空间参照

空间参照
空间参照

空间参照系统和地图投影导读:正如上一章所描述的,一个要素要进行定位,必须嵌入到一个空间参照系中,因为GIS所描述是位于地球表面的信息,所以根据地球椭球体建立的地理坐标(经纬网)可以作为所有要素的参照系统。因为地球是一个不规则的球体,为了能够将其表面的内容显示在平面的显示器或纸面上,必须进行坐标变换。本章讲述了地球椭球体参数、常见的投影类型。考虑到目前使用的1:100万以上地形图都是采用高斯——克吕格投影,本章最后又对该种投影类型和相关的地形图分幅标准做了简单介绍。1.地球椭球体基本要素1.1地球椭球体1.1.1地球的形状为了从数学上定义地球,必须建立一个地球表面的几何模型。这个模型由地球的形状决定的。它是一个较为接近地球形状的几何模型,即椭球体,是由一个椭圆绕着其短轴旋转而成。地球自然表面是一个起伏不平、十分不规则的表面,有高山、丘陵和平原,又有江河湖海。地球表面约有71%的面积为海洋所占用,29%的面积是大陆与岛屿。陆地上最高点与海洋中最深处相差近20公里。这个高低不平的表面无法用数学公式表达,也无法进行运算。所以在量测与制图时,必须找一个规则的曲面来代替地球的自然表面。当海洋静止时,它的自由水面必定与该面上各点的重力方向(铅垂线方向)成正交,我们把这个面叫做水准面。但水准面有无数多个,其中有一个与静止的平均海水面相重合。可以设想这个静止的平均海水面穿过大陆和岛屿形成一个闭合的曲面,这就是大地水准面(图4-1)。

此主题相关图片如下:

图4-1:大地水准面大地水准面所包围的形体,叫大地球体。由于地球体内部质量分布的不均匀,引起重力方向的变化,导致处处和重力方向成正交的大地水准面成为一个不规则的,仍然是不能用数学表达的曲面。大地水准面形状虽然十分复杂,但从整体来看,起伏是微小的。它是一个很接近于绕自转轴(短轴)旋转的椭球体。所以在测量和制图中就用旋转椭球来代替大地球体,这个旋转球体通常称地球椭球体,简称椭球体。1.1.2地球的大小关于地球椭球体的大小,由于采用不同的资料推算,椭球体的元素值是不同的。现将世界各国常用的地球椭球体的数据列表如下:表4-1:各种地球椭球体模型椭球体名称年代长半轴(米)短半轴(米)扁率白塞尔(Bessel) 1841 6377397 6356079 1:299.15 克拉克(Clarke) 1880 6378249 6356515 1:293.5 克拉克(Clarke) 18 66 6378206 6356584 1:295.0 海福特(Hayford) 1910 6378388 6356912 1:297 克拉索夫斯基1940 6378245 6356863 1:298.3 I.U.G.G 1967 6378160 6356775 1:298.25

埃维尔斯特(Everest) 1830 6377276 6356075 1:300.8 1.1.3椭球体的半径地球椭球体表面是一个规则的数学表面。椭球体的大小,通常用两个半径:长半径a和短半径b,或由一个半径和扁率来决定。扁率α表示椭球的扁平程度。扁率的计算公式为:α=(a-b)/a。这些地球椭球体的基本元素a、b、α等,由于推求它的年代、使用的方法以及测定的地区不同,其结果并不一致,故地球椭球体的参数值有很多种。中国在1952年以前采用海福特(Hayford)椭球体,从1953-1980年采用克拉索夫斯基椭球体。随着人造地球卫星的发射,有了更精密的测算地球形体的条件。1975年第16届国际大地测量及地球物理联合会上通过国际大地测量协会第一号决议中公布的地球椭球体,称为GRS(1975),中国自1980年开始采用GRS(1975)新参考椭球体系。由于地球椭球长半径与短半径的差值很小,所以当制作小比例尺地图时,往往把它当作球体看待,这个球体的半径为6371公里。1.1.4高程地面点到大地水准面的高程,称为绝对高程。如图2所示,P0P0'为大地水准面,地面点A和B到P0P0'的垂直距离HA和HB为A、B两点的绝对高程。地面点到任一水准面的高程,称为相对高程。如图4-2中,A、B两点至任一水准面P1P1'的垂直距离HA'和HB'为A、B两点的相对高程。

此主题相关图片如下:

图4-2:地面点的高程我国的大地控制网我国面积辽阔,在约960万平方公里的土地上进行测图工作,需要分成若干单元测区,而且测量的精度又要符合统一要求,为此,在全国范围内建立统一的大地控制网。控制网分为平面控制网和高程控制网。大地坐标:在地面上建立一系列相连接的三角形,量取一段精确的距离作为起算边,在这个边的两端点,采用天文观测的方法确定其点位(经度、纬度和方位角),用精密测角仪器测定各三角形的角值,根据起算边的边长和点位,就可以推算出其他各点的坐标。这样推算出的坐标,称为大地坐标。我国1954年在北京设立了大地坐标原点,由此计算出来的各大地控制点的坐标,称为1954年北京坐标系。我国1986年宣布在陕西省泾阳县设立了新的大地坐标原点,并采用1975年国际大地测量协会推荐的大地参考椭球体,由此计算出来的各大地控制点坐标,称为1980年大地坐标系。我国高程的起算面是黄海平均海水面。1956年在青岛设立了水准原点,其他各控制点的绝对高程都是根据青岛水准原点推算的,称此为1956年黄海高程系。198

7年国家测绘局公布:中国的高程基准面启用《1985国家高程基准》取代国务院1959年批准启用的《黄海平均海水面》。《1985国家高程基准》比《黄海平均海水面》上升29毫米。1.2地图比例尺1.2.1比例尺表示法地图比例尺通常认为是地图上距离与地面上相应距离之比。地图比例尺可用下述方法表示。1)数字比例尺这是简单的分数或比例,可表示为1:1000000或1/1000000,最好用前者。这意味着,地图上(沿特定线)长度1毫米、1厘米或1英寸(分子),代表地球表面上的1000000毫米、厘米或英寸(分母)。2)文字比例尺这是图上距离与实地距离之间关系的描述。例如,1:1000000这一数字比例尺可描述为―图1毫米等于实地1公里‖。3)图解比例尺或直线比例尺这是在地图上绘出的直线段,常常绘于图例方框中或图廓下方,表示图上长度相当于实地距离的单位。4)面积比例尺这关系到图上面积与实地面积之比,表示图上1单位面积(平方厘米)与实地上同一种平方单位的特定数量之比。1.2.2比例系数表明确定的比例尺与实际比例尺数值之间的关系叫做比例系数(SF)。可以这样理解比例系数,首先将地球缩小为所选比例尺的地球仪地图;然后将该球形地图转换为平面地图。上述平面地图的数字比例尺就是地球仪的比例尺,叫做主比例尺(或名义比例尺);真实比例尺就是平面地图上的实际比例尺,当然各处是不相同的。比例系数可按下式计算:SF=实际比例尺/主比例尺该公式表明,比例系数是实际比例尺与单位(1)主比例尺之比。当比例系数为2时,实际比例尺为主比例尺的两倍。比例系数只在小比例尺世界地图上比较明显。在大比例尺地图上,各

处的比例系数对于1只有很小的变化。

2.坐标系所谓坐标系,包含两方面的内容:一是在把大地水准面上的测量成果化算到椭球体面上的计算工作中,所采用的椭球的大小;二是椭球体与大地水准面的相关位置不同,对同一点的地理坐标所计算的结果将有不同的值。因此,选定了一个一定大小的椭球体,并确定了它与大地水准面的相关位置,就确定了一个坐标系(图4-3)。

此主题相关图片如下:

