气相色谱仪气路故障与排除

气相色谱仪气路故障与排除
气相色谱仪气路故障与排除

气相色谱仪气路故障与排除

中国色谱网(2008-6-11 13:37:22)

(1)流量调节故障;

(2)气路泄漏故障;

(3)气路堵塞与污染故障。

在气相色谱仪出现的各种故障中,有相当大的一部分都与气路有关,因此,了解和熟悉气路故障是十分必要的。

一、流量的调节

1、流量调不上去

(1)直观检查:首先检查仪器系统是否有明显的漏气声。在仪器系统气路有较大的泄漏发生时,很可能导致流量调

不上去。如果听不到漏气声则转入(3)进行。

(2)查漏:听到有漏气声之后,可依照声音发出的方向而逐步定位。此时可利用皂液的涂抹进一步确定漏气的发生

处。找到原因后及时堵漏。

(3)柱前压观察:观察柱前压指示表的数值大小,可迅速判断是气源引起的故障,还是仪器内部气路堵塞及损伤造

成的。如果是柱前压太低(精确地说是比正常流量操作时的预定压力值低),则说明气源需要检查;如果柱前压正常则

需要检查仪器的内部气路。

(4)钢瓶高压检查:打开钢瓶阀后,观察高压表指示,压力应在1~15MPa之间。如果压力在1MPa 以下,停用该钢瓶,

换气;如压力值在合适的范围内,说明钢瓶压力正常。

(5)减压阀上低压输出检查:调节减压阀看钢瓶上低压表指示能否调到0.25~0.6MPa之间。如果正常,可怀疑气路过

滤接头有堵塞或者是仪器上的稳定阀有问题,此时应按照(6)来进行;如低压值不正常,则说明减压阀有问题,需进

行(7)的修理。

(6)过滤器堵塞及稳压阀检查:将过滤器出口到仪器气源入口处的接头缓缓旋开,观察是否有较强的气流从接头处

跑出。如有,则说明过滤器不堵塞,稳压阀可能有问题。在确定稳压阀不出气后,可进行阀拆卸与清洗,这可能是稳压

阀内阀针与阀座间堵塞所致。如清洗后阀仍不能正常工作,最好换一个新阀;在上面试验中若无较强气流从旋开的接头

中流出,需要检查过滤器入口前后可能堵塞之处;当然中间管线的堵塞也是可能的,但发生率甚小。(7)减压阀修理:在明了减压阀的结构之后,可拆卸修理减压阀。由于该减压阀入口一侧有高压,

因此如无修理经

验最好不要盲目拆卸。有条件的,建议换用新阀;换阀时必须注意到,氢气表或氧气表应与其它气源表所用减压阀分开

使用,减压阀上应标明其专用的气源名称。

(8)停用,换气:在钢瓶的压力太小时,应立即停用、换新瓶或充气。在过小的压力下,不但气源输出不稳,而且

气源中杂质浓度将明显增大,这对高灵敏度的分析是特别不利的。另一个必须要注意的问题,是钢瓶中的余气,特别是

氢气钢瓶的余气不能随便排放。

(9)拆下柱入口气路:将柱子入口处气接头拆下,观察流量计中的转子是否能升到最上端。如果能升到最上端,说

明柱前气路正常,转入(10)作进一步检查;如果转子达不到最上端说明柱前气路有堵塞,需进行(13)检查。

(10)拆下柱出端:将柱子入口接回原气路中后,再将柱出口侧接头拆下,此时观察流量计中的转子能否调到预定值

。如果可以,将判断柱后管路及检测器有堵塞,需按(11)进行处理;如果转子仍调不上来,则可以认为柱填充过紧,

需按(12)进行。

(11)堵塞检查与排除:在判断为柱后管路或检测器堵塞时应进行排队和清洗。

(12)柱填充物太紧:柱填充过紧的主要原因是载体目数太大,造成过大的气阻所引起。在适当采用目数小一些的载

体或减短色谱柱的长度后可以使流量上调到预定值。

(13)拆下流量计出口气接头:将转子流量计出口端气路旋开后,观察转子能否升到最高端。如果可以,则判定进样

、汽化器气路堵塞,按(14)处理;如果转子仍不能升到最高端,可认为流量阀损坏或流量计入口管路有堵塞,此时按

(15)进行。

(14)进样口堵塞:进样器的堵塞可按注射器的清洗步骤进行。

(15)流量阀与管路堵塞:用分段试堵将很快判定是否流量管路产生了堵塞。如有,按气路管路的清洗进行;如流量

计前管路正常,可拆卸流量控制阀进行清洗。

2、流量太大调不小

如果气体流量一直很大而不能调小,可以认为是气路控制系统的一种故障。产生此类故障的原因有三种:第一,

是流量计后气路有泄漏;第二,是气路气阻太小;第三,是流量控制阀件损坏。其检查方法如下:首先堵住检测器的气

路出口,观察流量计中的转子是否可下降到零位。如不能降为零,需要考虑对漏气处进行检查,具体方法见气路泄漏的

检查与排除;如转子可降到零位说明系统不漏气。此时应观察一下流量调节阀转动时,流量是否有较大的变动,若有变

动可适当增加气路气阻;若无变动则应怀疑阀件本身有问题,按照阀件的清洗部分处理。处理后的阀件应再装回原气路

中进行控制试验。

二、气路泄漏检查

1、气路渠漏检查

按照其对气路密闭性的严格程度,检查气路是否泄漏的方法分为A、B、C三级。

A级试漏:

对气路严重泄漏的最粗略观察。通常在气源打开并稳定之后,不应听到气路流经的各管路及阀件接头处有丝丝的跑气声,如听到明显的漏气声,说明系统有大漏!必须依据漏气声,追查出泄漏处,并加以排除。引起系统大漏的常见原因是:气路接头没上紧,气路中管路开裂及没加合适的垫片等。查找气路的严重泄漏,也可在流路的流量开到最大时,用肥皂水在各接头逐步测试有无气泡出现而加以证实。

B级试漏:

对气路中轻微漏气的检查。方法是堵住气路出口,观察气路中流量计内的转子。如果能缓缓下降为零,即可认为此气路B级试漏合格。如转子不能降到零,可用肥皂水在各接头处仔细观察。直到找到泄漏处为止。

C级试漏:

对气路中极小漏气的检查。方法是堵住气路出口,观察系统压力表,不得在半小时之内有5kPa (相当于0.05kgf/cm2)以上的下降。此时系统压力应在0.25MPa(相当于2.5kgf/cm2)以上。必要时可在系统出口处外接一个0.5级标准压力表来读取压力变化数。

在证实气路系统有泄漏时,可用分段堵住或关闭气路的方法来缩小漏气发生的范围。

绝大多数的漏气点都发生于气路接头处,而气路阀件内部的泄漏也时有发生,至于管路中间的泄漏,除了急转弯处以外是很少见的。

2、气路接头漏气故障的排除

发现接头有泄漏时,首先对所用接头做如下检查:

(1)接头配合垫片是否合适,退火及无伤痕;

(2)接头密合处是否干净平滑无污物;

