用matlab绘制汽车功率平衡图

用matlab绘制汽车功率平衡图
用matlab绘制汽车功率平衡图

用matlab绘制汽车功率平衡图

n=600:10:4000;

Tq=-19.313+295.27*(n/1000)-165.44*(n/1000).^2+40.874*(n/1000).^3-3.8445 *(n/1000).^4;

m=3880;g=9.8;

nmin=600;nmax=4000;

G=m*g;

ig=[5.56 2.769 1.644 1.00 0.793];

nT=0.85;r=0.367;

f=0.013;CDA=2.77;i0=5.83;

L=3.2;a=1.947;hg=0.9;

If=0.218;Iw1=1.798;Iw2=3.598;

ua1=0.377*r*n/ig(1)/i0;

ua2=0.377*r*n/ig(2)/i0;

ua3=0.377*r*n/ig(3)/i0;

ua4=0.377*r*n/ig(4)/i0;

ua5=0.377*r*n/ig(5)/i0;

Ft1=Tq*ig(1)*i0*nT/r;

Ft2=Tq*ig(2)*i0*nT/r;

Ft3=Tq*ig(3)*i0*nT/r;

Ft4=Tq*ig(4)*i0*nT/r;

Ft5=Tq*ig(5)*i0*nT/r;

Pe1=Ft1.*ua1/3600;

Pe2=Ft2.*ua2/3600;

Pe3=Ft3.*ua3/3600;

Pe4=Ft4.*ua4/3600;

Pe5=Ft5.*ua5/3600;

ua=0:5:120;

Pf=G*f.*ua/3600;

Pw=CDA.*ua.^3/76140;

Pz=(Pf+Pw)/nT;

Pe=max(Pe1);

plot(ua1,Pe1,ua2,Pe2,ua3,Pe3,ua4,Pe4,ua5,Pe5,ua,Pz,ua,Pe);

title('汽车功率平衡图');

xlabel('ua/(km*h^-1)');

ylabel('Pe/kw');

gtext('¢?'),gtext('¢ò'),gtext('¢ó'),gtext('¢?'),gtext('¢?'),gtext('(Pf+ Pw)/nT'),gtext('Pe');

整车电量平衡计算

谈汽车电平衡的设计计算及验证方法 随着汽车电子电器技术的迅速发展,电器功能日益增多且复杂,对车辆舒适、智能和安全可靠性等要求的提高,整车电平衡的设计及验证尤显重要。整车电平衡是指发电机、蓄电池、整车用电器在一定时间内的电能产生与消耗达到稳定的一种平衡状态,是重要的整车性能指标。它体现了发电机的输出能力与整车用电需求的匹配关系,而不同的整车性能目标定义,对整车电平衡的性能要求也是不同的,所以需要有合适的汽车电平衡设计计算和验证方法。 本文主要结合试验数据,分析改进电平衡的设计计算方法;重点结合整车电平衡试验做出动态特性曲线,对电平衡理论计算结果进行验证。 1 汽车电平衡的设计方法 汽车电平衡的设计需要考虑发动机参数、整车用电器功率和使用频度等,图1为电平衡设计示意图,描述了电平衡关键零部件选型顺序和各关键零部件的影响因素。 2 关键零部件的计算选型 2.1起动机的选型 起动机的作用是起动发动机,一般需要起动机以大电流工作2~5s。发动机的起动特性决定了起动机的性能参数,发动机的起动特性参数包括起动转矩和起动转速。设定试验测定极限低温工况下的起动转矩为M0,起动转速为n0,由M0和n0可得出起动需求功率P0=M0×n0×2π/60。 根据传动比i和齿轮的啮合效率η(η通常为0.9),可计算出发动机起动过程中起动机的输出参数:转矩M1=M0/i,转速n1=n0×i,功率P1=P0/η。 起动机的输出功率会随温度而变化,再根据起动机温度系数修正出常温下起动机输出的转矩和功率,即可完成起动机的参数选择。

蓄电池最主要的作用是起动发动机,故其选型应先分析起动机(或发动机)的特性。蓄电池的低温起动电流应大于起动机输出特性曲线图上功率最大点对应的起动电流,以确保实现起动发动机,同时小于功率曲线与力矩曲线交点处对应的电流,在符合条件的蓄电池中选择容量较大者以增加起动发动机的可靠性。依此原则选择的蓄电池,不会因蓄电池容量选择过大出现浪费及蓄电池体积增大而影响整车 的装配空间及质量。 车辆在长途运输或长时停放后应能起动发动机,所以在蓄电池选型时,需考虑整车静态电流的验证。整车静态电流计算公式为I静=C20×(90%-65%-1‰×T)/(T×24)(1)式中:I静———整车静态电流;90%———下线时,蓄电池的实际容量与额定容量的百分比;65%———确保车辆正常起动的蓄电池最低实际电量与额定电量的百分比;1‰———蓄电池1天的自损耗率;T———储运时间;C20———蓄电池的20h率额定容量,Ah。最后,根据蓄电池的布置位置、车辆销售区域及主要用途等,微调蓄电池的参数。以奇瑞公司某在研车型M为例,根据发动机起动转矩和起动转速选择了1.3kW起动机。该起动机输出特性曲线如图2所示。 根据蓄电池选型方法,结合图2,选择蓄电池放电电流应为260~500A,符合条件的蓄电池容量为45Ah(冷起动电流为425A)和60Ah(冷起动电流为480A),可初选蓄电池的容量为60Ah。根据式(1)可知,若储运时间要求为45天,蓄电池容量为60Ah,得:I静=11.4mA,故整车静态电流须小于11.4mA。

