基坑开挖稳定性的有限元模拟研究

基坑开挖稳定性的有限元模拟研究
基坑开挖稳定性的有限元模拟研究

基坑开挖稳定性的有限元模拟研究

钟江城赵彪王超圣冯旭伟赵阳周宏伟

中国矿业大学(北京)力学与建筑工程学院,100083

摘要:本文利用Tochnog有限元分析软件并结合后处理软件Gid,在平面应变条件下,建立基坑工程开挖、围护过程有限元模型,研究分析该基坑分步开挖过程中土体以及围护结构的内力、变形特征。在模拟分析中,土体采用Mohr-Coulomb模型,围护结构钢板桩按弹性模型考虑,土体与钢板桩之间的接触采用接触面单元模拟。

关键词:基坑;Tochnog;有限元;Gid

基于flac3D深基坑开挖模拟与支护设计

本科生毕业论文(设计)题目:基于flac3D深基坑开挖模拟与支护设计 指导教师: 职称: 评阅人: 职称:

摘要 随着城市化过程中不断涌现的高层建筑和超高层建筑以及城市地下空间的开发,深基坑工程越来越多,深基坑工程项目的规模和复杂性日益增大,给深基坑工程的设计和施工带来了更大的挑战。在这样的背景下,深基坑支护结构设计和变形量预测已成为岩土工程领域的重要研究课题之一。本文以武汉市万达广场深基坑工程作为研究对象,利用勘查资料和深基坑支护结构设计要求,比选合理的基坑支护方案并进行相应的计算设计。同时,本文针对深基坑工程变形量验算等难以解决的问题引用了flac3D数值模拟方法,对基坑开挖、支护结构施工进行全方位的模拟监测,将计算设计结果和模拟计算结果进行对比验算,得出比较合理的支护结构设计方案和变形量控制方案。 根据基坑实际情况和勘查资料,本文选择的围护方案为以大直径混凝土排桩、双排桩、角撑与对顶撑相结合的内支撑为主的多种联合支护方案,结合坡顶大面积卸土减载、坑内被动区加固的措施。计算部分主要设计计算大直径混凝土排桩(钻孔灌注桩)桩长、内力和配筋,而对卸土减载、内支撑结构、坑内被动区加固和降水设计只进行了简要的说明;flac3D模拟部分主要从建立模型、设置大直径混凝土排桩、放坡开挖、放坡坡面土钉施工、预应力锚索(代替内支撑)施工和基坑主体开挖为顺序进行建模计算,最后进行变形量监测、分析,输出桩单元、锚单元的内力分布情况并给出相应的结论与建议。 本文以常规计算和数值模拟相结合的方式进行参考对比,常规计算和数值模拟分析结果非常接近,给出了有效合理的安全系数。 关键词:深基坑支护设计flac3D模拟数值模拟

Probabilistic Slope Stability Analysis by Finite Elements 概率的有限元法边坡稳定性分析

专业英语翻译 基于有限元法边坡稳定性概率分析 摘要: 本文同时采用简单和更为先进的概率分析工具,研究了粘质边坡失效概率。在试验中,详细研究了局部平均对边坡的失效概率的影响。在简单方法中,将抗剪强度作为一个随机变量,采用经典边坡稳定性分析技术进行分析。结合弹塑性有限元分析和随机场论的方法进行研究的先进技术,被称为随机有限元方法(RFEM)。RFEM的结果表明,因为它能通过找出最不稳定结构面,使斜坡破坏过程更为自然的反映,它比传统的边坡稳定概率分析技术具有更多优势。该项研究中尤其重要的是其结论,在简单概率分析中,完全相关的假设忽略了空间变异性,可能导致失效概率的偏不估计。这与采用经典斜坡稳定性分析方法的研究者的论述相违背。 数据库主题词:边坡稳定;有限元; 概率方法;失效。 1 引言 边坡稳定性分析是岩土工程的分支,适合采用概率分析,并且已在各种文献中得到重视。最早的文献出现在20世纪70年代(例如Matsuo and Kuroda 1974; Alonso1976; Tang et al. 1976; Vanmarcke 1977),并不断稳步的向前发展(例如D’Andrea and Sangre y 1982; Chowdhury and Tang1987; Li and Lumb 1987; Mostyn and Li 1992; Christian et al. 1994; Lacasse 1994; Christian 1996; Lacasse and Nadim 1996;Wolff 1996; Duncan 2000; Hassan and Wolff 2000; Whitman 2000)。最近,在El-Ramly 等学者的一文中(2002年),针对这一主题也提出了实用的观点,同时也指出,岩土工程专业开始逐渐采用概率方法进行岩土工程设计,尤其是针对诸如斜坡和基础工程这些传统的工程问题。 对于这个问题,相对现有的工作,主要出现了两种问题。其一,研究尽管采用了新的较复杂的概率方法,但绝大多数的概率边坡稳定性分析一直采用经典的斜坡稳定性分析方法(例如,Bishop1955),而且几十年来几乎没有任何改变,而且从未使用高应变土体的抗剪强度分布方法。传统的边坡稳定性的一个明显不足在于,确定破坏面形状(如圆形)的方法往往是固定的,因此破坏机制不能通过土体“找出”斜坡边界。其二,尽管空间相关性的重

有限元分析实验报告

武汉理工大学 学生实验报告书 实验课程名称机械中的有限单元分析 开课学院机电工程学院 指导老师姓名 学生姓名 学生专业班级机电研 1502班 2015—2016 学年第2学期