图4-3:现实世界和坐标

空间的联系2.1地理坐标地球除了绕太阳公转外,还绕着自己的轴线旋转,地球自转轴线与地球椭球体的短轴相重合,并与地面相交于两点,这两点就是地球的两极,北极和南极。垂直于地轴,并通过地心的平面叫赤道平面,赤道平面与地球表面相交的大圆圈(交线)叫赤道。平行于赤道的各个圆圈叫纬圈(纬线)(Parallel),显然赤道是最大的一个纬圈。通过地轴垂直于赤道面的平面叫做经面或子午圈(Meridian),所有的子午圈长度彼此都相等。(图4-4)

此主题相关图片如下:

图4-4:地球的经线和纬线2.1.1纬度(Latitud e)设椭球面上有一点P(图4-4),通过P点作椭球面的垂线,称之为过P点的法线。法线与赤道面的交角,叫做P点的地理纬度(简称纬度),通常以字母φ表示。纬度从赤道起算,在赤道上纬度为0度,纬线离赤道愈远,纬度愈大,至极点纬度为90度。赤道以北叫北纬、以南叫南纬。2.1.2经度(Longitude)过P点的子午面与通过英国格林尼治天文台的子午面所夹的二面角,叫做P点的地理经度(简称经度),通常用字母λ表示。国际规定通过英国格林尼治天文台的子午线为本初子午线(或叫首子午线),作为计算经度的起点,该线的经度为0度,向东0-180度叫东经,向西0-180度叫西经。2.1.3地面上点位的确定地面上任一点的位置,通常用经度和纬度来决定。经线和纬线是地球表面上两组正交(相交为90度)的曲线,这两组正交的曲线构成的坐标,称为地理坐标系。地表面某两点经度值之差称为经差,某两点纬度值之差称为纬差。例如北京在地球上的位置可由北纬39°56'和东经116°24'来确定。2.2平面上的坐标系地理坐标是一种球面坐标。由于地球表面是不可展开的曲面,也就是说曲面上的各点不能直接表示在平面上,因此必须运用地图投影的方法,建立地球表面和平面上点的函数关系,使地球表面上任一点由地理坐标(φ、λ)确定的点,在平面上必有一个与它相对应的点,平面上任一点的位置可以用极坐标或直角坐标表示。2.2.1平面直角坐标系的建立在平面上选一点O

为直角坐标原点,过该点O作相互垂直的两轴X’OX和Y’OY而建立平面直角坐标系,如图5所示。直角坐标系中,规定OX、OY方向为正值,OX、OY方向为负值,因此在坐标系中的一个已知点P,它的位置便可由该点对OX与OY轴的垂线长度唯一地确定,即x=AP,y=BP,通

常记为P(x,y)。

2.2.2平面极坐标系(Polar Coordinate)的建立

此主题相关图片如下:

图4-5:平面直角坐标系和极坐标系如图5所示,设O’为极坐标原点,O’O为极轴,P是坐标系中的一个点,则O’P称为极距,用符号ρ表示,即ρ=O’P。∠OO’P为极角,用符号δ表示,则∠O O’P=δ。极角δ由极轴起算,按逆时针方向为正,顺时针方向为负。极坐标与平面直角坐标之间可建立一定的关系式。由图5可知,直角坐标的x轴与极轴重合,二坐标系原点间距离OO’用Q 表示,则有:X=Q–ρcosδ Y=ρsinδ 2.3直角坐标系的平移和旋转2.3.1坐标系平移如图4 -6所示,坐标系XOY与坐标系X’O’Y’相应的坐标轴彼此平行,并且具有相同的正向。坐标系X’O’Y’是由坐标系XOY平行移动而得到的。设P点在坐标系XOY中的坐标为(x,y),在X’O’Y’中坐标为(x’,y’),而(a,b)是O’在坐标系XOY中的坐标,于是:x=x’+a y=y’+b 上式即一点在坐标系平移前后之坐标关系式。

图4-6:坐标平移

2.3.2坐标系旋转如图4-7所示,如坐标系XOY与坐标系X’O’Y’的原点重合,且对应的两坐标轴夹角为θ,坐标系X’O’Y’是由坐标系XOY以O为中心逆时针旋转θ角后得到的。x= x’cosθ+y’sinθ y=y’cosθ-x’sinθ 上式即为经过旋转θ角后的二直角坐标系中某一点坐标的关系式。

此主题相关图片如下:

图4-7:坐标旋转2.3.3坐标系平移和旋转如图4-8所示,坐标系X’O’Y’的原点在坐标系XOY中的坐标为a、b,X轴与X’轴之夹角为θ。可以认为坐标系X’O’Y’原是与坐标系XOY重合,后因为O’分别平移了a、b之距离,并且坐标系二坐标轴O’X’与O’Y’又相对OX与OY逆时针旋转了θ角而得到的。在二坐标系之间引入一个辅助坐标系X‖O’Y‖,使它的二坐标轴O’X‖与O’Y‖分别与OX、OY平行。在X‖O’Y‖系中有一点P,其坐标为(x‖,y‖),则由坐标系平移公式与坐标系旋转公式可得:x=x‖+a y=y‖+b 故有x‖=x’cosθ+y’sinθ y‖=y’cosθ-x’sinθ 即x=x’cosθ+y’sinθ+a y‖=y’cosθ-x’sinθ+b 上式即坐标系平移和旋转后新、旧坐标系中某一点坐标之关系式。

图4-8:坐标平移和旋转3.地图投影的基本问题3.1地图投影的概念在数学中,投影(Project)的含义是指建立两个点集间一一对应的映射关系。同样,在地图学中,地图投影就是指建立地球表面上的点与投影平面上点之间的一一对应关系。地图投影的基本问题就是利用一定的数学法则把地球表面上的经纬线网表示到平面上。凡是地理信息系统就必然要考虑到地图投影,地图投影的使用保证了空间信息在地域上的联系和完整性,在各类地理信息系统的建立过程中,选择适当的地图投影系统是首先要考虑的问题。由于地球椭球体表面是曲面,而地图通常是要绘制在平面图纸上,因此制图时首先要把曲面展为平面,然而球面是个不可展的曲面,即把它直接展为平面时,不可能不发生破裂或褶皱。若用这种具有破裂或褶皱的平面绘制地图,显然是不实际的,所以必须采用特殊的方法将曲面展开,使其成为没有破裂或褶皱的平面。3.2地图投影的变形3.2.1变形的种类地图投影的方法很多,用不同的投影方法得到的经纬线网形式不同。用地图投影的方法将球面展为平面,虽然可以保持图形的完整和连续,但它们与球面上的经纬线网形状并不完全相似。这表明投影之后,地图上的经纬线网发生了变形,因而根据地理坐标展绘在地图上的各种地面事物,也必然随之发生变形。这种变形使地面事物的几何特性(长度、方向、面积)受到破坏。把地图上的经纬线网与地球仪上的经纬线网进行比较,可以发现变形表现在长度、面积和角度三个方面,分别用长度比、面积比的变化显示投影中长度变形和面积变形。如果长度变形或面积变形为零,则没有长度变形或没有面积变形。角度变形即某一角度投影后角值与它在地球表面上固有角值之差。1)长度变形即地图上的经纬线长度与地球仪上的经纬线长度特点并不完全相同,地图上的经纬线长度并非都是按照同一比例缩小的,这表明地图上具有长度变形。在地球仪上经纬线的长度具有下列特点:第一,纬线长度不等,其中赤道最长,纬度越高,纬线越短,极地的纬线长度为零;第二,在同一条纬线上,经差相同的纬线弧长相等;第三,所有的经线长度都相等。长度变形的情况因投影而异。在同一投影上,长度变形不仅随地点而改变,在同一点上还因

