运算放大器电路固有噪声的分析与测量(第一部分)

运算放大器电路固有噪声的分析与测量(第一部分)
运算放大器电路固有噪声的分析与测量(第一部分)

电子电路噪声分析

电子电路噪声分析 摘要 对于电子线路中所标称的噪声,可以概括地认为,它是对目的信号以外的所有信号的一个总称。最初人们把造成收音机这类音响设备所发出噪声的那些电子信号,称为噪声。但是,一些非目的的电子信号对电子线路造成的后果并非都和声音有关,因而,后来人们逐步扩大了噪声概念。例如,把造成视屏幕有白班呀条纹的那些电子信号也称为噪声。可能以说,电路中除目的的信号以外的一切信号,不管它对电路是否造成影响,都可称为噪声。例如,电源电压中的纹波或自激振荡,可对电路造成不良影响,使音响装置发出交流声或导致电路误动作,但有时也许并不导致上述后果。对于这种纹波或振荡,都应称为电路的一种噪声。又有某一频率的无线电波信号,对需要接收这种信号的接收机来讲,它是正常的目的信号,而对另一接收机它就是一种非目的信号,即是噪声。在电子学中常使用干扰这个术语,有时会与噪声的概念相混淆,其实,是有区别的。噪声是一种电子信号,而干扰是指的某种效应,是由于噪声原因对电路造成的一种不良反应。而电路中存在着噪声,却不一定就有干扰。在数字电路中。往往可以用示波器观察到在正常的脉冲信号上混有一些小的尖峰脉冲是所不期望的,而是一种噪声。但由于电路特性关系,这些小尖峰脉冲还不致于使数字电路的逻辑受到影响而发生混乱,所以可以认为是没有干扰。 当一个噪声电压大到足以使电路受到干扰时,该噪声电压就称为干扰电压。而一个电路或一个器件,当它还能保持正常工作时所加的最大噪声电压,称为该电路或器件的抗干扰容限或抗扰度。一般说来,噪声很难消除,但可以设法降低噪声的强度或提高电路的抗扰度,以使噪声不致于形成干扰。 关键词:电路噪声电路干扰电路信号尖峰脉冲 ABSTRACT In common use, the word noise means unwanted sound or noise pollution. In electronics noise can refer to the electronic signal corresponding to acoustic noise (in an audio system) or the electronic signal corresponding to the (visual)

噪声干扰PCB布线与微小信号的放大

电路中干扰、噪声的应对与微弱信号的测量 摘要:微弱信号常常被混杂在大量的噪音中。噪声的来源多种多样,有来自电路之间的,有电子元器件本身所具有的,也有来自外部环境的。这其中,又分为了好多不同种类,比如电子元器件的噪声,有低频时的1/f噪声,有高频的热噪声等等。本文中分别对其进行介绍。为了消除这些噪声,从而获得正确的信号,就需要对电路采取一些措施。在PCB布局布线时,就有好多细节非常值得我们注意。当然,元器件的选择也是很有讲究的。当然,仅仅对噪声干扰进行抑制并不足以达到检测微弱信号的目的,为此,在设计检测微弱信号的电路时,又有很多重要的方法和注意点值得参考。只有做好这些,才能从噪声中得到可靠、稳定的信号。关键词:噪声;PCB布线;微弱信号检测 一、电路中的干扰与噪声 噪声是电路中相对于信号而言的一些干扰、无用的信号噪声干扰的产生原因有许多,如雷击、周边负载设备的开关机、发电机、无线电通讯等。在对微弱信号处理时,噪声的影响非常重要,必须对其采取措施,否则有用信号将淹没其中,而无法被检测到。具体到噪声来源、噪声特点等方面,噪声有许许多多的类别,下面分别简要对其进行介绍。 1.1低频噪声 低频噪声主要是由于内部的导电微粒不连续造成的。特别是碳膜电阻,其碳质材料内部存在许多微小颗粒,颗粒之间是不连续的,在电流流过时,会使电阻的导电率发生变化引起电流的变化,产生类似接触不良的闪爆电弧。另外,晶体管也可能产生相似的爆裂噪声和闪烁噪声,其产生机理与电阻中微粒的不连续性相近,也与晶体管的掺杂程度有关。 1.2半导体器件产生的散粒噪声 由于半导体PN结两端势垒区电压的变化引起累积在此区域的电荷数量改变,从而显现出电容效应。当外加正向电压升高时,N区的和P区的空穴向耗尽区运动,相当于对电容充电。当正向电压减小时,它又使电子和空穴远离耗尽区,相当于电容放电。当外加反向电压时,耗尽区的变化相反。当电流流经势垒区时,这种变化会引起流过势垒区的电流产生微小波动,从而产生电流噪声。其产生噪声的大小与温度、频带宽度△f成正比。 1.3高频热噪声 高频热噪声是由于导电体内部电子的无规则运动产生的。温度越高,电子运动就越激烈。导体内部电子的无规则运动会在其内部形成很多微小的电流波动,因其是无序运动,故它的

