火法冶金

火法冶金
火法冶金

火法冶金

火法冶金是指在高温下应用冶金炉把有价金属和精矿中的大量脉石分离开的各种作业。火法冶金是提取纯金属最古老、最常用的方法。火法冶炼所采用的步骤有焙烧、熔炼、吹炼、火法精炼、电解精炼以及化学精炼。电解精炼可以使用火法冶金炼出来的金属达到较高的纯度.

用燃料、电能或其他能源产生高温,在高温下,从矿石中提取和精炼金属或其化合物的冶金方法。火法冶金一般分矿石准备、冶炼、精炼和烟气处理等步骤。是最古老、现代应用规模最大的金属冶炼方法。目前钢铁生产应用火法冶金、重有色金属硫化矿主要采用火法冶金。此法因没有水溶液参加,故又称干法冶金。火法冶金的主要化学反应是还原-氧化反应。

又称高温冶金。利用高温从矿石中提取金属或金属化合物的冶金过程,是提取冶金的主要方法。此过程没有水溶液参与反应,所以又称干法冶金。主要用于钢铁冶炼、有色金属造锍溶炼和熔盐电解以及铁合金生产等。火法冶金的典型工艺过程有矿石准备、冶炼、精炼三个步骤;其主要反应是还原-氧化反应。

利用高温从矿石中提取金属或其化合物的冶金过程。此过程没有水溶液参加,故又称为干法冶金。火法冶金的工艺流程一般分为矿石准备、冶炼、精炼3个步骤。

①矿石准备。选矿得到的细粒精矿不易直接加入鼓风炉(或炼铁高炉),须先加入冶金熔剂(能与矿石中所含的脉石氧化物、有害杂质氧化物作用的物质),加热至低于炉料的熔点烧结成块;或添加粘合剂压制成型;或滚成小球再烧结成球团;或加水混捏;然后装入鼓风炉内冶炼。硫化物精矿在空气中焙烧的主要目的是:除去硫和易挥发的杂质,并使之转变成金属氧化物,以便进行还原冶炼;使硫化物成为硫酸盐,随后用湿法浸取;局部除硫,使其在造锍熔炼中成为由几种硫化物组成的熔锍。

②冶炼。此过程形成由脉石、熔剂及燃料灰分融合而成的炉渣和熔锍(有色重金属硫化物与铁的硫化物的共熔体)或含有少量杂质的金属液。有还原冶炼、氧化吹炼和造锍熔炼3种冶炼方式:还原冶炼:是在还原气氛下的鼓风炉内进行。加入的炉料,除富矿、烧结块或球团外,还加入熔剂(石灰石、石英石等),以便造渣,加入焦炭作为发热剂产生高温和作为还原剂。可还原铁矿为生铁,还原氧化铜矿为粗铜,还原硫化铅精矿的烧结块为粗铅。氧化吹炼:在氧化气氛下进行,如对生铁采用转炉,吹入氧气,以氧化除去铁水中的硅、锰、碳和磷,炼成合格的钢水,铸成钢锭。造锍熔炼:主要用于处理硫化铜矿或硫化镍矿,一般在反射炉、矿热电炉或鼓风炉内进行。加入的酸性石英石熔剂与氧化生成的氧化亚铁和脉石造渣,熔渣之下形成一层熔锍。在造锍熔炼中,有一部分铁和硫被氧化,更重要的是通过熔炼使杂质造渣,提高熔锍中主要金属的含量,起到化学富集的作用。

③精炼。进一步处理由冶炼得到的含有少量杂质的金属,以提高其纯度。如炼钢是对生铁的精炼,在炼钢过程中去气、脱氧,并除去非金属夹杂物,或进一步脱硫等;对粗铜则在精炼反射炉内进行氧化精炼,然后铸成阳极进行电解精炼;对粗铅用氧化精炼除去所含的砷、锑、锡、铁等,并可用特殊方法如派克司法以回收粗铅中所含的金及银。对高纯金属则可用区域熔炼等方法进一步提炼。

火法冶金简述

火法冶金是利用高温从矿石或金属废料中提取金属或其化合物的冶金过程。此过程没有水溶液参加,所以又称为干法冶金。火法冶金是提取冶金的主要方法之一。算入环境保护和综合利用的费用,火法冶金的成本一般低于湿法冶金。

利用火法从矿石提取金属的流程一般分为三个步骤

一、矿石准备大致分为选矿、烧结、焙烧等。选矿得到的细粒精矿不宜直接加入鼓风炉(或炼铁高炉)。须先加入熔剂(见冶金熔剂),再高温烧结成块;或添加粘合剂压制成型;或滚成小球再烧结成球团;或加水混捏;然后,装入鼓风炉内冶炼。

硫化物精矿在空气中焙烧的主要目的是:①除去硫和易挥发的杂质,并使之转变成金属氧化物,以便进行还原冶炼;②使硫化物成为硫酸盐,随后用湿法浸取;③局部去硫,使其在造锍熔炼中成为由几种硫化物组成的熔锍。若添加氯化剂进行焙烧,则称为氯化焙烧(见氯化冶金)。

二、冶炼本过程中形成两种熔体:一种是由脉石、熔剂及燃料灰融合而成的炉渣;另一种是熔锍或含有少量杂质的金属液。冶炼分下列三种:

1、还原冶炼在还原气氛下的鼓风炉内进行。加入的炉料,除富矿、烧结块或球团矿外,还加入熔剂(石灰石、石英石等),以便造渣。加入焦炭既作为发热剂,燃烧产生高温;也作为还原剂,或还原铁矿为生铁,或还原氧化铜矿为粗铜,或还原硫化铅精矿的烧结块(氧化铅)为粗铅。

2、造锍熔炼主要用于处理硫化铜矿或硫化镍矿,一般在反射炉、矿热电炉或鼓风炉内进行。加入的酸性石英石熔剂与氧化生成的氧化亚铁和脉石造渣,熔渣之下形成一层熔锍。在造锍熔炼中,虽然有一部分铁和硫被氧化,但更重要的是通过熔炼使杂质造渣,从而提高熔锍中主金属的含量,起到化学富集的作用。

3、氧化吹炼在氧化气氛下进行。如对生铁采用转炉,吹入氧气,有顶吹、底吹及复合吹炼等方式,以氧化除去铁水中的硅、锰、碳和磷,炼成合格的钢水,铸成钢锭。又如吹炼铜锍,采用卧式转炉,用空气或富氧空气吹炼成粗铜。

三、精炼进一步处理由冶炼得到的含有少量杂质的金属,以提高其纯度。对生铁而言,炼钢(转炉炼钢、平炉炼钢或电弧炉炼钢)可以认为是对生铁的精炼。在炼钢过程中,去气(除去铁液内溶解的氢或氮)、脱氧,并除去非金属夹杂物,或进一步脱硫等,均属于精炼的范畴。精炼还可用真空冶金、喷射冶金或电渣重熔等方法进行。

对粗铜则在精炼反射炉内进行氧化精炼,然后铸成阳极进行电解精炼(见水溶液电解)。对粗铅用氧化精炼除去所含的砷、锑、锡、铁等,并可用特殊方法如派克斯法以回收粗铅中所含的金及银。对高纯金属则可用区域熔炼等方法进一步提纯。

熔盐电解提取铝、镁,还原蒸馏提取锌、镁(见挥发与蒸馏),镁热还原氯化物提取钛、锆、铪,以及利用化学迁移反应进行气相沉积以制取纯金属等均属于火法冶金的范畴。

火法冶金的主要反应是还原-氧化反应。当有多种金属参加时,则存在还原-氧化反应的可能性和顺序,即选择性还原和氧化的问题。运用自由焓计算,可以对此复杂过程进行热力学分析。提高冶炼温度或采用闪速熔炼、喷射冶金等技术,可以改善动力学条件,提高反应速度,以加强冶炼强度、缩短冶炼时间及节约能源消耗等。

利用化学反应方法,将金属由矿石中提炼出来,再将提出的金属加以精炼,提取冶多学又可分为:火法冶炼、湿法提取或电化学沉积火法冶炼(Pyrometallurgy)

又称为干式冶金,把矿石和必要的添加物一起在炉中加热至高温,熔化为液体,生成所需的化学反应,从而分离出粗金属,然后再将粗金属精炼。

湿式冶金(Hydrometallurgy)