方向不同而不同。2)面积变形即由于地图上经纬线网格面积与地球仪经纬线网格面积的特点不同,在地图上经纬线网格面积不是按照同一比例缩小的,这表明地图上具有面积变形。在地球仪上经纬线网格的面积具有下列特点:第一,在同一纬度带内,经差相同的网络面积相等。第二,在同一经度带内,纬线越高,网络面积越小。然而地图上却并非完全如此。如在图4-9-a上,同一纬度带内,纬差相等的网格面积相等,这些面积不是按照同一比例缩小的。纬度越高,面积比例越大。在图4-9-b上,同一纬度带内,经差相同的网格面积不等,这表明面积比例随经度的变化而变化了。由于地图上经纬线网格面积与地球仪上经纬线网格面积的特点不同,在地图上经纬线网格面积不是按照同一比例缩小的,这表明地图上具有面积变形。面积变形的情况因投影而异。在同一投影上,面积变形因地点的不同而不同。3)角度变形是指地图上两条所夹的角度不等于球面上相应的角度,如在图4-9-b和图4-9-c上,只有中央经线和各纬线相交成直角,其余的经线和纬线均不呈直角相交,而在地球仪上经线和纬线处处都呈直角相交,这表明地图上有了角度变形。角度变形的情况因投影而异。在同一投影图上,角度变形因地点而变。地图投影的变形随地点的改变而改变,因此在一幅地图上,就很难笼统地说它有什么变形,变形有多大。

此主题相关图片如下:

图4-9:地图投影变形3.2.2变形椭圆变形椭圆是显示变形的几何图形,从图4-9可以看到,实地上同样大小的经纬线在投影面上变成形状和大小都不相同的图形(比较图4-9中三个格网)。实际中每种投影的变形各不相同,通过考察地球表面上一个微小的圆形(称为微分圆)在投影中的表象——变形椭圆的形状和大小,就可以反映出投影中变形的差异(图4-10)。

此主题相关图片如下:

图4-10:微分圆表示投影变形

几何直观和空间观念的差异及优秀教学侧重点

几何直观和空间观念地差异及教学侧重点 东北师范大学孔凡哲 东北师范大学第二附属小学王延萍 几何直观作为核心名词,2011年底首次出现在小学阶段(尽管2003年颁布地《普通高中数学课程标准(实验)》早就明确提出了针对“几何直观”地要求“培养和发展学生地…几何直观能力,是高中阶段数学必修系列课程地基本要求”);同时,《义务教育数学课程标准(2011年版)》(《标准(2011年版)》)以下简称首次将几何直观与空间观念、推理能力并列,成为“图形与几何”领域地核心目标地三大组成要素.b5E2R。 几何直观与推理能力差异是显而易见地.但是,几何直观与空间观念究竟是什么关系?在教学中,如何有针对性地培养学生地几何直观与空间观念?这些问题都是小学数学领域亟待理清地问题.本文就此阐述.p1Ean。 一、几何直观与空间观念地含义差异分析 正如《标准(2011年版)》指出地,“直观与推理是图形与几何领域地核心目标”,其中,“空间观念”是指“根据物体特征抽象出几何图形,根据几何图形想象出所描述地实际物体;想象出物体地方位和相互之间地位置关系;描述图形地运动和变化;依据语言描述画出图形等”,“几何直观”是指“利用图形描述和分析数学问题.借助几何直观可以把复杂地数学问题变得简明、形象,有助于探索解决问题地思路,预测结果.特别地,空间观念地培养要贯穿整个数学学习过程中”.DXDiT。 我们认为,“严格意义上讲,这是针对几何直观地作用地解释性说明,而不是针对几何直观地含义地诠释”,即不是针对“几何直观”地明确定义.RTCrp。 对此,我们可以这样定义几何直观: 几何直观是指借助于见到地(或想象出来地)几何图形地形象关系,对数学地研究对象(即空间形式和数量关系)进行直接感知、整体把握地能力.5PCzV。 几何直观有助于将抽象地数学对象直观化、显性化,因而,寻找数学对象地直观模型是有效发挥几何直观地重要环节之一.jLBHr。 作为“图形与几何”地核心名词,几何直观与空间观念分别从不同地角度涵盖了几何学习地重要目标,二者有局部地差异,但是,各有侧重.xHAQX。

(整理)ArcGIS空间参考.

1.1 空间参考 空间参考(Spatial Reference)是GIS数据的骨骼框架,能够将我们的数据定位到相应的位置,为地图中的每一点提供准确的坐标。在同一个地图上显示的地图数据的空间参考必须是一致的,如果两个图层的空间参考不一致,往往会导致两幅地图无法正确拼合,因此开发一个GIS系统时,为数据选择正确的空间参考非常重要。 在ArcGIS 中,每个数据集都具有一个坐标系,该坐标系用于将数据集与通用坐标框架(如地图)内的其他地理数据图层集成。通过坐标系可在地图中集成数据集,以及执行各种集成的分析操作,例如叠加不同的源和坐标系中的数据图层。

1.1.1 相关知识 1.1.1.1大地水准面 大地水准面是由静止海水面并向大陆延伸所形成的不规则的封闭曲面。它是重力等位面,即物体沿该面运动时,重力不做功(如水在这个面上是不会流动的)。因为地球的质量并非在各个点均匀分布,因此重力的方向也会相应发生变化,所以大地水准面的形状是不规则的,如下图: 1.1.1.2地球椭球体 由定义可以知大地水准面的形状也是不规则的,仍不能用简单的数学公式表示,为了测量成果的计算和制图的需要,人们选用一个同大地水准面相近的可以用数学方法来表达的椭球体来代替,简称地球椭球体,它是一个规则的曲面,是测量和制图的基础,因地球椭球体是人们选定的跟大地水准面很接近的规则的曲面,所以地球椭球体就可以有多个,地球椭球体是用长半轴、短半轴和扁率来表示的。下表列出了一些最常见的参考椭球:

1.1.1.3基准面 基准面是在特定区域内与地球表面极为吻合的椭球体。椭球体表面上的点与地球表面上的特定位置相匹配,也就是对椭球体进行定位,该点也被称作基准面的原点。原点的坐标是固定的,所有其他点由其计算获得。

空间知识记忆和提取的理论模型

心理科学进展 2004,12(3):330~339  Advances in Psychological Science 空间知识记忆和提取的理论模型*  周荣刚张侃 (中国科学院心理研究所,北京 100101)  摘要对物理空间知识记忆和提取规律的探讨一直是空间认知领域研究中的一个重点和热点。对其进行深入研究,不仅有助于了解人类的空间行为,而且为相关的诸如界面设计、虚拟环境等空间认知应用领域(研究)提供支持。该文从空间记忆的内在参照系理论、坐标系统模型、空间情境模型和位置记忆的空间类属模型4个方面对当前有关物理环境中空间知识记忆和提取的理论或模型进行了回顾并作了初步评价。关键词空间知识记忆,内在参照系理论,坐标系统模型,空间情境模型,空间类属模型。 分类号 B842.2 1 引言  有关空间认知 (Spatial Cognition)的研究是一个古老而又崭新的课题。就本源的意义来讲,人类的一切活动都发生在而且只能发生在时间和空间之中。其中空间更是具有及时性和现实性,人类在了解自己以及人和环境关系的过程中必然对空间关系产生极大的兴趣。对人类如何获取物理环境中的空间知识以及如何使用所获得的空间信息完成相应的任务(如方位判断、导航策略和参照物等)的研究有助于人们深入了解自身关于空间知识形成的过程,这为旨在提高相应空间判断任务绩效的界面设计[1](包括地图、座舱仪表、空间定位系统和电子导航帮助等)和虚拟环境[1~4](包括完全沉浸虚拟环境、桌面虚拟环境和internet)中的信息呈现以及特殊状态(如失重和聋哑人[5])下的空间知识获取等领域的研究奠定了基础。但是与其他领域的知觉和认知研究相比,一个良好的空间认知模式初出端倪的时间并不是很长,这反映了空间能力本质的模糊性,即便是“空间(spatial)”这一个词语也具有很大的不确定性,物理环境中空间知识记忆方面的研究也是如此。本文仅根据当前有关空间知识记忆方面的研究报告,对研究者所构建的空间知识记忆和提取的理论或模型进行了回顾和简单评价。 2 理论模型  2.1 空间记忆的内在参照系(intrinsic reference system)理论[6~9] 根据McNamara等人的理论:人们是以空间参照系来建构环境的空间结构,进而形成对 收稿日期:2003-10-25 * 国家自然科学基金(30270465)、教育部“十五”规划课题(FBB011067)、中国科学院院长基金(JHJ02013)资助项目。 通讯作者:张侃,E-mail: zhangk@https://www.360docs.net/doc/b68321778.html,; 电话:(010)64837096