实验一方形截面悬臂梁的弯曲的应力与变形分析 钢制方形悬臂梁左端固联在墙壁,另一端悬空。工作时对梁右端施加垂直向下的30KN的载荷与60kN的载荷,分析两种集中力作用下该悬臂梁的应力与应变,其中梁的尺寸为10mmX10mmX100mm的方形梁。 1.1方形截面悬臂梁模型建立 建模环境:DesignModeler 15.0。 定义计算类型:选择为结构分析。 定义材料属性:弹性模量为2.1Gpa,泊松比为0.3。 建立悬臂式连接环模型。 (1)绘制方形截面草图:在DesignModeler中定义XY平面为视图平面,并正视改平面,点击sketching下的矩形图标,在视图中绘制10mmX10mm的矩形。(2)拉伸:沿着Z方向将上一步得到的矩阵拉伸100mm,即可得到梁的三维模型,建模完毕,模型如下图1.1所示。 图1.1 方形截面梁模型 1.2 定义单元类型: 选用6面体20节点186号结构单元。 网格划分:通过选定边界和整体结构,在边界单元划分数量不变的情况下,通过分别改变节点数和载荷大小,对同一结构进行分析,划分网格如下图1.2所示:

图1.2 网格划分 1.21 定义边界条件并求解 本次实验中,讲梁的左端固定,将载荷施加在右端,施以垂直向下的集中力,集中力的大小为30kN观察变形情况,再将力改为50kN,观察变形情况,给出应力应变云图,并分析。 (1)给左端施加固定约束; (2)给悬臂梁右端施加垂直向下的集中力; 1.22定义边界条件如图1.3所示: 图1.3 定义边界条件 1.23 应力分布如下图1.4所示: 定义完边界条件之后进行求解。

有限元分析实验报告

学生学号1049721501301实验课成绩 武汉理工大学 学生实验报告书 实验课程名称机械中的有限单元分析机电工程学院开课学院 指导老师姓名

学生姓名 学生专业班级机电研1502班 学年第学期2016—20152 实验一方形截面悬臂梁的弯曲的应力与变形分析 钢制方形悬臂梁左端固联在墙壁,另一端悬空。工作时对梁右端施加垂直 向下的30KN的载荷与60kN的载荷,分析两种集中力作用下该悬臂梁的应力与应变,其中梁的尺寸为10mmX10mmX100mm的方形梁。 方形截面悬臂梁模型建立1.1 建模环境:DesignModeler15.0。 定义计算类型:选择为结构分析。 定义材料属性:弹性模量为 2.1Gpa,泊松比为0.3。 建立悬臂式连接环模型。 (1)绘制方形截面草图:在DesignModeler中定义XY平面为视图平面,并正 视改平面,点击sketching下的矩形图标,在视图中绘制10mmX10mm的矩形。 (2)拉伸:沿着Z方向将上一步得到的矩阵拉伸100mm,即可得到梁的三维模型,建模完毕,模型如下图 1.1所示。

图1.1方形截面梁模型 :定义单元类型1.2 选用6面体20节点186号结构单元。 网格划分:通过选定边界和整体结构,在边界单元划分数量不变的情况下,通过分别改变节点数和载荷大小,对同一结构进行分析,划分网格如下图 1.2

所示: 图1.2网格划分 1.21定义边界条件并求解 本次实验中,讲梁的左端固定,将载荷施加在右端,施以垂直向下的集中 力,集中力的大小为30kN观察变形情况,再将力改为50kN,观察变形情况,给出应力应变云图,并分析。 (1)给左端施加固定约束; (2)给悬臂梁右端施加垂直向下的集中力; 1.22定义边界条件如图1.3所示:

深基坑工程的二维plaxis模拟

深基坑工程的二维plaxis模拟 摘要:深基坑工程是一项涉及多个学科的复杂系统工程,对于上海地区的复杂软土,基坑的前期模拟计算非常重要,本文选用plaxis这种大型的综合岩土软件进行基坑开挖前的施工模拟,探讨有限元二维模拟基坑开挖的方法及意义。并对进一步应用到实践中提出一些意见。 关键词:plaxis 有限元法深基坑开挖支护 中图分类号:TU 46+3 1 前言 基坑工程是一项综合技术性很强的复杂系统工程,它涉及岩土、结构、水文地质、工程地质等多个学科,虽然它是一项临时性工程,但其造价约占整个工程投资的三分之一。目前对深大基坑项目,在未开挖之前要进行反复的验算,以保证基坑的安全性,由于基坑工程涉及范围很广,从支护结构的设计到坑内外土体变形的控制,再到周围建筑和地下管线不均匀沉降的控制,以及地下水控制等等。这些问题在以往的模拟计算中都作了不同程度的简化,对结果都有一定的影响。利用plaxis有限元软件可以进行深基坑的开挖模拟,不仅可以计算支护结构的内力和变形,也可以考虑地下水的抽降,以及基坑周围土体和建筑物的变形情况,与实际工程符合较好。 2 基坑开挖的二维模拟方法 2.1 plaxis软件简介 Plaxis研制开始于1987年,由荷兰的公共事业与水资源管理部委托Delft Technical University,初始目的是为了进行建立在软土上的河堤分析。此后,PLAXIS一直不断发展,直到今天,已经成为一种功能强大的专门针对岩土工程中变形与稳定计算的有限元分析软件。由于Plaxis的不断完善,其强大的功能可以模拟不同地下水流场,不同的土层地质条件,不同的施工方法,尤其有专门针对于基坑开挖所适用的模块和土体本构模型。因此,其针对本课题的分析结果是 科学可靠的。 在土的本构模型方面,plaxis 提供了多种模型,除了摩尔-库仑模型外,还可以选用一种改进的双曲线塑性模型----硬化土模型,为了模拟正常固结软土与时间相关的对数压缩性质,可以选用蠕变模型,即软土蠕变模型。除此之外,plaxis还提供了用来分析节理岩石的各项异性行为的节理岩体模型。改进的剑桥模型,软土模型等。