湿法冶金这种冶金过程是用酸、碱、盐类的水溶液,以化学方法从矿石中提取所需金属组分,然后用水溶液电解等各种方法制取金属。此法主要应用在低本位、难熔化或微粉状的矿石。现在世界上有75%

的锌和镉是采用焙烧-浸取-水溶液电解法制成的。这种方法已大部分代替了过去的火法炼锌。其他难于分离的金属如镍-钴,锆-铪,钽-

铌及稀土金属都采用湿法冶金的技术如溶剂萃取或离子交换等新方

法进行分离,取得显著的效果。

注:湿式冶金详解

利用某种溶剂,借助化学反应(包括氧化、还原、中和、水解及络合等反应),对原料中的金属进行提取和分离的冶金过程。湿法冶金包括4个主要步骤:①用溶剂将原料中有用成分转入溶液,即浸取。

②浸取溶液与残渣分离,同时将夹带于残渣中的冶金溶剂和金属离子回收。③浸取溶液的净化和富集,常用离子交换和溶剂萃取技术或其他化学沉淀方法。④从净化液中提取金属或化合物。

湿法冶金在锌、铝、铜、铀等工业中占有重要地位,世界上全部的氧化铝、氧化铀,大部分锌和部分铜都是用湿法生产的。湿法冶金的优点在于对非常低品位矿石(金、铀)的适用性,对相似金属(铪与锆)难分离情况的适用性;以及和火法冶金相比,材料的周转比较简单,原料中有价金属综合回收程度高,有利于环境保护,并且生产过程较易实现连续化和自动化。

我们厂有火法也有湿法,你做哪一行啊,具体的金属?

铜的火法冶金:1995年铜国际会议论文集内容提要本书介绍了近年来世界上铜火法冶金工艺技术、理论和生产实践的最新进展,内容涉及熔炼操作、冶炼厂的设计与质量管理、生产工艺的改进、生产工艺的开发及工艺理论。本书可供有色金属冶金的科研、设计、生

产和管理人员及大专院校冶金和相关专业师生学习参考。【图书目录】-铜的火法冶金:1995年铜国际会议论文集目录一冶炼厂的生产实践1.美洲铜冶炼工业发展前景展望2.马格马金属公司铜冶炼厂的扩建3.肯尼科特公司犹他铜冶炼厂的技术改造4.东予冶炼厂近年的生产实践5.菲律宾联合熔炼与精炼公司熔炼厂和精炼厂的改进6.特尼恩特转炉的新发展7.智利国营矿业公司文塔纳斯冶炼厂特尼恩特转炉氧的强化作用8.塞浦路斯艾萨熔炼法投产及操作经验9.美国熔炼和精炼公司的竖炉熔铸技术10.加斯佩冶炼厂的新进展11.用瓦纽科夫法处理复杂铜炉料二冶炼厂的设计与质量管理12.小型铜冶炼厂

的可行性评价13.用奥斯熔炼法处理含铜物料的经济和技术评估14.隆斯卡尔冶炼厂的发展现状15.冶金工厂生产流程及生产率分析16.赫尔南·维德拉·利拉铜冶炼厂的生产规划模型三生产丁艺的改进17.P-S转炉中的气体喷射现象18.高浓度富氧在UM霍博肯转炉中的使用19.氧探针在国际镍公司铜崖冶炼厂铜转炉中的应用20.一种预测杂质行为的模型在丘基卡马塔冶炼厂的应用21.对空气冷却的

华夫屏板转炉烟罩的分析与研究22.铜冶炼厂烟气冷却的最新进展

四新工艺的开发23.锍的诺兰达转炉连续吹炼(之一)——冶金概况综述24.锍的诺兰达转炉连续吹炼(之二)——中间试验及工厂评价25.在赛罗反应器中直接吹炼铜精矿的试验研究26.用联合鼓泡炉熔炼硫化铜精矿27.使用石灰熔剂吹炼高品位铜锍的试验研究28.采用火法冶金工艺从卢本巴希铜冶炼厂的熔炼和吹炼炉渣中回收铜29.

含铜砷原料的处理五铜冶金过程的基础理论30.Cu-Ni硫化物熔炼

与吹炼炉渣的密度和粘度31.含硅铁酸钙炉渣的密度和表面张力32.钴在铜冶炼过程中的行为33.CuFe-S-O系锍中组分的活度34.

半氧化焙烧镍铜精矿的还原熔炼35.炉渣中氧化铜的溶解平衡36.固体锍粒子的氧化特性37.一步生产粗铜——奥林匹克—达姆冶炼厂

的金属—炉渣平衡38.铜熔炼炉渣中的硫

火法冶金

利用高温从矿石提取金属或其化合物的冶金过程。此过程没有水溶液参加,所以又称为干法冶金。火法冶金是提取冶金的主要方法之一。算入环境保护和综合利用的费用,火法冶金的成本一般低于湿法冶金。

利用火法从矿石提取金属的流程一般分为三个步骤:①矿石准备;

②冶炼;③精炼。

矿石准备大致分为选矿、烧结、焙烧等。选矿得到的细粒精矿

不宜直接加入鼓风炉(或炼铁高炉)。须先加入熔剂(见冶金熔剂),再高温烧结成块;或添加粘合剂压制成型;或滚成小球再烧结成球团;或加水混捏;然后,装入鼓风炉内冶炼。

硫化物精矿在空气中焙烧的主要目的是:①除去硫和易挥发的杂质,并使之转变成金属氧化物,以便进行还原冶炼;②使硫化物成为

硫酸盐,随后用湿法浸取;③局部去硫,使其在造锍熔炼中成为由几

种硫化物组成的熔锍。若添加氯化剂进行焙烧,则称为氯化焙烧(见氯化冶金)。

冶炼本过程中形成两种熔体:一种是由脉石、熔剂及燃料灰分融合而成的炉渣;另一种是熔锍或含有少量杂质的金属液。冶炼分下列三种:

还原冶炼在还原气氛下的鼓风炉内进行。加入的炉料,除富矿、烧结块或球团矿外,还加入熔剂(石灰石、石英石等),以便造渣。加入焦炭既作为发热剂,燃烧产生高温;也作为还原剂,或还原铁矿为生铁,或还原氧化铜矿为粗铜,或还原硫化铅精矿的烧结块(氧化铅)为粗铅。

造锍熔炼主要用于处理硫化铜矿或硫化镍矿,一般在反射炉、矿热电炉或鼓风炉内进行。加入的酸性石英石熔剂与氧化生成的氧化亚铁和脉石造渣,熔渣之下形成一层熔锍。在造锍熔炼中,虽然有一部分铁和硫被氧化,但更重要的是通过熔炼使杂质造渣,从而提高熔锍中主金属的含量,起到化学富集的作用。

氧化吹炼在氧化气氛下进行。如对生铁采用转炉,吹入氧气,有顶吹、底吹及复合吹炼等方式,以氧化除去铁水中的硅、锰、碳和磷,炼成合格的钢水,铸成钢锭。又如吹炼铜锍,采用卧式转炉,用空气或富氧空气吹炼成粗铜。

精炼进一步处理由冶炼得到的含有少量杂质的金属,以提高其纯度。对生铁而言,炼钢(转炉炼钢、平炉炼钢或电弧炉炼钢)可以认为是对生铁的精炼。在炼钢过程中,去气(除去铁液内溶解的氢或氮)、脱氧,并除去非金属夹杂物,或进一步脱硫等,均属于精炼的范畴。精炼还可用真空冶金、喷射冶金或电渣重熔等方法进行。对粗

铜则在精炼反射炉内进行氧化精炼,然后铸成阳极进行电解精炼(见水溶液电解)。对粗铅用氧化精炼除去所含的砷、锑、锡、铁等,并可用特殊方法如派克斯法以回收粗铅中所含的金及银。对高纯金属则可用区域熔炼等方法进一步提纯。

熔盐电解提取铝、镁,还原蒸馏提取锌、镁(见挥发与蒸馏),镁热还原氯化物提取钛、锆、铪,以及利用化学迁移反应进行气相沉积以制取纯金属等均属于火法冶金的范畴。

火法冶金的主要反应是还原-氧化反应。当有多种金属参加时,则存在还原-氧化反应的可能性和顺序,即选择性还原和氧化的问题。运用自由焓计算,可以对此复杂过程进行热力学分析。提高冶炼温度或采用闪速熔炼、喷射冶金等技术,可以改善动力学条件,提高反应速度,以加强冶炼强度、缩短冶炼时间及节约能源消耗等。