高中物理质点、参考系和坐标系的知识点

高中物理质点、参考系和坐标系的知识点 1质点 1.定义:用来代替物体的有质量的点,是一个理想化的模型。 2.原则:物体的大小和形状对研究问题没有影响或影响很小可以忽略不计。 3.内容: (1)没有形状、大小,而具有质量的点。 (2)质点是一个理想化的物理模型,实际并不存在。 (3)一个物体能否看成质点,并不取决于这个物体的大小,而是看在所研究的问题中物体的形状、大小和物体上各部分运动情况的差异是否为可以忽略的次要因素,要具体问题具体分析。 1参考系、坐标系 1、参考系定义:为了研究物体的运动而假定不动的物体。 2、注意点:运动的描述是相对的,因参考系的选取的不同而不同。参考系的选择以研究问题的方便为原则。 3、坐标系:为了定量描述物体的位置及位置的变化而建立的参考系。 (1)物体相对于其他物体的位置变化,叫做机械运动,简称运动。 (2)在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做参考系。 对参考系应明确以下几点: ①对同一运动物体,选取不同的物体作参考系时,对物体的观察结果往往不同的。 ②在研究实际问题时,选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量的简化,能够使解题显得简捷。 ③因为今后我们主要讨论地面上的物体的运动,所以通常取地面作为参照系?

1坐标系 为了定量地描述物体的位置及位置的变化,需要在参考系上建立适当的坐标系。坐标系是在参考系的基础上抽象出来的概念,是抽象化的参考系。 (1)坐标系即参考系的具体化,是在参考系上建立的,坐标系相对参考系是静止的。 具体有: ①一维坐标:描述物体在一条直线上运动,即物体做一维运动时,可以以这条直线为x轴,在直线上规定原点、正方向和单位长度,建立直线坐标系。如图1—1—1所示,若某一物体运动到A点,此时它的位置坐标XA=3m,若它运动到B点,则此时它的坐标XB=-2m(“-”表示沿X轴负方向)。 ②二维坐标:平面直角坐标,描述物体在一平面内运动,即二维运动时,需采用两个坐标确定它的位置③三维坐标:立体坐标系,描述物体在空间的运动。 (2)GPS定位仪——确定地球物体的具体方位,提供准确时间。 要注意以下几点: (a)坐标系相对参考系是静止的。 (b)坐标的三要素:原点、正方向、标度单位。 (c)用坐标表示质点的位置。 (d)用坐标的变化描述质点的位置改变 1机械运动1、定义:一个物体相对于另一个物体位置发生变化(注意机械运动是相对的)。 2、运动形式:平动(物体上各点运动形式相同)、转动、振动(围绕某点往复运动)等。

质点参考系和坐标系教案

第一节质点参考系和坐标系 …………石家庄五中闫会波一、教学目标 1.知识与技能: (1)理解质点的概念.能明确物体在什么情况下可以看作质点. (2)知道参考系的概念.知道选取参考系时,要考虑到使运动的描述尽可能简单. (3)知道坐标系的概念.能够用坐标系描述物体的位置和位置的变化. 2.过程与方法: (1)领悟质点概念的提出和分析、建立的过程 (2)物理模型的特点。 (3)数学工具是物理研究的帮手。 3.情感态度与价值观: (1)通过提问,观看ppt使学生保持对科学的求知欲。 (2)形成严谨求实的科学态度 (3)研究问题中突出主要矛盾的哲学价值观 二、教学重点、难点 1.教学重点 重点:质点概念的理解、参考系的选取、坐标系的建立 2.教学难点及其教学策略: 难点:理想化模型——质点的建立。 三.教学过程 引入新课 呈现“神舟”6号从发射到返回舱成功回收的主要阶段。 讲述:飞船在茫茫太空遨游,如何描述它的运动呢?文学家、艺术家采用形象的手法。“凌云戏月游银汉,转瞬翔天过太空”,短短一两句话就勾勒出航天飞船的雄姿。 世界万物都在运动,对于不同物体的运动,不同的人(如文学家、艺术家等)有不同的描述,请举例说明。 那么科学家怎样描述物体的机械运动?

著名物理学家海森伯曾说过:“为了理解现象,首要条件就是引入适当的概念。只有借助于正确的概念,我们才能真正知道观察到了什么。” 讲授新课 (一)、物体与质点 1、观看雄鹰展翅的图片。 (1)要准确描述雄鹰身上各点的位置随时间的变化不是容易事,困难和麻烦出在哪儿呢? (2)如果我们研究雄鹰从石家庄出发到飞往北京所需要的时间,需要了解它身体各部分运动的区别吗? 在物理学中,突出问题的主要方面,忽略次要因素,经过科学抽象而建立理想化的“物理模型”,并将其作为研究对象,是经常采用的一种科学研究方法。 教师结论:在某些情况下,根据所要研究问题的性质,可以忽略某些物体的大小和形状。2、提问: (1)研究地球绕太阳的公转能否把地球视为一个点呢? (2)一列沿京石铁路运动的火车,若研究它从石家庄到北京的运动能否把它简化为一个点? (3)研究地球上各处的季节变化时,能否把它视为质点呢? (4)研究火车通过南京长江大桥的运动时,能否把它简化为一个质点? 3、通过以上几个问题请同学们进一步讨论: (1)物体是否在所有的情况下都能看作质点? (2)物体看作质点的条件是什么? 物体看做质点的条件:由问题的性质决定。 (1)物体的各部分的运动情况都相同,此物体可以当作质点。 (2)物体的形状大小远远小于所研究的距离,此物可当作质点。

ArcGIS教程:空间参考和地理处理

ArcGIS教程:空间参考和地理处理 地理数据集的空间参考由以下各部分组成: ?包含地图投影和基准面的坐标系 ?XY 分辨率、M 和 Z 分辨率和域(可选) ?XY 容差、M 和 Z 容差(可选) 这些空间参考属性对地理处理工具的性能和生成的结果具有重大影响。 ?地理处理工具创建输出数据时,必须为该新建数据集指定空间参考。 ?地理处理工具处理多个要素类中(如相交工具)或多个栅格中(如加权叠加工具)的要素时,必须将数据归入一个公共的空间参考才能计算出两个数据集内容之间的关系。 输出数据集的空间参考与进行处理的空间参考属于同一个空间参考。也就是说,该工具将始终在输出数据集的空间参考中处理数据。 什么是默认输出空间参考? 地理处理工具将根据以下逻辑来确定输出空间参考: ?如果在某要素数据集中生成输出,则将使用该要素数据集的空间参考属性。 ?如果输出的是一个独立的地理数据集(不位于任何要素数据集中),则空间参考属性将与输入地理数据集的空间参考属性相同。 1.如果输入的是视图区的某图层,则将使用该图层数据源的空间参考。 2.如果输入的是一列数据集(例如,相交工具),则将使用第一个输入数据集的空间参考。 3.如果该工具不具备输入数据集(例如,创建要素类、创建要素数据集和创建栅格目录),则最好选 择一个坐标系,这样地理处理工具才能计算出其他空间参考属性(例如 XY 分辨率和容差)。 如何覆盖默认空间参考的属性 下方列出的地理处理环境可用于覆盖以下默认的输出空间参考属性。如果在某要素数据集中生成输出,则坐标系以及XY 属性和 Z 属性(除了包含 Z 值)都将始终使用该要素数据集的对应属性。 ?坐标系 ?XY 容差 ?Z 容差 ?XY 分辨率 ?XY 域 - 对于 9.2 版以后的地理数据库的输出将忽略此值 ?输出包含 Z 值 ?默认输出 Z 值 ?Z 分辨率 ?Z 值域