汽车理论图形MATLAB程序

功率平衡图 m=1230;g=9.8; ig=[3.615 2.053 1.393 1.031 0.837]; i0=3.75; r=0.31;yt=0.9;f=0.017;CD=0.31;A=2.2; np=6000;Pemax=83; %绘制汽车驱动力与行驶阻力平衡图 for i=1:56; n=500:100:6000; Pe(i)=Pemax*(n(i)/np+(n(i)/np)^2-(n(i)/np)^3); Tq(i)=9549*Pe(i)/n(i); end for j=1:5 for i=1:56 Ft(i,j)=Tq(i)*ig(j)*i0*yt/r; ua(i,j)=0.377*r*n(i)/(ig(j)*i0); Fz(i,j)=m*g*f+CD*A*(ua(i,j)^2)/21.15; end end figure plot(ua,Ft,ua,Fz); title('汽车驱动力与行驶阻力平衡图'); xlabel('ua(km/h)'); ylabel('Ft(N)'); text(20,6700,'Ft1'); text(40,4000,'Ft2'); text(50,2800,'Ft3'); text(80,2000,'Ft4'); text(100,1600, 'Ft5'); text(100,800,'Ff+Fw'); for k=1:56; n=500:100:6000; Pe(k)=Pemax*(n(k)/np+(n(k)/np)^2-(n(k)/np)^3); Tq(k)=9549*Pe(k)/n(k); Ft(k)=Tq(k)*ig(4)*i0*yt/r; ua(k)=0.377*r*n(k)/(ig(4)*i0); Fz(k)=m*g*f+CD*A*(ua(k)^2)/21.15; E(k)=abs((Ft(k)-Fz(k))); end [Emin,kmin]=min(E); Umax=ua(kmin)

基于MATLAB的汽车平顺性的建模与仿真

(1) 基于MATLAB 的汽车平顺性的建模与仿真 车辆工程专硕1601 Z1604050 晨 1. 数学建模过程 1.1建立系统微分方程 如下图所示,为车身与车轮二自由度振动系统模型: 图中,m2为悬挂质量(车身质量);m1为非悬挂质量(车轮质量);K 为弹簧刚度;C 为减振器阻尼系数;Kt 为轮胎刚度;z1为车轮垂直位移;z2为车身垂直位移;q 为路面不平度。 车轮与车身垂直位移坐标为z1、z2,坐标原点选在各自的平衡位置,其运动方程为: 222121 ()()0m z C z z K z z +-+-=1112121()()()0t m z C z z K z z K z q +-+-+-=

(2) (3) (4) (5) (6) 1.2双质量系统的传递特性 先求双质量系统的频率响应函数,将有关各复振幅代入,得: 令: 232t A m j C K K ωω=-+++ 由式(2)得z 2-z 1的频率响应函数: 将式(4)代入式(3)得z 1-q 的频率响应函数: 式中: 下面综合分析车身与车轮双质量系统的传递特性。车身位移z 2对路面位移q 的频率响应函数,由式(4)及(5)两个环节的频率响应函数相乘得到: 2221()() z m j C K z j C K ωωω-++=+2111()()t t z m j C K K z j C K qK ωωω-+++=++1A j C K ω=+K C j m A ++-=ωω222212 122 z A j C K z m K j C A ωωω+==-++2321 N A A A =-212211=t t A K A K z z z A q z q A N N ==