稀土提取与分离技术 (发)

产业技术情报—————————————————————————————————————————————————————————————2013年12月18日第6期(总第6期) 编者按: 稀土提取及分离技术的基本内容有如下几个方面:稀土矿物的富集、稀土的提取、稀土富集物的制备、稀土元素的分离与提纯、稀土化合物的制备。本期通过专利分析,对稀土提取及分离技术的专利数量、专利国家和地区分布、专利技术布局,以及稀土提取与分离技术国家分布、技术主题、核心专利等进行了分析,并得出以下结论。 本期重点:稀土提取与分离技术专利分析 ●中国在稀土提取与分离技术领域起步较早,但由于我国稀土技术保密规定等 原因,文献报道不多,2006年后迅速发展,专利数量跃居世界第一,但专利影响力(核心专利)很小。 ●稀土提取与分离技术主要集中在提取与分离过程与方法、分离过程中使用的 体系和萃取剂、稀土分离、提取的设备与装置以及对稀土提取过程中废水的处理。 ●日本企业为该技术领域的主要专利持有人,专利均集中在从合金或其他混合 物中回收稀土元素以及提取与分离过程中所使用的萃取剂。此外,日本机构还擅长从一些废料(例如荧光粉材料和磁性材料)中回收稀土金属。 ●中国有5家高校、科研单位和5家企业专利申请量进入全球Top30,分别为 北京大学、北京科技大学、东北大学、内蒙古科技大学、中科院长春应用化学研究所、北京有色金属研究总院、包头稀土研究院、甘肃稀土新材料有限公司等。 ============================================================= 主编:刘细文执行主编:贾苹本期策划:徐慧芳陆彩女陈枢舒联系地址:北京北四环西路33号中科院国家科学图书馆区域信息服务部邮编:100190 电话:82625972邮件地址:xxcykb@https://www.360docs.net/doc/b814960820.html,

现代冶金研究方法

硕士研究生课程论文 课程名称:现代冶金研究方法题目:区域熔炼法制备高纯铟的研究及优化 学院:材料科学与工程学院 专业(方向):冶金工程 学生:程小强 学号:102016140 指导老师:李义兵 完成时间: 2017.1.8

区域熔炼法制备高纯铟的研究及优化 程小强 (桂林理工大学,桂林541004 ) 摘要:目前高纯铟常用的制备方法有电解法、真空蒸馏法、区域熔炼法三种,电解法工艺条件易控制,但耗能巨大,提纯效果相对较差,我国目前生产4N精铟的企业都采用电解精炼法;真空蒸馏法虽流程简单,无污染,能耗低,但对于饱和蒸气压和铟相近的金属(如铅)则无法除去;而区域熔炼法可制备5N~6N铟,但其存在成本高、过程耗时的缺点。针对目前区域熔炼法存在的问题,在实验装置、变量控制和工艺条件等方面进一步优化完善。 关键词:区域熔炼;高纯铟;金属;提纯;工艺;材料 Preparation of High-purity Indium Optimization by Zone Refining CHENG Xiao-Qiang (Guilin University of Technology, Guilin, 541004 ) Abstract:Currently the preparation of high-purity indium common electrolytic method, vacuum distillation method, three regional smelting, electrolysis process conditions easy to control, but the energy is huge, relatively poor purification effect, China's current production of refined indium 4N enterprises have adopted electrolytic refining method; vacuum distillation process, although simple, non-polluting, low energy consumption, but the saturated vapor pressure and indium similar metals (such as lead) can not be removed; the zone melting method can be prepared 5N ~ 6N indium, but its existence high cost, time-consuming process shortcomings. For existing zone melting method problems, in terms of the experimental device, variable control and process conditions to further optimize the sound. Keywords:zone refining; high-purity indium; metal; purify; technology; material

稀土生产工艺流程图-+矿的开采技术

稀土生产工艺流程图 白云鄂博矿 矿石粉碎 弱磁、强磁选矿 铁精矿 强磁中矿、尾矿 稀土精矿 稀土选矿 碱法生产线 酸法生产线 火法生产线 汽车尾气净化器 永磁电机 节能灯 风力发电机 各种发光标牌 电动汽车 电动 核磁共振 自行车 磁悬浮 磁选机

独居石又名磷铈镧矿。化学成分及性质:(Ce,La,Y,Th)[PO4]。成分变化很大。矿物成分中稀土氧化物含量可达50~68%。类质同象混入物有Y、Th、Ca、[SiO4]和[SO4]。独居石溶于H3PO4、HClO4、H2SO4中。 晶体结构及形态:单斜晶系,斜方柱晶类。晶体成板状,晶面常有条纹,有时为柱、锥、粒状。 物理性质:呈黄褐色、棕色、红色,间或有绿色。半透明至透明。条痕白色或浅红黄色。具有强玻璃光泽。硬度5.0~5.5。性脆。比重4.9~5.5。电磁性中弱。在X射线下发绿光。在阴极射线下不发光。 生成状态:产在花岗岩及花岗伟晶岩中;稀有金属碳酸岩中;云英岩与石英岩中;云霞正长岩、长霓岩与碱性正长伟晶岩中;阿尔卑斯型脉中;混合岩中;及风化壳与砂矿中。 用途:主要用来提取稀土元素。 中国稀土矿床在地域分布上具有面广而又相对集中的特点。截止目前为止,地质工作者已在全国三分之二以上的省(区)发现上千处矿床、矿点和矿化产地,除内蒙古的白云鄂博、江西赣南、广东粤北、四川凉山为稀土资源集中分布区外,山东、湖南、广西、云南、贵州、福建、浙江、湖北、河南、山西、辽宁、陕西、新疆等省区亦有稀土矿床发现,但是资源量要比矿化集中富集区少得多。全国稀土资源总量的98%分布在内蒙、江西、广东、四川、山东等地区,形成北、南、东、西的分布格局,并具有北轻南重的分布特点。 但是因为中国稀土占据着几个世界第一:储量占世界总储量的第一,尤其是在军事领域拥有重要意义且相对短缺的中重稀土;生产规模第一,2005年中国稀土产量占全世界的96%;出口量世界第一,中国产量的60%用于出口,出口量占国际贸易的63%以上,而且中国是世界上惟一大量供应不同等级、不同品种稀土产品的国家。可以说,中国是在敞开了门不计成本地向世界供应。据国家发改委的报告,中国的稀土冶炼分离年生产能力20万吨,超过世界年需求量的一倍。而中国的大方,造就了一些国家的贪婪。至2012年初统计数据显示,我国稀土世界占有量由2005年的96%下降至30%。 内蒙古白云鄂博矿山的稀土矿床,是铁白云石的碳酸岩型矿床,在主要成分铁矿中伴生稀土矿物(除氟碳铈矿、独居石外,还有数种含铌、稀土矿物)。采出的矿石中含铁30%左右,稀土氧化物约5%。在矿山先将大矿石破碎后,用火车运至包头钢铁集团公司的选矿厂。选矿厂的任务是将Fe2O3从33%提高到55%以上,先在锥形球磨机上磨矿分级,再用圆筒磁选机选得62~65%Fe2O3(氧化铁)的一次铁精矿。其尾矿继续进行浮选与磁选,得到含45%Fe2O3(氧化铁)以上的二次铁精矿。稀土富集在浮选泡沫中,品位达到10~15%。该富集物可用摇床选出REO含量为30%的粗精矿,经选矿设备再处理后,可得到REO60%以上的稀土精矿。 稀土冶炼方法 稀土冶炼方法有两种,即湿法冶金和火法冶金。 湿法冶金属化工冶金方式,全流程大多处于溶液、溶剂之中,如稀土精矿的分解、稀土氧化物、稀土化合物、单一稀土金属的分离和提取过程就是采用沉淀、结晶、氧化还原、溶剂萃取、离子交换等化学分离工艺过程。现应用较普遍的是有机溶剂萃取法,它是工业分离高纯单一稀土元素的通用工艺。湿法冶金流程复杂,产品纯度高,该法生产成品应用面广阔。 火法冶金工艺过程简单,生产率较高。稀土火法冶炼主要包括硅热还原法制取稀土合