(3)接头配合装配时,是否相互对准对正;

(4)能否先用手将接头大体上紧。

如上述检查无异常,再用扳手(一般为两把)将接头上紧。上紧时应注意压力要适当,对于有塑料、橡胶、聚四

氟垫片的接头压力不宜过大,一般能密封后再上紧一点即可;对于有金属垫片的接头,压力可适当加大,但也应以不漏

气为界限。

电力设备的远程监控与故障诊断系统探析 刘频

电力设备的远程监控与故障诊断系统探析刘频 发表时间:2018-08-30T12:37:02.820Z 来源:《防护工程》2018年第8期作者:刘频 [导读] 借助计算机技术和电子信息技术,实现电力设备的远程监控和自动检测。一方面,员工的压力得到缓解。它还提高了故障诊断的速度,保证了电力设备的平稳安全运行。 刘频 国网江西省电力有限公司吉安供电分公司江西吉安 343009 摘要:电力设备广泛应用于各行各业,发挥着重要作用。一旦电力设备出现故障,可能会对人们的日常生活和公司的正常运转产生不利影响。因此,对电力设备进行日常维护和故障诊断非常重要。传统的故障诊断大都是基于人体经验的判断,诊断效率较低。借助计算机技术和电子信息技术,实现电力设备的远程监控和自动检测。一方面,员工的压力得到缓解。它还提高了故障诊断的速度,保证了电力设备的平稳安全运行。 关键词:电力设备;远程监控;故障诊断;系统结构 设备老化、人为破坏、极端天气等,都是导致电力设备出现故障的常见因素。电力设备故障不仅会给电力企业带来一定的经济损失,严重情况下还会危及人们的生命安全,因此必须要做好严格的监管,实施必要的故障诊断,保障电力设备的运行安全。文章首先概述了电力设备远程监控与故障诊断系统(RMFDS)的设计思路和硬件组成,随后分别从现场监控、故障诊断、应用程序三方面对远程监控和故障诊断功能的实现进行了分析。 1 电力设备的远程监控与故障诊断系统的设计思路 在电力设备内安装传感器或在工地安装监控器以收集电力设备的运行数据。然后将数据输入到特殊的计算机操作软件中进行分析和处理,并处理数据库中的信息和信息。比较以检测电气设备中的潜在故障或潜在的安全危害。检测到故障信息后,计算机发出警告信息,管理人员可以迅速锁定电力设备的故障问题,并及时制定相应的解决问题的措施。RMFDS的应用优势在于可以在短时间内完成信息采集,数据传输,指令反馈等多种操作,提高了远程监控的实时性和灵活性,解决了大量的需求人力和物力资源对传统动力设备的监控。缺点。另外,大数据和云计算技术的使用也可以作为电力设备运行产生的数据信息的原始依据。它可以用于深入分析和使用,并最大限度地利用数据的价值。 2 RMFDS的硬件组成及功能 远程监控模块的硬件主要有摄像机、A/D转换器、报警解码器、计算机、云台等。其中摄像机安装在电力设备工作和运行的现场,全天候的检测电力设备的工作状况;摄像机与A/D转换器相连,摄像机采集到的视频信号经过A/D转换器的转换后,以二进制数据的形式发送到视频采集终端,然后经过一系列的运算和操作,实现对视频信息的分解。如果监测到电力设备的运行信息异常,则报警解码器联动报警输出设备,发出报警信号。早期的远程监控系统中,各个硬件之间采用有线连接,这种连接方式虽然能够保证系统之间的数据交互,但是稳定性较差,现阶段远程监控大多采用集成模块,不仅压缩了设备体积,而且极大地提升了系统的稳定性,保障了远程监控的稳定性。 RMFDS所实现的功能主要包括:一是数据的采集和处理功能,例如电力设备的运行状况、生产情况等,这是远程监控与故障诊断系统运行的基础资料;二是管理功能,系统可以将现有的数据、图像进行详细分析、故障诊断和险情预测,从而制定出相应的故障应急处理预案;三是控制功能,管理人员可以将控制指令及时发送到电力设备的各个控制端,实现信息的反馈。 3 电力设备中RMFDS的软件组成 除了硬件设备作为支撑外,为了实现系统的远程监控和故障诊断功能,还需要建立一个兼容性好,功能丰富,界面友好的软件系统。根据要实现的不同功能,RMFDS的软件部分可以分为三个模块,即现场监控,故障诊断和应用程序。 3.1远程故障诊断 传统的监控模式和故障诊断系统已经无法满足电力系统高科技发展要求,鉴于电力设备技术水平的不断提高,网络技术的广泛应用,可充分应用远程故障诊断系统对电力设备进行监控,不仅能够帮助新建大型关键电力设备更加完善,还可以时刻密切跟踪电力设备的运行情况,降低其故障率。目前我国常用的远程故障诊断是专家会诊网络群建。这个软件能够对电力系统的数据信息进行实时的检测和分析,并根据分析的实际情况对电力设备的运行情况提出优化建议。当电力设备的技术不断提高的时候,只需要完善和更新专家知识库的内容即可,减少了大量的人力资源和时间花费。 3.2 现场监控 现场监控的基础是PC端能够与PLC进行数据交换。在PLC方面,只需要根据系统功能的需要录入程序即可,因此重点要研究PC端的通信机制,以确保现场监控能够取得应用的效果。要合理选择PC端与PLC的连接形式,既要保证两者之间系统兼容,又要保证数据传输的稳定性。目前来说,主流的PC-PLC连接方式主要有两种:第一种是将PC端和PLC的网络串口进行一一对应连接,直接完成信息传输和指令控制,这种连接方式的优点在于操作简便,不会出现乱码,保证了通信质量;第二种是将PC端看作是一个网络交换站点,利用无线通信设备、交换机等,实现与PLC的数据传输。这种连接方式不需要在PC端和PLC之间布线,而且信息传输速率快。在具体选择连接方式时,需要结合电力设备监控和诊断的实际需要,综合分析两种连接方式的利弊,确保电力设备远程监控和故障诊断的实现。 3.3 Web服务器与应用程序服务器的软件设计 根据电力设备的运行情况设计专门的Web服务器与应用程序服务器软件,能够为数据的传输提供可靠、安全的网络环境,令PLC的底层控制系统安全性得到有效的保障,提高诊断系统的安全性和准确性。一般的Web服务器与应用程序服务器的软件设计主要包括Web服务器的软件和应用程序服务器的设计,前者主要适用于B/S结构的客户机,而后者大多适用于基于IIS的ASP动态网站。当设计工作完成后,可以提高电力设备故障诊断系统的灵活性,进行采集和缓存数据工作的时候,使其能够变得更加方便和简单,令浏览器界面的美观性也能够达到要求。此外,在客户机和服务器数据库查询的专用区域中设置数据交互,能够令查询标准和查询结果更容易被使用者理解。 4 RMFDS的技术问题和发展趋势 电力设备远程监控和故障诊断是依托于计算机和电子信息工程发展而来的一门新技术,它一方面能够借助于程序运行,实现了对电力

