硅橡胶均采用有机过氧化物硫化,常用的有机过氧化物为过氧化二苯甲酰(BPO )。 HTV 型硅橡胶具有优良的耐高低温性能、生理惰 性、电气绝缘性能、耐臭氧性、耐气候老化性、憎水性和防潮性等[3-4]。 1.1.1二甲基硅橡胶 二甲基硅橡胶简称甲基硅橡胶,是硅橡胶中最 老的品种,在-60~250℃范围内能保持良好的弹性。其生胶呈无色透明状弹性体,通常用活性较高的有机过氧化物进行硫化。二甲基硅橡胶的硫化活性较低,高温压缩永久变形大,不适用于制备厚制品(这是因为厚制品硫化较困难,内层易起泡)。引入乙烯基后得到的甲基乙烯基硅橡胶易于交联,制得的产品力学性能良好[2],故二甲基硅橡胶已逐渐被甲基乙烯基硅橡胶所取代[5]。 1.1.2甲基乙烯基硅橡胶 甲基乙烯基硅橡胶(简称乙烯基硅橡胶),是由 中国胶粘剂 CHINA ADHESIVES 2012年9月第21卷第9期Vol.21No .9,Sep.2012 专题与综述 44--(1318)

锂电浆料特性总结

锂电浆料特性 锂电池浆料 1.1,锂电池浆料的特性 锂离子电池浆料是由多种不同比重、不同粒度的原料组成,又是固-液相混合分散,形成的浆料属于非牛顿流体。锂离子电池浆料是一种像油状的流动的液体,所以具有一般流体所具有的特征如粘性、流动性等,同时因为电池浆料是一种液固两相流,所以还具有一些自身特殊的性能。 1.1.1,锂离子电池浆料流变性 流变性是指物质在外力作用下的变形和流动性质。由于液体不能承受剪切力,因而不能保持其外形的稳定。在外力的作用下,液体就会发生流动和变形等的性质,称为流变性。浆体的流变性十分复杂.一种浆体在低浓度时可能表现为牛顿流体或假塑性流体;浓度稍高产生絮团后,可能表现为宾汉流体;更高的浓度下又可能会出现胀塑性流体。 对同—种浆料,在剪切率不太高时,不出现胀流现象,剪切率高时又可能转化为胀塑性流体。有些非牛顿流体在低剪切速率和高剪切速率下都可能呈现牛顿流体形象,这可能是因为在低剪切速率下,分子的无规则热运动占优势,体现不出剪切速率对其中物料重新排列使表观粘度的变化,当剪切速率增高到一定限度后,剪切定向达到了最佳程度,因而也使表观粘度不随剪切速率而变。如前所述,许多非牛顿体其流变特性受到体系中结构变化的影响。 影响锂离子电池浆料流变性的一些主要参数: (1)分散相或固相的类型及表面电荷的大小 对于不同种类的正负极活性物质,如正极常用的钴酸锂、锰酸锂,负极常用的石墨粉、中间相炭微球,由于其种类不同,因而具有不同的水化膨胀特性以及不同的表面电荷,这样,不同种类的活性物质其分散特性、胶溶特性以及形成具有一定强度的结构体系的能力也各不相同,其宏观表现是不同种类的活性物质配制而成的浆料具有不同的流变特性。 (2)固相的浓度 分散相或固相浓度的大小主要影响浆料的屈服应力和塑性粘度或表观粘度。在一般槽况下,固相浓度越大,其屈服应力、塑性粘度或表观粘度越大。 (3)固相颗位的大小、形状以及粒径的分布 在固相浓度不变的条件下,颗粒的粒径越小,由于其总的表面积增加,因而浆料的屈服应力和粘度将随之增加。 (4)分散介质本身的粘度。 不同的溶剂具有不同的粘度,使得浆料的粘度也将随之变化。