基于信噪比的分析

基于信噪比理论的光电成像系统性能分析与评价 摘要 本文主要讨论了典型的固体光学成像系统的信噪比。通过对光学成像系统成像的各个过程的噪声来源,种类,性质进行了归纳总结,最后得出整个光电成像系统的信噪比。并简要的指明了信噪比在光电成像系统评价中的特点及优势。最后,从提高系统信噪比的角度,提出了几点改进系统成像质量的建议。 关键词:信噪比,光电成像 1.前言: 由于在目前的应用中,人们使用最多的都是固体成像器件,因此,以下的讨论中将主要考虑固体成像器件。在固体成像器件中,光电转换部分使用最为广泛的还应该属于光电二极管。即使是对于常见到的CCD以及CMOS固体成像器件,其像元中的光电转换部分多数还是与光电二极管的转换原理是一致的。所以,在接下来的讨论中,将以光电二极管作为光电转换器件的代表进行分析讨论。 2.光电成像器件的噪声来源: 通常,光电成像系统对某一目标物体的成像过程主要分为以下一个步骤:目标物体发出的辐射光线经过在大气中传播后,进入到光电成像系统的入瞳,入瞳处的辐射经过光学系统作用后到达光电转换器件的像面上进行曝光;然后,光电探测器将收集到的光信号转化为相应的电信号,而后输出到后续的电路中进行相应的信号处理;最终,最终输出可供目视判读的目标景物图像。 由于在整个光学成像系统工作的过程中,每一个过程都会伴随着噪声的干扰。因此,要分析整个系统的信噪比,就必须要对探测及成像过程中的每一个环节进行噪声的分析。其中,对于一个完整的系统来说,其误差来源可以分为外部误差来源和内部误差来源。 当光电成像系统进行工作时,所观察目标的辐射光线在到达光电系统的入瞳之前,由于大气层中的分子散射和气溶胶散射等原因的存在,造成了传播中的能 量衰减,此时,系统探测器像面上的曝光量由入瞳辐亮度、光学系统的相对孔径和透过率、探测器像元光敏面面积以及积分时间等参数共同决定。其中散射是造成辐射能量衰减的主要原因,最直接的结果将会是对光谱辐射透过率产生较大的 影响。当大气的散射作用对目标物发出的辐射作用很大时,就会使目标信号完全

电路噪声的产生及抑制

电路噪声的产生及抑制 电路噪声 对于电子线路中所标称的噪声,可以概括地认为,它是对目的信号以外的所有信号的一个总称。最初人们把造成收音机这类音响设备所发出噪声的那些电子信号,称为噪声。但是,一些非目的的电子信号对电子线路造成的后果并非都和声音有关,因而,后来人们逐步扩大了噪声概念。例如,把造成视屏幕有白班呀条纹的那些电子信号也称为噪声。可能以说,电路中除目的的信号以外的一切信号,不管它对电路是否造成影响,都可称为噪声。例如,电源电压中的纹波或自激振荡,可对电路造成不良影响,使音响装置发出交流声或导致电路误动作,但有时也许并不导致上述后果。对于这种纹波或振荡,都应称为电路的一种噪声。又有某一频率的无线电波信号,对需要接收这种信号的接收机来讲,它是正常的目的信号,而对另一接收机它就是一种非目的信号,即是噪声。在电子学中常使用干扰这个术语,有时会与噪声的概念相混淆,其实,是有区别的。噪声是一种电子信号,而干扰是指的某种效应,是由于噪声原因对电路造成的一种不良反应。而电路中存在着噪声,却不一定就有干扰。在数字电路中。往往可以用示波器观察到在正常的脉冲信号上混有一些小的尖峰脉冲是所不期望的,而是一种噪声。但由于电路特性关系,这些小尖峰脉冲还不致于使数字电路的逻辑受到影响而发生混乱,所以可以认为是没有干扰。 当一个噪声电压大到足以使电路受到干扰时,该噪声电压就称为干扰电压。而一个电路或一个器件,当它还能保持正常工作时所加的最大噪声电压,称为该电路或器件的抗干扰容限或抗扰度。一般说来,噪声很难消除,但可以设法降低噪声的强度或提高电路的抗扰度,以使噪声不致于形成干扰。 电子电路中噪声的产生?如何抑制 这个东西主要是由于电路中的数字电路和电源部分产生的。在数字电路中,普遍存在高频的数字电平,这些电平可以产生两种噪声:1、电磁辐射,就像电视的天线一样,通过发射电磁波来干扰旁边的电路,也就是你说的噪声。2、耦合噪声,指数字电路和旁边的电路存在

运算放大器电路固有噪声的分析与测量

运算放大器电路固有噪声的分析与测量 第三部分:电阻噪声与计算示例 作者:TI 高级应用工程师 Art Kay 在第二部分中,我们给出了将产品说明书上噪声频谱密度曲线转换为运算放大器噪声源模型的方法。在本部分中,我们将了解如何用该模型计算简单运算放大器电路的总输出噪声。总噪声参考输入 (RTI) 包含运算放大器电压源的噪声、运算放大器电流源的噪声以及电阻噪声等。上述噪声源相加,再乘以运算放大器的噪声增益,即可得出输出噪声。图 3.1 显示了不同噪声源及各噪声源相加再乘以噪声增益后的情况。 图 3.1:噪声源相结合