参考系和坐标系1

第一章运动的描述 ●同步导学● 第1节质点参考系和坐标系 理解领悟 要描述物体的运动,首先要对实际物体建立一个物理模型,最简单的是质点模型。由于运动的相对性,描写质点的运动时,必须明确所选择的参考系。为了准确地、定量地描述质点的运动,还要建立坐标系。质点、参考系和坐标系是描述物体运动的基础知识。本节知识是学习后面知识的基础,也是整个力学的基础。 1.为什么要引入“质点”这一概念? 物体的运动通常是很复杂的。雄鹰拍打着翅膀在空中翱翔,它的身体在向前运动,但它的翅膀在向前运动的同时还在上下运动;足球在运动场上飞滚,它在向前运动的同时还在不断滚动;呼啸而过的火车,它的车身在向前运动,而车轮在向前运动的同时还在不断滚动,它的发动机和传动机构的运动就更为复杂;舞蹈演员的优美舞姿,令人眼花缭乱,叹为观止。显然,要详细而准确地描述这些物体的运动,是很困难的,并不是一件容易的事。 那么,问题出在哪里呢?原来,物体都有一定的大小和形状,而物体各部分的运动情况一般是不同的,这就导致了描述物体运动的复杂性。假如物体各部分的运动情况都相同,那么在我们研究物体的运动状态时,不就可以用一个“点”来代替它了吗?即使物体各部分的运动情况并不相同,但在某些情况下,我们需要了解物体各部分运动的区别吗?例如,研究地球绕太阳的公转,研究火车的整体运动,等等,我们并不需要了解物体各部分运动的区别。这时,物体的大小和形状并不重要,可以不予考虑,不也就可以用一个“点”来代替它了吗? 可见,在某些情况下,我们可以把物体简化为一个有质量的点,从而引入“质点”这一概念。用来代替物体的有质量的点叫做质点,即质点是没有大小和形状,而具有物体全部质量的点。 2.什么样的物体可以看成质点? 一个物体能否看成质点是相对的,是由问题的性质决定的,要视具体情况而定,不能绝对化。例如,在研究地球绕太阳的公转时,地球能够看成质点;但在研究地球的自转时,地球就不能看成质点了。 物体能否看成质点,与物体本身的大小没有必然的关系。很大的物体可能被看成质点,而很小的物体却不一定能够被看成质点。例如,上面提到的研究地球绕太阳的公转时,地球尽管很大,仍然能够看成质点;但在研究双原子分子的振动及转动时,小小的份子却就不能看成质点了。 一个物体能否被看成质点,一般情况下与物体做直线运动还是曲线运动没有关系,即物体做直线运动或曲线运动时,都可能被看成质点。例如,研究运动员在400m赛跑中的速度变化时,无论是在直道上还是在弯道上,都可以将运动员看成质点。 总之,在研究物体的运动时,若可以不考虑物体的大小和形状,就可以将物体看成质点。

数据空间管理讲解

空间管理 7.1 表空间tablespace Oracle数据库是由若干个表空间构成的。任何数据库对象在存储时都必须存储在某个表空间中。表空间对应于若干个磁盘文件,即表空间是由一个或多个磁盘文件构成的。表空间相当于操作系统中的文件夹,也是数据库逻辑结构与物理文件之间的一个映射。每个数据库至少有一个表空间,表空间的大小等于所有从属于它的数据文件大小的总和。 1、使用表空间的优点: 可以可能控制数据库占用的磁盘空间; 可以控制用户占用的空间配额; 可以有效地部署不同类型的数据,加强数据管理,提高数据库的性能,有利于数据库的备份和恢复等管理工作; 2、默认表空间 System系统表空间:存放数据字典和系统数据; Sysaux系统表空间:system的辅助表空间,用于减少系统表空间的负荷; Temp零时表空间:存放临时的表或临时的数据,用于辅助排序等操作; Users用户表空间:存储用户创建的数据库对象; Example表空间:存储“实例”数据库的表空间; Undotbs撤销表空间:存储数据库有关undo相关信息和数据; (1)系统表空间 系统表空间(system tablespace)是每个Oracle数据库都必须具备的。其功能是在系统表空间中存放诸如表空间名称、表空间所含数据文件等数据库管理所需的信息。系统表空间的名称是不可更改的。系统表空间必须在任何时候都可以用,也是数据库运行的必要条件。因此,系统表空间是不能脱机的。 系统表空间包括数据字典、存储过程、触发器和系统回滚段。为避免系统表空间产生存储碎片以及争用系统资源的问题,应创建一个独立的表空间用来单独存储用户数据。 (2)SYSAUX表空间 SYSAUX表空间是随着数据库的创建而创建的,它充当SYSTEM的辅助表空间,主要存储除数据字典以外的其他对象。SYSAUX也是许多Oracle 数据库的默认表空间,它减少了由数据库和DBA管理的表空间数量,降低了SYSTEM表空间的负荷。 (3)临时表空间

空间知识记忆和提取的理论模型

心理科学进展 2004,12(3):330~339 Advances in Psychological Science 空间知识记忆和提取的理论模型* 周荣刚张侃 (中国科学院心理研究所,北京 100101) 摘要对物理空间知识记忆和提取规律的探讨一直是空间认知领域研究中的一个重点和热点。对其进行深入研究,不仅有助于了解人类的空间行为,而且为相关的诸如界面设计、虚拟环境等空间认知应用领域(研究)提供支持。该文从空间记忆的内在参照系理论、坐标系统模型、空间情境模型和位置记忆的空间类属模型4个方面对当前有关物理环境中空间知识记忆和提取的理论或模型进行了回顾并作了初步评价。关键词空间知识记忆,内在参照系理论,坐标系统模型,空间情境模型,空间类属模型。 分类号 B842.2 1 引言 有关空间认知 (Spatial Cognition)的研究是一个古老而又崭新的课题。就本源的意义来讲,人类的一切活动都发生在而且只能发生在时间和空间之中。其中空间更是具有及时性和现实性,人类在了解自己以及人和环境关系的过程中必然对空间关系产生极大的兴趣。对人类如何获取物理环境中的空间知识以及如何使用所获得的空间信息完成相应的任务(如方位判断、导航策略和参照物等)的研究有助于人们深入了解自身关于空间知识形成的过程,这为旨在提高相应空间判断任务绩效的界面设计[1](包括地图、座舱仪表、空间定位系统和电子导航帮助等)和虚拟环境[1~4](包括完全沉浸虚拟环境、桌面虚拟环境和internet)中的信息呈现以及特殊状态(如失重和聋哑人[5])下的空间知识获取等领域的研究奠定了基础。但是与其他领域的知觉和认知研究相比,一个良好的空间认知模式初出端倪的时间并不是很长,这反映了空间能力本质的模糊性,即便是“空间(spatial)”这一个词语也具有很大的不确定性,物理环境中空间知识记忆方面的研究也是如此。本文仅根据当前有关空间知识记忆方面的研究报告,对研究者所构建的空间知识记忆和提取的理论或模型进行了回顾和简单评价。 2 理论模型 2.1 空间记忆的内在参照系(intrinsic reference system)理论[6~9] 根据McNamara等人的理论:人们是以空间参照系来建构环境的空间结构,进而形成对 收稿日期:2003-10-25 * 国家自然科学基金(30270465)、教育部“十五”规划课题(FBB011067)、中国科学院院长基金(JHJ02013)资助项目。 通讯作者:张侃, E-mail: zhangk@https://www.360docs.net/doc/b68321778.html,; 电话:(010)64837096