聚乙烯的改性分析

聚乙烯的改性 聚乙烯虽然具有优良的电性能、机械性能和加工性能,但是它也有一些缺点,如软化点低,强度不高,耐大气老化性差,易应力开裂,不易染色及印刷等。为了进一步拓宽聚乙烯的应用领域,克腿这些缺点,可以采用聚乙烯改性来达到。 聚乙烯的改牲主要分为化学改性和物理改性。化学改性又分为接枝共聚改性、嵌段共聚改性、化学及辐射交联改性等;物理改性分为共混改性、填充改性(包括增强改性等)。 聚乙烯的化学交联主要是在聚乙烯树脂中加人有机化合物(常用过氧化二异丙苯)作为交联剂,然后在压力和175~200℃的温度下交联。 接枝聚合是最常用的改性聚合方法。所谓接校共聚反应是在聚乙烯的主链上将作为支链的不同种高分子结合上去的一种反应。当然也有采用过氧化物、放射辐照或其他有关方法进行反应。接枝方式的共聚合反应可以获得良好的混合状态,其分散界面是以化学方式结合在一起,具有良好的机械性能。同时又因为聚乙烯本身是无极性材料,和其他材料亲和性不好,如将具有极性的单体以接枝共聚合反应结合至聚乙烯分子主链上时则会增大这种亲和性,由此使可以改善其粘接性、印刷性、染色性等性能。例如,聚乙烯接枝丙烯酸单体所得产品则会改善其在铝箔上的粘合性;加入丁二烯单体接枝共聚合反应的制品,可以提高耐热性、耐应力开裂性。 聚乙烯的共混改性是聚乙烯与其他高聚物等物质进行共混,用挤出机、辊炼机等设备而制成新材料。共混过程中往往包含化学接枝或交联反应,以提高共混的改性效果。 聚乙烯的填充改性是在聚乙烯的成型加工过程中加入无机或有机填料,不仅能使制品价格大大降低,而且能显著改善材料的机械强度、耐摩擦性能、热性能及耐老化性能等,并改善聚乙烯的易膨胀性及易蠕变性等,所以填料既有增量作用,又有改性效果。常用的无机填料有碳酸钙(包括轻质碳酸钙和重质碳酸钙)、滑石粉、云母、高岭土、二氧化硅、硅藻土、硅灰石、炭黑等。 此外,聚乙烯可加人脂肪酸酰胺作表面润滑剂,以减少薄膜的粘附性;加入0.5%~2%的聚丙烯可提高其透明性;表面用电子冲击(使其表面氧化)处理,可改善其印刷性能。 1.交联聚乙烯 交联聚乙烯分为有机过氧化物交联聚乙烯、有机硅交联和辐照交联聚乙烯。 (1)有机过氧化物交联聚乙烯 结构式: 制法有机过氧化物交联聚乙烯是聚乙烯以有机过氧化物作为交联剂,在热的作用下分解而生成高度活泼的游离基。这些游离基使聚合物碳链上生成活性点,并产生碳-碳交联,形成交联聚乙烯。所用的有机过氧化物有过氧化二异丙苯、过氧化二叔丁基和2,5-二叔丁基-2,5-二甲基过氧化己烷等。根据被交联的聚乙烯品种和交联工艺设备的不同而选用不同的过氧化物。通常交联低密度聚乙烯时,采用在132℃时能起反应的过氧化二异丙苯;在交联高度填充的低密度聚乙烯和高密度聚乙烯时,可采用能在144℃下加工的2,5-二叔丁基-2,5-二甲基过氧化己烷作交联剂。将聚乙烯与合适的有机过氧化物、炭黑及其他无机填料等添加剂混合在一起,经混炼造粒后,用适宜的成型工艺将它加工成制品。然后再将制品经过一段时间的加热处理,使之发生交联,即可制得交联聚乙烯制品。此外,当采用压缩成型时,交联和成型可一步完成。 物化性质有机过氧化物交联聚乙烯结构上与热塑性塑料、热固性树脂和硫化橡胶都不同,它有体型结构却不是完全交联,交联区域很小,不像硫化橡胶那样有很大的交联网,因此在性能上它兼有三者的特点,即同时具有热可塑性、硬度、良好的耐溶剂性,高弹性和优良的耐低温性。无论是高密度聚乙烯还是低密度聚乙烯,通过交联后,其拉伸强度、耐热性、防老化性和耐候性、尺寸稳定性、耐应力开裂性,耐磨性和耐溶剂性均有提高,且耐蠕变性