噪声增益是指运算放大器电路对总噪声参考输入 (RTI) 的增益。在某些情况下,这与信号增益并不相同。图 3.2 给出的实例显示了信号增益(1)与噪声增益(2)不同的情况。Vn 信号源是指不同噪声源的噪声影响。请注意,通常在工程设计中,我们会在非反向输入端将所有噪声源结合为单个的噪声源。我们的最终目标是计算出运算放大器电路的噪声参考输出 (RTO)。 图 3.2:噪声增益与信号增益 方程式 3.1:简单运算放大器电路的噪声增益 在上一篇文章中,我们了解到如何计算电压噪声输入,不过我们如何将电流噪声源转换为电压噪声源呢?一种办法就是对每个电流源进行独立的节点分析,并用叠加法将结果求和。这时我们要注意,要用和的平方根 (RSS) 对每个电流源的结果进行求和。通过方程式 3.2 和 3.3,我们可将简单运算放大器电路的电流噪声转换为等效电压噪声源。图 3.3 给出了有关图示。附录 3.1 给出了该电路的整个演算过程。 方程式 3.2与3.3:将简单运算放大器的电流噪声转换为电压噪声 (RTI)

2×8低噪声InGaAs/InP APD读出电路设计

2×8低噪声InGaAs/InP APD 读出电路设计 0 引言在红外通信的1 310~1 550 nm 波段,高灵敏度探测材料主要有Ge―APD和InGaAs/InP APD,两者相比较,InGaAs/InP APD 具有更高的量子效率和更低的暗电流噪声。In0.53Ga0.47As/InP APD 采用在n+-InP 衬底上依次匹配外延InP 缓冲层、InGaAs 吸收层、InGaAsP 能隙渐变层、InP 电荷层与InP 顶层的结构。APD 探测器的最大缺点是暗电流相对于信号增益较大,所以设计APD 读出电路的关键是放大输出弱电流信号,限制噪声信号,提高 信噪比。选择CTIA 作为读出单元,CTIA 是采用运算放大器作为积分器的运放积分模式,比较其他的读出电路,优点是噪声低、线性好、动态范围大。1 工作时序和读出电路结构作为大阵列面阵的基础,首先研制了一个2×8读出电路,图1 给出了该电路的工作时序,其中Rl、R2 为行选通信号;Vr 为复位信号;SHl、SH2 是双采样信号;C1、C2、…、C8 为列读出信号。电路采用行共用的工作方式,R1 选通(高电平)时,第一行进行积分,SH1 为高电平时,电路进行积分前采样,SH2 为高电平时,进行积分结束前的采样, C1、C2、…、C8 依次为高电平,将行上的每个像元上信号输出;然后R2 为高电平,重复上面的步骤,进行第二行的积分和读出。 图2 是2×8读出电路的结构框图,芯片主要由行列移位寄存器、CTIA 和CDS 单元组成,图中用虚线框表示:移位寄存器单元完成行列的选通,CTIA 功能块将探测器电流信号按行进行积分,CDS 功能块能抑制电路的噪声,如KTC(复位噪声)、FPN(固定图形噪声)等;FPGA 主要产生复位信号(Vr)和采样 信号(SH1、SH2),触发电路的复位和采样动作,C8 为该组信号的触发信号, 解决和芯片内行列选通信号同步问题。