稀土生产与分离工业工艺流程

稀土生产与分离工业工艺流程 一、稀土选矿 选矿是利用组成矿石的各种矿物之间的物理化学性质的差异,采用不同的选矿方法,借助不同的选矿工艺,不同的选矿设备,把矿石中的有用矿物富集起来,除去有害杂质,并使之与脉石矿物分离的机械加工过程。 当前我国和世界上其它国家开采出来的稀土矿石中,稀土氧化物含量只有百分之几,甚至有的更低,为了满足冶炼的生产要求,在冶炼前经选矿,将稀土矿物与脉石矿物和其它有用矿物分开,以提高稀土氧化物的含量,得到能满足稀土冶金要求的稀土精矿。稀土矿的选矿一般采用浮选法,并常辅以重选、磁选组成多种组合的选矿工艺流程。内蒙古白云鄂博矿山的稀土矿床,是铁白云石的碳酸岩型矿床,在主要成分铁矿中伴生稀土矿物(除氟碳铈矿、独居石外,还有数种含铌、稀土矿物)。采出的矿石中含铁30%左右,稀土氧化物约5%。在矿山先将 大矿石破碎后,用火车运至包头钢铁集团公司的选矿厂。选矿厂的任务是将Fe2O3从33%提高到55%以上,先在锥形球磨机上磨矿分级,再用圆筒磁选机选得62~ 65%Fe2O3的一次铁精矿。其尾矿继续进行浮选与磁选,得到含45%Fe2O3以上的二次铁精矿。稀土富集在浮选泡沫中,品位达到10~15%。该富集物可用摇床选出REO 含量为30%的粗精矿,经选矿设备再处理后,可得到REO60%以上的稀土精矿。 二、稀土冶炼方法 稀土冶炼方法有两种,即湿法冶金和火法冶金。 湿法冶金属化工冶金方式,全流程大多处于溶液、溶剂之中,如稀土精矿的分解、稀土氧化物、稀土化合物、单一稀土金属的分离和提取过程就是采用沉淀、结晶、氧化还原、溶剂萃取、离子交换等化学分离工艺过程。现应用较普遍的是有机溶剂萃取法,它是工业分离高纯单一稀土元素的通用工艺。湿法冶金流程复杂,产品纯度高,该法生产成品应用面广阔。

有色冶金

1.什么是湿法冶金?湿法冶金包括哪些过程? 在溶液中进行的冶金叫做湿法冶金。湿法冶金包括浸出、液固分离、净化、制备金属等过程。 2.什么是火法冶金?火法冶金包括哪些过程? 火法冶金是在高温条件下进行的冶金过程。火法冶金包括炉料准备、熔炼、火法精炼等过程。 3.湿法冶金和火法冶金相比各有什么特点? 火法冶金特点:反应速度快,设备产能大,成本低,但投资大,能耗高,污染也大。 湿法冶金特点:对原料适应力强,能够处理低品位的矿,回收率高;操作温度低,劳动条件好,能耗低;可直接制取纯化合物或纯金属;生产规模可大可小,因地制宜,成本低。 4.选矿的方法有哪些,其原理如何? 重选:利用被分选矿物颗粒间相对密度、粒度、形状的差异及其在介质运动速率和方向的不同,使之彼此分离的选矿方法 磁选:利用矿物颗粒磁性的不同来使矿物分离的选矿方法。 电选:根据矿物颗粒电性的差别,在高压电场中进行选别的选矿方法。 浮选:利用各种矿物原料颗粒表面对水的润湿性差异来进行选别的选矿方法。 化学选矿:利用矿物化学性质的不同,采用化学方法或物理相结合的方法分离和回收有用成份,得到化学精矿的选矿方法。 5.湿法炼铜适用于何种矿物?请简述湿法炼铜的工艺过程,常用浸出方法有哪 些? 湿法炼铜主要用来处理氧化矿、贫矿和残留矿,也可以用来处理硫化矿。工艺过程主要包括四个步骤,浸出、萃取、反萃取、金属制备(电积或置换)。 浸出方法有堆浸、槽浸、细菌浸出和高压氧浸出。 6.简述铜电解精炼过程中各类杂质的行为? ①锌、铁、镍、钴、铅等杂质,电极电位比铜更负,电解时均溶于电解液 中,但其中的铅离子会与硫酸根离子进一步生成难溶的硫酸盐而沉降进 入阳极泥。 ②金、银和铂族金属的电极电位比铜更正,几乎全部转入阳极泥,少量溶 解的银也会与电解液中的氯离子化合生成氯化银,沉入阳极泥。 ③硫、氧、硒、碲以Cu 2S、Cu 2 O、Cu 2 Se等形式存在于铜阳极中,电解时自 阳极板上脱落进入阳极泥。 ④砷、锑、铋等电极电位与铜相近的一类杂质,在电解时全部进入电解液。 7.简述火法炼铜的工艺流程及各个环节的任务和原理? ①造锍熔炼:把炉料中全部的铜富集在铜锍相,把脉石、氧化物、及杂质 汇集与熔渣相。原理:利用铜与锍的亲和力大于铁和一些杂质金属,而 铁与氧的亲和力大于铜的特性。 ②铜锍吹炼:把铜锍吹炼成含铜98.5%~99.5%的粗铜。原理:FeS氧化造渣 形成Cu 2S熔体,Cu 2 S继续氧化成Cu 2 O,同时与未氧化的Cu 2 S作用生成粗 铜。 ③火法精炼:除去粗铜中的铁、铅、锌、铋、砷、硫等杂质。原理:利用 杂质与氧的亲和力大与铜与氧的亲和力以及杂质氧化物在铜中溶解度小的特性。

稀土湿法冶金废水处理

摘要:对稀土矿物氟碳铈矿、独居石和氟碳铈矿的混合矿湿法冶金分解和分离过程中所产生的废水进行了分类。综述了不同的冶金工艺所采用的废水处理方法,认为对稀土冶金废水的处理应注意分类治理,回收副产品;以废治废,降低成本,提高废水回用率;开展清洁冶金工艺研究,从源头解决污染问题。 关键词:稀土;氟碳铈矿;独居石;湿法冶金;废水处理 稀土湿法冶金过程中的废水污染问题受到各方面的关注。我国稀土湿法冶金的原料主要是氟碳铈矿、氟碳铈矿和独居石的混合矿(以下简称混合稀土精矿)及广东、江西等地的离子吸附型稀土矿。离子吸附型稀土矿采用原地浸矿、碳铰沉淀工艺制备碳酸稀土产品,氟碳铈矿主要采用氧化焙烧工艺分解,而混合稀土精矿主要采用浓硫酸高温焙烧分解(以下简称酸法分解工艺)和液碱法分解两种工艺制备碳酸稀土和氯化稀土初级产品,然后由初级产品再通过萃取分离生产不同纯度的单一稀土产品。本文对稀土矿物的3种分解工艺及萃取分离制备单一稀土工艺等湿法冶金过程中的废水分类及研究现状作简单综述。 1 稀土湿法冶金过程废水的分类 1.1 混合稀土精矿的分解 1.1.1 酸法分解工艺 混合稀土精矿浓硫酸高温焙烧分解工艺是以混合稀土精矿为原料的稀土企业的主体分解工艺。该工艺在冶金过程中产生酸性废水A(ρ(F-)=2~5g/L,ρ(H2SO4)=15-25 g/L)和含硫酸铰的氨氮类废水 B(pH=7-8,ρ(NH4+)=5~18 g/L)。初级产品碳酸稀土还可以进一步革取分离单一稀土产品并产生相应的废水。 1.1.2 液碱法分解工艺 液碱法分解工艺是分解混合稀土精矿的另一个主要工艺,目前仍有少部分企业采用该工艺生产。该工艺产生两种废水:酸性废水C(含钙镁离子和盐酸,盐酸浓度约l~2 mol/L)和碱性废水D(含NaOH,Na3PO4和NaF等,ρ(F-)=0.4~0.6 g/L,ρ(NaOH)=100~400g/L,ρ(Na2CO3)=20~30g/L,pH=10~11)。初级产品氯化稀土还可以进一步苹取分离出单一稀士产品。 1.2 氟碳饰矿的分解——氧化焙烧分解工艺 氧化焙烧分解工艺是四川氟碳钝矿的主要分解工艺,主要产生两种废水,一种是酸性废水E,ρ(F-)= 4~6 g/L,ρ(Fe2(SO4)3)=25~35 g/L,w(H2SO4)= 8%~10%和 Na2SO4 及少量的 P2O5等;一种为碱性废水F,主要是含Na2SO4,ρ(Na2SO4)=