气相色谱仪常见故障及处理办法

气相色谱仪常见故障及处理办法 故障故障判断检查方法及修理 1.没有峰(1)放大器电源断开(2)没 有载气流过(3)记录器接触 不良(4)记录器故障(5) 进样温度太低,样品没有汽化 (6)微量注射器堵塞(7)进 样器硅橡胶漏(8)色谱柱连 接松开(9)无火(FID)(10) FID极化电压没接或接触不良 (1)检查放大器,保险丝(2) 检查载气流路,是否阻塞,或 气瓶中气源用完(3)检查记 录器接线(4)看仪器说明书, 排除记录器故障(5)增加进 样器温度(6)更换注射器(7) 更换硅橡胶(8)拧紧层柱析 (9)点火(10)接上极化电 压,或排除极化电压连接不良 现象 2.正常滞留时间而灵敏度下降(1)衰减太大(2)没足够样 品量(3)样品进样过程中的 损耗(4)注射器漏或者堵(5) 载气漏特别是进样器漏(6) 氢气和空气流量选择不当 (FID)(7)检测器没有高压 (FID ) (1)降低衰减(2)增加进样 量(3)进样过程中尽可能保 证样品全部进入系统(4)更 换注射器或通注射器(5)探 漏(6)调整氢气和空气流量 (7)检查或者装上高压电 3.拖尾峰(1)进样温度太低(2)进样 管污染(样品或者硅橡胶残留) (3)层析柱炉温太低(4)进 样技术过低(5)层析柱选择 不当(样品与柱担体或固定液 起反应) (1)重新调节进样器温度(2) 用溶剂清洗进样器管子(3) 增加层析柱温度(4)提高进 样技术,做到进针快、出针快 (5)重新选择适当色谱柱 4.伸舌峰(1)柱超地负荷,样品量太大 (2)样品凝集在系统中 1)降低进样量(2)先提高柱 温,再选择适当的进样器,色 谱柱,检测器温度 5.没分离峰(1)柱温太高(2)柱过短(3) 固定液流失(4)固定液或者 担体选择不正确(5)载气流 速太高(6)进样技术太差 (1)降低柱温(2)选择较长 色谱柱(3)更换层析柱或老 化色谱柱(4)选择适当色谱 柱(5)降低载气流速(6) 提高进样技术 6.圆顶峰(1)超过检测器线性范围(2) 记录器阻尼太大(1)降低样品量(2)重新调节记录器阻尼 7.平顶峰(1)放大器输入饱和离子化检 测器 (2)记录器传动装置零点位置 变化 (1)降低样品量 (2)检查记录器零点位置,或 者用其他记录对比使用 8.锯齿型基线(1)稳流阀膜片疲劳(2)载 气瓶压阀输出压力变化(1)换膜片或者修理阀(2)调节载气瓶减压阀的压力在另一位置

气路系统基本结构及工作原理

气路系统基本结构及工作原理

————————————————————————————————作者: ————————————————————————————————日期: ?

气路系统结构及工作原理 气压系统由空压机、干燥器、滤清器、自动排水器、防冻器及各类控制阀件组成,压缩空气经多级净化处理后,供底盘行驶及车上作业使用。 一.结构特点 气压系统主要由以下组成: ?压缩空气气源 ?动力系统控制气路 ?底盘气路 ?绞车气路 ?司钻控制 压缩空气气源整车共用,底盘气路和绞车气路均为相对独立管路,并相互锁定;分动箱的动力操作手柄在切换发动机动力时,同时切换压缩空气气源,钻机车在行驶状态接通底盘气路,钻修作业接通绞车气路。当二者其一管路接通压缩空气气源时,另外一路则被切断压缩空气气源,确保设备操作安全,减少气路管线泄漏。方框图如下:

二.压缩空气气源 1.空气压缩机,往复活塞结构,4缸V形排列;2台,分别安装在2台发动机右侧前 部,由曲轴端皮带轮驱动;强制水冷,润滑,冷却管线与发动机冷却水道相连,润滑管线与发动机润滑系统相连。 2.调压阀,安装在空气压缩机缸体侧部,调定控制气压系统空气压力,调定值0.8 ±0.05 MPa,当系统气体压力升高,达到调定值时,调压阀动作发出气动信号,分两路,一路信号接通两台空气压缩机卸荷阀,顶开各气缸进气阀门,空压机置空负荷运转状态,停止向气压系统供气;另一路信号接通两台干燥器排泄口,干燥器储气室内的干燥空气迅速反向流动流,吸附干燥剂层的水份,迅速排出干燥器体外,使其干燥剂再生。系统压力低于调定值,调压阀气信号消失,空压机卸荷阀复位,空压机重新进入正常工作状态,继续向系统供应压缩空气,同时,干燥器排泄口关闭,干燥器重新开始工作,吸附干燥系统压缩空气。 3.干燥器,吸附再生式结构,2台,各自连接在空气压缩机的输出气路处。内装干燥 剂,当湿空气流过时吸附水份,输出干燥空气。当系统压力达到调定值时,调压阀发生指令,打开干燥器排泄口,干燥器储气室内的干燥空气迅速反向流动流,经干燥剂层,吸附其中的水份,并排出干燥器,使其干燥剂再生。系统压力低于调定值,调压阀气信号消失,干燥器排泄口关闭,干燥器重新开始工作,吸附干燥系统压缩空气。干燥器排泄口装有电热塞,当气温低于0℃时自动将电源接通,加热排泄口,防止冰冻。 4.空气滤清器,旋风滤芯结构,压缩空气进入滤清器,在导流片的作用下飞速旋转, 离心力迫使较大的水滴和固体杂质抛向筒壁,集聚到下部排泄口;压缩空气再经滤芯过滤,进一步净化。 5.自动排水器,浮球结构,进水口与滤清器排泄口连接,当聚集的液面升高到设定位 置,将浮球抬起,打开排泄口,排除废液。 6.防冻器,吸管喷射结构,串联在压缩空气管道中,当气温低于4℃时,可向防冻器 内加注乙二醇或其他防冻剂,当空气进入防冻器喷射流动时,吸管口形成负压区,乙二醇经吸管混合在压缩空气射流中,充分雾化,降低管道中压缩空气的凝固点,防止管道冻裂和冰堵,确保设备冬季正常运行。 7.储气罐,椭圆封头圆柱形结构,安装在底盘大梁外测,配置安全阀,超压自动排

在线监测与故障诊断

河海大学物联网工程学院 在线监测与故障诊断 学习报告 授课班号 专业 学号 学生姓名 指导教师

目录 一:在线监测 1.1 相关概念 (3) 1.2 在线监测系统的构成 (4) 1.3 在线监测系统的分类 (5) 二:故障诊断 2.1 相关概念 (5) 2.2 故障诊断系统的分类 (6) 2.3 故障诊断技术的发展历程 (7) 2.4 常用的故障诊断算法 (7) 三:相关应用及其未来展望 (10)