边坡稳定有限元分析

边坡稳定有限元分析 本例将演示如何使用有限元方法分析边坡稳定性并计算其安全系数。 任务 首先,分析无超载作用下的边坡稳定性,然后分析在大小为q=35.0kN/m2的条形超载作用下的边坡稳定性,最后为边坡施加预应力锚杆,并分析其稳定性。边坡的几何尺寸(包括各点的坐标)如下图所示。 图25.1 边坡几何尺寸(多段线上各点的坐标) 土层剖面包含两种类型的土,其参数如下: 表25.1 岩土材料参数列表

计算 我们使用“GEO5岩土工程有限元分析计算模块”(以下简称“有限元模块”)(v18版)来分析该问题。下面为建模和分析步骤: -建模阶段:分析设置和几何建模 -工况阶段[1]:分析边坡无超载作用时的稳定性 -工况阶段[2]:分析加入超载后边坡的稳定性 -工况阶段[3]:分析加入锚杆后边坡的稳定性 -结论 建模阶段:分析设置和几何建模 在分析设置界面中设置“分析类型”为“边坡稳定分析”,保持其他选项不变。 图25.2 【分析设置】界面 注:选择“边坡稳定分析”时和选择“应力应变分析”时的设置以及建模过程几乎完全一样。在【分析】界面点击“开始分析”按钮即可以分析并计算边坡的安全系数。在“有限元-边坡稳定分析”模块中,各个工况阶段之间是相互独立的,即当前工况阶段的分析结果不受上一工况阶段分析结果的影响。 下一步,设置全局坐标范围。设置的坐标范围要足够大,这样才能使得所要分析的区域不受边界条件的影响。对于该算例,设置全局坐标范围<0m, 40m>,设置底边界距离多段线最低点距离为10m。 设置各个多段线和土层剖面,其参数如下表所示。 图25.3 全局坐标对话框

表25.2各多段线及其节点的坐标列表 设置各个岩土材料的参数并将其指定到相应的分区。在本算例中,我们选择Drucker-Prager(DP)模型(见注)。设置两种岩土材料的剪胀角ψ均为0°,即当材料受到剪力作用时,其体积不发生改变。 注:分析边坡稳定性时,必须选择非线性弹塑性模型作为岩土材料的本构模型,因为在边坡稳定分析过程中岩土材料会产生塑性应变,且塑性应变的产生是和岩土材料的强度参数c和φ相关的。 在本算例中,我们选择Drucker-Prager作为本构模型,该模型和经典的莫尔-库伦模型相比,允许产生更多的塑性应变。在本章的最后,将给出不同本构模型下计算得到的安全系数的对比。 图25.4 添加岩土材料对话框

模态分析有限元仿真分析学习心得

有限元仿真分析学习心得 1 有限元分析方法原理 有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元法是随着电子计算机发展而迅速发展起来的一种工程力学问题的数值求解方法。20世纪50年代初,它首先应用于连续体力学领域—飞机结构静、动态特性分析之中,用以求得结构的变形、应力、固有频率以及阵型。由于其方法的有效性,迅速被推广应用于机械结构分析中。随着电子计算机的发展,有限元法从固体力学领域扩展到流体力学、传热学、电磁学、生物工程学、声学等。 随着计算机科学与应用技术的发展,有限元理论日益完善,随之涌现了一大批通用和专业的有限元计算软件。其中,通用有限元软件以ANSYS,MSC公司旗下系列软件为杰出代表,专业软件以ABAQUS、LS-DYNA、Fluent、ADAMS 为代表。 ANSYS作为最著名通用和有效的商用有限元软件之一,集机构、传热、流体、电磁、碰撞爆破分析于一体,具有强大的前后处理及计算分析能力,能够进行多场耦合,结构-热、流体-结构、电-磁场的耦合处理求解等。 有限元分析一般由以下基本步骤组成: ①建立求解域,并将之离散化成有限个单元,即将问题分解成单元和节点; ②假定描述单元物理属性的形(shape)函数,即用一个近似的连续函数描述每个单元的解; ③建立单元刚度方程; ④组装单元,构造总刚度矩阵; ⑤应用边界条件和初值条件,施加载荷; ⑥求解线性或者非线性微分方程组得到节点值,如不同节点的位移; ⑦通过后处理获得最大应力、应变等信息。 结构的离散化是有限元的基础。所谓离散化就是将分析的结构分割成为有限

基坑开挖数值模拟

7 数值模拟 7.1 数值模拟方法简介 数值模拟技术作为一种研究手段,已经被广泛的应用于各行各业领域的研究中。目前,数值分析方法主要分为二大类:一类是以有限差分法为代表,其特点是直接求解基本方程和相应的定解条件的近似解;另一类数值分析方法是首先建立和原问题基本方程及相应定解条件等效的积分方法,然后据之建立近似解法。 LS-D YNA乍为世界上最著名的通用显示动力分析程序,能够模拟真实世界的各种复杂问题,特别适合求解各种二维三维非线性结构的高速碰撞,爆炸和金属成型等非线性动力冲击问题,同时可以求解传热,流体及流固耦合问题,在工程应用如汽车安全设计,武器系统设计,金属成型,跌落仿真等领域被广泛应用。本次采用ANSYS/LS-DYN,A 进行混凝土支撑梁结构爆破拆除数值模拟研究。在ANSYS/LS-DYN环境下,数值模拟的实现总体上分为两个过程:在ANS丫芽建立结构实体模型,完成有限元网格的划分,输出有限元模型信息即输出关键字 文件;编辑关键字文件,在DYNA环境下完成对结构倒塌过程的数值模拟计算。 对结构有限元模型的建立过程,数值模拟中采用的钢筋和混凝土材料模型、接触方式等各种计算控制项进行了阐述。 LS-D YNA程序中主要提供如下几种计算方法: (1)Lagrange 算法 坐标固定在物质上或者说随物质一起运动和变形,处理自由面和物质界面非常直观,由于网格始终对应物质,因此能够精确的跟踪材料边界和描述物质之间的界面,这是Lagrange 算法的主要优点。但是,由于网格随材料流动而变