电气原理图设计方法及实例分析

电气原理图设计方法及实例分析 【摘要】本文主要对电气原理图绘制的要求、原则以及设计方法进行了说明,并通过实例对设计方法进行了分析。 【关键词】电气原理图;设计方法;实例 继电-接触器控制系统是由按钮、继电器等低压控制电器组成的控制系统,可以实现对 电力拖动系统的起动、调速等动作的控制和保护,以满足生产工艺对拖动控制的要求。继电-接触器控制系统具有电路简单、维修方便等许多优点,多年来在各种生产机械的电气控制 中获得广泛的应用。由于生产机械的种类繁多,所要求的控制系统也是千变万化、多种多样的。但无论是比较简单的,还是很复杂的控制系统,都是由一些基本环节组合而成。因此本节着重阐明组成这些控制系统的基本规律和典型电路环节。这样,再结合具体的生产工艺要求,就不难掌握控制系统的分析和设计方法。 一、绘制电气原理图的基本要求 电气控制系统是由许多电气元件按照一定要求连接而成,从而实现对某种设备的电气自动控制。为了便于对控制系统进行设计、研究分析、安装调试、使用和维修,需要将电气控制系统中各电气元件及其相互连接关系用国家规定的统一图形符号、文字符号以图的形式表示出来。这种图就是电气控制系统图,其形式主要有电气原理图和电气安装图两种。 安装图是按照电器实际位置和实际接线电路,用给定的符号画出来的,这种电路图便于安装。电气原理图是根据电气设备的工作原理绘制而成,具有结构简单、层次分明、便于研究和分析电路的工作原理等优点。绘制电气原理图应按GB4728-85、GBTl59-87等规定的标 准绘制。如果采用上述标准中未规定的图形符号时,必须加以说明。当标准中给出几种形式时,选择符号应遵循以下原则: ①应尽可能采用优选形式; ②在满足需要的前提下,应尽量采用最简单形式; ③在同一图号的图中使用同一种形式。 根据简单清晰的原则,原理图采用电气元件展开的形式绘制。它包括所有电气元件的导电部件和接线端点,但并不按照电气元件的实际位置来绘制,也不反映电气元件的大小。由于电气原理图具有结构简单、层次分明、适于研究等优点,所以无论在设计部门还是生产现场都得到广泛应用。 控制电路绘制的原则: ①原理图一般分主电路、控制电路、信号电路、照明电路及保护电路等。 ②图中所有电器触头,都按没有通电和外力作用时的开闭状态(常态)画出。 ③无论主电路还是辅助电路,各元件应按动作顺序从上到下、从左到右依次排列。 ④为了突出或区分某些电路、功能等,导线符号、连接线等可采用粗细不同的线条来表示。 ⑤原理图中各电气元件和部件在控制电路中的位置,应根据便于阅读的原则安排。同一电气元件的各个部件可以不画在一起,但必须采用同一文字符号标明。 ⑥原理图中有直接电联系的交叉导线连接点,用实心圆点表示;可拆卸或测试点用空心圆点表示;无直接电联系的交叉点则不画圆点。 ⑦对非电气控制和人工操作的电器,必须在原理图上用相应的图形符号表示其操作方式。 ⑧对于电气控制有关的机、液、气等装置,应用符号绘出简图,以表示其关系。 二、分析设计法及实例设计分析 根据生产工艺要求,利用各种典型的电路环节,直接设计控制电路。这种设计方法比较简单,但要求设计人员必须熟悉大量的控制电路,掌握多种典型电路的设计资料,同时具有丰富的设计经验,在设计过程中往往还要经过多次反复地修改、试验,才能使电路符合设计

电源电路5大常见内部噪声源

噪声重要与否,取决于它对目标电路工作的影响程度。 例如,一个开关电源在3MHz时具有显著的输出电压纹波,如果它为之供电的电路仅有几Hz的带宽,如温度传感器等,则该纹波可能不会产生任何影响。但是,如果该开关电源为RF锁相环(PLL)供电,结果可能大不相同。 为了成功设计一个鲁棒的系统,了解噪声源至关重要。就低压差(LDO)调节器而言,或者说对于任何电路,噪声源都可以分为两大类:内部噪声和外部噪声。内部噪声好比是您头脑中的噪声,外部噪声则好比是来自喷气式飞机的噪声。 今天我们只谈内部噪声。内部噪声有许多来源,各种噪声源都有自己独一无二的特性。内部噪声主要有以下几类:热噪声、1/f噪声、散粒噪声、爆裂或爆米花噪声。 1、热噪声,随机但有通式 在绝对零度以上的任何温度,导体或半导体中的载流子(电子和空穴)会发生扰动,这就是热噪声(亦称约翰逊噪声或白噪声)的来源。热噪声功率与温度成比例。它具有随机性,因而不随频率而变化。热噪声是一个物理过程,可以通过下式计算: Vn = √(4kTRB) k表示波尔兹曼常数(1.38?23 J/K) T表示绝对温度(K = 273°C) R表示电阻(单位Ω) B表示观察到噪声的带宽(单位Hz) 2、粉红浪漫?NO,这里只有1/f 噪声 1/f 噪声来源于半导体的表面缺陷,声功率与器件的偏置电流成正比,并且与频率成反比,这一点与热噪声不同。即使频率非常低,该反比特性也成立;然而,当频率高于数kHz时,关系曲线几乎是平坦的。1/f 噪声也称为粉红噪声,因为其权重在频谱的低端相对较高。 1/f 噪声主要取决于器件几何形状、器件类型和半导体材料,因此,要创建其数学模型极其困难,通常使用各种情况的经验测试来表征和预测1/f 噪声。 一般而言,具有埋入结的器件,如双极性晶体管和JFET等,其1/f 噪声往往低于MOSFET等表面器件。 3、有势垒地方就有散粒噪声 散粒噪声发生在有势垒的地方,例如PN结中。半导体器件中的电流具有量子特性,电流不是连续的。当电荷载子、空穴和电子跨过势垒时,就会产生散粒噪声。和热噪声一样,散粒噪声也是随机的,不随频率而变化。 4、低频噪声——爆米花噪声 爆米花噪声是一种低频噪声,似乎与离子污染有关。爆米花噪声表现为电路的偏置电流或输出电压突然发生偏移,这种偏移持续的时间很短,然后偏置电流或输出电压又突然返回其原始状态。这种偏移是随机的,但似乎与偏置电流成正比,与频率的平方成反比(1/f2)。 5、爆裂噪声,几乎已被消除