纤维素的改性及应用研究进展_罗成成

2015年第34卷第3期CHEMICAL INDUSTRY AND ENGINEERING PROGRESS?767? 化工进 展 纤维素的改性及应用研究进展 罗成成,王晖,陈勇 (中南大学化学化工学院,湖南长沙410083) 摘要:植物纤维素是天然的可再生资源,对纤维素的改性利用一直是研究的热点。本文简要介绍了纤维素的结构与性质,综述了纤维素的改性方法,包括物理改性、化学改性和生物改性等,其中化学改性是最主要的方法,包括酯化、磺化、醚化、醚酯化、交联和接枝共聚等,通常涉及其结构中羟基的一系列反应。通过改性,引进了一系列离子型基团,有利于增强纤维素的亲水性。经改性后的纤维素与之前相比,结晶度和聚合度明显降低,可及度明显提高,无论物理性质还是化学性质都表现出更大的优越性。其后回顾了纤维素衍生物在食品、造纸以及建筑行业中的一些研究应用成果,阐述了其在医药及废水处理等方面的研究进展,并展望了纤维素衍生物的发展前景。 关键词:纤维素;纤维素衍生物;化学改性 中图分类号:TQ072文献标志码:A文章编号:1000–6613(2015)03–0767–07 DOI:10.16085/j.issn.1000-6613.2015.03.028 Progress in modification of cellulose and application LUO Chengcheng,WANG Hui,CHEN Yong (School of Chemistry and Chemical Engineering,Central South University,Changsha410083,Hunan,China)Abstract:Plant cellulose is a natural renewable resource,and application of the modified cellulose has been a research focus.The structure and properties of cellulose are described,and cellulose modification methods are reviewed,including physical,chemical and biological methods.The main method is chemical modification,including esterification,sulfonation,etherification,ether esterification,crosslinking and graft copolymerization,which involve the reactions of hydroxyl groups in the cellulose.Hydrophilcity of cellulose could be enhanced by introduction of ionic groups. Compared with non-modified cellulose,crystallinity and degree of polymerization of modified cellulose decrease significantly,whereas accessibility is improved remarkably,with superior physical and chemical properties.Finally,the research achievements of cellulose derivatives in food,paper and construction industries are reviewed.Research progresses in pharmaceuticals,wastewater treatment and other areas are presented.Future applications of cellulose derivatives are prospected. Key words:cellulose;cellulose derivatives;chemical modification 纤维素是植物细胞壁的主要成分,在自然界中分布甚广,是取之不尽、用之不竭的天然高分子化合物。由于纤维素具有无毒无害、可生物降解、相容性好、价格低廉且可再生等优点,人类对纤维素的利用一直在不断推陈致新,广泛用于食品、医药、建筑、造纸、废水处理、印刷、电子、日化等各个方面,纤维素的消耗一直呈递增趋势。随着人类环保意识的不断加深,纤维素及其衍生物的推广应用还将继续成为热点。 1纤维素的结构与性质 纤维素环状结构是由D-吡喃葡萄糖环以β-1,4 收稿日期:2014-08-20;修改稿日期:2014-10-15。 第一作者:罗成成(1990—),女,硕士研究生。联系人:王晖,教授,博士生导师。E-mail huiwang1968@https://www.360docs.net/doc/b51190344.html,。

相关文档
最新文档