形,一旦网格变形严重,就会引起数值计算的不稳定,甚至使得计算无法继续进行(如发生负体积或复杂声速等问题)。因此,Lagrange 算法在处理大变形大位移问题时,有其无法克服的弊端。 (2)Euler 算法网格被固定在空间,是不变形的。物质通过网格边界流进流出,物质的大变形不直接影响时间步长的计算。因此,欧拉算法在处理大变形问题方面具有优势。欧拉方法通过输运项计算体积、质量、动量和能量的流动。欧拉计算可以直接通过在离散化格式中包括迁移导数项进行,或通过二步操作完成。二步法操作的第一步主要是拉格朗日计算,第二步输运阶段是重分计算网格相当于回到它的原来状态。 LS-D YNA程序采用后一种方法。欧拉算法的缺点是网格中物质边界不清晰,难以捕捉各物质界面。 (3)ALE方法 吸取了欧拉法和拉格朗日法两种方法的优点。ALE算法能够进行自动重分网格操作。它包括拉格朗日时间步,然后是一个输运步。输运步可以采用三种方法:1. 发生合理的网格变形时空间网格不再重分(拉格朗日);2. 发生严重的网格变形时重分成原始形状(欧拉);3. 发生严重的网格变形时重分为合理的形状,因此允许网格拓扑(拉格朗日和欧拉)。 混凝土是土木工程结构中应用极为广泛的材料,其最本质的特点是材料组成的不均匀性,并且存在初始微裂缝。从混凝土受单轴压力时的应力应变关系来看,混凝土卸载时有残余变形,不符合弹性关系;如果对其应用弹塑性本构关系,又很难精确定义屈服条件。此外,混凝土在到达应力顶峰后,其应力-应变关系曲线有一下降段,即存在应变软化现象,所有这些都给建立混凝土的本构关系

FLAC3d基坑模拟复习进程

计算说明 1、计算方法 1)内力计算采用弹性支点法; 2)土的水平抗力系数按M法确定; 3)主动土压力与被动土压力采用矩形分布模式; 4)采用力法分析环形内支撑内力; 5)采用"理正深基坑支护结构软件FSPW 5.2"计算,计算采用单元计算与协同计算相结合,并采用FLAC-3D进行验证; 6)土层参数选取 2、单元计算 1)基坑分为4个区,安全等级为一级,基坑重要性系数为1.1; 2)荷载: 施工荷载:10kPa; 地面超载:4区活动荷载为25kPa,1区、2区和3区超载按10kPa考虑; 水压力;基坑外侧为常水位,内侧坑底以下 0.5m。 3)基坑开挖深度:根据现场地形确定,按开挖12.50m确定; 4)支撑水平刚度系数: 2 a T s EA K L s α = 式中α取0.8,E取28000MPa,L取7.0m,sa取1.20m,s取7.0m,经计算,kT 大于800 MN/m,本计算中,取800MN/m。 5)计算过程详见附件1,其中1区选用钻孔ZK1,2区选用钻孔ZK4,3区选用钻孔ZK16,4区选用钻孔ZK5。各区计算结果汇总如下: 表2 计算结果汇总表 3、协同计算 1)计算方法简介 协同计算采用考虑支护结构、内支撑结构及土空间整体协同作用有限元的计算方法。 有限元方程如下: ([K n]+[Kz]+[Kt]){W)}={F} 式中: [K n]-内支撑结构的刚度矩阵;

[K z]-支护结构的刚度矩阵; [Kt]-开挖面以下桩侧土抗力的刚度矩阵; {W}-位移矩阵; {F}-荷载矩阵。 计算时采用如下简化计算方法: (1)将基坑周边分成几个计算区域,同一计算区域的支护信息相同,地质条 件相同。 (2)将每一个桩或每单位长度的墙看成是一个超级的子结构,这一子结构包 括桩墙,土,主动和被动土压力。 (3)将第三道锚索等效为弹性支承点,作为支承系统的一部份进行计算。 (4)单独求解(2)中的子结构,可采用单桩内力计算的一套方法,将刚度和 荷载凝聚到与支锚的公共节点上,这是一个一维梁计算问题。 (5)单独求解内支撑系统,将(4)中所得子结构刚度,荷载迭加到内支撑 系统,求解后即为最终结果,这是一个二维梁计算问题。 2)基坑模型建立:为能较好地模拟基坑开挖实际情况,在基坑建模时,严格按照基坑实际尺寸进行构建,其构件编号详见附件2图1~3。 3)由于协同计算时,软件无法考虑土体的被动土压力,因此如果按整个场地不同区段不同地层的参数进行计算,其结果会产生较大误差。为消除这种误差,本协同计算时选用钻孔ZK5作为计算依据,将整个场地的土层视为等厚土层,计算时基坑开挖深度14.80m,地面荷载按25kPa考虑。 4)按以上的简化计算原则,本协同计算结果汇于下表,其计算过程详见附件2协同计算书。 表3 协同计算结果汇总表 4、环梁内力力法分析 1)模型的简化 根据工程实际条件,环梁四周存在多个集中力的作用。若依据集中力来求解环梁所受弯矩在理论上是成立的,但其工作量过于庞大。加之,无现成的程序可以利用,以人工运算的方式难于完成。既使通过人工运算得一结果,也难以保证结果的正确性。因此,设计者将多个集中力的作用转换为一均布水压力作用。这是计算过程中的第一步简化,即从图1所示力学模型转化为图2所示的力学模型。二是将封闭圆环受集中力作用的力学模型转化为非封闭圆环受集中力作用的力学模型,并在圆环开口处施加固定端约束,即从图2所示的力学模型转化为图3所示的力学模型(无铰拱)。图3所示的结构力学模型,其实是3次超静定结构。求解该3次超静定结构的内力须采用力法,于是将图3所示的结构力学模型的基本体系如图4所示。所以环梁内力的结构力学计算转变为一个三绞拱在均匀水压力作用下的3次超静定结构计算问题。