汽车功率半导体行业深度报告

汽车功率半导体行业深度报告

报告综述: 汽车功率半导体5年近7倍空间,IGBT最受益 政策支持、节能减排双重驱动,新能源汽车加速渗透,预计 2025 年国内新能源汽车渗透率将达到 20%,2030 年欧盟新能源汽车渗透率将达到 40%。汽车电动化趋势下车用功率半导体单车价值大幅提升。据英飞凌统计,功率半导体 ASP 将从传统燃油车的 71 美元大幅提升至全插混/纯电汽车的 330 美元,是传统燃油车的 4.6 倍。根据我们的测算,预计2025 年全球汽车功率半导体市场规模将达到 80 亿美元,2025 年全球新能源车用功率半导体市场规模将达到 53 亿美元,是 2020 年的 7.3 倍,年复合增速高达 48.8%,未来十年中美欧三地区新能源汽车充电桩用 IGBT 市场将有 94 亿美元增量空间。目前车用功率半导体中主要用到的是 IGBT 和 MOSFET,而 IGBT 在新能源车中是电驱系统主逆变器的核心器件,并可用于辅逆变电路、DC/DC 直流斩波电路、OBC(充电/逆变)等,单车价值达到 273 美元,占车用功率半导体 ASP 的 83%,是绝对大头。我们预计 2025 年全球新能源汽车 IGBT 市场规模将达到 44 亿美元,年复合增速约 48.8%,是电动化趋势下的汽车功率半导体中最受益品种。 产品、工艺、先发优势三大壁垒构筑强护城河 1)产品壁垒:车规级 IGBT 需具备使用寿命长、故障率低、抗震性高等严格要求,能适应“极热”“极冷”的高低温工况、粉尘、盐碱等恶劣的工况环境,承受频繁启停带来的电流频繁变化,对产品要求极高。2)工艺壁垒:车规级 IGBT 设计时需保证开通关断、抗短路和导通压降三者的平衡,参数优化特殊复杂。生产制造时薄片工艺容易碎裂、正面金属熔点限制导致退火温度控制难度大。此外,IGBT 模块封装的焊接和键合环节技术要求同样较高。3)认证周期长、替换成本高、具备经验曲线效应,行业先发优势明显。 a)车规级IGBT 需满足可靠性标准、质量管理标准、功能安全标准,才有资格进入一级汽车厂商的供应链,认证周期一般至少 2 年。b)由于 IGBT 模块是汽车中的关键部件,下游厂商出于安全性、可靠性的考虑,替换时往往呈谨慎态度,只有经过大量验证测试并通过综合评定后,才会做出大批量采购决策,替换成本高。c)IGBT 业务需要长期的经验积累才能达到良好的 know-how 水平。d)IGBT 行业属于资本密集型行业,生产、测试设备基本需要进口。此外,对 IGBT 生产企业的流动资金需求量也较大,新进入者在前期往往面临投入大、产出少的情况,需要较强的资金实力作后盾,才能持续进行产品的研发、生产和销售。综合来看,IGBT 行业中的先行企业具有明显的先发优势。 竞争格局优成为成长行业“优质赛道”,但当前国产化率仍然较低 据 Omdia 2019 年统计数据,全球 IGBT 模块前十大厂商占据了 76%份额,市场份额集

汽车理论课后习题Matlab程序

1.3确定一轻型货车的动力性能(货车可装用 4挡或5挡变速器,任选 其中的一种进行整车性能计算): 1) 绘制汽车驱动力与行驶阻力平衡图。 2) 求汽车最高车速,最大爬坡度及克服该坡度时相应的附着率。 3) 绘制汽车行驶加速度倒数曲线,用图解积分法求汽车用 2档起步加速行 驶至70km/h 的车速一时间曲线,或者用计算机求汽车用 2档起步加速行驶至 70km/h 的加速时间。 轻型货车的有关数据: 汽油发动机使用外特性的Tq-n 曲线的拟合公式为 19.313 295.27(孟o )165,44(^)2 40-874(^)3 环45為4 式中,Tq 为发动机转矩(N?m ) ;n 为发动机转速(r/min )。 发动 机的最低转速n min =600r/min,最高转速n max =4000r/min 。 装载质量 2000kg 整车整备质量 1800kg 总质量 3880kg 车轮半径 0.367m 传动系机械效率 n =0.85 滚动阻力系数 f=0.013 空气阻力系数泌风面积 C D A=2.77m 2 解:Matlab 程序: (1) 求汽车驱动力与行驶阻力平衡图和汽车最高车速程序: n=[600:10:4000]; Tq=-19.313+295.27*( n/1000)-165.44*(门/1000)八2+40.874*(门/1000)八3-3.8445*( n/10 00).A 4; m=3880;g=9.8; nmi n=600; nm ax=4000; G=m*g; ig=[5.56 2.769 1.644 1.00 0.793]; nT=0.85;r=0.367;f=0.013;CDA=2.77;i0=5.83; L=3.2;a=1.947;hg=0.9;lf=0.218;lw1= 1.798;Iw2=3.598; Ft 仁 Tq*ig(1)*i0* nT/r; Ft2=Tq*ig(2)*i0* nT/r; 主减速器传动比 飞轮转动惯量 二前轮转动惯量 四后轮转动惯量 i 0=5.83 l f =0.218kg?m I w1=1.798kg?nf I w2=3.598kg?m ig(数据如下表) 轴距 质心至前轴距离(满载) 质心高(满载) a=1.974m hg=0.9m

基于MATLAB的汽车振动控制仿真

摘要 机械振动主要是谐波,阻尼,强制三种。对于三个振动模型,列出了振动方程,然后给出了三个振动的初始条件。在模拟过程中产生的一系列速度和汽车行驶时候产生的振动,势能和机械能的三个功能可以通过MATLAB函数模拟,以随时间改变图像。然后,我们可以经过一系列的计算的出我们需要的函数方程和一些弹簧模拟图像,在后面可以进行一系列的导数计算,在MATLAB软件中可以画出不同的位移,汽车造成的损坏的函数图像,再通过在MATLAB的绘制,可以简单明细的看出汽车振动的能量变化。最后再比较不同的图像,可以得出不同的结果,可以进行汽车改良。就可以探索出最佳的方法来研究汽仿真。 关键词:简谐振动阻尼振动评价系数仿真软件。

Abstract Mechanical vibration is mainly harmonic, damping, forced three. For the three vibration models, the vibration equations are listed, and then the initial conditions for the three vibrations are given. The three functions produced during the simulation process and the three functions of vibration, potential energy and mechanical energy generated when the vehicle travels can be simulated by MATLAB functions to change the image over time. Then we can go through a series of calculations out of the functional equations we need and some of the spring simulations of the image, which can be followed by a series of derivative calculations that can be plotted in the MATLAB software for different displacements, , And then through the drawing in MATLAB, you can simply see the details of the car vibration energy changes. Finally compare the different images, you can get different results, you can improve the car. You can explore the best way to study the steam simulation. Keywords:simple harmonic oscillationdamping oscillationappraisement coefficientsimulation software.