红外焦平面读出电路噪声分析

Design of 800×2 Low-Noise Readout Circuit for Near-Infrared InGaAs Focal Plane Array Huang Zhangcheng*a, Huang Songlei a, Fang Jiaxiong a a State Key Laboratory of Transducer Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China ABSTRACT InGaAs near-infrared (NIR) focal plane arrays (FPA) have important applications in space remote sensing. A design of 800×2 low-noise readout integrated circuit (T800 ROIC) with a pitch of 25 μm is presented for a dual-band monolithic InGaAs FPA. Mathematical analysis and transient noise simulations have been presented for predicting and lowering the noise in T800 ROIC. Thermal noise from input-stage amplifier which plays a dominant role in ROIC is reduced by increasing load capacitor under tradeoff and a low input offset voltage in the range of ±5 mV is obtained by optimizing transistors in the input-stage amplifier. T800 ROIC has been fabricated with 0.5-μm 5V mixed signal CMOS process and interfaced with InGaAs detector arrays. Test results show that ROIC noise is around 90 μV and input offset voltage shows a good correspondence with simulation results. 800×2 InGaAs FPA has a peak detectivity (D*)of about 1.1×1012 cmHz1/2/ W, with dynamic range of above 80dB. Keywords: infrared FPA, ROIC, low noise, input offset voltage INTRODUCTION InGaAs near-infrared focal plane array has wide applications in space remote sensing, NIR spectroscopy and night vision [1][2]. As InGaAs detector has a high detectivity from 0.9 μm to 1.7 μm at room temperature with its lattice matched to InP substrate, there has been strong interest in developing InGaAs FPA as optoelectronic sensor for remote sensing [3]. In general, InGaAs FPA consists of two major parts, namely InGaAs detector arrays and the readout integrated circuit. In the past years, the advances of detector fabrication technology have led to the rapid development of InGaAs detector array [4]. At present, for many mature InGaAs FPA detector technologies, it is the readout electronics that limit performance rather than the detector itself. In this paper, a design of low-noise 800×2 CMOS ROIC for near-infrared InGaAs focal plane array is presented. The first section describes basic architecture of ROIC. The second section presents a mathematical analysis of total noise and the design method of low-noise ROIC circuit. To obtain low dark current in FPA, the next section discusses the input offset voltage of input amplifier. The last section will present performance measurements and comparison with calculation results. 800×2 ROIC ARCHITECTURE InGaAs near-infrared focal plane array has been studied in Shanghai Institute of Technical Physics (SITP) for several years [5][6]. Now there is a great interest in developing an 800×2 InGaAs NIR focal plane array for dual-band detection. This paper reports the development of 800×2 low-noise ROIC (T800) suitable for dual-band monolithic InGaAs detector arrays. T800 ROIC consists of two parallel 800×1 linear arrays with 25μm pixel pitch. Figure 1 shows the architecture of unit circuit in T800 ROIC. Infrared, Millimeter-Wave, and Terahertz Technologies II, edited by Cunlin Zhang, Xi-Cheng Zhang, He Li, Sheng-Cai Shi, Proc. of SPIE Vol. 8562, 856205 · ? 2012 SPIE · CCC code: 0277-786/12/$18 · doi: 10.1117/12.999646

运算放大器电路中固有噪声的分析与测量一

运算放大器电路中固有噪声的分析与测量(一) 第一部分:引言与统计数据评论 我们可将噪声定义为电子系统中任何不需要的信号。噪声会导致音频信号质量下降以及精确测量方面的错误。板级与系统级电子设计工程师希望能确定其设计方案在最差条件下的噪声到底有多大,并找到降低噪声的方法以及准确确认其设计方案可行性的测量技术。 噪声包括固有噪声及外部噪声,这两种基本类型的噪声均会影响电子电路的性能。外部噪声来自外部噪声源,典型例子包括数字开关、60Hz 噪声以及电源开关等。固有噪声由电路元件本身生成,最常见的例子包括宽带噪声、热噪声以及闪烁噪声等。本系列文章将介绍如何通过计算来预测电路的固有噪声大小,如何采用 SPICE模拟技术,以及噪声测量技术等。 热噪声 热噪声由导体中电子的不规则运动而产生。由于运动会随温度的升高而加剧,因此热噪声的幅度会随温度的上升而提高。我们可将热噪声视为组件(如电阻器)电压的不规则变化。图 1.1 显示了标准示波器测得的一定时域中热噪声波形,我们从图中还可看到,如果从统计学的角度来分析随机信号的话,那么它可表现为高斯分布曲线。我们给出分布曲线的侧面图,从中可以看出它与时域信号之间的关系。 图 1.1: 在时间域中显示白噪声以及统计学分析结果