UG有限元分析教程

第1章高级仿真入门 在本章中,将学习: ?高级仿真的功能。 ?由高级仿真使用的文件。 ?使用高级仿真的基本工作流程。 ?创建FEM和仿真文件。 ?用在仿真导航器中的文件。 ?在高级仿真中有限元分析工作的流程。 1.1综述 UG NX4高级仿真是一个综合性的有限元建模和结果可视化的产品,旨在满足设计工程师与分析师的需要。高级仿真包括一整套前处理和后处理工具,并支持广泛的产品性能评估解法。图1-1所示为一连杆分析实例。 图1-1连杆分析实例 高级仿真提供对许多业界标准解算器的无缝、透明支持,这样的解算器包括NX Nastran、MSC Nastran、ANSYS和ABAQUS。例如,如果结构仿真中创建网格或解法,则指定将要用于解算模型的解算器和要执行的分析类型。本软件使用该解算器的术语或“语言”及分析类型来展示所有网格划分、边界条件和解法选项。另外,还可以求解模型并直接在高级仿真中查看结果,不必首先导出解算器文件或导入结果。 高级仿真提供基本设计仿真中需要的所有功能,并支持高级分析流程的众多其他功能。 ?高级仿真的数据结构很有特色,例如具有独立的仿真文件和FEM文件,这有利于在分布式工作环境中开发有限元(FE)模型。这些数据结构还允许分析师轻松 地共享FE数据去执行多种类型分析。

UG NX4高级仿真培训教程 2 ?高级仿真提供世界级的网格划分功能。本软件旨在使用经济的单元计数来产生高质量网格。结构仿真支持完整的单元类型(1D、2D和3D)。另外,结构级仿真 使分析师能够控制特定网格公差。例如,这些公差控制着软件如何对复杂几何体 (例如圆角)划分网格。 ?高级仿真包括许多几何体简化工具,使分析师能够根据其分析需要来量身定制CAD几何体。例如,分析师可以使用这些工具提高其网格的整体质量,方法是消 除有问题的几何体(例如微小的边)。 ?高级仿真中专门包含有新的NX传热解算器和NX流体解算器。 NX传热解算器是一种完全集成的有限差分解算器。它允许热工程师预测承受热载荷系统中的热流和温度。 NX流体解算器是一种计算流体动力学(CFD)解算器。它允许分析师执行稳态、不可压缩的流分析,并对系统中的流体运动预测流率和压力梯度,也可 以使用NX传热和NX流体一起执行耦合传热/流体分析。 1.2仿真文件结构 当向前通过高级仿真工作流时,将利用4个分离并关联的文件去存储信息。要在高级仿真中高效地工作,需要了解哪些数据存储在哪个文件中,以及在创建那些数据时哪个文件必须是激活的工作部件。这4个文件平行于仿真过程,如图1-2所示。 图1-2仿真文件结构 设计部件文件的理想化复制 当一个理想化部件文件被建立时,默认有一.prt扩展名,fem#_i是对部件名的附加。例如,如果原部件是plate.prt,一个理想化部件被命名为plate_fem1_i.prt。 一个理想化部件是原设计部件的一个相关复制,可以修改它。 理想化工具让用户利用理想化部件对主模型的设计特征做改变。不修改主模型部件,

有限元实验报告

一、实验目的 通过上机对有限元法的基本原理和方法有一个更加直观、深入的理解;通过对本实验所用软件平台Ansys 的初步涉及,为将来在设计和研究中利用该类大型通用CAD/CAE 软件进行工程分析奠定初步基础。 二、实验设备 机械工程软件工具包Ansys 三、实验内容及要求 1) 简支梁如图3.1.1所示,截面为矩形,高度h=200mm ,长度L=1000mm ,厚 度t=10mm 。上边承受均布载荷,集度q=1N/mm2,材料的E=206GPa ,μ=0.29。平面应力模型。 X 方向正应力的弹性力学理论解如下: 图3.1.1 ①在Ansys 软件中用有限元法探索整个梁上x σ,y σ的分布规律。 ②计算下边中点正应力x σ的最大值;对单元网格逐步加密,把x σ的计算值与理论解对比,考察有限元解的收敛性。 ③针对上述力学模型,对比三节点三角形平面单元和4节点四边形平面等参元的求解精度。 2) 一个正方形板,边长L = 1000mm ,中心有一小孔,半径R = 100mm ,左右边 受均布拉伸载荷,面力集度q = 25MPa ,如图 3.2.1所示。材料是 206E GPa =,0.3μ=,为平面应力模型。当边长L 为无限大时,x = 0截面上理论解为: ) 534()4 (6222 23-+-=h y h y q y x L h q x σ