汽车理论课后习题Matlab程序

1.3 确定一轻型货车的动力性能(货车可装用4挡或5挡变速器,任选 其中的一种进行整车性能计算): 1)绘制汽车驱动力与行驶阻力平衡图。 2)求汽车最高车速,最大爬坡度及克服该坡度时相应的附着率。 3)绘制汽车行驶加速度倒数曲线,用图解积分法求汽车用2档起步加速行驶至70km/h 的车速-时间曲线,或者用计算机求汽车用2档起步加速行驶至70km/h 的加速时间。 轻型货车的有关数据: 汽油发动机使用外特性的Tq-n 曲线的拟合公式为 234 19.313295.27()165.44()40.874() 3.8445()1000100010001000 q n n n n T =-+-+- 式中,Tq 为发动机转矩(N?m);n 为发动机转速(r/min )。 发动机的最低转速n min =600r/min,最高转速n max =4000r/min 。 装载质量 2000kg 整车整备质量 1800kg 总质量 3880kg 车轮半径 0.367m 传动系机械效率 ηt =0.85 滚动阻力系数 f =0.013 空气阻力系数×迎风面积 C D A =2.77m 2 主减速器传动比 i 0=5.83 飞轮转动惯量 I f =0.218kg?m 2 二前轮转动惯量 I w1=1.798kg ?m 2 四后轮转动惯量 I w2=3.598kg?m 2

变速器传动比ig(数据如下表) 轴距L=3.2m 质心至前轴距离(满载)a=1.974m 质心高(满载)hg=0.9m 解:Matlab程序: (1) 求汽车驱动力与行驶阻力平衡图和汽车最高车速程序: n=[600:10:4000]; Tq=-19.313+295.27*(n/1000)-165.44*(n/1000).^2+40.874*(n/1000).^3-3 .8445*(n/1000).^4; m=3880;g=9.8;nmin=600;nmax=4000; G=m*g; ig=[5.56 2.769 1.644 1.00 0.793];nT=0.85;r=0.367;f=0.013;CDA=2.77;i0=5.83; L=3.2;a=1.947;hg=0.9;If=0.218;Iw1=1.798;Iw2=3.598; Ft1=Tq*ig(1)*i0*nT/r; Ft2=Tq*ig(2)*i0*nT/r; Ft3=Tq*ig(3)*i0*nT/r; Ft4=Tq*ig(4)*i0*nT/r;

基于MATLAB的汽车运动控制系统设计仿真

课程设计 题目汽车运动控制系统仿真设计学院计算机科学与信息工程学院班级2010级自动化班 姜木北:2010133*** 小组成员 指导教师吴 2013 年12 月13 日

汽车运动控制系统仿真设计 10级自动化2班姜鹏2010133234 目录 摘要 (3) 一、课设目的 (4) 二、控制对象分析 (4) 2.1、控制设计对象结构示意图 (4) 2.2、机构特征 (4) 三、课设设计要求 (4) 四、控制器设计过程和控制方案 (5) 4.1、系统建模 (5) 4.2、系统的开环阶跃响应 (5) 4.3、PID控制器的设计 (6) 4.3.1比例(P)控制器的设计 (7) 4.3.2比例积分(PI)控制器设计 (9) 4.3.3比例积分微分(PID)控制器设计 (10) 五、Simulink控制系统仿真设计及其PID参数整定 (11) 5.1利用Simulink对于传递函数的系统仿真 (11) 5.1.1 输入为600N时,KP=600、KI=100、KD=100 (12) 5.1.2输入为600N时,KP=700、KI=100、KD=100 (12) 5.2 PID参数整定的设计过程 (13) 5.2.1未加校正装置的系统阶跃响应: (13) 5.2.2 PID校正装置设计 (14) 六、收获和体会 (14) 参考文献 (15)

摘要 本课题以汽车运动控制系统的设计为应用背景,利用MATLAB语言对其进行设计与仿真.首先对汽车的运动原理进行分析,建立控制系统模型,确定期望的静态指标稳态误差和动态指标搬调量和上升时间,最终应用MATLAB环境下的.m 文件来实现汽车运动控制系统的设计。其中.m文件用step函数语句来绘制阶跃响应曲线,根据曲线中指标的变化进行P、PI、PID校正;同时对其控制系统建立Simulink进行仿真且进行PID参数整定。仿真结果表明,参数PID控制能使系统达到满意的控制效果,对进一步应用研究具有参考价值,是汽车运动控制系统设计的优秀手段之一。 关键词:运动控制系统 PID仿真稳态误差最大超调量