一:在线监测 1.1 相关概念 1.1.1 状态监测 对运转中的设备整体或其零部件的技术状态进行检查鉴定,以判断其运转是否正常,有无异常与劣化征兆,或对异常情况进行追踪,预测其劣化趋势,确定其劣化及磨损程度等,这种活动就称为状态监测(Condition Monitoring)。状态检测的目的在于掌握设备发生故障之前的异常征兆与劣化信息,以便事前采取针对性措施控制和防止故障地发生,从而减少故障停机时间与停机损失,降低维修费用和提高设备有效利用率。 对于在使用状态下的设备进行不停机或在线监测,能够确切掌握设备的实际特性有助于判定需要修复或更换的零部件和元器件,充分利用设备和零件的潜力,避免过剩维修,节约维修费用,减少停机损失。特别是对自动线、程式、流水式生产线或复杂的关键设备来说,意义更为突出。 1.1.2 设备状态监测的分类 设备状态监测按其监测的对象和状态量划分,可分为两方面的监测: ①机器设备的状态监测。指监测设备的运行状态,如监测设备的振动、温度、油压、油 质劣化、泄漏等情况。 ②生产过程的状态监测。指监测由几个因素构成的生产过程的状态,如监测产品质量、 流量、成分、温度或工艺参数量等。 上述两方面的状态监测是相互关联的。例如生产过程发生异常,将会发现设备的异常或导致设备的故障;反之,往往由于设备运行状态发生异常,出现生产过程的异常。 设备状态监测按监测手段划分,可分为两类型的监测: ①主观型状态监测。即由设备维修或检测人员凭感官感觉和技术经验对设备的技术状态进行检查和判断。这是目前在设备状态监测中使用较为普及的一种监测方法。由于这种方法依靠的是人的主观感觉和经验、技能,要准确的做出判断难度较大,因此必须重视对检测维修人员进行技术培训,编制各种检查指导书,绘制不同状态比较图,以提高主观检测的可靠程度。

实验室气相色谱仪器的气路故障分析

实验室气相色谱仪器的气路故障分析 关键字:气相色谱仪器气路故障流量计 对于气路部分来说,按其容易发生的故障的现象可以分为三大类,流量调节故障;气路泄漏故障;气路堵塞与污染故障。 在气相色谱仪出现的各种故障中,有相当大的一部分都与气路有关,因此,了解和熟悉气路故障是十分必要的。 一、流量的调节1、流量调不上去(1)直观检查:首先检查仪器系统是否有明显的漏气声。在仪器系统气路有较大的泄漏发生时,很可能导致流量调不上去。如果听不到漏气声则转入(3)进行。(2)查漏:听到有漏气声之后,可依照声音发出的方向而逐步定位。此时可利用皂液的涂抹进一步确定漏气的发生处。找到原因后及时堵漏。(3)柱前压观察:观察柱前压指 示表的数值大小,可迅速判断是气源引起的故障,还是仪器内部气路堵塞及损伤造成的。如果是柱前压太低(精确地说是比正常流量操作时的预定压力值低),则说明气源需要检查;如果柱前压正常则需要检查仪器的内部气路。(4) 钢瓶高压检查:打开钢瓶阀后,观察高压表指示,压力应在1~15MPa之间。如果压力在1MPa以下,停用该钢瓶,换气;如压力值在合适的范围内,说明钢瓶压力正常。(5)减压阀上低压输出检查:调节减压阀看钢瓶上低压表指示能否调到0.25~0.6MPa之间。如果正常,可怀疑气路过滤接头有堵塞或者是仪器上的稳定阀有问题,此时应按照(6)来进行;如低压值不正常,则说明减压阀有问题,需进行(7)的修理。(6)过滤器堵塞及稳压阀检查:将 过滤器出口到仪器气源入口处的接头缓缓旋开,观察是否有较强的气流从接头处跑出。如有,则说明过滤器不堵塞,稳压阀可能有问题。在确定稳压阀不出气后,可进行阀拆卸与清洗,这可能是稳压阀内阀针与阀座间堵塞所致。如清洗后阀仍不能正常工作,最好换一个新阀;在上面试验中若无较强气流从旋开的接头中流出,需要检查过滤器入口前后可能堵塞之处;当然中间管线的堵塞也是可能的,但发生率甚小。(7)减压阀修理:在明了减压阀的结构之后,可拆卸修理减压阀。由于该减压阀入口一侧有高压,因此如无修理经验最

机械制造设备远程监控与故障诊断技术

机械制造设备远程监控与故障诊断技术 袁楚明,陈幼平,周祖德 摘要:概述了设备状态监控与故障诊断的发展过程和基于In ternet 的制造设备远程诊断技术研究现状;提出了制造设备远程监控与诊断系统的网络体系结构,介绍了远程诊断的基本原理与工作模式;讨论了实现远程监控与诊断的关键技术问题。 关键词:制造设备;远程监控与诊断;In tenet 收稿日期:1999-10-30 基金项目:高校博士点专项基金、湖北省自然科学基金资助项目 Abstract :In th is paper ,the develop ing p rocess of m on ito ring and disgno sis fo r m anufactu ring e 2qu i pm en t is review ed and the state of art of In ter 2net based rem o te m on ito ring and diagno sis is b riefly istroduced .T he netw o rk arch itectu re of re 2m o te m on ito ring and diagno sis is p resen ted ,and the p rinci p les and op erating m odels of rem o te diag 2no sis are discu ssed .Som e key techno logies fo r the realizati on are also p resen ted . Key words :m anufactu ring equ i pm en t ;rem o te m on ito ring and diagon sis ;in ternet 中图号分类:T P 277文献标识码:A 文章编号:1001-2257(2001)02-0054-0004 0 引言 设备状态监控与故障诊断作为现代先进制造技术与系统的一个重要环节,其研究已经取得了很大的进展。状态监控与故障诊断是一门涉及多学科的综合性学科问题,随着相关技术的发展,它大致经历了以下几个发展阶段: a .以多用户联机、 集中式控制为特征的单机监控与诊断系统,这是第一代监控与诊断系统。这时的监测与诊断系统主要是针对某一特定被监测的机器而设计的,它主要由1台计算机和1块或多块功能模板构成,信息的交换与处理仅限于监测与诊断系 统内部,因而是一种封闭式的系统。 b .以局域网络、集散化控制为特征的分布式监控与诊断系统。它主要是针对大型机电设备主机和 多辅助功能分布和地域分布的特点,通过工业局域网把分布于各个局部现场,独立完成特定功能的本地计算机互联起来,以实现资源共享、协同工作、分散监测和集中操作、管理与诊断功能的工业计算机网络系统,这是基于工业局域网的相对开放的系统,监控信息的处理在局域网内部进行。 c .进入90年代后期,随着计算机技术和信息技术的发展,特别信息高速公路的开通,监控与诊断已经步入发展的第三阶段——I N T ERN ET 阶段。基于I N T ERN ET 的远程监测与诊断是设备诊断技术和计算机网络技术的有机融合,是设备故障诊断技术发展的崭新阶段。它以若干台中心计算机作为服务器,在企业的重要关键设备上建立状态监测点,采集设备状态数据;在技术力量较强的科研机构建立远程诊断分析中心,为企业提供远程技术支持。企业的生产设备一旦出现异常,其状态监测服务器即向远程诊断中心服务器申请在线技术支持,同时以电子邮件的方式向有关专家发出离线会诊请求,在短时间内调动入网的所有资源,实现对设备故障的及时诊断与维修。 基于I N T ERN ET 的远程监测与诊断技术已引起国内外学者的广泛关注和重视,并投入了大量的人力、物力进行研究。如美国斯坦福大学和麻省理工学院合作开展“基于I N T ERN ET 的下一代远程诊断示范系统”的研究,该项工作得到了Boeing 、Fo rd 等10多家大公司的支持与合作,并很快建立了一个面向半导体制造设备的基于I N T ERN ET 的远程诊断原型系统。美国密执安大学也在进行机械加工的远程诊断与制造系统的研究工作。澳大利亚联邦科技与工业研究组织(CS I RO )将远程诊断纳入“智能制造系统计划——面向21世纪的全球制造”项目的重要研究内容之一,其应用对象直接面向CN C 平板切割机床。紧跟国际步伐,我国一些单位也已经开