)32(2|44 220r R r R q x x ++==σ 其中R 为圆孔半径,r 为截面上一点距圆心的距离。x = 0截面上孔边(R r =)应力q x 3=σ。所以理论应力集中系数为3.0。 图3.2.1 用四边形单元分析x = 0截面上应力的分布规律和最大值,计算孔边应力集中系数,并与理论解对比。利用对称性条件,取板的四分之一进行有限元建模。 3) 如图3.3.1所示,一个外径为0.5m ,内径为0.2m ,高度为0.4m 的圆筒,圆 筒的外壁施加100MPa 的压强,圆筒的内部约束全部的自由度,材料参数是密度。 使用平面单元,依照轴对称的原理建模分析。 q

基坑开挖数值模拟

7数值模拟 7.1数值模拟方法简介 数值模拟技术作为一种研究手段,已经被广泛的应用于各行各业领域的研究中。目前,数值分析方法主要分为二大类:一类是以有限差分法为代表,其特点是直接求解基本方程和相应的定解条件的近似解;另一类数值分析方法是首先建立和原问题基本方程及相应定解条件等效的积分方法,然后据之建立近似解法。 LS-DYNA作为世界上最著名的通用显示动力分析程序,能够模拟真实世界的各种复杂问题,特别适合求解各种二维三维非线性结构的高速碰撞,爆炸和金属成型等非线性动力冲击问题,同时可以求解传热,流体及流固耦合问题,在工程应用如汽车安全设计,武器系统设计,金属成型,跌落仿真等领域被广泛应用。本次采用ANSYS/LS-DYNA,进行混凝土支撑梁结构爆破拆除数值模拟研究。在ANSYS/LS-DYNA环境下,数值模拟的实现总体上分为两个过程:在ANSYS中建立结构实体模型,完成有限元网格的划分,输出有限元模型信息即输出关键字文件;编辑关键字文件,在DYNA环境下完成对结构倒塌过程的数值模拟计算。 对结构有限元模型的建立过程,数值模拟中采用的钢筋和混凝土材料模型、接触方式等各种计算控制项进行了阐述。 LS-DYNA程序中主要提供如下几种计算方法: (1)Lagrange算法

坐标固定在物质上或者说随物质一起运动和变形,处理自由面和物质界面非常直观,由于网格始终对应物质,因此能够精确的跟踪材料边界和描述物质之间的界面,这是Lagrange算法的主要优点。但是,由于网格随材料流动而变形,一旦网格变形严重,就会引起数值计算的不稳定,甚至使得计算无法继续进行(如发生负体积或复杂声速等问题)。因此,Lagrange算法在处理大变形大位移问题时,有其无法克服的弊端。 (2)Euler算法 网格被固定在空间,是不变形的。物质通过网格边界流进流出,物质的大变形不直接影响时间步长的计算。因此,欧拉算法在处理大变形问题方面具有优势。欧拉方法通过输运项计算体积、质量、动量和能量的流动。欧拉计算可以直接通过在离散化格式中包括迁移导数项进行,或通过二步操作完成。二步法操作的第一步主要是拉格朗日计算,第二步输运阶段是重分计算网格相当于回到它的原来状态。LS-DYNA程序采用后一种方法。欧拉算法的缺点是网格中物质边界不清晰,难以捕捉各物质界面。 (3)ALE方法 吸取了欧拉法和拉格朗日法两种方法的优点。ALE算法能够进行自动重分网格操作。它包括拉格朗日时间步,然后是一个输运步。输运步可以采用三种方法:1. 发生合理的网格变形时空间网格不再重分(拉格朗日);2. 发生严重的网格变形时重分成原始形状(欧拉); 3. 发生严重的网格变形时重分为合理的形状,因此允许网格拓扑(拉

线性有限元法的稳定性和误差分析【文献综述】

文献综述 信息与计算科学 线性有限元法的稳定性和误差分析 有限元方法的基本思想是用较简单的问题代替复杂问题后再求解.它将求解域看成是由许多称为有限元的小的互连子域组成, 对每一单元假定一个合适的、较简单的近似解, 然后推导求解这个域总的满足条件(如结构的平衡条件), 从而得到问题的解.这个解不是准确解, 而是近似解, 因为实际问题被较简单的问题所代替.由于大多数实际问题难以得到准确解, 而有限元不仅计算精度高, 而且能适应各种复杂形状, 因而成为行之有效的工程分析手段.和每一项新技术的推出的背景一样, 有限元方法的产生也是由于时代的迫切需要, 而新技术的出现后也需要经历历史的重重考验.在上个世纪40年代, 由于航空事业的快速发展, 对飞机内部结构设计提出了越来越高的要求, 即重量轻、强度高、刚度好, 人们不得不进行精确的设计和计算.正是在这一背景下,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域, 成为一种丰富多彩、应用广泛并且实用高效的数值分析方法[1,2]. 关于有限元方法早期的一些成功的实验求解方法与专题论文, 完全或部分的内容对有限元技术的产生做出的贡献, 首先在应用数学界第一篇有限元论文是1943年Courant R发表的, 文中描述了他使用三角形区域的多项式函数来求解扭转问题的近似解, 由于当时计算机尚未出现, 这篇论文并没有引起应有的注意. 1956年, M.J.Turner (波音公司工程师), R.Clough, H.C.Martin以及L.J.Topp 等四位共同在航空科技期刊上发表一篇采用有限元技术计算飞机机翼的强度的论文, 文中把这种解法称为刚性法(Stiffness), 一般认为这是工程学界上有限元法的开端. 1960年, RayClough教授在美国土木工程学会(ASCE)会议上, 发表一篇名为《The Finite Element in Plane Stress Analysis》的论文, 将应用范围扩展到飞机以外之土木工程上, 同时有限元法(Finite Element Method)的名称也第一次被正式提出.由此之后, 有限元法的理论迅速地发展起来, 并广泛地应用于各种力学问题和非线性问题, 成为分析大型、复杂工程结构的强有力手段.并且随着计算机的迅速发展, 有限元法中人工是难以完成的大量计算工作能够由计算机来实现并快速地完成.因此, 可以说计算机的发展很大程度上促进了有限元法的建立和发展. 有限元方法在国内的产生和发展情况大致如下, 我国的力学工作者为有限元方法的初