有色冶金行业资料

有色冶金行业资料 一、有色行业定义及包含金属种类 1.1 定义 人类已发现蕴藏在自然界的103种天然元素中,凡具有良好导电、导热和可煅性的天然元素称金属,现在世界上有86种金属。通常把金属分为黑色金属和有色金属两大类,中国在1958年将铁、铬、锰列入黑色金属;除铁、铬、锰以外的83种金属(包括13种人造超铀元素)都叫有色金属。 狭义的有色金属又称非铁金属,是铁、锰、铬以外的所有金属的统称。 广义的有色金属还包括有色合金。有色合金是以一种有色金属为基体(通常大于50),加入一种或几种其他元素而构成的合金。 1.2金属种类

有色金属分类补充说明: 1)轻有色金属:这类金属的共同特点是:密度小(0.53-4.5),化学活性大,与氧、硫、碳和卤素的化合物都相当稳定。 2)重有色金属:其特点是密度大,如铅为11.34.每一种重有色金属根据其特性,在国民经济各部门中都具有其特殊的应用范围和用途。例如,铜是军工及电气设备的基本材料;铅在化工方面制耐酸管道、蓄电池等有着广泛应用;镀锌的钢材广泛应用于工业和生活方面;而镍和钴则是制定高温合金与不锈钢的重要合金元

素。 3)贵金属:这类金属由于对氧及其他试剂的稳定性,且在地壳中含量少,开采和提取比较困难,故价格比一般金属贵。这类金属除金银铂有单独的矿物,可以从矿石中生产一部分外,大部分要从铜、铅、锌、镍等冶炼厂的副产品(阳极泥)中回收。 4)半金属:这类金属的物理化学性质介于金属和非金属之间,如砷是非金属,但又能导电传热。此类金属根据各自的特性有不同的用途。 5)稀有金属:这类金属的特点是发现较晚,提取困难,工业上应用也较晚。由于数量较多,为了研究上的方便,按其性质、提取方法和在地壳中存在的特征,又将其分为5类: (1)轻稀有金属:其特点是密度小,如锂为0.534,化学活性很强。这类金属的氧化物和氯化物都具有很高的化学稳定性,很难还原,常用熔盐电解法 生产。 (2)稀有高熔点金属(亦称稀有难熔金属):其特点是熔点高,如钨的熔点为3410℃;硬度大,抗蚀性强,可与一些非金属生成非常硬的难熔的稳定化 合物。如碳化物、氮化物、硅化物和硼化物。这些化合物是生产硬质合金 的重要材料。 (3)稀有分散金属(亦称稀散金属):其特点是这类金属在地壳中很分散,常伴生在其他矿床中,但其产量极少,没有工业价值,通常都是从冶金工厂或 化工厂的废料中提取的。如电解铜的阳极泥、冶炼铅锌和铝的炉渣及烟尘 等。 (4)稀土金属:从镧到铕,为轻稀土;从钆到镥含钪、钇为重稀土。18世纪时,

微生物冶金研究及应用示例

微生物冶金研究及应用示例 摘要:微生物冶金是微生物学与矿物加工学相交叉而产生的一门新兴的边缘学科,开展这方面的研究具有重要的学术意义及广阔的应用前景。本文主要对微生物冶金以及其在矿物开采中的应用进行了较全面的综述,包括微生物冶金发展概况、冶金微生物、微生物冶金技术及冶金过程的机理,并介绍了微生物冶金技术的应用现状。 关键词:生物冶金;硫化矿;冶金技术;生物浸出 矿产资源的开发与利用是支持全球经济发展与社会进步的重要基础之一。随着全球工业化迅速发展带来的自然资源的飞速开发,导致优质富矿资源日趋枯竭,从而品位低以及成分复杂的贫矿资源开始受到人们日渐关注,难选冶炼矿石所占比例不断攀升。常规冶金技术在对低品位低矿物的加工过程中所体现出的产量低、成本高、污染大等缺点,在技术和经济上已无法满足工业生产需求,微生物冶金技术逐渐受到人们的重视[1]。 生物冶金技术又称生物浸出技术,其本质是利用自然界中的微生物或其代谢产物溶浸矿石中有用金属的一种技术。这些微生物为适温细菌,靠无机物生存,对生命无害,它们可以通过多种途径对矿物作用,将矿物中的酸性金属氧化成可溶性的金属盐,不溶的贵金属留在残留物中。并一旦溶液可与残留物分离,在溶液中和之前,采取传统加工方式,如溶剂萃取等方法来回收溶液中的金属;可能存在于残留物中的金属,经细菌氧化后,通过氰化物提取。生物冶金技术具有能耗少、设备简单、操作方便、成本低、工艺流程简单、无污染等优点[2-3],在矿物加工及冶金领域逐渐受到重视并发展壮大起来,是未来冶金行业发展的重要方向之一[4]。因此,微生物冶金技术的研究及其应用对冶金学的发展具有重要的理论和实际意义[5-6]。 1 微生物冶金发展概况 生物冶金的应用研究开始于20世纪40年代。1947年,Colmer和Hinkel[7]首次从酸性矿坑水中分离到氧化亚铁硫杆菌。其后,Temple等[8]和Leathen等[9]先后发现这种细菌能够将Fe2+氧化为Fe3+,并且能够将矿物中的硫化物氧化为硫

稀土及稀有稀散金属综合利用技术综述-矿产综合利用

我国稀有及稀散金属综合利用技术综述 刘爽,鲁力,柳德华,康健,黄鹏 (湖北省地质实验研究所,湖北武汉 430034) 摘要:随着稀有金属、稀散金属需求量的稳定增长,其回收技术越来越受到重视。本文作者在进行了大量的查询和学习后,对相关文献资料进行了整理,简单扼要地概述了所有稀有元素 及稀散元素金属的综合利用研究现状,对目前工业上应用的主要工艺路线、技术特点及研究重点 进行介绍。 关键词:稀有金属;稀散金属;选矿;提取;提纯 doi:10.3969/j.issn.1000-6532.2013.0x.00x 中图分类号:TD97 文献标识码:A 文章编号:100-6532(2013) 1 稀有金属综合利用技术综述 稀有金属在国民经济建设与发展中得到广泛应用,特别是在尖端科技、现代工业上是不可缺少的原料。稀有金属包括锂、铷、铯、铍、锶、锆、铪、铌、钽。 工业上重要的锂矿物有锂辉石、锂云母、铁锂云母、磷锂辉石、透锂长石。除工业矿物外,盐湖卤水及盐湖盆地地下卤水富含锂,是工业上用锂的一个重要来源。锂矿石的性质不同,采用不同的分选工艺,主要有浮选法、手选法、热碎解、磁选法、重悬浮液选矿法、化学处理法、联合选矿法等。盐湖卤水中锂盐的提取,通常首先需将原始卤水中锂进一步蒸发浓缩,然后再采用适当的分离技术,主要有太阳池升温沉锂法、沉淀法、煅烧法、吸附法和溶剂萃取法等,对浓缩卤水中的锂进行分离、提取,最终制备碳酸锂[1]。 铷无独立的工业矿物,主要赋存于锂云母等矿石和盐湖卤水中,铷铯性质相近,常共伴生一起,提取、提纯工艺基本一致,从最古老的分步结晶法开始,逐步开发出了沉淀法、离子交换法、溶剂萃取法等多种工艺[2]。 铍矿床主要分两大类型,花岗伟晶岩型和气成热液型,其中绿柱石主要采自花岗伟晶岩矿床,硅铍石主要采自气成热液矿床。含铍矿物一般与萤石、云母、锂辉石、方解石、白云石等矿物密切共生,有时矿石中还含有黑钨矿、锡石、辉钼矿、黄铁矿等矿物,通常铍矿石的选矿流程比较复杂。当矿石中含有钨、锡、钽、铌等矿物时,首先采用重选回收相应矿物;当矿石中含有硫化物时,采用预先浮选回收钼、铅、锌、铁等硫化矿;当矿石中含有黄玉、滑石、云母等易浮矿物时,同样必须采用预先浮选以排除易浮矿物对后续作业的影响。此外,除浮选、重选外,工业上应用的铍提取工艺主要还有硫酸法和氟化法[3]。 自然界已知含锶矿物有10多种,工业上用于提取锶的原料主要是天青石和菱锶矿。锶主要以碳酸盐使用。以菱锶矿为原料制备碳酸锶的方法主要有酸溶一碱析法和焙烧法,以天青石为原料制备碳酸锶的方法主要有炭 收稿日期:2012-08-24;改回日期:2013-01-25