白车身焊接夹具逻辑气路的故障分析

白车身焊接夹具逻辑气路的故障维修 在汽车制造行业中,白车身焊接夹具采用气动逻辑控制方式的应用很广泛.然而如果逻辑气路出现故障,将使夹具无法完成规定的动作,从而影响到生产,现在大多数维修人员都是依靠经验方法判断故障,但缺乏系统的理论分析,遇到较复杂的问题时,很难找到故障的真实原因,浪费了很多时间,走了很多弯路,还不一定能解决。当设备出现故障时,及时的排除故障是维修人员的职责,因此逻辑气路故障现象的正确分析,将是减少设备停台时间的关键因素。 现以一汽大众焊装车间奥迪C6 OP140工位焊接夹具为例介绍逻辑气路的故障分析方法。 了解焊接夹具的动作顺序 (图一)焊接夹具时序图 1、放入焊接工件 夹爪位置手动气缸(1.01R-1.02R)自动气缸(2.01R-2.06R)定位销气缸(3.01R-3.02R) 2、手动气缸夹紧

1.01V-1.02V)自动气缸( 2.01R-2.06R)定位销气缸( 3.01R-3.02R)3、按下双手按钮 1.01V-1.02V)自动气缸( 2.01V-2.06V)定位销气缸( 3.01R-3.02R) 进行焊接作业 4、再次按下双手按钮 1.01R-1.02R)自动气缸( 2.01R-2.06R)定位销气缸( 3.01V-3.02V) 取出焊接件 5、踩下足踏按钮 1.01R-1.02R)自动气缸( 2.01R-2.06R)定位销气缸( 3.01R-3.02R) 读懂逻辑气路图,弄清逻辑关系 如图二、图三、图四所示为逻辑控制柜外部气路 如图五、图六、图七所示基本上为逻辑控制柜部气路

(图二)

(图三)

(图四) (图五)

气相色谱日常维护

第一篇 气相色谱维修维护经验 要分析和判断色谱仪的故障所在,就必须要熟悉气相色谱的流程和气、电路这两大系统,特别是构成这两个系统部件的结构、功能。色谱仪的故障是多种多样的,而且某一故障产生的原因也是多方面的,必须采用部分检查的方法,即排除法,才可能缩小故障的范围。对于气路系统出的故障,不外乎是各种气体(特别是载气)有漏气的现象、气体不好、气体稳压稳流不好等等,气路产生的“鬼峰”和峰的丢失较为普遍。另外,色谱柱的“老化”过程没有充分或柱温过高,产生的“液相遗失”等“鬼峰”也会频频出现。所以,首先应该解决气路问题,若气路无问题,则看电路问题,色谱气路上的故障,分析工作者可以找出并排除,但要排除电路上的故障则并非易事,就需要分析工作者有一定的电子线路方面的知识,并且要弄清楚主机接线图和各系统的电原理图(尤其是接线图)。在这些图上清楚的画出了控制单元和被控对象间的关系,具体的标明了各接插件引线的编号和去向,按图去检查电路、找寻故障是非常方便的。色谱电路系统的故障,一般是温度控制系统的故障和检测放大系统的故障,当然不排除供给各系统的电源的故障。温控系统(包括柱温、检测器温控、进样器温控)的主回路由可控硅和加热丝所组成,可控硅导通角的变化,使加热功率变化,而使温度变化(恒定或不恒定)。而控制可控硅导通角变化的是辅回路(或称控温电路),包括铂电阻(热敏元件)和线性集成电路等等。 由上所述可知,若是温控系统的毛病,则应首先要检查可控硅是否坏,加热丝是否坏(断或短路),铂电阻是否坏(断或短路)或是否接触不良。其次检查辅回路的其它电子部件。。放大系统常见故障是离子讯号线受潮或断开、高阻开关(即灵敏度选择)受潮、集成运算放大器(如:AD515JH、OP07等)性能变差或坏等等。 色谱故障的排除既要做到局部又要考虑到整体,有“果”必有“因”,弄清线路的走向,逐步排除产生“果”(故障)的“因”,把故障范围缩小。例如:若出现基线不停的抖动或基线噪音很大时,可先将放大器的讯号输入线断开,观察基线情况,如果恢复正常,则说明故障不在放大器和处理机(或记录仪),而在气路部分或温度控制单元;反之,则说明故障发生在放大器、记录仪(或处理机)等单元上。这种部分排除的检查故障方法,在实际中是非常有用的。 第二篇 一、气相色谱故障分析基础 1、了解气相色谱的相关组成部分; 2、通晓气相色谱各部分的作用; 3、清楚气相色谱各部分是如何工作的; 4、能够清楚判别各部分工作的正常与否; 5、要严格按照有关规程检修,了解检修过程中应该注意的事项。 二、故障分析的思路 1、检修时应该注意的问题:要有安全用电常识,注重自我保护意识,防止触电事故的发生;

气路系统基本结构及工作原理16页

气路系统结构及工作原理 气压系统由空压机、干燥器、滤清器、自动排水器、防冻器及各类控制阀件组成,压缩空气经多级净化处理后,供底盘行驶及车上作业使用。 一.结构特点 气压系统主要由以下组成: ?压缩空气气源 ?动力系统控制气路 ?底盘气路 ?绞车气路 ?司钻控制 压缩空气气源整车共用,底盘气路和绞车气路均为相对独立管路,并相互锁定;分动箱的动力操作手柄在切换发动机动力时,同时切换压缩空气气源,钻机车在行驶状态接通底盘气路,钻修作业接通绞车气路。当二者其一管路接通压缩空气气源时,另外一路则被切断压缩空气气源,确保设备操作安全,减少气路管线泄漏。方框图如下: 二.压缩空气气源 1.空气压缩机,往复活塞结构,4缸V形排列;2台,分别安装在2台发动 机右侧前部,由曲轴端皮带轮驱动;强制水冷,润滑,冷却管线与发动机冷却水道相连,润滑管线与发动机润滑系统相连。 2.调压阀,安装在空气压缩机缸体侧部,调定控制气压系统空气压力,调定 值0.8±0.05 MPa,当系统气体压力升高,达到调定值时,调压阀动作发出气动信号,分两路,一路信号接通两台空气压缩机卸荷阀,顶开各气缸