有限元实验指导书—ansys

有限元法基础及应用上机指导书 南京理工大学 2008年4月

1 引言 上机实验是“有限元法基础及应用”课程的一个教学实践环节。通过上机,同学们可以对理论课所学有限元法的基本原理和方法有一个更加直观、深入的理解,同时通过对本实验所用软件平台Ansys的初步涉及,为将来在设计和研究中利用该类大型通用CAD/CAE软件进行工程分析奠定初步基础。 2 Ansys软件及其应用简介 Ansys是一个集成化的机械工程软件工具包,它包含所谓的CAD/CAE/ CAM功能。该软件能实现对机械工程产品设计和分析的并行工程(Concurrent Engineering)方法,它允许协同工作的不同设计小组共享设计模型并在不同应用模块之间自由交换信息。 Ansys是一个主要基于有限元法的工程分析应用软件系统,其功能几乎涉及工程分析的所有方面。用Ansys软件对一个结构或机械零件进行有限元分析的过程由三个大步骤组成:前处理、求解、后处理。 前处理是指建立有限元模型的几何、输入模型的物理和材料特性、边界条件和载荷的描述、模型检查的整个过程。 求解阶段对前处理建立的有限元模型选择相应的求解器进行求解运算。 后处理涉及对计算结果进行考察和评估的各种操作,比如绘制应力、变形图,将结果与失效准则进行比较等。后处理阶段必须回答两个问题:模型是否准确?结构或零件是否满意? 模型中有许多可能产生误差的因素,比如有限元网格的疏密、所使用单元的类型、材料特性、边界条件等。因此后处理需要对这些环节可能产生的错误进行检查,而这些问题往往在前处理和求解阶段难以发现。在根据计算结果对所分析的结构或零件进行评估之前,应确保模型中没有错误。 3 上机实验 3.1 习题1 3.1.1 已知条件 简支梁如图3.1.1所示,截面为矩形,高度h=200mm,长度L=1000mm,厚度t=10mm。上边承受均布载荷,集度q=1N/mm2,材料的E=206GPa,μ=0.29。平面

基于ANSYS的铁塔动态特性及稳定性有限元分析

延 边 大 学 2018年9月3日 本 科 毕 业 论 文 本科毕业设计 题 目:基于A N S Y S 的铁塔动态特性及 稳定性有限元分析 学生姓名: 学 院:工学院 专 业:机械设计制造及其自动化 班 级: 指导教师:

目录 catalog 摘要 (1) 引言 (2) 第一章绪论 (3) 1.1国内外关于铁塔的研究现状 (3) 1.2本文工作 (4) 第二章 1C-SJ1-27m110KV输电线路杆塔的有限元建模 (5) 2.1 1C-SJ1-27m110KV输电线路杆塔概述 (5) 2.2 1C-SJ1-27m110KV输电线路杆塔有限元模型的建立 (5) 2.3 1C-SJ1-27m110KV输电线路杆塔有限元模型的建立 (6) 2.4 1C-SJ1-27m110KV铁塔的计算载荷 (9) 2.4.1 1C-SJ1-27m110KV铁塔的外载荷简介 (9) 2.4.2 1C-SJ1-27m110KV输电线路杆塔载荷计算 (9) 2.5 小结 (10) 3.1 1C-SJ1-27m110KV铁塔的静力分析 (10) 3.2 1C-SJ1-27m110KV铁塔的模态分析 (13) 3.3 小结 (18) 第四章 1C-SJ1-27m110KV输电铁塔的整体稳定性分析 (19) 4.1 1C-SJ1-27m110KV铁塔的在大风工况下(14N)的风振响应 (19) 4.1.1 铁塔在大风工况下的分析 (21) 4.2 1C-SJ1-27m110KV铁塔雪载工况 (23) 4.3 1C-SJ1-27m110KV铁塔的整体稳定性分析方法 (25) 4.4 拉线铁塔的简单介绍及想法 (26) 4.5 小结 (26) 第五章有限元分析法及软件的简要介绍 (27) 5.1 有限元分析法介绍 (27) 5.2 ANSYS软件介绍 (27) 结论 (28) 参考文献 (29) 致谢 (32)

Abaqus6.14有限元仿真分析视频教程-实例篇(上)

Abaqus6.14有限元仿真分析视频教程-实例篇(上)

江西省南昌市2015-2016学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析 一、整体解读 试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。 1.回归教材,注重基础 试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。 2.适当设置题目难度与区分度

选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。 3.布局合理,考查全面,着重数学方法和数学思想的考察 在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。 二、亮点试题分析 1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC → → =,则AB AC → → ?的最小值为 ( )

(有限元)上机实验指导书

实验一ANSYS软件环境及典型实例分析 一、实验目的: 熟悉ANSYS软件菜单、窗口等环境、软件分析功能及解题步骤。 二、实验设备: 微机,ANSYS软件。 三、实验内容: ANSYS软件功能、菜单、窗口及解题步骤介绍。 四、实验步骤: 1、ANSYS界面介绍: ANSYS软件功能非常强大,应用范围很广,并具有友好的图形用户界面(GUI)和优秀和程序架构。基于Motif标注的GUI主要由主窗口和输出窗口组成。随着版本的不断升级,ANSYS界面不断改进,不同版本间的界面存在着较大差别。下面介绍ANSYS的用户界面。 (1)主窗口 * 。 ANSYS的主窗口主要由以下5个部分组成。 ①Utility菜单 这些菜单主要通过ANSYS的相关功能组件起作用,比如文件控制、参数选择、图像参数控制及参数输入等。 ②Input Line(Input Window命令输入窗口)