热噪声信号所包含的功率与温度及带宽直接成正比。请注意,我们可简单应用功率方程式来表达电压与电阻之间的关系(见方程式1.1),根据该表达式,我们可以估算出电路均方根 (RMS) 噪声的大小。此外,它还说明了在低噪声电路中尽可能采用低电阻元件的重要性。 方程式 1.1:热电压 方程式 1.1 中有一点值得重视的是,根据该表达式我们还可计算出 RMS 噪声电压。在大多数情况下,工程师希望了解“最差条件下噪声会有多严重?”换言之,他们非常关心峰峰值电压的情况。如果我们要将 RMS 热噪声电压转化为峰峰值噪声的话,那么必须记住的一点是:噪声会表现为高斯分布曲线。这里有一些单凭经验的方法即根据统计学上的关系,我们可将 RMS 热噪声电压转化为峰峰值噪声。不过,在介绍有关方法前,我想先谈谈一些数学方面的基本原理。本文的重点在于介绍统计学方面的基本理论,随后几篇文章将讨论实际模拟电路的测量与分析事宜。 概率密度函数: 构成正态分布函数的数学方程式称作“概率密度函数”(见方程式 1.2)。根据一段时间内测得的噪声电压绘制出相应的柱状图,从该柱状图,我们可以大致看出函数所表达的形状。图 1.2 显示了测得的噪声柱状图,并给出了相应的概率密度函数。

CCD图像传感器读出电路研究与设计

分类号密级 UDC1注 学位论文 CCD图像传感器读出电路研究与设计 (题名和副题名) 罗 彦 (作者姓名) 指导教师姓名 李竞春 副教授 电子科技大学 成 都 (职务、职称、学位、单位名称及地址) 申请专业学位级别硕士专业名称 微电子学与固体电子学 论文提交日期 2009.4 论文答辩日期2009.5 学位授予单位和日期电子科技大学 答辩委员会主席 评阅人 2009年月日 注1:注明《国际十进分类法UDC》的类号。

独创性声明 本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。据我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得电子科技大学或其它教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。 签名:日期:年月日 关于论文使用授权的说明 本学位论文作者完全了解电子科技大学有关保留、使用学位论文的规定,有权保留并向国家有关部门或机构送交论文的复印件和磁盘,允许论文被查阅和借阅。本人授权电子科技大学可以将学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。 (保密的学位论文在解密后应遵守此规定) 签名:导师签名: 日期:年月日

摘要 CCD图像传感器读出电路是CCD器件与后续数字信号处理电路之间的接口,其作用是放大CCD器件输出的微弱信号,并滤除各种噪声。读出电路的性能决定了整个CCD系统的精度。随着CCD器件速度和象元数的不断提高,要求读出电路具有更高的速度、更低的噪声、更大的动态范围以及更多功能的单片集成。 本文研究了单片集成的CCD读出电路,设计了前置放大器、低通滤波器和相关双采样三个子模块电路。设计过程中主要从精度、速度和噪声三方面探讨了各个子模块的理论模型和相应的电路实现途径,同时基于UMC 0.18μm CMOS工艺设计了读出频率为2MHz,精度在10位以上的CCD图像传感器读出电路。主要内容包括以下几方面: 1)系统阐述和分析了CCD器件结构及其产生的噪声,侧重对于在噪声中占 主要成分的输出复位噪声进行了研究,推导了复位噪声随时间变化的表 达式,分析了复位噪声的相关性并计算了相关系数。基于复位噪声的相 关性,采用相关双采样电路降低复位噪声。 2)基于前置放大器结构,分析了影响前置放大器精度和速度的因素,如运 放有限增益,有限带宽,噪声和失调电压等。通过分析,推导了用于读 出电路的运算放大器的指标。同时基于2MHz读出频率和相关双采样抑 制噪声的要求,确定了低通滤波器的-3dB带宽。 3)设计了用于CCD读出电路各个模块的运算放大器,包括可驱动低阻抗的 带输出级的运放和用于缓冲隔离的普通运放。运放设计过程中还分析和 推导了噪声和失调电压,通过优化参数将噪声和失调电压降至最低。仿 真结果,运放增益78dB,单位增益带宽30MHz,相位裕度58?,满足系 统设计的要求。 4)推导了相关双采样的系统函数。设计了两种相关双采样电路,分析了相 关双采样电路中的电荷注入等误差,通过分析和仿真结果表明,第二种 相关双采样电路能够将误差降至最低,满足系统10位精度要求。 5)基于UMC 0.18μm CMOS工艺,设计仿真了用于CCD图像传感器的读出 电路,电源电压3.3V,读出频率为2MHz,最大输出信号为1V。仿真结 I