进气阀门,空压机置空负荷运转状态,停止向气压系统供气;另一路信号接通两台干燥器排泄口,干燥器储气室内的干燥空气迅速反向流动流,吸附干燥剂层的水份,迅速排出干燥器体外,使其干燥剂再生。系统压力低于调定值,调压阀气信号消失,空压机卸荷阀复位,空压机重新进入正常工作状态,继续向系统供应压缩空气,同时,干燥器排泄口关闭,干燥器重新开始工作,吸附干燥系统压缩空气。 3.干燥器,吸附再生式结构,2台,各自连接在空气压缩机的输出气路处。 内装干燥剂,当湿空气流过时吸附水份,输出干燥空气。当系统压力达到调定值时,调压阀发生指令,打开干燥器排泄口,干燥器储气室内的干燥空气迅速反向流动流,经干燥剂层,吸附其中的水份,并排出干燥器,使其干燥剂再生。系统压力低于调定值,调压阀气信号消失,干燥器排泄口关闭,干燥器重新开始工作,吸附干燥系统压缩空气。干燥器排泄口装有电热塞,当气温低于0℃时自动将电源接通,加热排泄口,防止冰冻。4.空气滤清器,旋风滤芯结构,压缩空气进入滤清器,在导流片的作用下飞 速旋转,离心力迫使较大的水滴和固体杂质抛向筒壁,集聚到下部排泄口; 压缩空气再经滤芯过滤,进一步净化。 5.自动排水器,浮球结构,进水口与滤清器排泄口连接,当聚集的液面升高 到设定位置,将浮球抬起,打开排泄口,排除废液。 6.防冻器,吸管喷射结构,串联在压缩空气管道中,当气温低于4℃时,可 向防冻器内加注乙二醇或其他防冻剂,当空气进入防冻器喷射流动时,吸管口形成负压区,乙二醇经吸管混合在压缩空气射流中,充分雾化,降低管道中压缩空气的凝固点,防止管道冻裂和冰堵,确保设备冬季正常运行。

智能状态监测与故障诊断教程文件

智能状态监测与故障诊断 测控一班 高青春 20091398

第一章 绪论 在现代化的机械设备的生产和发展中,滚动轴承占很大的地位,同时它的故障诊断与监测技术也随着不断地发展,国内外学者对轴承的故障诊断做了大量的研究工作,各种方法与技巧不断产生、发展和完善,应用领域不断扩大,诊断精度也不断提高。时至今日,故障诊断技术己成为一门独立的跨学科的综合信息处理技术,它以可靠性理论、信息论、控制论、系统论为理论基础,以现代测试仪器和计算机为技术手段,总的来说,轴承故障诊断的发展经历了以下几个阶段:第一段:利用通用的频谱分析仪诊断轴承故障。第二阶段:利用冲击脉冲技术诊断轴承故障。第三阶段:利用共振解调技术诊断轴承故障。第四阶段:以计算机为中心的故障诊断。 国外的滚动轴承的故障诊断与监测技术要先于中国,而且这项技术的发展趋势啊已经趋向智能化状态,因为它机械化迅速,技术和设备都比较先进些,目前的技术也比较完善。但是总体来看,这其中的距离在不断拉近,我们相信不久的将来,中国也会使机械完善大国,也会完善和提高技术的精密度和准确度。【2】【3】

1.1轴承监测与故障诊断的意义 滚动轴承是机械各类旋转机械中最常用的通用零件部件之一,也是旋转机械易损件之一,在机械生产中的作用不可取代,据统计旋转机械的故障有30%是由轴承故障引起的,它的好坏对机器的工作状态影响极大,轴承的缺陷会导致机器剧烈振动和产生噪音,甚至会引起设备的损坏,因此,对重要用途的轴承进行状态监测与故障诊断是非常必要的【3】而且,可以生产系统的安全稳定运行和提高产品质量的重要手段和关键技术,在连续生产系统中,如果某台设备因故障而不能继续工作,往往会影响全厂的生产系正常统运行,从而会造成巨大的经济损失,甚至可能导致机毁人亡的严重后果。未达到设计寿命而出现故障的轴承没有被及时的发现,直到定期维修时才被拆下来报废,使得机器在轴承出现故障后和报废前这段时间内工作精度降低,或者未到维修时间就出现严重故障,导致整部机器陷于瘫痪状态。因此,进行滚动轴承工作状态及故障的早期检测与故障诊断,对于设备安全平稳运行具有重要的实际意义。【14】 1.2滚动轴承故障的分类: 滚动轴承的故障多种多样,有生产过程中产生的也有使用过程中后天造成一系列故障,其失效形式有: 1.2.1疲劳剥落: 指滚动体或滚道表剥落或脱皮在表面上,形成不规则 凹坑等甚至会一定深度下形成能裂纹,继扩展到接触表面发生剥落坑,最后大面积剥落,造成失效。【12】

远程控制与故障诊断系统

一、装车站系统一般都放置在广阔的偏远矿区运行。大部分装车站系统都有自 身的就地数据监事和监控系统,用来显示当前装车的实时工作状态数据,以及最新数据查询。但是作为矿区管理者来说,读取装车系统的工作数据,了解最新的装车站的工作状态是很不方便的,也是很不现实的。在这种情 况下,我们提出研制装车站远程故障诊断与控制系统的问题。近几年来,随着自动化功能的完善改进,其系统整体功能的增强势在必行。装车站远 程故障诊断与控制系统不仅能够实时查看当前装车站的实时工作数据,而 且还能进行历史查询。监控系统实时检测报警和运行情况,这样能够及时 处理报警故障,更好的维护装车系统高效安全可靠的运作,增加系统使用 寿命。目前市场上产品的监控大部分还是以现场监控为主,远程无线网络 监控应用才刚刚起步发展。远程无线网络监控系统是利用现有的网络通信 技术将终端数据传输到远程的上位机监控系统。现场监控设备将采集的数 据发送到无线网络中,无线网络根据网络通信协议将指定发送的数据发送 到监控中心接收端服务器。随着4G(e)和物联网时代的到来,Internet的 发展为各行各业带来了全新的理念,把远程控制的概念提高到了一个新的 层次,已经把生产企业、科研机构、设备供应商三者更加紧密地结合在一 起。软件集成的友好人机交互界面,远程基于WEB的监控界面对整个系统 的运行情况实时的显示出来,用户可以在任何一台电脑上登录指定的网址,监控装车站的运行情况。因此客户可查询指定时间范围内的运行参数信息。 集控远程故障诊断与控制系统的研究,使公司通过Internet为用户企业 提供远程咨询、诊断和维修,培训企业的员工,实现“移动的是数据而不 是人”,从而节约出差维护成本,并提高了维修服务质量以及客户满意度。 二、主要创新点: 1、HTML(c)结合 JS (d)开发实现 Web 监控界面。 2、基于RS View32的现场监控系统,把现场PLC与现场 PC机连接实现PLC下位机和现场上位机的相互通信。 3、基于VC++的现场报表系统可实现与远程监控数据库的信息共享。 4、现场终端实时通过 GPRS 传输数据到远程监控中心,通信稳定高效。 5、采用流行 ADO(f)数据库访问技术将有效数据存储到对应的数据库表中,并且