办公场所空间管理信息化实施

附录 A (资料性附录) 空间管理信息化实施 A.1 空间管理系统的价值 A.1.1 概述 空间管理涉及组织物理空间库存的管理,设施管理部门通常负责控制成本,同时保持对空间的最佳利用,从而创建一个员工可以满足并超越组织使命的环境。 空间管理系统是一种技术解决方案,组织可以使用它来跟踪和管理其房地产资产和空间利用率,空间管理系统包括跟踪和维护组织的空间和占用信息: ——确定谁坐在哪里? ——了解组织有多少空间? ——以及实际如何使用? ——以及未来空间需求多少? 使用空间管理系统的价值包括: ——识别空间和降低组合成本的能力; ——营造愉快的工作环境,提高生产力; ——生成报告以制定战略空间计划。 A.1.2 识别空间和降低组合成本的能力 人员和不动产是组织的最大的两个费用,有效的空间管理对两个成本中心都有直接影响,使其成为可以直接影响业务底线的关键组成部分。 在理想的情况下,每个组织都会将其每一寸空间用于预期目的,无论是会议室,存储空间,实验室,办公桌还是用餐空间。使用空间管理系统可提供准确,实时的数据,以查看是否可以更有效地使用空间来降低成本。这意味着组织可以重新分配未充分利用的空间以便更合适地使用,甚至可以根据实时数据来支持或反对扩展需求。拥有空间团队并配备实时、准确数据的组织可以做出更好的决策,从而大幅降低投资组合成本。 A.1.3 营造愉快的工作环境,提高生产力 空间管理的重点正在从仅仅减少空间成本转向创造有助于吸引人的工作环境并留住有才能的员工,这并不意味着在设施和空间管理人员的优先清单上降低空间成本不再高,但找到适当的平衡正变得越来越重要。 为了让员工满意和参与,设施和空间经理需要为员工提供满足其需求的工作空间。这意味着提供足够的物理空间,以便能够以舒适有效的方式完成日常任务,但并不意味着组织为不需要的空间付费。空间管理人员已经开始探索如何为不同目的提供不同类型的空间,例如,为不需要打扰的员工提供安静的房间,或者提供舒适的椅子,鼓励员工进行头脑风暴,创新和与他人协作的创意空间在一个不太正式的环境中。 空间管理系统提供有关空间占用和空间利用的清晰见解,这些数据可以帮助空间管理团队得出更好的结论,并识别他们提供的空间趋势,并开展满足实际员工需求的计划。当数据显示某些空间被连续占

介绍_语言和认知空间_认知多样性探索_

2004年11月第36卷 第6期 外语教学与研究(外国语文双月刊) Foreign Language Teaching and Research(bimonthly) Nov.2004 Vol.36No.6 介绍《语言和认知空间—认知多样性探索》上海应用技术学院 张达球 安徽师范大学 王葆华 S. C.Levinson.2003.S pace i n L anguage and Cognition—Ex plorations i n Cognitive Diversity.Cambridge:Cambridge University Press.vii+389pp. 著名语言学家Stephen C.Levinson的语用学理论我国已多有介绍和评述。从20世纪90年代开始, Levinson的兴趣又转向了空间认知及思维和语言的关系等领域,先后发表一系列关于空间认知的文章。《语言和认知空间———认知多样性探索》就是他近10年来对语言和空间认知关系进行研究的重要成果。该书涉及人类学、语言学和心理学等多种学科,通过对多种语言和文化中的认知模式进行探讨,确认语言和认知空间之间存在很强的相互联系。全书共七章,我们逐一简述。 第一章“知识背景:西方空间思维观两千年”。本章对西方从古希腊有关物质空间无限性与有限性之间的对立,到现代美国空间先天论的心理学传统之间两千年的空间概念进行了回顾。 第二章“参照框架”。空间认知的概念基础是空间配位系统(spatial coordinate system)。作者认为,在这一核心领域,原有很多互不相关的空间概念都可纳入其相关性分析之中。适用于不同感知模态(如视觉记忆)或输出系统(如手势和语言)的不同类型的表征系统可采用不同的参照框架(frames of reference)。但整个表征系统的一个瓶颈就是许多语言不能表达一种或多种可能不同的参照框架。这样,由于参照框架之间的可转化性受到限制,空间系统必须要有统一的参照框架。 第三章“语言的多样性”。作者认为,语言表现的不同在于各自空间关系范畴化过程中语义参数的不同,即不同的配位系统,形成不同配位系统的不同原则,并由此产生不同空间场景中的“相同”与“不同”的范畴化。本章对空间场景范畴化这一观点进行了重新认识,认为实际情形并非如此简单,因为不同语言存在对多种不同类型空间的刻划。书中还描述了不同参照框架的变体形式以及它们在不同语言中的编码方式。 第四章“绝对心理:两种文化管窥”。从人类学角度出发,一般认为人类日常表现出的特定的“认知风格”可以部分归因于所说的语言。本章通过澳大利亚昆士兰北部地区的Hopevale语和墨西哥Chiapas高地Tenejapa语两种不同的土著语言进行研究,得出了不同的结论,认为这两种在完全独立文化下演化的语言,却具有处于主导地位的绝对空间参照框架的相同特征。这可视为是具有相似认知基础的结果。 第五章“心理多样性:方法和跨语言例证的结果”。本章首先提出一种假设,认为一种语言倾向于选择一种特定的参照框架,即使用该语言和非言语认知中基本类型相同的配位系统进行思维,用该语言说话者在对相同场景进行语言编码时也会使用相同的参照框架进行记忆和推理。这种假设在跨文化研究中得到了证明。作者还介绍了关于参照框架来源的三种不同观点:建构主义、激活观、部分建构主义,认为最后一种观点最具合理性。 第六章“超语言:寻找路径和指明方向的参照框架”。本章用较为抽象的视角对语言和认知的相关性进行预测。对于一个空间配位系统,不同语言使用不同的语义参数。为了使用一种语义参数,个体语言使用者必须对语义参数进行思维计算。作者还把不同语言说话者所使用的基本方向词(如东、南、西、北),改为基于身体图式的配位(如前、后、左、右)。作者认为,这 ? 7 7 4 ?

《质点 参考系和坐标系》教学设计

《质点参考系和坐标系》教学设计 一、教材分析 本教学设计选自人教版新课标高中物理教材第一章第一节《质点参考系和坐标系》,要描述物体的运动,首先要对实际物体建立一个最简单的物理模型—质点模型。由于运动的相对性,描述质点运动时必须明确所选择的参考系。为了准确的、定量的描述质点的运动,还要建立坐标系。质点、参考系和坐标系是描述物体运动的基础知识,教材中逐步展开这些内容,最后介绍全球卫星定位系统。本节介绍质点、参考系和坐标系,不仅是这一章学习的基础知识,也是以后力学各章学习的基础知识。这些基础知识在实践中有广泛的、重要的应用。 二、三维目标 1.知识与技能 (1)理解质点的概念,知道它是一种科学的抽象,知道科学抽象是一种普遍的研究方法。 (2)理解参考系的选取在物理中的作用,会根据实际情况选定参考系。 (3)会用坐标系描述物体的位置和位置的变化。 2.过程与方法 (1)体会物理模型在探索自然规律中的作用,让学生将生活实际与物理概念相联系,通过几个具体的例子让学生自主讨论,在讨论与交流中,自主升华为物理概念。 (2)通过参考系的学习,知道从不同角度研究问题的方法,让学生从熟悉的常见现象和已有经验出发,体验不同参考系中运动的相对性,提示参考系在确定物体运动时客观存在的必要性和合理性,促使学生形成勤于观察、勤于思考的习惯,提高学生自主获取知识的能力。 3.情感态度与价值观 热爱自然,关心科技,正确方法,科学态度。 三、教学重、难点 (1)重点 1.理解质点的概念; 2.从参考系中明确地抽象出了坐标系的概念。 (2)难点 1.理解质点的概念 四、教学突破 课前师生收集丰富的图片、视频、文字等资料,联系学生日常生活中身边熟悉的实例,激发学生学习的兴趣,通过老师引导,学生得出有关物理概念,从而使学生乐于探究和思考。