用matlab绘制汽车的行驶加速度曲线

用matlab绘制汽车的行驶加速度曲线 n=600:10:4000; Tq=-19.313+295.27*(n/1000)-165.44*(n/1000).^2+40.874*(n/1000).^3-3.8445*(n/1000) .^4; m=3880;g=9.8; nmin=600;nmax=4000; G=m*g; ig=[5.56 2.769 1.644 1.00 0.793]; nT=0.85;r=0.367; f=0.013;CDA=2.77;i0=5.83; L=3.2;a=1.947;hg=0.9; If=0.218;Iw1=1.798;Iw2=3.598; Ft1=Tq*ig(1)*i0*nT/r; Ft2=Tq*ig(2)*i0*nT/r; Ft3=Tq*ig(3)*i0*nT/r; Ft4=Tq*ig(4)*i0*nT/r; Ft5=Tq*ig(5)*i0*nT/r; ua1=0.377*r*n/ig(1)/i0; ua2=0.377*r*n/ig(2)/i0; ua3=0.377*r*n/ig(3)/i0; ua4=0.377*r*n/ig(4)/i0; ua5=0.377*r*n/ig(5)/i0; Fw1=CDA*ua1.^2/21.15; Fw2=CDA*ua2.^2/21.15; Fw3=CDA*ua3.^2/21.15; Fw4=CDA*ua4.^2/21.15; Fw5=CDA*ua5.^2/21.15; Ff=G*f; deta1=1+(Iw1+Iw2)/(m*r^2)+(If*ig(1)^2*i0^2*nT)/(m*r^2); deta2=1+(Iw1+Iw2)/(m*r^2)+(If*ig(2)^2*i0^2*nT)/(m*r^2); deta3=1+(Iw1+Iw2)/(m*r^2)+(If*ig(3)^2*i0^2*nT)/(m*r^2); deta4=1+(Iw1+Iw2)/(m*r^2)+(If*ig(4)^2*i0^2*nT)/(m*r^2); deta5=1+(Iw1+Iw2)/(m*r^2)+(If*ig(5)^2*i0^2*nT)/(m*r^2); a1=(Ft1-Ff-Fw1)/(deta1*m); a2=(Ft2-Ff-Fw2)/(deta2*m); a3=(Ft3-Ff-Fw3)/(deta3*m); a4=(Ft4-Ff-Fw4)/(deta4*m); a5=(Ft5-Ff-Fw5)/(deta5*m); plot(ua1,a1,ua2,a2,ua3,a3,ua4,a4,ua5,a5); title('汽车的行驶加速度曲线'); xlabel('ua/(km*h^-1)'); ylabel('a/£¨m*s^-2£?'); gtext('¢?'),gtext('¢ò'),gtext('¢ó'),gtext('¢?'),gtext('¢?');

汽车理论课后题matlab程序

汽车理论课后题matlab程序

————————————————————————————————作者:————————————————————————————————日期: ?

1.3 n=600:1:4000; r=0.367; i0=5.83; eff=0.85; f=0.013; m=3880;g=9.8; G=m*g; CdA=2.77;a=1.947; hg=0.9;L=3.2; Iw1=1.798; Iw2=3.598; Iw=Iw1+Iw2; If=0.218; Ttq=-19.313+295.27*n/1000-165.44*(n/1000).^2+40.874*(n/1000).^3-3.8445*(n/1000).^4; %驱动力行驶阻力平衡图 for ig=[5.56,2.769,1.644,1.00,0.793] Ua=0.377*r*n/ig/i0; Ft=Ttq*ig*i0*eff/r; plot(Ua,Ft); hold on; end Ff=G*f; ua=0:0.1:max(Ua); Fw=CdA*ua.^2/21.15; plot(ua,(Ff+Fw)); title('驱动力-行驶阻力平衡图'); xlabel('Ua/(km/h)');ylab el('Ft/N'); gtext('Ft1'),gtext('Ft2'),gtext('Ft3'),gtext('Ft4'),gtext('Ft5'),gtext('Ff+Fw') [x,y]=ginput(1); disp('汽车的最高车速');disp(x);disp('km/h'); %最大爬坡度及最大爬坡度时的附着率 Ua=0.377*r*n/5.56/i0; Ft=Ttq*5.56*i0*eff/r; Fw=CdA*Ua.^2/21.15; i=tan(asin((Ft-(Ff+Fw))/G)); disp('汽车的最大爬坡度');disp(max(i)); C=max(i)/(a/L+hg/L*max(i)); disp('克服最大爬坡度时的附着率');disp(C); %加速度倒数曲线 figure; for ig=[5.56,2.769,1.644,1.00,0.793] Ua=0.377*r*n/ig/i0; q=1+Iw/(m*r^2)+If*ig^2*i0^2*eff/(m*r^2); Ft=Ttq*ig*i0*eff/r; Fw=CdA*Ua.^2/21.15; as=(Ft-(Ff+Fw))/q/m; plot(Ua,1./as); hold on; end axis([0 98 0 10]); title('行驶加速度倒数曲线');xlabel('Ua/(km/h)');ylabel('1/a'); gtext('1/a1'),gtext('1/a2'),gtext('1/a3'),gtext('1/a4'),gtext('1/