气相色谱仪常见故障分析及处理

气相色谱仪常见故障分析及处理 在使用气相色谱仪的过程中,难免会碰到各种各样的故障,本文从气路系统、检测系统、温控系统等几个方面介绍了色谱仪的常见故障排除方法,供从事气相色谱仪维修和使用的人员参考。 近年来,气相色谱分析仪以其分离效能高,分析速度快,样品用量少,可进行多组分测量等优点广泛应用于石油化工行业中,在化工分析中占有十分重要的地位。但是,由于工作人员维护不到位,样品预处理系统的不完善以及仪器本身有缺陷等原因,造成仪表在使用过程中出现各种故障,从而影响了正常的生产秩序。因此,能够及时准确地分析排除故障非常重要。 气相色谱仪的构成及工作原理 一般气相色谱仪是由六个基本系统组成,即:载气系统,进样系统,分离系统,温控系统,检测系统及记录系统。 气相色谱仪利用物理分离技术,对多个组分在色谱柱中进行分离,分离后进入检测器中进行检测。为了避免工艺介质中含有对色谱柱有害的组分或不需检测的某些成分以及为了缩短分析周期,色谱仪常常配合柱切技术将不需检测的组分切除掉,然后由微处理器根据进入检测器的组分产生的信号大小自动计算出组分含量值。 气相色谱仪的常见故障及排除方法 3.1气路系统故障 气相色谱仪的气路系统,是一个载气连续运行、管路密闭的系统。气路系统的气密性、载气流速的稳定性以及流量的准确性都会对气相色谱检测结果产生影响。 气路系统故障主要表现为流量不能稳定地调节到预定值,分析其可能原因为:(1) 气路系统有漏气或堵塞;(2)减压阀或稳压阀故障;(3)气源压力不足或波动;(4)流量控制阀件被污染或损坏。 针对以上各种原因处理方法如下: 在气路中按照气体走向顺序查到具体故障发生位置进行消漏或清堵。 更换减压阀或稳压阀。 调整气源压力至合适范围内,并有稳定的输出。 清洗阀件,必要时更换。 3.2 检测器故障 热导检测器(TCD) 热导检测器是利用被测气体与载气间及被测气体各组分间热导率的差别,使测量电桥产生不平衡电压,从而测出组分浓度。 又热导检测器的常见故障:a.桥电流不能调到预定值此种故障产生的原因:(1)热导单元连线没接对;(2)热丝断开或引线开路;(3)桥路稳压电源有故障;(4)桥路配置电路断开;(5) 电流表有故障。 检测器基线不能调零故障产生原因:(1)热丝阻值不对称或引线接错;(2)热丝碰壁或污染严重;(3)调零电位器引线开路;(4)记录仪开路或无反应; (5)测量气路与参比气路流量相差太大。3.2.2氢火焰离子化检测器(FID) 氢火焰离子化检测器是根据含碳有机物在氢火焰中燃烧产生碎片离子,在电场作用下形成离子流,根据离子流产生的电信号强度,检测被色谱柱分离的组分。氢火焰离子化检测器常见故障 检测器点不着火 故障产生原因:(1)检测器点火线圈断线;(2)气路中氢气、空气和载气的流量配比不当;(3)极化电压不稳;(4)喷嘴堵塞。解决办法: 更换点火线圈 重新调节氢气、空气和载气的流量 配比。 提供稳定的电压源,并排除接线故

状态监测与故障诊断的基本图谱

状态监测与故障诊断的基本图谱 一、常规图谱 常规图谱又称稳态图谱,是在转速相对稳定、没有大幅度变化情况下的有关图谱,因此其不含开停车信息。 1. 机组总貌图 机组总貌图显示了机组的总貌,可了解机型、转子支撑方式、轴承位置、运行转速等,主要是查看探头的位置及位号。 2. 单值棒图 较为形象、直观地显示实时振动值,并可知低报、高报报警值及转速。 3. 多值棒图 多值棒图显示实时通频值及各主要振动分量的振动值,可大致了解机组运行是否正常。 正常运转状态下的多值棒图通常是:一倍频最大、且与通频相差不大,二倍频小于一倍频的一半,0.5倍频微量或无,可选频段很小,残余量不大。 其中: (1)通频值~即总振动值,为各频率振动分量相互矢量迭加后的总和。 (2)一倍频~为转子实际运行转速n下的频率f,又称工频、基频、转频, f = n/60 [Hz];转子动不平衡及轴弯曲、轴承不良(偏心)、热态对中不良、支承刚度异常、在临界转速区运行、电机气隙偏心等,都会引起一倍频振动分量的增大,发生概率依次降低。 (3)二倍频~二倍工频,转子热态不对中、裂纹、松动、水平方向上支承刚度过差等,都会引起二倍频振动分量增大,绝大多数是轴系不对中。 (4)0.5倍频~0.5倍工频,又称半频,油膜涡动会引起该频率段增大,轴承工作不良也会引起该段频率增大;旋转失速、摩擦也都有可能。 (5)可选频段~由用户根据机组常见故障自己定义的频段,一般可选择(0.4~0 .6)倍工频或(0.3~0 .8)倍工频,用来监测是否发生亚异步振动,如油膜涡动、旋转失速、密封流体激振、进汽(气)脉动、摩擦、松动等。主要是轴承因紧力、接触、摇摆、油档及油温等问题引起的油膜失稳、摩擦、旋转失速、进汽脉动。 (6)残余量~除上述频率成分外,剩余频率成分振动分量的总和,该部分振值高时,转子有可能发生摩擦、高频气流脉动等。 4. 波形图 波形图显示了振动位移与时间的关系,又称幅值时域图。 波形图显示了振幅、周期(即频率)、相位,特别是波形的形状和状态。 图中:① 振幅为正峰与负峰之间的位移量,比较各周期对应的峰高,即可知振幅值是否稳定;② 二个亮点之间为一个旋转周期,波形图的周期数可以选取,想了解波形重复性