空间数据管理平台解决方案

空间数据管理平台解决方案

1.引言 1.1方案概述 空间数据管理平台解决方案主要是针对我国各级测绘院、信息中心建设区域地理信息基础框架的迫切需求,开发的一套专业性强、具有高可扩展性的基础地理信息数据库管理平台。 整个方案从管理多源、多尺度、多类型的基础地理信息数据的角度出发,开发了一些列软件系统,包括空间数据入库更新子系统、空间数据质量检查子系统以及空间数据管理平台等,可以实现对现有基础地理信息数据的整合、转换与集成管理,为政府、企业、公众等提供空间信息服务。 1.2系统特点 ●“多源、多尺度、多时相”基础地理数据的集成管理 由于基础地理数据具有多源、多尺度、多时相的特点,基础地理数据管理平台必须具有集成不同数据类型、不同比例尺、不同时间的各种基础地理数据的能力。 ●多比例尺数据集成 对于不同尺度的基础地理数据,其集成通过统一空间参考系(WGS84、西安80、北京54)或动态投影技术来实现。不同比例尺的

基础地理数据可以叠加一起显示,通过控制其显示比例实现地图的逐层显示效果。 ●多类型数据集成 对于不同类型的数据(如DLG与DRG)的集成采用按空间坐标范围或图幅索引实现。 ●多时序数据集成 对于不同时间段的基础地理数据,采用历史数据库来实现。根据数据更新周期的不同,采用按数据集、图幅、对象级别的历史数据库机制。 ●基础地理数据管理全过程支持 SuperMap D-Manager特别针对我国各级测绘院、信息中心设计开发,系统支持数据加工、数据入库管理、数据共享、数据发布的整个业务过程,可以快速为用户打造完备的基础地理数据中心,满足各种用户对基础地理信息的需求,为数字城市建设服务。 ●基础性与平台性 SuperMap D-Manager从设计到实现,充分考虑了其作为基础性、平台性等支撑性要求。SuperMap D-Manager在设计思路、软件开发实现上都具有高可扩展性的特点。

建筑空间及设备运维管理系统研究

建筑空间与设备运维管理系统研究 相关标签: ? ? ? ? ? ? 基于BIM的建筑空间与设备运维管理系统研究 【摘要】:BIM技术正在潜移默化的逐步改变传统的建筑设计、施工和运维模式。目前在建筑的设计、施工阶段,BIM技术已经得到了极其广泛的应用,并且产生了巨大的经济效益。 但BIM技术的价值并不仅仅局限于此,在建筑的运维阶段,BIM同样能产生极其巨大的应用价值。本文通过对基于BIM的建筑空间与设备运维管理系统的研究,力求探索出一条BIM 技术在建筑运维管理阶段应用的解决思路,为实现高效、安全、舒适、经济的建筑运维管理目标寻找突破点。 1、概述 BIM(Building Information Modeling,建筑信息化模型)是一个设施物理与功能特征的数字化表达[1]。 得益于国家近几年的政策引导与扶持,特别是住房与城乡建设部在《2011-2015年建筑业信息化发展纲要》中提出,在“十二五”期间,要基本实现建筑企业信息系统的普及应用,加快建筑信息模型(BIM)、基于网络的协同工作等新技术在工程中的应用,推动信息化标准建设,促进具有自主知识产权软件的产业化[2]。 在此宏观背景下,国内BIM技术的应用得到了长足的发展,特别是在设计、施工阶段,BIM技术的使用得到了包括业主、设计院、施工总包在内的项目各参与方的一致肯定,产生了巨大的经济效益。 但BIM技术的价值并不仅仅局限于建筑的设计与施工阶段,在建筑的运营阶段,BIM 同样能产生极其巨大的价值。因为BIM利用计算机软件来模拟一个设施的建造与运营。一个BIM竣工模型是数据丰富的、目标导向的、智能的、参数化数字化的。模型提供的各种3D视角以及模型输出的各种数据可以帮助项目各方决策,改善整个建设运营流程[3]。 2、基于BIM的建筑空间与设备运维管理系统 建筑运维管理近年来在国内兴起一个较流行的称谓——FM(Facility Management,设施管理),根据IFMA(International Facility Management Association,国际设施管理协会)对其的定义:FM是运用多学科专业,集成人、场地、流程和技术来确保楼宇良好运行的活动[4]。人们通常理解的建筑运维管理,就是物业管理。但是现代的建筑运维管理(FM)与物业管理有着本质的区别,其中最重要的区别在于:面向的对象不同。物业管理面向建筑设施,而现代建筑运维管理面向的则是企业的管理有机体[5]。 传统的物业管理方式,因为其管理手段、理念、工具比较单一,大量依靠各种数据表格或表单来进行管理,缺乏直观高效的对所管理对象进行查询检索的方式,数据、参数、图纸等各种信息相互割裂,此外还需要管理人员有较高的专业素养和操作经验,由此造成管理效率难以提高,管理难度增加,管理成本上升。 而随着BIM技术在建筑的设计、施工阶段的应用愈加普及,使得BIM技术的应用能够覆盖建筑的全生命周期成为可能。因此在建筑竣工以后通过继承设计、施工阶段所生成的

幼儿空间认知相关概念

表1幼儿空间认知相关概念 幼儿空间认知相关概念 关键名词具体含义 认知图每个人的脑中皆存有一个对空间认知的图像,将这个内脏世界外显出来的图即认知图。 空间能力 在真实世界中大范围空间尺度里地图使用、环境探索、文字空间描述的能力。包括对色彩、线条、形状、形式、空间以及它们之间关系的敏感性,也包括将视觉和空间的想法具体在脑中呈现出来,以及在一个空间的矩阵中很快找出方向的能力。 空间能力指标: 1、空间视觉:视觉现象转换为心智现象的处理过程。eg:判别2D或3D 图形的能力。 2、空间方向感:解释视觉因子配置、排列的能力。eg:方向感测验 3、空间相关性:对空间分布关系的解释能力。 空间表征是指一个人在空间中的行动,搜集空间讯息所形成一种内在意象或心理反应,即个人对环境的认知。 形式有三个阶段性的发展: 1、路标:对环境中独特事件的知觉或环境的特征为大空间的参照点。 2、路线:路标形成路线,可有多条路线。 3、整体认知:个人统整路标、路线后形成的概观地图或概观知识。整体 知识能帮助人寻路以及组织经验来发现新的路线。 空间知识 类型有三类: 1、陈述性知识:即人所赋予物体或地点的名称和意义。 eg:位置、面积、人口等 2、程序性知识:以路径作为一个点沿着一条线或是一个平面来改变方向,或是提供节点网路的连结。 eg:从甲地走到乙地 3、结构性知识:它是图像式的知识,具有或接近平面几何的特质。 eg:进行距离或方向的估测 空间概念空间概念包含空间关系包括有位置(在上、在下、在前、在后、在里、在外……)、方向(朝上、朝下、往前、往后、往旁、往右)、距离(靠 近、远离)及空间定位概念。