2020年(冶金行业)利用高温冶金性能试验指导高炉配矿研究

(冶金行业)利用高温冶金性能试验指导高炉配矿研 究

利用高温冶金性能试验指导高炉配矿研究 李继昌王万里赵贵清武连海付光军闫海生 (酒泉钢铁集团X公司) 摘要:针对三地高炉铁料资源供应日趋紧张,供料逐渐呈现多样化小量化的特点。我们利用高温冶金性能试验手段,尽可能对较大批次供料进行取样试验和分析,对少数矿种的特殊行为进行个别测试分析,对高炉实现经济合理配矿提供技术指导和参考依据。 关键词:高温性能试验高炉配矿研究 l高温冶金性能试验试样准备 (1)按照项目合同书内容和三地炼铁工序高炉配矿实际状况,高温冶金性能试验单种矿样按大宗主要矿种考虑,按此原则本项目单种矿样选择分别为翼钢自产高烧矿、代县球团矿、进口印度块矿。榆钢为自产高烧矿、长城球团矿、龙泰球团矿、泰生块矿。本部为进口澳块矿、新疆伊吾宝山块矿、康达块矿、安泰科技块矿、鑫九龙球团矿、华瑞球团矿、新进口哈球矿、试验高烧矿。其化学成分分析见表1。 (2)单种矿高温冶金性能试验矿样的取样和制备。翼钢自产高烧矿、代县球团矿、进口印度块矿取自高炉矿槽。榆钢自产高烧矿、长城球团矿、龙泰球团矿取自高炉矿槽下筛子料斗,泰生块矿取自料场经破碎后筛出10~12.5mm粒级为试验样品料。本部块矿和球团矿分别取自储运北料场和200万新料场。每种试验矿样基本按5~6公斤制备,且进行分装标记,避免混样和错样。 2高温冶金性能试验方法 本项目高温冶金性能试验方法有:铁矿石900℃仍原性测定方法;铁矿石500℃低温仍原粉化指数试验方法:铁矿石荷重软化性能测定方法;铁矿石熔融滴落试验方法。试验全部在技术中心炼铁研究所试验室内进行。 2.1铁矿石900℃仍原度实验方法

电子废弃物-火法

3.5电子废弃物的火法冶金技术 3.5.1概述 电子废弃物的火法冶金技术是20世纪80年代从电子废弃物中回收贵金属应用最广泛的技术,其实质是一种最古老的炼金方法。电子废弃物的种类繁多,组成复杂,各种聚合物、金属、无机惰性填料或增强材料粘合混杂在一起,使得回收过程中各组成部分的分离变得异常困难。采用火法冶金技术能将聚合物降解或将金属熔融,可以比较容易地从中回收能源和有用成分,从而避免了复杂而昂贵的分离分类过程。此外,电子废弃物的火法冶金技术在减容减量,处理规模和效率方面也是其他回收技术无法比拟的。火法冶金技术的基本原理是利用冶金炉高温加热剥离非金属物质,贵金属熔融于其他金属熔炼物料或熔盐中,再加以分离。非金属物质主要是电路板有机材料等,一般呈浮渣物分离去除;而贵金属与其他金属呈合金态流出,再精炼或电解处理。这种技术主要通过焚烧、等离子电弧炉或高炉熔炼、烧结或熔融等火法处理的手段来去除电子废弃物中的塑料及其他有机成分,使金属得到富集并进一步回收利用。火法冶金技术主要包括焚烧、热解、汽化、直接冶炼技术等,各种技术的比较见表1。火法冶金技术从电子废弃物中提取贵金属的一般工艺流程如图1所示。 表1电子废弃物中一些物质的密度 电子废料(经预处理)

图1火法冶金技术从电子废弃物中提取贵金属的一般工艺流程火法冶金技术处理印刷线路板的过程是:将破碎过的PCB废品在回转炉或熔解池内燃烧以去除塑料,留下金属熔渣,再通过熔炼这些熔渣可以得到掺杂合金。这些合金可以用电解或高温冶金的方法进行提炼。可生产出三类可销售的产品:Zn、Pb、Sn的氧化物,符合环保要求的渣以及Cu—Ni—Sn合金。德国柏林大学冶金学院1997年提出顶吹反应器用于废弃印刷线路板处理。该过程可得到Cu—Ni—Sn合金、Pb、Zn的氧化物,残渣符合环境要求,可用于生产建筑材料。Masude等人的专利描述了在铜提炼炉中回收废弃印刷线路板等电子废品中的Au和Ag的方法。送入的样品碎片在空气或氧气中燃烧,然后与熔融的生铜接触℃u溶液中的Au和Ag用电解沉淀提炼,最后从阳极泥中回收出贵金属。Engelhard(是一家公司名称,就是这样)的一家冶金工厂从电子类废品中回收Au、Ag和Pd。工艺流程主要包括:压碎和分类,燃烧和物理分离,熔解和提炼。熔渣被回收,块状和颗粒金属用化学或电解方法进一步提炼,Au、Ag和Pd的回收率达90%。 用冶炼工艺处理废电池的方法是对传统火法冶金回收技术的改进。其基本思路就是将预处理后的废电池经烧结,残留物加入转炉内进行高温冶炼,既减少废电池对环境的危害,又可将废电池中的铁、镍、锰等金属元素作为炼钢的原料加以回收利用。其原则性流程如图2所示。