确定版的50个典型经典应用电路实例分析

电路1简单电感量测量装置 在电子制作和设计,经常会用到不同参数的电感线圈,这些线圈的电感量不像电阻那么容易测量,有些数字万用表虽有电感测量挡,但测量范围很有限。该电路以谐振方法测量电感值,测量下限可达10nH,测量范围很宽,能满足正常情况下的电感量测量,电路结构简单,工作可靠稳定,适合于爱好者制作。 一、电路工作原理 电路原理如图1(a)所示。 图1简单电感测量装置电路图 该电路的核心器件是集成压控振荡器芯片MC1648,利用其压控特性在输出3脚产生频 值,测量精度极高。 率信号,可间接测量待测电感L X BB809是变容二极管,图中电位器VR1对+15V进行分压,调节该电位器可获得不同的电压输出,该电压通过R1加到变容二极管BB809上可获得不同的电容量。测量被测电感L X 时,只需将L X接到图中A、B两点中,然后调节电位器VR1使电路谐振,在MC1648的3脚会输出一定频率的振荡信号,用频率计测量C点的频率值,就可通过计算得出L 值。 X 电路谐振频率:f0=1/2π所以L X=1/4π2f02C LxC 式中谐振频率f0即为MC1648的3脚输出频率值,C是电位器VR1调定的变容二极管的电容值,可见要计算L X的值还需先知道C值。为此需要对电位器VR1刻度与变容二极管的对应值作出校准。 为了校准变容二极管与电位器之间的电容量,我们要再自制一个标准的方形RF(射频)电感线圈L0。如图6—7(b)所示,该标准线圈电感量为0.44μH。校准时,将RF线圈L0接在图(a)的A、B两端,调节电位器VR1至不同的刻度位置,在C点可测量出相对应的测量值,再根据上面谐振公式可算出变容二极管在电位器VR1刻度盘不同刻度的电容量。附表给出了实测取样对应关系。 附表振荡频率(MHz)98766253433834

电力系统噪声的分类

电力系统噪声的分类 从电磁干扰模式看,噪声可分为差模噪声和共模噪声两类,以及噪声处理。 1.1 差模噪声 又称线间感应噪声、串模噪声或常模噪声。噪声侵入往返在两导线之间,N为噪声源,UN 为噪声电压,IN、IS分别为噪声电流和有用信号。差模噪声可能是由于平行线路间互感的影响、分布电容的相互干扰及工频干扰等原因造成的,这种噪声可采用低通滤波器来抑制,但低频差模干扰却不易被滤波器吸收。 1.2 共模噪声 又称对地感应噪声、纵向噪声或不对称噪声。IN在两条线上流过一部分,以地为公共回路,IS只在往返两条线路中流过,这种噪声是由网络对地电位发生变化而引起的干扰,是造成微机保护、自动装置不正常工作的重要原因。 此外,若导线对地阻抗Z1=Z2,则UN1=UN2,从而IN1=IN2,即此时噪声电流不流过负载ZL,这种噪声就是共模噪声;通常Z1≠Z2,则UN1≠UN2,IN1≠IN2,出现UN1-UN2=UN,IN=UN/ZL,这种噪声就是差模噪声。可见,如发现差模噪声,则首先要考虑导线的阻抗是否平衡。阻抗不平衡对信号的不良影响,与其不平衡程度成比例。 2 噪声干扰的来源及危害 电力系统中噪声干扰的来源,大都是操作引起的噪声干扰、耦合引起的噪声干扰、地磁引起的噪声干扰、直流和厂(站)用电系统操作引起的干扰、大规模集成电路工作时引起的噪声干扰等等。 2.1 操作引起的噪声干扰 当发生高压线路或高压母线空载投入或切断、补偿电容器投切、电容式电压互感器投切、电力系统跳闸等情况时,均可引起瞬时过电压(浪涌)和高频振荡。浪涌电压和高频振荡电流的噪声可达相当大的数值,通过电磁感应、静电感应和公共电路的耦合窜入二次回路,造成对装置的干扰。 运行实践表明,高压瞬变电压的频带为5kHz~10MHz,振荡周期在50μs以内,重复率为1~100次/s、尖峰电压为200~3000V、衰减时间达数秒,严重地威胁了继电保护的正常工作。 2.2 耦合引起的噪声干扰 不同耦合方式产生不同耦合噪声,即电磁耦合、静电耦合和公共阻抗耦合,将产生不同的工业噪声干扰。 电磁耦合产生的干扰是电容式电压互感器(CVT)投人时,通过电磁感应在二次回路中所引起的噪声。变压器绕组和断路器带电部分的分布电容,CVT的分压电容C1、C2,高压线路电感、引线电感及接地网的电阻、电感等形成高频振荡回路。该回路所产生的高频振荡电流,流过接地网和两端都接地的中性线。如果CVT的二次引线与接地网、高压线路平行,则电磁耦合将在二次回路内产生很高的电压,此电压施加在继电保护装置的机壳,将产生高达数千伏的共模噪声。由于电压回路的控制电缆芯间对地阻抗往往不相等,因而在电压二次回路各相间可引起很大的差模噪声。 结合CVT具体安装情况,进一步说明电磁耦合的另一途径。若CVT安装底座对地高2m,高压侧接地线一般垂直进入电缆沟。当CVT投入或进行其它操作时,流过CVT高压侧接地线的高频振荡电流,将在接入装置的二次控制电缆中感应噪声电压。