参考系和坐标系的理解

第01章第01节对质点、参考系和坐标系的理解 质点 (1)用来代替物体的有质量的点叫做质点. (2)研究一个物体的运动时,如果物体的形状和大小对问题的影响可以忽略,就可以看做质点. (3)质点是一种理想化模型,实际并不存在. 【例1】下列关于质点的说法中,正确的是() A.质点是一个理想化的模型,实际并不存在 B.因为质点没有大小,所以与几何中的点没有区别 C.凡是轻小的物体,都可看作质点 D.如果物体的形状和大小在所研究的问题中属于次要因素,就可以把物 体看作质点 解析质点是一个理想化的物理模型,实际上不存在.物体能否看成质点要满足D项的条件,A、D正确;质点是有质量的,它是人们为了研究问题的方便而抽象出来的点,与物体大小没有直接关系,B、C项错. 答案AD 【变式题组】 1.下列关于运动的说法中,正确的是() A.物体的位置没有变化就是不运动B.两物体间的距离没有变化,两物体一定都是静止的 C.自然界中没有不运动的物体,运动是绝对的,静止是相对的 D.为了研究物体的运动,必须先选择参考系,平常说的运动或静止是相 对于地球而言的. 答案CD 解析物体的位置对某一参考系不变.但对另一参考系可能变化了,所以物体可能在运动,故A错误;两物体间的距离没有变化,二者可能静止,也可能以相同的速度运动,故B错误;由于参考系的选择是任意的,对于不同的参考系,同一物体可能静止,也可能运动,故C、D正确. 2.下列情形中,不可以把物体看作质点的是() A.研究高速旋转的砂轮的运动 B.研究芭蕾舞演员的动作 C.研究花样滑冰中的运动员 D.研究飞行中直升机上的螺旋桨 答案ABCD 3.在研究下列问题时,可以把汽车看作质点的是() A.研究汽车在行驶时车轮的转动情况 B.研究人在汽车上的位置 C.研究汽车在上坡时有无翻车的危险 D.计算汽车从北京开往大连的时间 答案 D 解析A、B、C三项的物体均需要考虑汽车的形状

空间参考系统

空间参考系统(转) 2010-04-11 15:10 1.1 空间参考系相关概念 谈到空间参考系统的时候,我们会用到许多专业术语,诸如坐标(Coordinate)、坐标系(Coordinate System)、System Transformation)等。在许多的资料中,并没有准确地区分这些术语。例如:许多资料中会使用坐标Geographic information – Spatial referencing by coordinates中对这些术语进行了定义,本章中我们使用的 下图显示了空间参考系统的抽象模型。坐标是用来描述一个位置的序列值,有时我们将这个序列称之为坐了一个基准面的坐标系。坐标系是一个抽象的数学概念,不绑定于任何物理对象,它定义了如何计算坐标面一般是指地球的基准面,当然也可以是其它对象的基准面。坐标操作(Coordinate Operation)可以用于将间进行的坐标变换称之为坐标转换(Transformation),在不同的地图投影和不同地区的坐标之间进行的坐标 1.1.1 坐标系的类型 不同的空间参考系统使用了不同的坐标系统,下面我们介绍几种常用的坐标系统。 l 椭球体坐标系(Ellipsoidal Coordinate System):一种二维或三维的坐标系。如果是二维,使用经度和纬度维。 l 笛卡尔坐标系(Cartesian Coordinate System):。一种一维、二维或三维的坐标系。如果为一维,那么它坐标。 l 球形坐标系(Spherical Coordinate System):一种三维的坐标系,它使用了一个到原点的距离和两个角度 1.1.2 椭球体和基准面 为了在地球表面上确定一个准确的位置,我们必须知道地球本身的形状和大小。正如我们所知,地球不是一经常用椭球体的形状来描述地球的形状。人们以假想的平均静止的海水面形成的―大地体‖为参照,计算出近短半轴即极半径。f=(a-b)/a为椭球体的扁率,表示椭球体的扁平程度。由此可见,地球椭球体的形状和 从1953年起我国参照前苏联采用的克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年西安80坐标系。目前全球定位系统(GPS)采用的是WGS84椭球体。 椭球体长半轴(a) 短半轴(b)

物体位置与空间关系的心理表征-中国科学院心理研究所

心理科学进展 2006,14(3):321~327 Advances in Psychological Science 物体位置与空间关系的心理表征 赵民涛 (中国科学院心理研究所,脑与认知科学国家重点实验室,北京100101)(中国科学院研究生院,北京 100039) 摘要外界环境中物体位置与空间关系在记忆中如何表征,一直是空间认知研究领域探讨和争论的热点问题。该文从空间表征的参照框架、朝向特异性、组织结构和存储内容四个方面,系统回顾了近年来对空间表征形成机制与内在特征的理论探讨。在此基础上,进一步讨论了当前空间表征研究中存在的生态效度问题,以及以后将虚拟环境技术引入到空间认知研究中的发展趋势。 关键词空间表征,空间参照系,朝向特异性,路径知识表征,结构知识表征。 分类号B842 物体位置与空间关系在记忆中的心理表征,已经日益成为当前许多学科关注的热点问题。深入理解外界环境信息形成空间表征的认知机制与特征,不仅可以增进对人脑空间记忆和空间巡航能力的认识,而且在城市交通与应急逃生系统的规划、复杂人机系统交互界面的设计,以及智能机器人自主巡航系统的开发等方面也有着重大的应用价值。 近年来,随着功能磁共振成像(fMRI)和虚拟现实(virtual reality, VR)技术的应用,人们对空间表征的研究逐渐从认知行为表现[1~3]延伸到神经生理水平[4,5],研究范围也从简单的实验室人工环境[6,7]逐步扩展到较为复杂的自然环境(如校园、公园和城市等)[8]和虚拟环境 [3,4,9]。研究视角涵盖了空间表征的参照框架、朝向特异性、组织结构、表征形式、存储内容、机器模拟以及神经机制等各个方面。本文将从其中四个重要方面,系统回顾近年来对物体位置与空间关系的心理表征的探讨与争论,并对其进行简单评价。然后,在总结已有空间表征研究的主要轮廓与初步结论的基础上,结合当前研究中存在的相关问题,对以后空间表征研究的趋势进行了简单的讨论。 1 空间表征的参照框架:自我参照系表征与环境参照系表征 环境中物体的位置和空间关系总是相对于特定空间参照框架(如经纬度坐标系、笛卡儿坐标系或者极坐标系等)来确定的,空间记忆中物体位置与空间关系的心理表征也同样需要选择特定的空间参照系。Klatzky[10]和Newcombe[11]将表征物体位置与空间关系的参照框架分成两类:自我参照系统和环境参照系统。在自我参照系表征(egocentric representation)中,物体的位置是相对于观察者(如眼睛、头和躯体等)来表征的,随着观察者的运动,空间表征也在不断的更新。而在环境参照系表征(allocentric representation)中,物体的位置是相对于环境中其他物体(如标志性建筑、主要道路等)来表征的。自我参照系表征强调物体的位置表征是瞬间的而且不断更新的,物体之间空间关系不是直接表征在记忆中,而是通过物体相对于观察者的位置计算出来的。环境参照系表征则认为,物体位置与空间关系都被表征在记忆中,而且是持久和稳定的。 收稿日期:2005-06-28 通讯作者:赵民涛,E-mail: zhaomt@https://www.360docs.net/doc/b68321778.html, Wang和Spelke认为,物体位置在记忆中是以自我参照系来表征的[2,12]。在其中一项系列实验研究中,被试首先学习房间中六个物体的位置,然后分别在自主转动、迷向(disorientation)和重新定向(reorientation)条件下完成物体位置指向任务。 结果发现,与自主转动和重新定向条件相比,被试在迷向情况下对物体空间结构关系的提取准确性明显变差。他们由此认为被试形成的是基于自我参照系的空间表征,因为在自主运动过程中,被试可以较为准确的更新物体相对于自己的位置表征。而在迷向情况下,这种动态更新过程因为自我朝向感 321

相关文档
最新文档