命令输入窗口(也称为命令栏)用于显示程序的提示信息并允许用户直接输入命令,简化分析过程。 ③工具栏(Toolbar) { 工具栏主要由按钮组成,这些按钮都是ANSYS中的常用命令。用户可以根据工作类型定义自己的工具栏以提高分析效率。 ④主菜单(Main Menu) 主菜单包括了ANSYS最主要的功能,分为前处理器(Preprocessor)、求解器(Solution)、通用后处理器(General Postprocessor)、设计优化器(Design Optimizer)。展开主菜单可以看到非常多的树状建模命令,这也是版本和以前版本的一个显著差别。虽然菜单的外观改变了,但是菜单结构没有变化,这对ANSYS 用户平滑升级非常有利。 ⑤图形窗口(Graphic Windows) 图形窗口用于显示分析过程的图形,实现图形的选取。在这里可以看到实体建模各个过程的图形并可查看随后分析的结果。 (2)输出窗口(Output Windows) 输出窗口用于显示程序的文本信息,即以简单表格形式显示过程数据等信息。通常,输出窗口被主窗口遮盖,当然,如果需要随时可以将输出窗口拖到前面。 注意: 应该在ANSYS分析的各个步骤中随时查看输出窗口中的信息,检验分析过程是否正确,以便及时调整。 通过GUI可以方便地交互式访问程序的各种功能、命令、用户手册和参考材料,一步步地完成整个分析,很好地体现出ANSYS的易用性。同时,ANSYS软件也提供了完整的在线说明和帮助文件,以协助有经验的用户进行高级应用。 在用户界面中,ANSYS软件提供了4种通用的命令输入方式:菜单、对话框、工具栏和直接输入命令。 ~ 2、ANSYS分析过程: 一个典型的ANSYS分析过程包含3个主要步骤,每个主要步骤及其子步骤如下: (1)建立有限元模型 在ANSYS中建立有限元模型的过程大致可分为以下3个主要步骤: ①建立或导入几何模型 ②定义材料属性 ③划分网格建立有限元模型 (2)施加载荷并求解 在ANSYS中施加载荷及求解的过程大致可以分为以下3个主要步骤: ①定义约束 ②\ ③施加载荷 ④设置分析选项并求解 (3)查看分析结果

有限元仿真技术的发展及其应用

有限元仿真技术的发展及其应用 许荣昌 孙会朝 (技术研发中心) 摘 要:介绍了目前常用的大型有限元分析软件的现状与发展,对其各自的优势进行了分析,简述了有限元软件在冶金生产过程中的主要应用领域及其发展趋势,对仿真技术在莱钢的应用进行了展望。 关键词:有限元仿真 冶金生产 发展趋势 0 前言 自主创新,方法先行,创新方法是自主创新的根本之源,同时,随着市场竞争的日益激烈,冶金企业的产品设计、工艺优化也由经验试错型向精益研发方向发展,而有限元仿真技术正是这种重要的创新方法。近年来随着计算机运行速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的应用,比如,有限元分析在冶金、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究等各个领域正在发挥着重要的作用,主要表现在以下几个方面:增加产品和工程的可靠性;在产品的设计阶段发现潜在的问题;经过分析计算,采用优化设计方案,降低原材料成本;缩短产品研发时间;模拟试验方案,减少试验次数,从而减少试验成本。与传统设计相比,利用仿真技术,可以变经验设计为科学设计、变实测手段为仿真手段、变规范标准为分析标准、变传统分析技术为现代的计算机仿真分析技术,从而提高产品质量、缩短新产品开发周期、降低产品整体成本、增强产品系统可靠性,也就是增强创新能力、应变能力和竞争力(如图1、2) 。 图1 传统创新产品(工艺优化)设计过程为大循环 作者简介:许荣昌(1971-),男,1994年毕业于武汉钢铁学院钢铁冶金专业,博士,高级工程师。主要从事钢铁工艺技术研究工 作。 图2 现代CAE 创新产品(工艺优化)设计过程为小循环 1 主要有限元分析软件简介 目前,根据市场需求相继出现了各种类型的应用软件,其中NAST RAN 、AD I N A 、ANSYS 、ABAQUS 、MARC 、MAGS OFT 、COS MOS 等功能强大的CAE 软件应用广泛,为实际工程中解决复杂的理论计算提供了非常有力的工具。但是,各种软件均有各自的优势,其应用领域也不尽相同。本文将就有限元的应用范围及当今国际国内CAE 软件的发展趋势做具体的阐述,并对与冶金企业生产过程密切相关的主要有限元软件ANSYS 、ABAQUS 、MARC 的应用领域进行分析。 MSC 1Soft w are 公司创建于1963年,总部设在美国洛杉矶,MSC 1Marc 是MSC 1Soft w are 公司于1999年收购的MARC 公司的产品。MARC 公司始创于1967年,是全球首家非线性有限元软件公司。经过三十余年的发展,MARC 软件得到学术界和工业界的大力推崇和广泛应用,建立了它在全球非线性有限元软件行业的领导者地位。随着Marc 软件功能的不断扩展,软件的应用领域也从开发初期的核电行业迅速扩展到航空、航天、汽车、造船、铁道、石油化工、能源、电子元件、机械制造、材料工程、土木建筑、医疗器材、冶金工艺和家用电器等,成为许多知名公司和研究机构研发新产品和新技术的重要工具。在航空业MSC 1Nastran 软件被美国联邦航空管理局(F AA )认证为领取飞行器适 3 1

相关文档
最新文档