基于稀土湿法冶金废水处理措施探究

基于稀土湿法冶金废水处理措施探究 发表时间:2018-07-12T14:07:14.587Z 来源:《防护工程》2018年第6期作者:曾永春 [导读] 近年来,因国家不断加大环保的治理力度,在内蒙古(地区)、四川南部和广东、广西等地,形成了不同的污水处理技术。 四川省冕宁县方兴稀土有限公司 615601 摘要:我国稀土资源丰富,稀土产业发展迅速,目前已建立起完整的稀土开采、冶炼及应用产业体系。稀土湿法冶炼过程中使用大量酸、碱、盐、萃取剂等化工原料并产生了酸性废水、碱性废水、氨氮废水等各种生产废水,废水含盐量较高,严重威胁生态环境安全。本文就针对稀土湿法冶金废水处理措施进行了探究。 关键词:稀土;湿法冶金;废水;处理措施 近年来,因国家不断加大环保的治理力度,在内蒙古(地区)、四川南部和广东、广西等地,形成了不同的污水处理技术。结合多年的稀土湿法冶金废水处理的经验,总结了目前稀土冶炼废水处理的方法,以四川氟碳铈矿氧化焙烧盐酸浸出工艺为例。 1废水的来源和特征 湿法冶金提取分离稀土元素在目前工业生产中应用最广泛。根据稀土矿物的不同性质及相应冶炼技术,产生的废水是不同的。当前使用的稀土冶炼过程中矿物主要是氟碳铈矿、独居石、离子型稀土矿和混合稀土矿等,这些矿物质通常包含钍和镭的放射性物质和其他氟、铅有害成分,进入冶炼废水,污染周围的环境。我国四川主要采用氧化焙烧盐酸浸出工艺,包头混合稀土矿主要采用硫酸高温焙烧过程,离子吸附型稀土矿主要采用离子型稀土冶炼原位浸出技术。稀土矿物湿法过程中使用盐酸、硫酸、苛性钠、金属盐、萃取剂等化学试剂。 1.1酸性废水 酸性废水包括硫酸废水、盐酸废水、酸泡废水、喷淋废水、萃取分离废水等。硫酸废水主要在复盐沉淀过程中产生,主要污染物是 H+、Fe3+、Na+、SO42+等污染物。盐酸废水主要在草酸沉淀和萃取分离过程中产生,主要包括H+、Cl-、SO42+和其他污染物。喷淋废水主要是稀土焙烧生产的有毒有害废气,尾气通过碱液喷淋净化产生,主要包括H-、SO42-、Na+、Ca2+等污染物。 1.2碱性废水 碱性废水是在碱性生产过程中产生的,废水中主要含有氢氧化钠、氟等污染物。 1.3放射性废水 稀土矿石中的放射性元素钍、铀与酸碱反应溶解进入稀土溶液,捞稀土后,放射性元素钍、铀进入废水,形成放射性废水。 1.4含盐废水 含盐废水包括氯化物、氟化物、销酸盐和硫酸盐废水。在稀土的冶炼过程中,氟化稀土的转型产生碱性废水,含有氟化物;稀土沉淀和稀土皂产生含氯化钠、氯化铵、氯化钙或销酸盐的废水;复盐沉淀产生含硫酸盐的废水。这些废水都含有较高的盐份。 2废水的处理措施和方法 在污水处理过程中,首先要控制原材料品质,选择含有较少污染物的矿物,从源头做起;其次,提高回水利用率,节约水资源,减少废水排放量;最后,开发利用新技术,提高对污染物的处理是十分重要的。只有这样,我们才能减少有害物质流入环境,保护环境的目的。由于稀土湿法冶金行业由于生产技术的差异,加工的稀土材料和不同的产品结构,不同的工艺流程会产生不同的废水,所以不可能有统一的污水处理工艺。废水的处理,首先应对废水中污染因子进行全面的分析,在熟悉稀土冶炼生产过程的基础上,采取不同的处理技术。 2.1酸性废水处理 酸性废水含有H+、Cl-、F-、Ca2+、Mg2+、Na+、SO42-、C2O42-、COD等污染物,可通过直接中和或循环利用降低产污量。直接中和,加入废碱液或石灰乳液或电石渣,中和废水中的余酸,同时使废水中的有害物质形成沉淀。萃取酸性废水还含有少量的溶解性有机物,经石灰的破乳,吸附载带,混凝沉降,生化处理,深度澄清除掉污染物。循环利用,将含有较低酸度的废水作为底水重新利用,节省用水,减小水处理负载。 2.2碱性废水的处理 碱性废水含有Na+、OH-、F-等污染物,可用于中和酸性废水,也可用于吸收酸雾,氯气,燃煤锅炉产生的二氧化硫气体,硫酸法焙烧产生含有氟化氢的废气。加入氯化钙形成氟化钙沉淀,从而去除氟。 2.3放射性废水 像钍、铀和镭这样的放射性元素,通常在使用碱法处理独居石精矿生产过程中产生的废水。这些放射性元素的去除,通常是通过沉淀和絮凝去除的。 2.4含盐废水 酸性废水、碱性废水、稀土沉淀废水经前期处理后,最终产生高盐废水,如何脱盐是目前污水处理的难点,如四川氧化焙烧浸出分离生产工艺中,外排废水氯化钠浓度在5~15g/l。处理这种含盐废水,通常采用物理的方法,即蒸发浓缩结晶法或电渗析-蒸发浓缩结晶的方法回收盐。但每处理1吨稀土氧化物,约排65m3废水,若全部采用蒸发结晶的方法,成本太高。为了降低处理成本,只有加大废水的重复利用率,降低废水排放量。方法有将沉淀及碱转的原液,先进行固液分离,分离出来的高浓度的含盐废水进入电渗析-蒸发结晶,如此可以大大减少蒸发浓缩的废水量,降低处理成本。水洗采取高效水洗方式,降低洗水量,碳酸盐的洗水回用于碱转的水洗,萃取的酸性废水回用于配制盐酸。如此降低废水排放量,亦可降低生产用水量,节约水资源。 2.5综合治理 根据稀土湿法冶炼生产的特殊性,改进稀土生产工艺能极大地提高资源利用率、减少污染物排放,但并不能完全解决稀土湿法冶炼过程的废水污染问题。而稀土湿法冶炼废水的资源综合利用处理需综合考虑废水水质特性、回收产品的品质与市场销售及回收的经济效益等问题,并非所有的工艺废水都适合进行资源回收处理,此外,资源回收处理后的稀土湿法冶炼废水可能仍然存在某些污染物指标超标而不能直接排放。因此,稀土湿法冶炼废水的污染控制应采用污染物的源头控制,资源的综合利用与废水的末端治理相结合的综合治理思路。近年来,膜分离技术(UF、NF、RO)发展迅速,在工业废水回用领域的应用越来越广泛。随着新标准的实施及水价的上涨,稀土分

稀土生产过程

中国稀土火法冶金技术发展评述 稀土火法冶金专业委员会 一、稀土火法冶金技术发展概要 1.稀土火法冶金发展历程

稀土金属冶炼工艺研究是由瑞典化学家G.Mosander于1862年首次用于金属钠、钾还原无水氯化铈制备金属铈开始的,以后在1875年W.Hitekrand和T.Norton又首次用氯化物熔盐电解法制得了金属铈、镧和少量镨钕混合金属,到20世纪30年代末逐步发展了稀土氯化物和氟化物金属热还原和熔盐电解两大工艺技术开始工业生产混合稀土金属,当时主要是生产打火石(发火合金)。 稀土金属和合金冶炼工艺技术的进步、生产规模的扩大无不同市场新的需求和时代的科技进步相联系。第二次世界大战后至20世纪60年代末美国等先进发达国家大力发展核技术,其中包括核技术需要的材料科学和技术,极大地促进了单一稀土元素分离工艺的发展,使离子交换法和溶剂萃取法分离单一稀土元素得到了发展,成为工业生产的方法,同时获得原子俘获截面小的金属钇和俘获截面大的金属钐、铕,发展了稀土氟化物钙热还原法和氧化钐、氧化铕直接用镧还原-蒸馏法分别制备金属钇和金属钐、铕的工艺技术,这些成果基本上奠定了这两种工艺方法产业化的基础。20世纪70年代,混合稀土金属在钢中应用,尤其在低合金钢管线钢上应用有了突破,使稀土在钢铁中应用的消耗量占到总消耗量的50%以上,从而推动了稀土氯化物熔盐电解法生产混合稀土金属产业化技术的发展,相继有德国Goldschmidt公司开发了5万安培的大型电解槽和我国上海跃龙化工厂10000安培电解工艺设备投入生产,世界和我国混合稀土金属的产量在20世纪70年代末分别达到8400吨和1200吨。在稀土钢中应用突破进展的同时,稀土硅-镁球化剂得到了工业规模的应用。我国利用包钢高炉渣为原材料以硅铁合金为还原剂在电炉中冶炼稀土硅铁合金的工艺技术得到很大发展,建立了专业生产厂,在20世纪70年代末产量达到了4000多吨。 20世纪70年代初钐钴永磁材料开发成功并很快达到了工业规模的应用,这一重要的市场动力,迅猛地促进了金属钐的工艺技术成果转为工业生产,从而使稀土氧化物还原-蒸馏工艺、设备达到产业化规模,单炉量由100克级到公斤级,到2000年已达到100公斤级,钐的回收率也由试验室的90%,提高到95%,金属钐的纯度由99%提高到99.95%。 20世纪80年代初日本住友金属公司开发成功NdFeB高性能永磁材料,由于其性能价格比的极大优势,市场需求异常强劲,年产量在最初的数年间成倍增长,市场动力推动了我国稀土氟化物体系氧化钕电解工艺、设备产业化的进程,电解槽规模由试验室100余安培提到了3000安培,到2000年末达到6000安培,2002年万安级电解槽已投入工业生产,且稀土技术经济指标和金属质量都大幅度提高,同时NdFeB永磁材料需要金属镝的市场扩大,使金属热还原法制备金属镝的工艺技术和设备也达到了产业化的规模,单炉产量达到百公斤级,直收率达到96%,金属镝纯度达99.5%。 20世纪90年代初镍氢二次电池成果开始产业化,由于其比容量高于镍镉二次电池且不会造成环境污染,很快打开市场且增长迅速,Ni/MH电池的市场需求极大地推动了电池阴极合金生产技术和设备的发展完善,主要表现在利用稀土氯化物熔盐体系电解,成功地生产出低镁、低铁的富镧或富铈混合稀土金属。一般铁镁含量较前约低了一倍,满足了电池阴极合金的要求。2002年电池级混合稀土金属产量已达4000多吨。在此时期大磁致伸缩材料(TbDyFe合金)的应用也已打开了市场,年生产量由数公斤增加到数百公斤,这一应用市场推动了高纯稀土金属镝、铽的工艺技术的产业化,不仅生产规模单炉产量由百克级提高到数十公斤级,而且纯度达到99.5%~99.99%,2002年全国高纯金属镝和铽的产量分别达到500公斤和250公斤。 随着高新技术的发展,对稀土金属及合金的需求还将进一步扩大,从而定会促进稀土金属及合金制备工艺技术和设备的进一步发展。 2.稀土火法冶金技术分类和发展目标 稀土火法冶金技术分为三大类:熔盐电解、金属热还原和火法提纯技术。这三类工艺技术的发展目标是短流程、低消耗、高效益和利于环保。 二、稀土金属熔盐电解工艺技术发展概况和评述 采用稀土氯化物熔盐体系(RCl3-KCl)电解工艺技术,以1000A级规模生产混合稀土金属是由奥地利Treibacher厂从20世纪50年代初开始的,电解槽型为上插石墨阳极,以铁棒为阴极,槽体是由耐火砖砌筑,在以后50年的发展中,电解规模扩大到10000A、50000A,槽型改进为以耐腐蚀的钨或钼为上插阴极,上插石墨多阳极,耐火砖砌筑槽体;阳极气体(含氯气和氯化物挥发物)经水淋洗和碱中和后排放;稀土氯化物原料由轻稀土全混氯化物原料改进为钕钐分组后(即不含变价元素Sm、Eu)的轻稀土氯化物原料,电流效率约提高5 个百分点以上,在此基础上,由于元素Nd价高,又进一步采用Pr-Nd分离后,少Nd的混合稀土氯化物为原料进行电解,使电流效率进一步提高到55%~60%。 氟化物熔盐体系(RF3-LiF)电解稀土氧化物工艺技术,早期在20世纪60年代进行了试验研究,对于氟化物熔盐体系、电解温度、