汽车理论习题

汽车理论习题: 1.3 1)绘制汽车驱动力与行驶阻力平衡图。 2)求汽车最高车速,最大爬坡度及克服该坡度时相应的附着率。 3)绘制汽车行驶加速度倒数曲线,用图解积分法求汽车用2档起步加速行驶至70km/h 的车速-时间曲线,或者用计算机求汽车用2档起步加速行驶至70km/h 的加速时间。 分析:本题主要考察知识点为汽车驱动力-行使阻力平衡图的应用和附着率的计算、等效坡度的概念。 应明确道路的概念:坡度的定义tan i α =。求最大爬坡度时可以对行使方程进行适当简化,可以简 化的内容包括两项cos 1α ≈和sin tan αα ≈,简化的前提是道路坡度角不大,当坡度角较大时简化带 来的误差会增大。计算时,要说明做了怎样的简化并对简化的合理性进行评估。 2)求最大爬坡度及克服该坡度时相应的附着率 ②求最大爬坡度: 0=dt du ,()w f t i F F F F +-= 一般汽车最大爬坡度约为30%左右,所以利用行驶方程确定最大爬坡度时应以G sin α作为坡度阻力,即 ()sin t f w G F F F α=-+,tan i α = ()??? ? ?? +-=G F F F i w f t arcsin tan 汽车最大爬坡度max i 为Ⅰ档时的最大爬坡度。利用编程计算可得,352.0max =i 。 ③如是前轮驱动,1?C = q b hg q L L -;相应的附着率1?C 为1.20,不合理,舍去。 如是后轮驱动,2?C = q a hg q L L +;相应的附着率2?C 为0.50。 3)绘制汽车行驶加速度倒数曲线,求加速时间 因各档加速度倒数曲线并无交点,所以从二档开始直接积分即可。 常见错误是未将车速的单位进行换算,时间大3.6倍。 1.7确定上述F.F 轿车在φ=0.2及0.7路面上的附着力,并求由附着力所决定的极限最高车速与极限最大爬坡度及极限最大加速度(在求最大爬坡度和最大加速度时可设Fw=0)。 (1)求极限最高车速的求解可根据汽车行驶方程得到。 2 W max F 21.15 D a C A u = 具体方法有两个,一是根据地面作用于驱动轮的地面切向反作用力的表达式(1-15),由附着系数得到最大附着力,滚动阻力已知,即可求得最高车速时的空气阻力和最高车速。 X1W f2i j'F =F +F F F ++ (1-15) X11z1F =F F ??=

用matlab绘制汽车驱动力 行驶阻力平衡图

汽车驱动力-行驶阻力平衡图m=3880; g=9.8; nmin=600;nmax=4000; G=m*g; ig=[5.56 2.769 1.644 1.00 0.793]; nT=0.85; r=0.367; f=0.013; CDA=2.77; i0=5.83; L=3.2; a=1.947; hg=0.9; If=0.218;Iw1=1.798;Iw2=3.598; n=600:10:4000; Tq=-19.313+295.27*(n/1000)-165.44*(n/1000).^2+40.874*(n/1000).^3-3.8445*(n/1 000).^4; Ft1=Tq*ig(1)*i0*nT/r; Ft2=Tq*ig(2)*i0*nT/r; Ft3=Tq*ig(3)*i0*nT/r; Ft4=Tq*ig(4)*i0*nT/r; Ft5=Tq*ig(5)*i0*nT/r; ua1=0.377*r*n/ig(1)/i0; ua2=0.377*r*n/ig(2)/i0; ua3=0.377*r*n/ig(3)/i0; ua4=0.377*r*n/ig(4)/i0; ua5=0.377*r*n/ig(5)/i0; ua=0:5:120; Ff=G*f; Fw=CDA*ua.^2/21.15; Fz=Ff+Fw; plot(ua1,Ft1,ua2,Ft2,ua3,Ft3,ua4,Ft4,ua5,Ft5,ua,Fz); title('汽车驱动力-行驶阻力平衡图'); xlabel('ua(km*h^-1)'); ylabel('Ft/N'); gtext('Ft1'),gtext('Ft2'),gtext('Ft3'),gtext('Ft4'),gtext('Ft5'),gtext('Ff+F w');

汽车理论习题Matlab程序

1.3确定一轻型货车的动力性能(货车可装用4挡或5挡变速器,任选其中的一种进行整车性能计算): 1)绘制汽车驱动力与行驶阻力平衡图。 2)求汽车最高车速,最大爬坡度及克服该坡度时相应的附着率。 3)绘制汽车行驶加速度倒数曲线,用图解积分法求汽车用2档起步加速行驶至70km/h的车速一时间曲线,或者用计算机求汽车用2档起步加速行驶至70km/h的加速时间。 轻型货车的有关数据: 汽油发动机使用外特性的Tq-n曲线的拟合公式为 一19.313 295.27(金)一165?44(金)2 4°.874侖)3一3?8445 式中,Tq为发动机转矩(N?m);n为发动机转速(r/min )。 发动机的最低转速n min=600r/min,最咼转速r max=4000r/min。 装载质量2000kg 整车整备质量1800kg 总质量3880kg 车轮半径0.367m 传动系机械效率n=0.85 滚动阻力系数f=0.013 空气阻力系数X迎风面积C D A=2.77m2 主减速器传动比i0=5.83 飞轮转动惯量 2 |f=0.218kg?m 一前轮转动惯量I w1=1.798kg?m 四后轮转动惯量I w2=3.598kg?m 变速器传动比ig(数据如下 表)