远程控制与故障诊断系统

远程控制与故障诊断系统

含丰富的故障信息,如何找到这种故障的特性描述,并利用它进行故障检测,分离就是故障诊断的任务。智能化的故障检测诊断,能综合运用自控系统可靠性分析技术、故障检测诊断技术和人工智能知识推理判断的技术去解决原来只有少数专家在拥有较为完善的信息的前提下才能解决的故障检测诊断工作。 集控远程故障诊断与控制系统可以实现自动控制系统的智能故障自诊断、远程处理以及自恢复功能、实现全公司自动化信息互通互联和资源共享功能,构造公司生产经营管理的神经中枢,为实现“数字化管理”奠定坚实的基础。(一)系统组成 1、前端(设备端) 如图1所示,前端的各类设备,通过相应数据采集设备(如PLC)的接口与工业级4G路由器的对应接口进行连接,通过在路由器中将分配给PLC的IP做好相应端口映射配置后,PLC设备就被推送到了公网上。 2、中心端(厂商、供应商的监控服务中心) 如图1所示,当工业级4G路由器与中心端成功建立连接后,处于中心端的维护人员,即可随时登录每台故障设备进行诊断与维护操作。 (二)系统连网方式 1、普通直连方式; 2、VPN连网方式(a); 3、VPDN连网方式(b); 四、经济效益及社会效益: 1.采用集控远程故障诊断与控制系统,减少我公司现场设备服务维护人员20人,降低生产维护成本,提高劳动效率,节省了紧急情况下的故障处理时间,提高用户生产管理的安全稳定性。不但满足了用户的要求,而且巩固和开拓了产品市场。 2、该系统对于非煤市场的可持续发展和增加社会和经济效益有着重要意义。该远程故障诊断与远程监控系统可延伸至整个矿区管理层次,使用方便、覆盖面大、应用范围广,系统扩展性好、可靠性高,安全性能可靠。 3、软件能及时准确地把握客户整个公司的生产运行状况,成功捕获故障隐患,实时分析、诊断,利于迅速做出维修计划。对迅速提高公司整体维护水平、降低故障率、保障生产线的顺行具有极为重要的战略意义和极高的实际应用价值,

GC7900气相色谱仪故障处理分析

GC7900气相色谱仪故障处理分析 摘要:GC7900型气相色谱仪在日常工作使用中出现的故障包括:色谱电路故障 和气路故障,电路故障是温度控制系统故障和检测放大系统故障;气路故障是气 路纯度不够,气体稳压稳流不好,漏气现象。本文就以上故障进行了分析和处理。 关键词:气相色谱仪故障分析处理 引言 GC7900型气相色谱仪是分别配有热导池氢火焰检测器,其特点温度梯度小、 控温稳定、分离效果好。仪器可根据试样的实际情况,可接填充柱,也可接毛细 管柱。本文以氢火焰检测器为例,就以下故障进行分析处理。 1电路故障分析与处理 1.1温度控制异常 温度控制原理是由感温元件(铂电阻)产生的热敏电阻信号传递给温控电路 中的集成放大器,放大器将电阻信号变成电压信号转变后实现模数转换,即A/D 转换,送给微处理放大器CPU进行计算,最后由可控硅的导通角改变而精确控温,可控硅铂电阻元件可用万用表测量好坏。温度异常表现为两种形态,一种是不能 升温,一种是温度不稳定。温控系统电路故障,一般就GC7900型气相色谱仪而言,常见是铂电阻断、短路和可控硅元件损坏,辅助回路电路元件故障。 (1)找出温度异常检测室、汽化室、柱箱。首先测量其铂电阻的好坏,再检测各加热丝是否损坏。 (2)用万用表电压档测量选定的加热部份后加热元件两端的电压值,若无200-220V电压为温度控制电路故障,若有电压时,关闭电源测量各加热元件电阻值,柱箱电阻为26Ω,气化室、检测室为340Ω,若测量电阻偏大,则加热件损坏。 1.2进样不出峰 1.2.1常规中FID检测器不出峰的维护 首先判定仪器的电路是否有故障,将仪器控制面板中的粗调电位器(10K阻 值的)做任意方向的调节,如果在记录仪上有发生基线变动的情况,证明仪器的 电路放大部份基本正常。 1.2.2微电流放大器损坏 微电流放大器接入的信号是由FID检测器在高压电极电离后产生的微弱信号源,损坏后表现为电平在0-1800mv之间不断地跳动,判定FID微电流放大器好 坏方法是: (1)有输入信号(用万用表红表笔触碰信号收集器),但无输出,放大器损坏。 (2)有输入也有输出信号,微电流放大器运行正常。 (3)微电流放大器常见故障是检测室极化电极损坏(用万用表测量无240V 直流电压),集成电路AD549JH损坏。 1.2.3微电流放大器产生的基线波动 放大器自激检查,发现基线呈有规律的往复摆动时,即可判定放大内部自激,此时应降低直流稳压电源的内阻值用一个容量为47μF的电容,并连在电源输出 和地之间即可消除噪声。 2气路故障分析与处理 2.1点不着火 遇到火点不着:一般情况下首先判定仪器FID检测器的喷嘴是否堵塞。如没

气相色谱仪期间核查规程

气相色谱仪期间核查作业指导书 1 编制目的 在气相色谱仪两次检定/ 校准之间,进行期间核查,验证该设备是否保持检定/ 校准时的状态,确保其检验结果的准确性和有效性。 2 适用范围 适用于本实验室所使用的GC2014C气相色谱仪(FID)的期间核查。 3 核查内容 一般检查、基线噪声、检测限、定量重复性。 4 标准物质 异辛烷—正十六烷标准溶液,浓度:100ng/ μL 5 核查依据 5.1 JJG 700-1999 《气相色谱仪检定规程》; 5.2 气相色谱使用说明书。 6 核查条件 表 1 检测器 FID 检定条件 柱箱温度(℃)160 汽化室温度(℃)230 检测器温度(℃)230 所用标准物质异辛烷—正十六烷 7 核查方法 7.1 一般检查 7.1.1 仪器应有下列标志:仪器名称、型号、制造厂名、出厂日期和出厂编号,国 内制造的仪器应标注制造计量器具许可证标志。 7.1.2 在正常操作条件下,用肥皂液检查气源至仪器所有气体管路的接头,应无泄 漏。 7.1.3 仪器的各调节旋钮、按键、开关、指示灯工作正常。

7.2 基线噪声和基线漂移 按 表 1 设 置色 谱 核查条件,待基线稳定后,调 节输示图,待 基线稳定后,记录基线半小时。测量并计算基线噪音和基线漂移。 7.3 定量重复性 按 表 1 设置色谱核查条件,待基线稳定后,用入 异辛烷 —正十六 烷 标准溶样1μ样6 次,以溶质峰面积测量的相对差 RSD 表 示。按下 面公式计算相对差RSD : n RSD= ( ) /( 1) 1 100 2 x x n i x i 1 7.4 FID 检测器检测限 将 7.3 中得到的色谱图积分处理,记录标准物质峰面积。按下面公式计算检测 限。 式中: D ——检测限(g /s ); D FID 2NW A N 基线A ); W ——标准物 (g) ; A ——标准物质峰面积; F C ——校正后的载(mL/min) 。 8 评定 气相 色谱仪期 间核查的 合表 2 中的要求,视为期间核以 正常使用。 表 2 气相色谱期间核查主要标 检测器 FID 技术指标 基线噪音 ≤ 1.0 ×10 -12 A 基线漂移(30min ) ≤ 1.0 ×10 -11 A 检测限 ≤ 5.0 ×10 -10g/s 定量重复性 ≤ 3% 9 核查周期 在 仪 器 设 备 两 次 检 定 之 间12 个月核查一次。

相关文档
最新文档