冶金试验研究方法

废塑料在炼铁工艺中的应用 主要内容 1.问题的提出 2.废塑料的优势 3.废塑料的发展 4.实验设计 5.高炉喷吹塑料的经济效益 6.高炉喷吹塑料的应用 7.结语 1 问题的提出 高炉喷吹技术是现代高炉炼铁生产广泛采用的新技术,它也是现代高炉炉况调节所不可缺少的重要手段之一。喷吹的燃料可以是重油、煤粉、粒煤、天然气或还原煤气,其中,喷吹煤粉日益受到世界各个国家或地区的高度重视。高炉炼铁工艺中采用喷吹煤粉技术,早在1840年就由S.M.班克斯提出来,并于 1840~1845年在法国进行了实际操作,因工艺方面的问题没有得到解决,结果未被推广应用。后来又经过了一个多世纪,到了20世纪60年代初期,以北美为代表的许多地区再度试验了这一技术,其间还将原来的垂直螺旋给料改成了水平螺旋给料,尽管如此,还是以失败告终。最后,在采用了粉体气力输送技术的基础上,喷煤才真正成为在工业上得到应用的技术。这项技术在20世纪八十年取得了明显的进步,国外高炉喷煤量已达到200kg/t的大喷煤比,喷煤率(煤粉对燃料比的比率)达38%~40%,而且在英国克利夫兰厂的大喷煤试验中已经做到煤粉、焦炭各50%(煤300kg/t),近年来,我国高炉炼铁发展迅速,高炉喷煤的应用取得了较大进步。重点大中型企业的喷煤比和总喷煤量都有较大的提高,2012年我国的平均煤比180kg/t。 经过最近十年的研究和实践,高炉喷煤技术水平日益提高,富氧喷煤技术得

到普遍应用和氧煤喷吹技术日趋成熟,大大提高了提高煤粉的燃烧率,大幅度增加喷煤量。随着高炉喷吹技术的不断发展,喷吹物料的种类也发生了较大的变化,复合喷吹是一项很有发展潜力的高炉冶炼新技术,日本和苏联已提出了综合燃料(如天然气+重油、重油+煤粉、高炉煤气和焦炉煤气+煤粉等)的概念,并成功地进行了工业喷吹。 在炼铁工业中,人们为了降低炼铁成本,采用喷吹煤粉代替部分焦炭的工艺,这早已是一项成熟的技术,将废塑料分类、清洗、干燥等处理后,制造成粒径为6毫米的颗粒,可以代替部分煤粉用于高炉炼铁。喷吹进高炉的废塑料颗粒在炉内高温和还原气氛下,被气化成H2和CO,随热风上升的过程中,它们作为还原剂将铁矿石还原成铁。其反应式见(1.1)和(1.2): 风口区:C n H m+1/2O2=nCO+1/2mH2+Q1(1.1) 气体上升过程:Fe2O3+nCO+mH2=2Fe+nCO2+mH2O+Q2(1.2) 上面2 个反应式中Q1、Q2是反应生成热 2、废塑料的优势: 密度小, 保管和运输费用大;种类多、形状杂, 有袋状、薄膜状、瓶状, 以及模压成形的和泡沫塑料等等;材质种类多, 而且从外观很难判定其材质;废塑料在气化中产生的H2/CO比值要大于等量的煤粉,H2的扩散能力与还原能力均大于CO,因此用废塑料代替煤粉有利用于降低高炉焦比;同时由于塑料的灰分和硫含量很低,可以减少高炉的石灰用量,进而也减少高炉产渣量和炼铁成本;塑料的平均热值约为40.00GJ/kg,大于煤粉的热值(25.00~31.00GJ/kg),也有利于提高高炉的生产效率。 有关研究表明,废塑料在风口前端区的反应率比煤粉要好得多,这是因为煤

《冶金物理化学研究方法》试题库

1名词解释 3填空 1)为了实现不接触测定高温,可选择的测温计有(光学高温计、光电高温计,红外辐射温度计)。 2)双铂铑热电偶的材料是铂铑合金,分度号为 B 3)热力学温度是常用的一种温度表示方法,其单位为K 。 4)实验室常用的气体净化方法有:吸收、吸附、化学催化、冷凝。。 测量真空度的仪器叫真空规,通常使用的有麦克劳真空规,热电阻真空规、 6)该比例 常数称为物体的电导,单位是西门子。 7)表面张力的单位是N/m ,

8)实验室用旋转柱体法法测定炉渣粘度,用气泡最大压力法法测定表面张力。 9)常用的显微分析法有四种,分别是:金相法、显微硬度法、化学腐蚀法、岩相法。 10)冶金反应器内发生的过程有化学反应过程和传递过程。(两大类)。 4判断 1)随着铂铑合金电热体中铑含量的增加,最高使用温度下降。(错)铑含量越高,最高使用 温度越高 2)一般而言,电阻炉内温度越高,其对应的恒温带越长。(对) 3)体系的气体压力高,对应的真空度高。(错)气体压力低,真空度高。 4)旋片式机械真空泵一般作为前级泵使用。(对) 5)表面能和表面张力是从不同角度来描述不同材料间的界面性质。(对) 6)所有熔体的表面张力都是随着温度的升高而减小的。(错) 7)固体电解质使用中要求有较高的电子迁移速率。(对) 8)从原理上来讲,计算热力学数据时标准态的选择是任意的。(错) 9)熔体粘度和温度之间是线性对应关系。(错)温度越低,变化率越大 10)夹杂物在钢中的作用都是有害的。(错) 11)在使用电解法进行相提取和分离时,应采取适当低的电解液温度。(错) 12)DTA曲线上向下的峰表示放热。(错)向下吸热 13)DSC曲线中,向上的峰表示试样吸热。(对) 14)热分析实验研究中,升温速率越快,检测灵敏度越高。(对) 15)表面张力与液体质点间的结合状态有关,以下液体表面张力由大到小为:金属液体>离子液 体>分子液体.( 对) 16)中频炉的频率范围在:150-10000Hz (对) 17)双铂铑热电偶的使用材料是:PbRh30-PbRh6 (对) 4简答、问答题: 4.1高温部分 1)简述恒温带的测定意义和测量方法。 研究目的是要了解炉膛内的温度分布规律,用于确定恒温带的位置,确保高温冶金恒温实验。 对于竖式电阻炉,测定恒温带的方法步骤为: ①用控温柜将炉子升到预定温度上,恒温一段时间; ②取测量热电偶,用双孔绝缘磁管套上,选用精密电位差计测量热电偶的电动 势; ③把测量热电偶置于炉管内轴线位置上,工作端由炉口一端拉向另一端,每隔 一段时间停留片刻,测出停留点的温度值; ④画出炉膛纵向温度分布曲线 ⑤为减少实验误差,重复测量取平均值 2)简述实验室获得高温的方法。(要求:至少举出四种并简要说明原理)。

相关文档
最新文档