轴距L=3.2m 质心至前轴距离(满载)a=1.974m 质心高(满载)hg=0.9m 解:Matlab程序: (1)求汽车驱动力与行驶阻力平衡图和汽车最高车速程序: n=[600:10:4000]; Tq=-19.313+295.27*( n/1000)-165.44*(门/1000)八2+40.874*(门/1000)八3- 3.8445*( n/1000).A4; m=3880;g=9.8; nmi n=600; nm ax=4000; G=m*g; ig=[5.56 2.769 1.644 1.00 0.793];nT=0.85;r=0.367;f=0.013;CDA=2.77;i0=5.83; L=3.2;a=1.947;hg=0.9;lf=0.218;lw1= 1.798;lw2=3.598; Ft仁Tq*ig(1)*i0* nT/r; Ft2=Tq*ig(2)*i0* nT/r; Ft3=Tq*ig(3)*i0* nT/r; Ft4=Tq*ig(4)*i0* nT/r; Ft5=Tq*ig(5)*i0* nT/r; ua1=0.377*r* n/ig(1)/i0; ua2=0.377*r* n/ig(2)/i0;

基于Matlab的车牌识别(完整版)

基于Matlab的车牌识别 摘要:车牌识别技术是智能交通系统的重要组成部分,在近年来得到了很大的发展。本文从预处理、边缘检测、车牌定位、字符分割、字符识别五个方面,具体介绍了车牌自动识别的原理。并用MATLAB软件编程来实现每一个部分,最后识别出汽车车牌。 一、设计原理 车辆车牌识别系统的基本工作原理为:将摄像头拍摄到的包含车辆车牌的图像通过视频卡输入到计算机中进行预处理,再由检索模块对车牌进行搜索、检测、定位,并分割出包含车牌字符的矩形区域,然后对车牌字符进行二值化并将其分割为单个字符,然后输入JPEG或BMP格式的数字,输出则为车牌号码的数字。车牌自动识别是一项利用车辆的动态视频或静态图像进行车牌号码、车牌颜色自动识别的模式识别技术。其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些车牌识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。车牌识别单元对图像进行处理,定位出车牌位置,再将车牌中的字符分割出来进行识别,然后组成车牌号码输出。 二、设计步骤 总体步骤为: 车辆→图像采集→图像预处理→车牌定位

→字符分割→字符定位→输出结果 基本的步骤: a.车牌定位,定位图片中的车牌位置; b.车牌字符分割,把车牌中的字符分割出来; c.车牌字符识别,把分割好的字符进行识别,最终组成车牌号码。 车牌识别过程中,车牌颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。 (1)车牌定位: 自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定车牌区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车车牌特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为车牌区域,并将其从图象中分割出来。 流程图: (2)车牌字符分割 : 完成车牌区域的定位后,再将车牌区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值的附近,并且这个位置应满足车牌的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。 导入原始图像 图像预处理增强效果图像 边缘提取 车牌定位 对图像开闭运算

基于MATLAB的汽车制动系统设计与分析软件开发.

基于MAT LAB 的汽车制动系统 3 设计与分析软件开发 孙益民(上汽汽车工程研究院 【摘要】根据整车制动系统开发需要, 利用MAT LAB 平台开发了汽车制动系统的设计和性能仿真软件。 该软件用户界面和模块化设计方法可有效缩短开发时间, 提高设计效率。并以上汽赛宝车为例, 对该软件的可行性进行了验证。 【主题词】制动系汽车设计 统分成两个小闭环系统, 使设计人员更加容易把 1引言 制动性能是衡量汽车主动安全性的主要指标。如何在较短的开发周期内设计性能良好的制动系统一直是各汽车公司争相解决的课题。 本文拟根据公司产品开发工作需要, 利用现有MA T LAB 软件平台, 建立一套面向设计工程师, 易于调试的制动开发系统, 实现良好的人机互动, 以提高设计效率、缩短产品开发周期。 握各参数对整体性能的影响, 使调试更具针对性。 其具体实施过程如图1所示。 3软件开发

与图1所示的制动系统方案设计流程对应, 软件开发也按照整车参数输入、预演及主要参数确定, 其他参数确定和生成方案报告4个步骤实现。3. 1车辆参数输入 根据整车产品的定位、配置及总布置方案得出空载和满载两种条件下的整车质量、前后轴荷分配、质心高度, 轮胎规格及额定最高车速。以便获取理想的前后轴制动力分配及应急制动所需面临的极限工况。 3. 2预演及主要参数确定 在获取车辆参数后, 设计人员需根据整车参数进行制动系的设计, 软件利用MAT LAB 的G U I 工具箱建立如图2所示调试界面。左侧为各主要参数, 右侧为4组制动效能仿真曲线, 从曲线可以查看给定主要参数下的制动力分配、同步附着系数、管路压力分配、路面附着系数利用率随路况的变化曲线, 及利用附着系数与国标和法规的符合现制动器选型、性能尺寸调节, 查看液压比例阀、感载比例阀、射线阀等多种调压工况的制动效能, 并通过观察了 2汽车制动系统方案设计流程的优化 从整车开发角度, 制动系统的开发流程主要包括系统方案设计、产品开发和试验验证三大环节。制动系统的方案设计主要包含结构选型、参数选择、性能仿真与评估, 方案确定4个环节。以前, 制动系统设计软件都是在完成整个流程后, 根据仿真结果对初始设计参数修正。因此, 设计人员往往要反复多次方可获得良好的设计效果, 而且, 在调试过程中, 一些参数在特定情况下的相互影响不易在调试中发现, 调试的尺度很难把握。 本文将整车设计流程划分为两个阶段:主要参数的预演和确定、其他参数的预演和参数确定。即根据模块化设计思想, 将原来一个闭环设计系 收稿日期:2004-12-27 3本文为上海市汽车工程学会2004年(第11届学术年会优秀论文。