读出电路噪声分析

读出电路噪声分析 前言 噪声是制约红外读出电路性能的主要因素之一,它限制了探测器对微小电流的识别能力。读出电路主要是由MOS 管和与MOS 工艺兼容的电容组成的,电容和MOS 管都会产生噪声,其中电容的噪声是因为制造不均匀所产生空间阵列噪声,而MOS 管的噪声是由于其固有特性引起的,并且是读出电路中主要的噪声源。 读出电路的噪声按产生机制来说主要分为三大类:一是器件固有的噪声如热噪声和1/f 噪声以及散粒噪声;二是由电路结构和工作方式引起的噪声,如KTC 噪声和衬底噪声;三是制造误差引起的空间噪声,如固定图形噪声。为了了解噪声的特性,需要对各种噪声的产生原因进行分析。 1/f 噪声 1/f 噪声又叫闪烁噪声,是MOS 管的一种固有噪声。噪声的产生原因是MOS 管是表面型器件,衬底和二氧化硅的接触面存在界面态和缺陷,由于这些界面态和缺陷能俘获载流子,使得表面电荷产生起伏,从而在栅极产生噪声电压。1/f 噪声可以用串联在栅极的电压源来模拟,近似的噪声电压可以表示为: f WL C K ox 1V 2n ?= 其中K 是与工艺有关的参数,C ox 是单位面积氧化层电容,W 和L 是MOS 管宽度和有效长度,f 是频率。 由上式可以知道1/f 噪声与f 成反比,故这种噪声在低频时比较突出,主要表现在20kHZ 以下,所以1/f 噪声也称为低频噪声。从噪声电压与WL 的反比关系可以看出,要减少 1 f 噪声的方法就是必须增加器件面积。PMOS 晶体管输送空穴是在“埋沟”中,也就是在距氧化物和硅界面有一定距离的地方,另一方面在CMOS 电路中PMOS 管的宽长比一般比NMOS 大,在采用工艺最短沟道长度时,面积比NMOS 管大,故 PMOS 晶体管的 1/f 噪声比 NMOS 晶体管的低,所以,用 PMOS 晶体管来代替 NMOS 晶体管能降低电路的 1/ f 噪声。 固定图形噪声(FPN ) 由于半导体材料和制造工艺等原因,读出电路每个像素单元 不可能完全一样而会出现偏差,所以当输入相同的探测信号时,读出的结果也会不一致,称这种阵列电路所特有的空间噪声为固定图形噪声(Fixed Pattern Noise )。 一般来说,材料和制造工艺给像素电路带来的偏差表现为相同MOS 管尺寸的不一致以及相同尺寸MOS 管阈值电压的不同。前者的偏差对于目前的高精度集成电路加工工艺来说,一般都比较小,其对噪声的影响也不大。但是阈值电压的偏差对于模拟电路性能的影响是比较严重的,尤其对于象红外焦平面阵列读出电路这样的微弱模拟信号处理电路来说更是如

Saber常见电路仿真实例

Saber常见电路仿真实例 一稳压管电路仿真 (2) 二带输出钳位功能的运算放大器 (3) 三5V/2A的线性稳压源仿真 (4) 四方波发生器的仿真 (7) 五整流电路的仿真 (10) 六数字脉冲发生器电路的仿真 (11) 七分频移相电路的仿真 (16) 八梯形波发生器电路的仿真 (17) 九三角波发生器电路的仿真 (18) 十正弦波发生器电路的仿真 (20) 十一锁相环电路的仿真 (21)

一稳压管电路仿真 稳压管在电路设计当中经常会用到,通常在需要控制电路的最大输入、输出或者在需要提供精度不高的电压参考的时候都会使用。下面就介绍一个简单例子,仿真电路如下图所示: 在分析稳压管电路时,可以用TR分析,也可以用DT分析。从分析稳压电路特性的角度看,DT分析更为直观,它可以直接得到稳压电路输出与输入之间的关系。因此对上面的电路执行DT分析,扫描输入电压从9V到15V,步长为0.1V,分析结果如下图所示: 从图中可以看到,输入电压在9~15V变化,输出基本稳定在6V。需要注意的是,由于Saber仿真软件中的电源都是理想电源,其输出阻抗为零,因此不能直接将电源和稳压管相连接,如果直接连接,稳压管将无法发挥作用,因为理想电源能够输

出足以超出稳压管工作范围的电流。 二带输出钳位功能的运算放大器 运算放大器在电路设计中很常用,在Saber软件中提供了8个运放模板和大量的运放器件模型,因此利用Saber软件可以很方便的完成各种运方电路的仿真验证工作.如下图所示的由lm258构成的反向放大器电路,其放大倍数是5,稳压二极管1N5233用于钳位输出电压. 对该电路执行的DT分析,扫描输入电压从-2V->2V,步长为0.1V,仿真结果如下图所示:

运算放大器电路固有噪声的分析与测量3

Analysis And Measurement Of Intrinsic Noise In Op Amp Circuits Part III: Resistor Noise And Sample Calculations by Art Kay, Senior Applications Engineer, Texas Instruments Incorporated In part II we developed a method for converting the noise spectral density curves from a product data sheet to noise sources in an op amp model. In this part we will learn how to use the model to compute the total output noise for a simple op amp circuit. The total noise referred-to-input (RTI) will contain noise from the op amp voltage noise source, noise from the op amp current noise source, and resistor noise. This combined noise source will be multiplied by the op amp noise gain. Fig. 3.1 shows all the different sources, to be combined and multiplied by the noise gain. Fig. 3.1: Combine The Noise Sources

相关文档
最新文档