汽车理论汽车设计课程设计说明书

湖北汽车工业学院 Hubei Automotive Industries Institute 课程设计说明书 课程名称汽车理论 设计题目汽车动力性 班号专业车辆工程学号 学生姓名 指导教师(签字) 起止日期 2011 年 7 月 4 日—— 2011 年 7 月 9 日

目录 1.设计任务及要求.........................................1 2.车辆参数 (2) 3.汽车动力性能计算............. ..... ................... 3.1驱动力-行驶阻力平衡图...................... 3.2最高转速Uamax....................... 3.3加速时间t............................... 3.4汽车加速度倒数图............................... 3.5汽车加速时间图............................... 3.6汽车爬坡度图............................... 3.7汽车动力特性图................................ 3.8汽车功率平衡图.................................. 4.GUI界面设计........................................ 5.归纳与总结........................................ 6.参考文献......................................

基于MATLAB的汽车道路模型研究毕业设计论文

武汉工业学院 毕业设计(论文) 毕业设计(论文)题目:基于MATLAB的汽车道路模型研究 院(系)机械工程学院 专业名称机械设计制造及其自动化

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

1.5 汽车的功率平衡

1.5 汽车的功率平衡 汽车行驶时,不仅存在驱动力与行驶阻力的平衡关系,而且也存在发动机功率和汽车行驶的阻力功率间的平衡关系。即发动机发出的有效功率,始终等于机械传动损失与全部运动阻力所消耗的功率。 1.5.1 功率平衡方程 汽车运动阻力所消耗的功率,有滚动阻力功率、空气阻力功率、坡度阻力功率及加速阻力功率,它们的表达式为 f P W P i P j P 3600cos 10006.3a a f f u Gf u F P α=×= 3600 sin 3600a a i i u G u F P α== 7614036003a D a W W Au C u F P == dt du g Gu u F P a a j j 36003600δ== 功率平衡方程为 )(11 j i W f T T e P P P P P P +++==∑ηη 即 2(cos sin 360021.15a D e T u C Au P Gf G m dt ααδη=+++)a du 当α较小时,i ≈αsin ,1cos ≈α,上式可写成 )15.21(36002dt du g G Au C Gi Gf u P a D T a e δη+++= 1.5.2 功率平衡图及其应用 汽车的功率平衡关系也可以用图解法表示。以纵坐标表示 功率,横坐标表示车速,将发动机功率、汽车经常遇到的 阻力功率e P )(1 W f T P P +η,对应于车速的关系曲线绘在坐标图 上,即得到汽车功率平衡图。图1-20是一紧凑型国产轿车的 功率平衡图。 e P a u ?,可根据发动 发动机功率与行驶车速的关系曲线

机外特性及公式0 0.377a g nr u i i =将发动机转速转换成车速绘得。可见在不同挡位时,功率的大小不变,只是各挡发动机功率曲线所对应的车速位置不同,且低挡时车速低,所占速度变化区域窄;高挡时车速高,所占变化区域宽。 f P 在低速范围内为一直线,在高速时由于滚动阻力系数f 随车速而增大,且比更快的速率加大;而 则是的三次函数。两者叠加后,阻力功率曲线是一条斜率越来越大的曲线。它与挡位无关,只与车速有关,所以高速时,汽车主要克服空气阻力功率。 a u a u W a P max a P u 图1-20中发动机功率曲线(V 挡)与阻力功率曲线相交点处对应的车速便是在良好水平路面上汽车的最高车速。该轿车的V 挡是经济挡位,其发动机最大功率相对应的车速大于u ,所以用该挡行驶时发动机负荷率高,燃油消耗量低。 max a u u 汽车达最高车速时,0j =,0=i ,则 )(1 W f T e P P P +=η 当汽车在良好水平路而上以的速度等速行驶时,汽车的阻力功率为 a u ′1()f w T P P b ηc += 此时,驾驶员给出某一节气门的开度,发动机功率曲线如图中虚线所示,以维持汽车等速行驶。 但是发动机在汽车行驶速度为u a ′时能发出的功率为e P ac = (图1-20),于是 1()e f w T P P P ac bc ηab ? +=?= 可用来加速或爬坡。 我们称1 (e f T )w P η?+P P 为汽车的后备功率。 就是说,在一般情况下维持汽车等速行驶所需的发动机功率并不 大,发动机节气门开度较小。当需要爬坡或加速时,驾驶 员加大节气门开度,使汽车的全部或部分后备功率发挥作

相关文档
最新文档